Very Low Forward Voltage Trench-based Schottky Rectifier

Features

- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free and Halide-Free Devices

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 95 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds
- MSL 1

Typical Applications

- Switching Power Supplies including Compact Adapters and Flat Panel Display
- High Frequency and DC-DC Converters
- Freewheeling and OR-ing diodes
- Reverse Battery Protection
- Instrumentation
- Automotive LED Lighting (Interior and Exterior)

ON Semiconductor®

www.onsemi.com

TRENCH SCHOTTKY RECTIFIER 2.0 AMPERES 60 VOLTS

SMA-FL CASE 403AA SYTLE 6

MARKING DIAGRAM

26E = Specific Device Code A = Assembly Location

Y = Year WW = Work Week ■ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NRTSAF260ET3G	SMA-FL (Pb-Free)	10,000/ Tape & Reel
NRVTSAF260ET3G	SMA-FL (Pb-Free)	10,000/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (T _L = 150°C)	Io	2.0	А
Peak Repetitive Forward Current (Square Wave, 20 kHz, T _L = 147°C)	I _{FRM}	4.0	А
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	А
Storage and Operating Junction Temperature Range (Note 1)	T _{stg} , T _J	-65 to +175	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs
Controlled Avalanche Energy	W _{AVAL}	20	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The heat generated must be less than the thermal conductivity from

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Lead (Note 2)	$\Psi_{\sf JCL}$	24.6	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	79	°C/W
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ hetaJA}$	239	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (Note 4) $ \begin{array}{l} (I_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}) \\ (I_F = 1.0 \text{ A}, T_J = 125^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A}, T_J = 125^{\circ}\text{C}) \end{array} $	V _F	0.47 0.38 0.53 0.47	0.55 0.65 0.47 0.58	V
Maximum Instantaneous Reverse Current (Note 4) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$)	I _R	3.0 1.0	12 3.0	μA mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 2. Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board.
- Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board.
 Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2.0%.

Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

TYPICAL CHARACTERISTICS

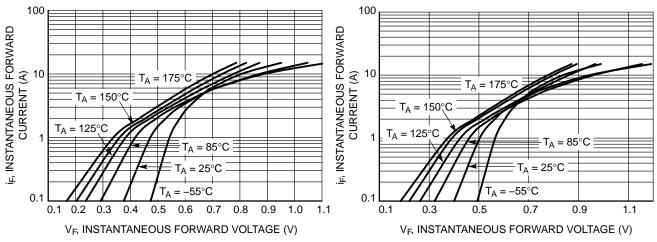


Figure 1. Typical Instantaneous Forward Characteristics

Figure 2. Maximum Instantaneous Forward Characteristics

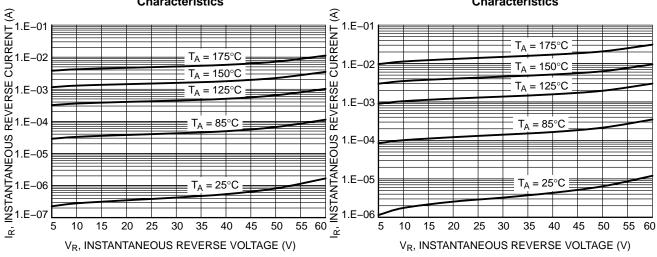


Figure 3. Typical Reverse Characteristics

Figure 4. Maximum Reverse Characteristics

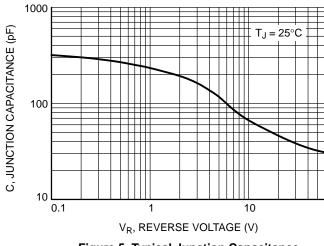


Figure 5. Typical Junction Capacitance

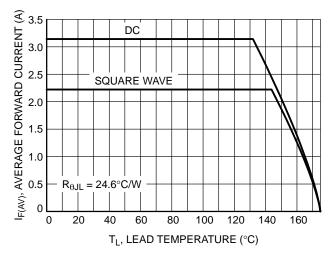


Figure 6. Current Derating

TYPICAL CHARACTERISTICS

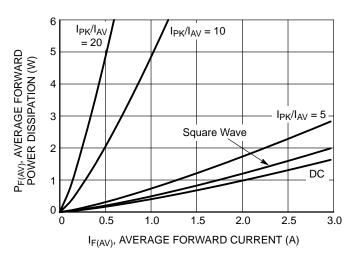


Figure 7. Forward Power Dissipation

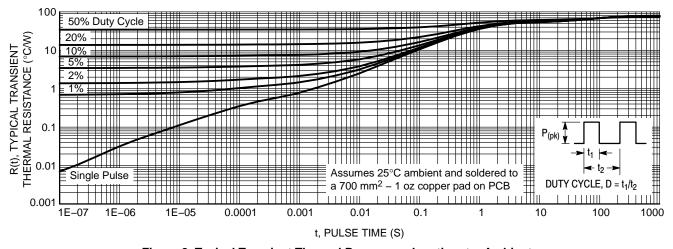


Figure 8. Typical Transient Thermal Response, Junction-to-Ambient

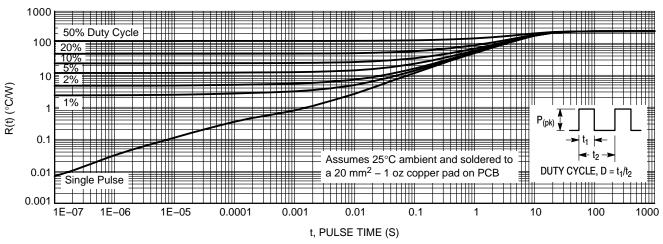
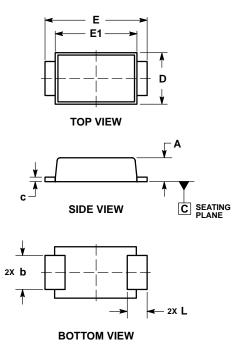
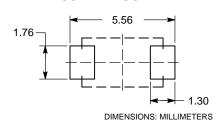



Figure 9. Typical Transient Thermal Response, Junction-to-Ambient

PACKAGE DIMENSIONS


SMA-FL CASE 403AA **ISSUE O**

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.90	1.10	
b	1.25	1.65	
С	0.15	0.30	
D	2.40	2.80	
Е	4.80	5.40	
E1	4.00	4.60	
L	0.70	1.10	

RECOMMENDED **SOLDER FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative