

NS7520 Data Sheet

The Digi NS7520 is a high-performance, highly integrated, 32-bit system-on-a chip ASIC designed for use in intelligent networked devices and Internet appliances. The NS7520 is based on the standard architecture in the NET+ARM™ family of devices.

The NS7520 can support most any networking scenario, and includes a 10/100 BaseT Ethernet MAC and two independent serial ports (each of which can run in UART or SPI mode).

The CPU is an ARM7TDMI 32-bit RISC processor core with a rich complement of support peripherals and memory controllers for various types of memory (including Flash, SDRAM, EEPROM, and others), programmable timers, a 13-channel DMA controller, an external bus expansion module, and 16 general-purpose input/output (GPIO) pins.

NET+ARM is the hardware foundation for the

NET+Works[™] family of integrated hardware and software solutions for device networking. These comprehensive platforms include drivers, popular operating systems, networking software, development tools, APIs, and complete development boards.

Contents

NS7520 Overview

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins.

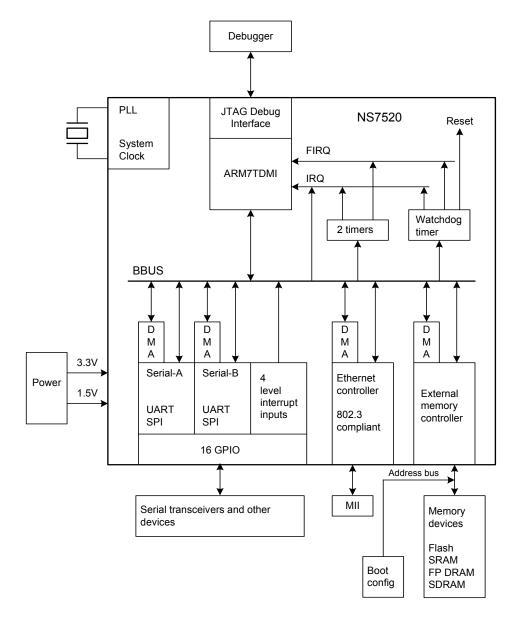


Figure 1: NS7520 module overview

Key Features

This table lists the key features of the NS7520.

CPU core

- ARM7TDMI 32-bit RISC processor
- 32-bit internal bus
- 32-bit ARM and 16-bit Thumb mode
- 15 general purpose 32-bit registers
- 32-bit program counter (PC) and status register
- Five supervisor modes, one user mode

13-Channel DMA controller

- Two channels dedicated to Ethernet transmit and receive
- Four channels dedicated to two serial modules' transmit and receive
- Four channels for external peripherals. Only two channels either 3 and 5 or 4 and 6 can be configured at one time.
- Three channels available for memory-to-memory transfers
- Flexible buffer management

General purpose I/O pins

- 16 programmable GPIO interface pins
- 4 pins programmable with level-sensitive interrupt

Integrated 10/100 Ethernet MAC

- 10/100 Mbps MII-based PHY interface
- 10 Mbps ENDEC interface
- TP-PMD and fiber-PMD device support
- Full-duplex and half-duplex modes
- Optional 4B/5B coding
- Station, broadcast, and multicast address detection
- 512-byte transmit FIFO, 2 Kbyte receive FIFO
- Intelligent receive-side buffer selection

Programmable Timers

- Two independent timers (2µs–20.7 hours)
- Watchdog timer (interrupt or reset on expiration)
- Programmable bus monitor or timer

Operating frequency

- 36, 46, or 55 MHz internal clock operation from 18.432 MHz crystal
- $f_{MAX} = 36, 46, \text{ or } 55 \text{ (grade-dependent)}$
- System clock source by external quartz crystal or crystal oscillator, or clock signal
- Programmable PLL, which allows a range of operating frequencies from 10 to f_{MAX}
- Maximum operating frequency from external clock or using PLL multiplication f_{MAX}

Serial ports

- Two fully independent serial ports (UART, SPI)
- Digital phase lock loop (DPLL) for receive clock extractions
- 32-byte transmit/receive FIFOs
- Internal programmable bit-rate generators
- Bit rates 75–230400 in 16X mode
- Bit rates 1200 bps-4 Mbps in 1X mode
- Flexible baud rate generator, external clock for synchronous operation
- Receive-side character and buffer gap timers
- Four receive-side data match detectors

Power and Operating Voltages

- 500 mW maximum at 55 MHz (all outputs switching)
- 418 mW maximum at 46 MHz (all outputs switching)
- 291 mW maximum at 36 MHz (all outputs switching)
- 3.3 V I/O
- 1.5 V Core

Bus interface

- Five independent programmable chip selects with 256
 Mb addressing per chip select
- Chip select support for SRAM, FP/EDO DRAM, SDRAM, Flash, and EEPROM without external glue
- 8-, 16-, and 32-bit peripheral support
- External address decoding and cycle termination
- Dynamic bus sizing
- Internal DRAM/SDRAM controller with address multiplexer and programmable refresh frequency
- Internal refresh controller (CAS before RAS)
- Burst-mode support
- 0-63 wait states per chip select
- Address pins that configurem chip operating modes (see "NS7520 bootstrap initialization" on page 22)

Operating frequency

The NS7520 is available in grades operating at three maximum operating frequencies: 36 MHz, 46 MHz, and 55 MHz. The operating frequency is set during bootstrap initialization, using pins A[8:0]. These address pins load the PLL Settings register on powerup reset. A[8:7] determines IS (charge pump current); A[6:5] determines FS (output divider), and A[4:0] defines ND (PLL multiplier). Each bit in A[8:0] can be set individually. See the discussion of the PLL Settings register in the NS7520 Hardware Reference for more information.

Packaging and pinout

Table 1 provides the NS7520 packaging dimensions. Figure 2 shows the NS7520 pinout and dimensions.

Symbol	Min	Nom	Max
A	_	_	1.4
A1	0.35	0.40	0.45
A2	_	_	0.95
b	0.45	0.50	0.55
D		13.0 BSC	
D1		11.2 BSC	
Е		13.0 BSC	
E1		11.2 BSC	
e		0.8 BSC	
aaa		0.1	

Table 1: NS7520 packaging dimensions

177 PFBGA **-** Ф 0.2 С А D Ē ⊕ 0.2 C B 0.15 D1 A e e 0000 0000 0000 0000 0-0-0--0-0-0-0 Ē1 0000 0000 0000 0000 e // 0.2 C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 □ aaa C — ь 😝 Ø0.08(M) С АВ

Figure 2: NS7520 pinout and dimensions

Pinout detail tables

Each pinout table applies to a specific interface and contains the following information:

Signal	The pin name for each I/O signal. Some signals have multiple function modes and are identified accordingly. The mode is configured through firmware using one or more configuration registers.				
Pin	 U next to the pin number indicates that the pin is a pullup resistor. D next to the pin number indicates that the pin is a pullup resistor. No value next to the pin indicates that the pin has neither a pullup nor pulldown resistor. See Figure 5, "Internal pullup characteristics," on page 24 and Figure 6, "Internal pulldown characteristics," on page 25 for an illustration of the characteristics of these pins. Use the figures to select the appropriate value of the complimentary resistor to drive the signal to the opposite logic state. For those pins with no pullup or pulldown resistor, you must select the appropriate value per your design requirements. 				
_	An underscore (bar) indicates that the pin is <i>active low</i> .				
I/O	The type of signal — input, output, or input/output.				
OD	The output drive strength of an output buffer. The NS7520 uses one of three drivers: 2 mA 4 mA 8 mA				

Notes:

- NO CONNECT as a pin description means do not connect to this pin.
- The 177th pin (package ball) is for alignment of the package on the PCB.

System Bus interface

Symbol		Pin	I/O	OD	Description	
BCLK		A6	0	8	Synchronous bus	elock
External bus	Other		'		External bus	Other
ADDR27	CS0OE_	N10 U	I/O	4	Addr bit 27	Logical AND of CS0_ and OE_
ADDR26	CS0WE_	P10 U	I/O	4	Addr bit 26	Logical AND of CS_ and WE_
External bus					External bus	
ADDR25		M10 U	I/O	4	Remainder of add	ress bus (through ADDR0)
ADDR24		R10 U	I/O	4		
ADDR23		N9 U	I/O	4		
ADDR22		R9 U	I/O	4		
ADDR21		M9 U	I/O	4		

Symbol	Pin	I/O	OD	Description
ADDR20	N8 U	I/O	4	
ADDR19	P8 U	I/O	4	
ADDR18	M7 U	I/O	4	
ADDR17	R7 U	I/O	4	
ADDR16	N7 U	I/O	4	
ADDR15	R6 U	I/O	4	
ADDR14	M6 U	I/O	4	
ADDR13	P6 U	I/O	4	
ADDR12	N6 U	I/O	4	
ADDR11	M5 U	I/O	4	
ADDR10	P5 U	I/O	4	
ADDR9	N5 U	I/O	4	
ADDR8	R4 U	I/O	4	
ADDR7	R3 U	I/O	4	
ADDR6	R2 U	I/O	4	
ADDR5	M4 U	I/O	4	
ADDR4	N4 U	I/O	4	
ADDR3	R1 U	I/O	4	
ADDR2	M3 U	I/O	4	
ADDR1	N2 U	I/O	4	
ADDR0	P1 U	I/O	4	
DATA31	N1	I/O	4	Data bus
DATA30	M1	I/O	4	
DATA29	L3	I/O	4	
DATA28	L2	I/O	4	
DATA27	L4	I/O	4	
DATA26	L1	I/O	4	
DATA25	K3	I/O	4	
DATA24	K2	I/O	4	
DATA23	K1	I/O	4	
DATA22	J2	I/O	4	
DATA21	J3	I/O	4	
DATA20	J1	I/O	4	

Symbol	Pin	I/O	OD	Description
DATA19	Н3	I/O	4	
DATA18	H4	I/O	4	
DATA17	H1	I/O	4	
DATA16	H2	I/O	4	
DATA15	G4	I/O	4	
DATA14	G1	I/O	4	
DATA13	G3	I/O	4	
DATA12	G2	I/O	4	
DATA11	F4	I/O	4	
DATA10	F2	I/O	4	
DATA9	F3	I/O	4	
DATA8	E1	I/O	4	
DATA7	E2	I/O	4	
DATA6	E3	I/O	4	
DATA5	D1	I/O	4	
DATA4	C1	I/O	4	
DATA3	B1	I/O	4	
DATA2	D4	I/O	4	
DATA1	D3	I/O	4	
DATA0	C2	I/O	4	
BE3_	D9	I/O	2	Byte enable D31:D24
BE2_	A9	I/O	2	Byte enable D23:D16
BE1_	С9	I/O	2	Byte enable D15:D08
BE0_	В9	I/O	2	Byte enable D07:D00
TS_	A8	I/O	4	DO NOT USE Add an external 820 ohm pullup to 3.3 V.
TA_	D8 U	I/O	4	Data transfer acknowledge Add an external 820 ohm pullup to 3.3 V. TA_ is bidirectional. It is used in input mode to terminate a memory cycle externally. It is used in output mode for reference purposes only.
TEA_	C8 U	I/O	4	Data transfer error acknowledge Add an external 820 ohm pullup to 3.3 V. TEA_ is bidirectional. It is used in input mode to terminate a memory cycle externally. It is used in output mode for reference purposes only.

Symbol	Pin	I/O	OD	Description
RW_	D6	I/O	2	Transfer direction
BR_	D7	NO CONNECT		
BG_	C7	NO CONNECT		
BUSY_	В7	NO CONNECT		

System bus interface signal descriptions

Mnemonic	Signal	Description
BCLK	Bus clock	Provides the bus clock. All system bus interface signals are referenced to the BCLK signal.
ADDR[27:0]	Address bus	Identifies the address of the peripheral being addressed by the current bus master. The address bus is bi-directional.
DATA[31:0]	Data bus	Provides the data transfer path between the NS7520 and external peripheral devices. The data bus is bi-directional. Recommendation: Less than x32 (S)DRAM/SRAM memory configurations. Unconnected data bus pins will float during memory read cycles. Floating inputs can be a source of wasted power. For other than x32 DRAM/SRAM configurations, the unused data bus signals should be pulled up.
TS_	Transfer start	NO CONNECT
BE_	Byte enable	Identifies which 8-bit bytes of the 32-bit data bus are active during any given system bus memory cycle. The BE_ signals are active low and bi-directional.
TA_	Transfer acknowledge	Indicates the end of the current system bus memory cycle. This signal is driven to 1 prior to tri-stating its driver. TA_ is bi-directional.
TEA_	Transfer error acknowledge	Indicates an error termination or burst cycle termination: ■ In conjunction with TA_ to signal the end of a burst cycle. ■ Independently of TA_ to signal that an error occurred during the current bus cycle. TEA_ terminates the current burst cycle. This signal is driven to 1 prior to tri-stating its driver. TEA_ is bi-directional. The NS7520 or the external peripheral can drive this signal.
RW_	Read/write indicator	Indicates the direction of the system bus memory cycle. RW_ high indicates a read operation; RW_ low indicates a write operation. The RW_ signal is bidirectional.
BR_	Bus request	NO CONNECT
BG_	Bus grant	NO CONNECT
BUSY_	Bus busy	NO CONNECT

Chip select controller

The NS7520 supports five unique chip select configurations.

Symbol	Pin	I/O	OD	Description
CS4_	B4	О	4	Chip select/DRAM RAS_
CS3_	A4	О	4	Chip select/DRAM RAS_
CS2_	C5	О	4	Chip select/DRAM RAS_
CS1_	B5	О	4	Chip select/DRAM RAS_
CS0_	D5	О	4	Chip select (boot select)
CAS3_	A1	О	4	FP/EDO DRAM column strobe D31:D24/SDRAM RAS_
CAS2_	C4	О	4	FP/EDO DRAM column strobe D23:D16/SDRAM CAS_
CAS1_	В3	О	4	FP/EDO DRAM column strobe D15:D08/SDRAM WE_
CAS0_	A2	О	4	FP/EDO DRAM column strobe D07:D00/SDRAM A10(AP)
WE_	C6	О	4	Write enable for NCC Ctrl'd cycles
OE_	В6	О	4	Output enable for NCC Ctrl'd cycles

Chip select controller signal descriptions

Mnemonic	Signal	Description
CS0_ CS1_ CS2_ CS3_ CS4_	Chip select 0 Chip select 1 Chip select 2 Chip select 3 Chip select 4	Unique chip select outputs supported by the NS7520. Each chip select can be configured to decode a portion of the available address space and can address a maximum of 256 Mbytes of address space. The chip selects are configured using registers in the memory module. A chip select signal is driven low to indicate the end of the current memory cycle. For FP/EDO DRAM, these signals provide the RAS signal.
CAS0_ CAS1_ CAS2_ CAS3_	Column address strobe signals	Activated when an address is decoded by a chip select module configured for DRAM mode. The CAS_ signals are active low and provide the column address strobe function for DRAM devices. The CAS_ signals also identify which 8-bit bytes of the 32-bit data bus are active during any given system bus memory cycle. For SDRAM, CAS[3:1]_ provides the SDRAM command field. CAS0_ provides the auto-precharge signal. For non-DRAM settings, these signals are 1.
WE_	Write enable	Active low signal that indicates that a memory write cycle is in progress. This signal is activated only during write cycles to peripherals controlled by one of the chip selects in the memory module.
OE_	Output enable	Active low signal that indicates that a memory read cycle is in progress. This signal is activated only during read cycles from peripherals controlled by one of the chip selects in the memory module.

Ethernet interface MAC

Note: ENDEC values for general-purpose output and TXD refer to bits in the Ethernet General

Control register. ENDEC values for general-purpose input and RXD refer to bits in the

Ethernet General Status register.

In this table, GP designates general-purpose.

Symbol		Pin	I/O	OD	Description	
MII	ENDEC				MII	ENDEC
MDC	GP output	D10	О	2	MII management clock	State of (LPBK bit XOR (Mode=SEEQ))
MDIO	GP output	B10 U	I/O	2	MII data	State of UTP_STP bit
TXCLK		C10	I		TX clock	
TXD3	GP output	A12	О	2	TX data 3	State of AUI_TP[0] bit
TXD2	GP output	B11	О	2	TX data 2	State of AUI_TP[1] bit
TXD1	GP output	D11	О	2	TX data 1	Inverted state of PDN bit, open collector
TXD0	TXD	A11	О	2	TX data 0	Transmit data
TXER	GP output	A13	О	2	TX code error	State of LNK_DIS_ bit
TXEN		B12	О	2	TX enable	
TXCOL		A14	I		Collision	
RXCRS		D12	I		Carrier sense	
RXCLK		C12	I		RX clock	
RXD3	GP input	D14	I		RX data 3	Read state in bit 12
RXD2	GP input	B15	I		RX data 2	Read state in bit 15
RXD1	GP input	A15	I		RX data 1	Read state in bit 13
RXD0	RXD	B13	I		RX data 0	Receive data
RXER	GP input	C15	I		RX error	Read state in bit 11
RXDV	GP input	D15	I		RX data valid	Read state in bit 10

Ethernet interface MAC signal descriptions

The Ethernet MII (media independent interface) provides the connection between the Ethernet PHY and the MAC (media access controller).

Mnemonic	Signal	Description
MDC	MII management clock	Provides the clock for the MDIO serial data channel. The MDC signal is an NS7520 output. The frequency is derived from the system operating frequency per the CLKS field setting (see the CLKS field in Table 69: "MII Management Configuration register bit definition" on page 191).

Mnemonic	Signal	Description
MDIO	Management data IO	A bi-directional signal that provides a serial data channel between the NS7520 and the external Ethernet PHY module.
TXCLK	Transmit clock	An input to the NS7520 from the external PHY module. TXCLK provides the synchronous data clock for transmit data.
TXD3 TXD2 TXD1 TXD0	Transmit data signals	Nibble bus used by the NS7520 to drive data to the external Ethernet PHY. All transmit data signals are synchronized to TXCLK. In ENDEC mode, only TXD0 is used for transmit data.
TXER	Transmit coding error	Output asserted by the NS7520 when an error has occurred in the transmit data stream.
TXEN	Transmit enable	Asserted when the NS7520 drives valid data on the TXD outputs. This signal is synchronized to TXCLK.
COL	Transmit collision	Input signal asserted by the external Ethernet PHY when a collision is detected.
CRS	Receive carrier sense	Asserted by the external Ethernet PHY whenever the receive medium is non-idle.
RXCLK	Receive clock	An input to the NS7520 from the external PHY module. The receive clock provides the synchronous data clock for receive data.
RXD3 RXD2 RXD1 RXD0	Receive data signals	Nibble bus used by the NS7520 to input receive data from the external Ethernet PHY. All receive data signals are synchronized to RXCLK. In ENDEC mode, only RXD0 is used for receive data.
RXER	Receive error	Input asserted by the external Ethernet PHY when the Ethernet PHY encounters invalid symbols from the network.
RXDV	Receive data valid	Input asserted by the external Ethernet PHY when the PHY drives valid data on the RXD inputs.

"No connect" pins

Pin	Description
R13	Add a 15K ohm pulldown to GND (15K ohm is the recommended value; 10–20K ohms is acceptable)
P12	Add a 15K ohm pulldown to GND (15K ohm is the recommended value; 10–20K ohms is acceptable)
N12	Tie to GND
R15	XTALB2: NO CONNECT
M11	NO CONNECT
P11	NO CONNECT
N11	NO CONNECT
R12	NO CONNECT
R14	NO CONNECT
P13	NO CONNECT

Note:

If your design implements 10-2-K ohm *pullups* instead of *pulldowns* on R13 and P12, and a pullup on N12 instead of *GND*, no action is required.

General Purpose I/O

GPIO signal	Serial signal	Other signal	Pin	I/O	OD	Serial channel description	Other description
PORTA7	TXDA		J14 U	I/O	2	Channel 1 TXD	
PORTA6	DTRA_	DREQ1_	J13 U	I/O	2	Channel 1 DTR_	DMA channel 3/5 Req
PORTA5	RTSA_		J15 U	I/O	2	Channel 1 RTS_	
PORTA4	RXCA/RIA_/ OUT1A_		J12 U	I/O	2	Pgm'able Out/ Channel 1 RXCLK/ Channel 1 ring signal/Channel 1 SPI clock (CLK)	
PORTA3	RXDA	DACK1_	H15 U	I/O	2	Channel 1 RXD	DMA channel 3/5 ACK
PORTA2	DSRA_	AMUX	H12 U	I/O	2	Channel 1 DSR_	DRAM addr mux
PORTA1	CTSA_	DONE1_(O)	H13 U	I/O	2	Channel 1 CTS_	DMA channel 3/5 DONE_Out
PORTA0	TXCA/ OUT2A_/ DCDA_	DONE1_(I)	G12 U	I/O	2	Pgm'able Out/ Channel 1 DCD/ Channel 1 SPI enable (SEL_)/ Channel 1 TXCLK	DMA channel 3/5 DONE_In

GPIO signal	Serial signal	Other signal	Pin	I/O	OD	Serial channel description	Other description
PORTC7	TXDB		G13 U	I/O	2	Channel 2 TXD	GEN interrupt out
PORTC6	DTRB_	DREQ2_	G14 U	I/O	2	Channel 2 DTR_	DMA Channel 4/6 Req
PORTC5	RTSB_	REJECT_	F15 U	I/O	2	Channel 2 RTS_	CAM reject
PORTC4 ¹	RXCB/RIB_/ OUT1B_	RESET_	F12 U	I/O	2	Pgm'able Out/ Channel 2 RXCLK/ Channel 2 ring signal/Channel 2 SPI clock (CLK)	RESET output
PORTC3 ²	RXDB	LIRQ3/ DACK2_	F13 U	I/O	2	Channel 2 RXD	Level sensitive IRQ / DMA channel 4/6 ACK
PORTC2 ²	DSRB_	LIRQ2/RPSF_	E15 U	I/O	2	Channel 2 DSR_	Level sensitive IRQ/ CAM request
PORTC1 ²	CTSB_	LIRQ1/ DONE2_(O)	E12 U	I/O	2	Channel 2 CTS_	Level sensitive IRQ / DMA channel 4/6 DONE_Out
PORTC0 ²	TXCB/ OUT2B_/ DCDB_	LIRQ0/ DONE2_(I)	E14 U	I/O	2	Pgm'able Out/ Channel 2 DCD/ Channel 2 SPI enable (SEL_)/ Channel 2 TXCLK	Level sensitive IRQ / DMA channel 4/6 DONE_In

Notes:

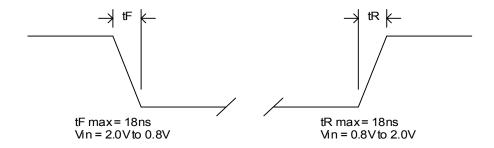
- RESET output indicates the reset state of the NS7520. PORTC4 persists beyond the negation of RESET_ for approximately 512 clock cycles if the PLL is disabled. When the PLL is enabled, PORTC4 persists beyond the negation of RESET_ to allow for PLL lock for 100 microseconds times the ratio of the VCO to XTALA.
 - This GPIO is left in output mode active following a hardware RESET.
- PORTC[3:0] pins provide level-sensitive interrupts. The inputs do not need to be synchronous to any clock. The interrupt remains active until cleared by a change in the input signal level.

System clock and reset

Symbol	Pin	I/O	OD	Description
XTALA1	K14	I		ARM/system oscillator circuit
XTALA2	K12	О		
PLLVDD (1.5V)	L15	P		PLL clean power
PLLVSS	L12	P		PLL return
RESET_	A10	I		System reset

Signal descriptions

The NS7520 has three clock domains:


- System clock (SYSCLK)
- Bit rate generation and programmable timer reference clock (XTALA1/2)
- System bus clock (BCLK)

The SYS module provides the NS7520 with these clocks, as well as system reset and backup resources.

Mnemonic	Signal	Description
XTALA1 XTALA2	Oscillator input Oscillator output	A standard parallel quartz crystal or crystal oscillator can be attached to these pins to provide the main input clock to the NS7520.
PLLVDD PLLVSS	Clean PLL power Connect directly to the GND plane	Power and ground for PLL circuit.
RESET_	System reset	Resets the NS7520 hardware.

Table 2: Clock generation and reset signal description

This figure shows the timing and specification for RESET_ rise/fall times:

System mode (test support)

PLLTST_, BISTEN_, and SCANEN_ primary inputs control different test modes for both functional and manufacturing test operations (see Table 3: "NS7520 test modes" on page 22).

Symbol	Pin	I/O	OD	Description
PLLTST_	N15	I		Encoded with BISTEN_ and SCANEN_ Add an external pullup to 3.3V or pulldown to GND.
BISTEN_	M15	I		Encoded with PLLTST_ and SCANEN_ Add an external pullup to 3.3V or pulldown to GND.
SCANEN_	L13	I		Encoded with BISTEN_ and PLLTST_ Add an external pullup to 3.3V or pulldown to GND.

JTAG test

JTAG boundary scan allows a tester to check the soldering of all signal pins and tri-state all outputs.

Symbol	Pin	I/O	OD	Description
TDI	N14 U	I		Test data in.
TDO	M13	О	2	Test data out.
TMS	M12 U	I		Test mode select.
TRST_	M14	I		Test mode reset. Requires external termination when not being used (see Figure 3, "TRST_ termination," on page 17 for an illustration of the termination circuit on the development PCB).
TCK	P15	Ι		Test mode clock. Add an external pullup to 3.3V.

ARM debugger signal descriptions

Mnemonic	Signal	Description
TDI	Test data in	TDI operates the JTAG standard. Consult the JTAG specifications for use in boundary-scan testing. These signals meet the requirements of the Raven and Jeeni debuggers.
TDO	Test data out	TDO operates the JTAG standard. Consult the JTAG specifications for use in boundary-scan testing. These signals meet the requirements of the Raven and Jeeni debuggers.
TMS	Test mode select	TMS operates the JTAG standard. Consult the JTAG specifications for use in boundary-scan testing. These signals meet the requirements of the Raven and Jeeni debuggers.
TRST_	Test mode reset	TRST_ operates the JTAG standard. Consult the JTAG specifications for use in boundary-scan testing. These signals meet the requirements of the Raven and Jeeni debuggers.

Mnemonic	Signal	Description
TCK	Test mode clock	TCK operates the JTAG standard. Consult the JTAG specifications for use in boundary-scan testing. These signals meet the requirements of the Raven and Jeeni debuggers.

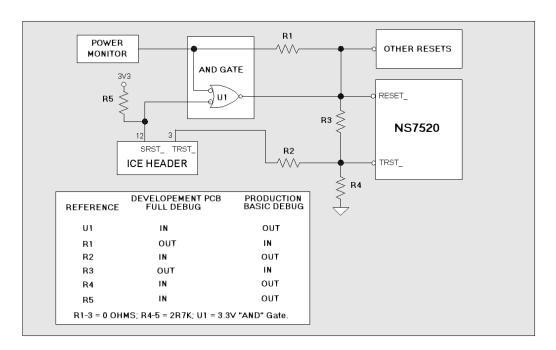


Figure 3: TRST_ termination

Power supply

Signal	Pin	Description
Oscillator VCC (3.3V)	N13, C3	Oscillator power supply
Core VCC (1.5V)	R8, L14, C14, C13	Core power supply
I/O VCC (3.3V)	E4, K4, M2, N3, P3, R5, H14, F14, B8, A3	I/O power supply
GND	D2, F1, J4, P4, P7, M8, P9, R11, K15, G15, E13, D13, B14, C11, A7, A5, B2, P2, P14, K13	Ground

NS7520 modules

CPU module

The CPU uses an ARM7TDMI core processor. The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, which result in high instruction throughput and impressive real-time interrupt response for a small, cost-effective circuit. For more information about ARM7TDMI, see the ARM7TDMI Data Sheet from ARM Ltd. (www.arm.com).

GEN module

The GEN module provides the NS7520 with its main system control functions, as well as these features:

- Two programmable timers with interrupt
- One programmable bus-error timer
- One programmable watchdog timer
- Two 8-bit programmable general-purpose I/O ports

System (SYS) module

The system module provides the system clock (SYS_CLK) and system reset (SYS_RESET) resources. The system control signals determine the basic operation of the chip:

Signal mnemonic	Signal name	Description	
{XTALA1, XTALA2}	Clock source	 Operate in one of two ways: The signals are affixed with a 10-20 MHz parallel mode quartz crystal or crystal oscillator and the appropriate components per the component manufacturer. XTALA1 is driven with a clock signal and XTALA2 is left open. 	
{PLLVDD, PLLVSS}	PLL power	Provide an isolated power supply for the PLL.	
RESET_	Chip reset	Active low signal asserted to initiate a hardware reset of the chip.	
{TDI, TDO, TNS, TRST_, TCK}	JTAG interface	Provide a JTAG interface for the chip. This interface is used for be boundary scan and ICE control of the internal processor.	
{PLLTEST_, BISTEN_, SCANEN_}	Chip mode	Encoded to determine the chip mode.	

The NS7520 clock module creates the BCLK and FXTAL signals. Both signals are used internally, but BCLK can also be accessed at ball A6 by setting the BCLKD field in the System Control register to 0.

- BCLK functions as the system clock and provides the majority of the NS7520's timing.
- FXTAL provides the timing for the DRAM refresh counter, can be selected instead of BCLK to provide timing for the watchdog timer, the two internal timers, and the Serial module.

BBus module

The BBus module provides the data path among NS7520 internal modules. This module provides the address and data multiplexing logic that supports the data flow through the NS7520. The BBus module is the central arbiter for all the NS7520 bus masters and, once mastership is granted, handles the decoding of each address to one (or none) of the NS7520 modules.

Memory module (MEM)

The MEM module provides a glueless interface to external memory devices such as Flash, DRAM, and EEPROM. The memory controller contains an integrated DRAM controller and supports five unique chip select configurations.

The MEM module monitors the BBus interface for access to the bus module; that is, any access not addressing internal resources. If the address to be used corresponds to a Base Address register in the MEM module, the MEM module provides the memory access signals and responds to the BBus with the necessary completion signal.

The MEM module can be configured to interface with FP, EDO, or SDRAM (synchronous DRAM), although the NS7520 cannot interface with more than one device type at a time.

DMA controller

The NS7520 contains one DMA controller, with 13 DMA channels. Each DMA channel moves blocks of data between memory and a memory peripheral.

The DMA controller supports both fly-by operations and memory-to-memory operations:

- When configured for fly-by operation, the DMA controller transfers data between one of the NS7520 peripherals and a memory location.
- When configured for memory-to-memory operations, the DMA controller uses a temporary holding register between read and write operations. Two memory cycles are executed.

Ethernet controller

The Ethernet controller provides the NS7520 with one IEEE 802.3u compatible Ethernet interface. The Ethernet interface includes the Ethernet front-end (EFE) and media access controller (MAC).

The Ethernet module supports both media independent interface (MII) and ENDEC modes.

The MAC module interfaces to an external physical layer (PHY) device using the MII standard defined by IEEE 802.3u. The MAC interface includes the MII clock and data signals.

Figure 4 shows a high-level block diagram of the EFE module, which provides the FIFO handling interface between the NS7520 BBus and the MAC modules.

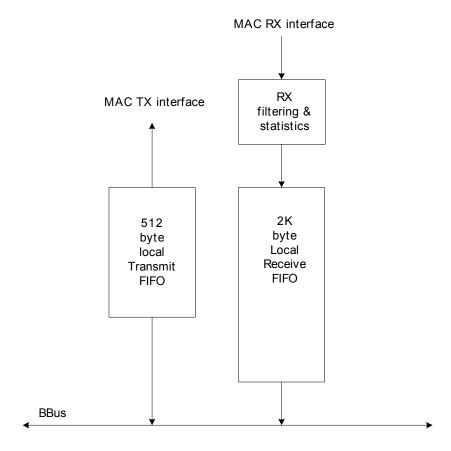


Figure 4: EFE module block diagram

Serial controller

The NS7520 supports two independent universal asynchronous/synchronous receiver/transmitter channels. Each channel supports these features:

- Independent programmable bit-rate generator
- UART and SPI (master) modes
- High-speed data transfer:
 - x1 mode: 4Mbits/sec
 - x16 mode: 230 Kbits/sec
- 32-byte TX FIFO
- 32-byte RX FIFO
- Programmable data format: 5-8 data bits; odd, even, or no parity; 1, 2 stop bits
- Programmable channel modes: normal, local loopback, remote loopback
- Control signal support
- Maskable interrupt conditions:
 - Receive break detection
 - Receive framing error
 - Receive parity error
 - Receive overrun error
 - Receive FIFO ready
 - Receive FIFO half-full
 - Transmit FIFO ready
 - Transmit FIFO half-empty
 - CTS, DSR, DCD, RI state change detection
- Clock/data encoding: NRZ, NRZB, NRZI, FM, Manchester
- Multi-drop capable

NS7520 bootstrap initialization

Many internal NS7520 features are configured when the RESET pin is asserted. The address bus configures the appropriate control register bits at powerup. This table shows which bits control which functions:

Address bit	Name	Description		
ADDR[27]	Endian configuration	0 Little Endian configuration1 Big Endian configuration		
ADDR[26]	CPU bootstrap	0 CPU disabled; GEN_BUSER=1 1 CPU enabled; GEN_BUSER=0		
ADDR[24:23]	CS0/MMCR[19:18] setting	 8-bit SRAM, 63 wait-states/b00 32-bit SRAM, 63 wait-states/b01 32-bit SRAM 16-bit SRAM, 63 wait-states/b11 		
ADDR[19:9]	GEN_ID setting	GEN_ID=A[19:09],default='h3ff		
ADDR[8:7]	PLL IS setting	IS=A[8:7], default='b10		
ADDR[6:5]	PLL FS setting	FS=A[6:5], default='b00		
ADDR[4:0]	PLL ND setting	ND=A[4:0], default='b01011		

Table 3: NS7520 test modes

JTAG

The NS7520 provides full support for 1149.1 JTAG boundary scan testing. All NS7520 pins can be controlled using the JTAG interface port. The JTAG interface provides access to the ARM7TDMI debug module when the appropriate combination of PLLTST_, BISTEN_, and SCANEN_ is selected (as shown in Table 3: "NS7520 test modes").

ARM Debug

The ARM7TDMI core uses a JTAG TAP controller that shares the pins with the TAP controller used for 1149.1 JTAG boundary scan testing. To enable the ARM7TDMI TAP controller, {PLLTST ,BISTEN ,SCANEN } must be set as shown in Table 3: "NS7520 test modes".

DC characteristics and other operating specifications

The NS7520 operates using an internal core V_{DD} supply voltage of 1.5V. A 3.3VC supply is required for the I/O cells, which drive/accept 3.3V levels.

Table 4 provides the DC characteristics for inputs; Table 5 provides the DC characteristics for outputs.

Sym	Parameter	Conditions	Min	Typ	Max	Unit
V_{IH}	Input high voltage		2.0		3.6	V
$V_{\rm IL}$	Input low voltage		$V_{SS}-0.3$		0.8	V

Table 4: DC characteristics — Inputs

Sym	Parameter	Conditions	Min	Max		Unit
P	Power consumption	$F_{SYSCLK} = 55 \text{ MHz}$		508		mW
		Core			192	mW
		I/O			316	mW
		$F_{SYSCLK} = 46 \text{ MHz}$		425		mW
		Core			161	mW
		I/O			264	mW
		$F_{SYSCLK} = 36 \text{ MHz}$		333		mW
		Core			126	mW
		I/O			207	mW
V _{OL}	Output low voltage	Outputs & bi-directional	0	0.4		V
V _{OH}	Output high voltage	Outputs & bi-directional	2.4	V_{DD}		V

Table 5: DC characteristics — Outputs

Table 6 defines the DC operating (thermal) conditions for the NS7520. Operating the NS7520 outside these conditions results in unpredictable behavior.

Sym	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Core supply voltage		1.4	1.5	1.6	V
V _{CC}	I/O supply voltage		3.0	3.3	3.6	V
T _{OP}	Ambient temperature		-40		85	°C
T_{J}	Junction temperature			110		°C
T _{STG}	Storage temperature		-40		125	°C
θ_{J}	Pkg thermal resistance			50		°C/W
I _{IH}	Input threshold	No pullup	-10		10	μΑ

Table 6: Recommended operating temperatures

Sym	Parameter	Conditions	Min	Тур	Max	Unit
I_{IL}	Input current as "0"	No pullup	10		10	μΑ
I_{OZ}	HighZ leakage current	Any input	-10		10	μΑ
C _{IO}	Pin capacitance	$V_O=0$			7	pF

Table 6: Recommended operating temperatures

Absolute maximum ratings

This table defines the maximum values for the voltages that the NS7520 can withstand without being damaged.

Sym	Parameter	Min	Max
V_{DD}	Core supply voltage	-0.3	3.15
V_{CC}	I/O supply voltage	-0.3	3.9
V_{IN}	Input voltage	-0.3	3.9
V _{OUT}	Output voltage	-0.3	3.9

Pad pullup and pulldown characteristics

Figure 5 illustrates characteristics for a pad with internal pullup; Figure 6 illustrates characteristics for a pad with internal pulldown. See "Pinout detail tables," beginning on page 6, for information about which pins use pullup and pulldown resistors.

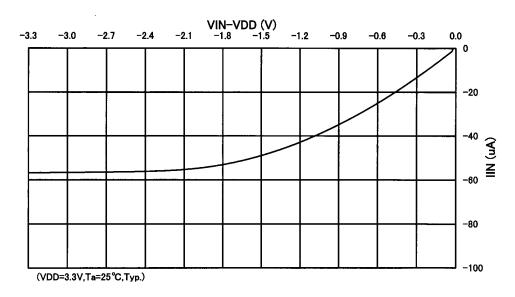


Figure 5: Internal pullup characteristics

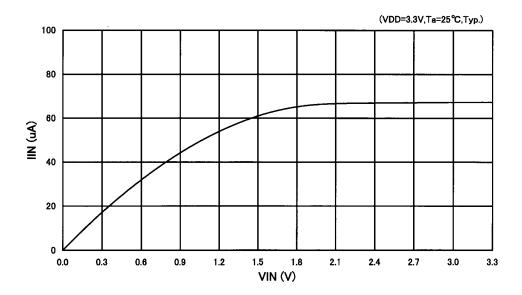


Figure 6: Internal pulldown characteristics

AC characteristics

AC electrical specifications define the timing relationship between signals for interfaces and modes within a given interface.

AC electrical specifications

The AC electrical specifications are based on the system configuration shown in Figure 7, with a 5pF allowance for PCB capacitance and a 0.25 ns allowance for PCB delay. The timing of the buffers, SDRAM, and the like must be added to complete timing analysis. In systems where SDRAM is not used, two devices are expected to replace the SDRAMs shown in Figure 7; that is, they are tied directly to the chip. System loading information is shown in Table 7: "System loading details" on page 26.

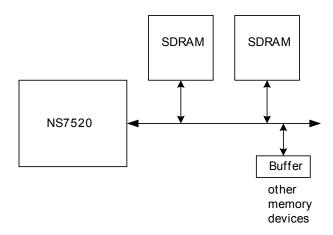


Figure 7: System configuration for specified timing

Signal	Estimated load (pF)	Device loads
BCLK	23	Two SDRAMs, 1 clock buffer/clock input to PLD
A[27:0], CAS[3:0]_	23	Two SDRAM An, 1 buffer/PLD
CS[4:0]_	13	Two SDRAM CSn, 1 buffer PLD
DATA[31:0]	18	One SDRAM DQ, 1 buffer/PLD
BE*_	19	One SDRAM DQ, 1 buffer/PLD
TS_, TA_, TEA_, BR_, BG_, BUSY_, WE_, OE_	15	1 buffer/PLD
PORTA3, PORTA1, PORTC3, PORTC1 (operating external DMA)	15	1 buffer/PLD
Other PORTA[*] and PORTC[*], TDO	85	Tester load
MDC, MDIO, TXEN, TXER, TXD[3:0]	20	One PHY

Table 7: System loading details

Exceeding the loading shown in Table 7 can result in additional signal delay. The delay can be approximated by derating the output buffer based on the expected load capacitance per the values shown in Table 8.

Signal	Derating (ns/pF)
BCLK	0.069
A[27:0], TS_, TA_, TEA_, BR_, BG_, BUSY_, DATA[31:0]	0.150
BE[3:0]	0.300

Table 8: Output buffer derating by load capacitance

Signal	Derating (ns/pF)
CS[4:0]_, CAS[3:0], RW_, WE_, OE_	0.137
MDC, TXD[3:0], TXER, TXEN, TDO	0.274

Table 8: Output buffer derating by load capacitance

Oscillator Characteristics

Figure 8 illustrates the recommended oscillator circuit details.

- Rise/fall time. The max rise/fall time on the system clock input pin is 1.5ns when used with an external oscillator.
- Duty cycle. The duty cycle is system-dependent with an external oscillator. It affects the setup and hold times of signals that change in the falling clock edges, such as WE_/OE_.
 Recommendation: Use a 3.3V, 50±10% duty cycle oscillator with a 100 ohm series resistor at the output. The PLLs can handle a 25% duty cycle clock (minimum high/low time 4.5nS).

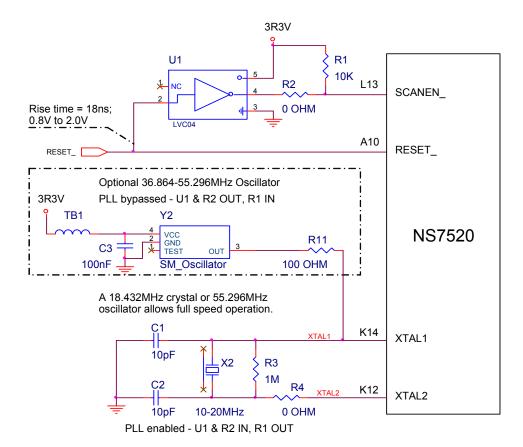
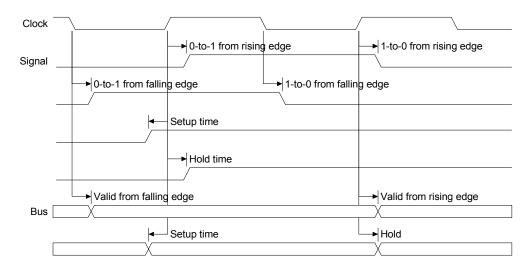


Figure 8: Oscillator circuit details

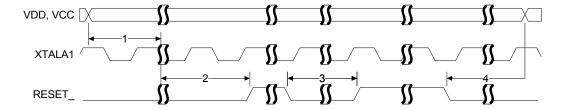

Timing Diagrams

Timing_Specifications

All timing specifications consist of the relationship between a reference clock and a signal:

- There are bussed and non-bussed signals. Non-bussed signals separately illustrate 0-to-1 and 1-to-0 transitions.
- Inputs have setup/hold times versus clock rising.
- Outputs have switching time relative to either clock rising or clock falling.

Note: Timing relationships in this diagram are drawn without proportion to actual delay.


Reset timing

From a cold start, RESET_ must be asserted until all power supplies are above their specified thresholds. An additional 8 microseconds is required for oscillator settling time (allow 40ms for crystal startup).

Due to an internal three flip-flop delay on the external RESET_ signal, after the oscillator is settled, RESET_ must be asserted for three periods of the XTALA1 clock in these situations:

- Before release of reset after application of power
- While valid power is maintained to initiate hot reset (reset while power is at or above specified thresholds)
- Before loss of valid power during power outage/power down

The PORTC4 output indicates the reset state of the chip. PORTC4 persists beyond the negation of RESET_ for approximately 512 system clock cycles if the PLL is disabled. When the PLL is enabled, PORTC4 persists beyond the negation of RESET_ to allow for PLL lock for 100 microseconds times the ratio of the VCO to XTALA.

Reset timing parameters

Num	Description	Min	Тур	Max	Units
1	Power valid before reset negated	40			ms Note: RESET_ should remain low for at least 40ms after power reaches 3.0V.
2	Reset asserted after power valid	3			T _{XTALA1}
3	Reset asserted while power valid	3			T _{XTALA1}
4	Reset asserted before power invalid	3			T _{XTALA1}

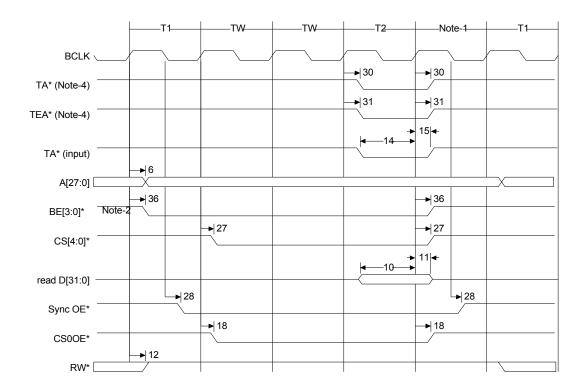
SRAM timing

BCLK max frequency: 55.296 MHz

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)

Output load: 25.0pf

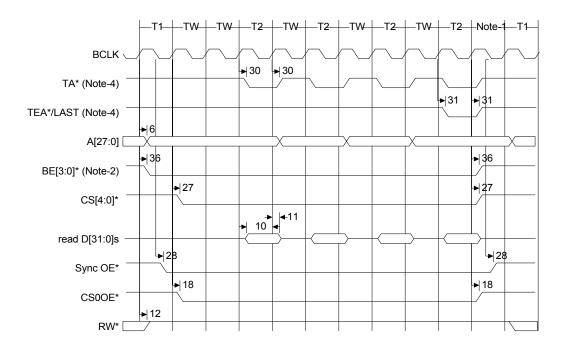

Input drive: CMOS buffer

SRAM timing parameters

Num	Description	Min	Max	Unit
36	BCLK high to BE* valid		15.5	ns
6	BCLK high to address valid	5	13.5	ns
9	BCLK high to data out valid		14	ns
13	BCLK high to data out high impedance		13	ns
10	Data in valid to BCLK high (setup)	5		ns
11	BCLK high to data in invalid (hold)	3		ns
14	TA* valid to BCLK high (setup)	5		ns
15	BCLK high to TA* invalid (hold)	3		ns
27	BCLK high to CS* valid		12.5	ns
28	BCLK low to OE* valid		12.5	ns
29	BCLK low to WE* valid		13	ns
30	BCLK high to TA* valid		13.5	ns
31	BCLK high to TEA* valid		16	ns
18	BCLK low to A27 (CS0OE*) valid		13.5	ns
19	BCLK low A26 (CS0WE*) valid		13.5	ns
12	BCLK high to RW* valid		13.5	ns

SRAM read

CS* controlled read (wait = 2)

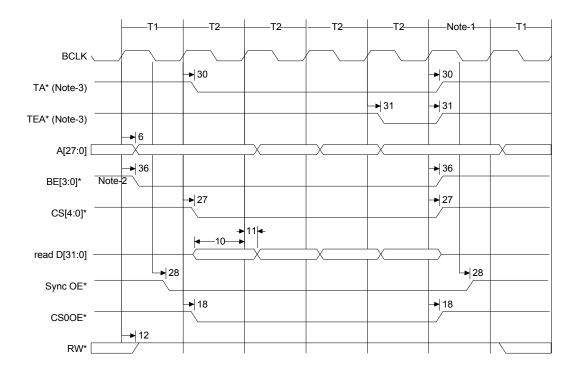


Notes:

- 1 If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM burst read

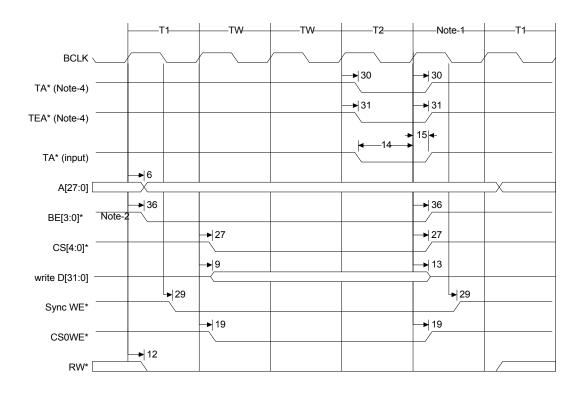
CS* controlled, four word (4-2-2-2), burst read (wait = 2, BCYC = 01)



Notes:

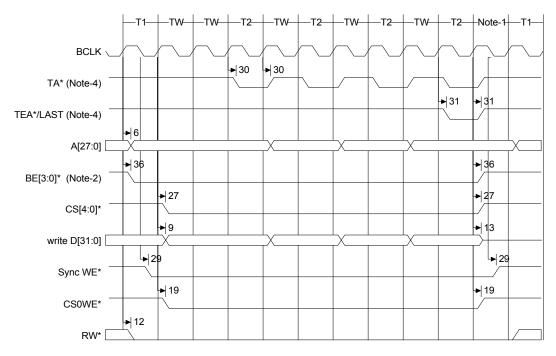
- 1 If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM burst read (2111)


CS* controlled read (wait = 0, BCYC = 00)

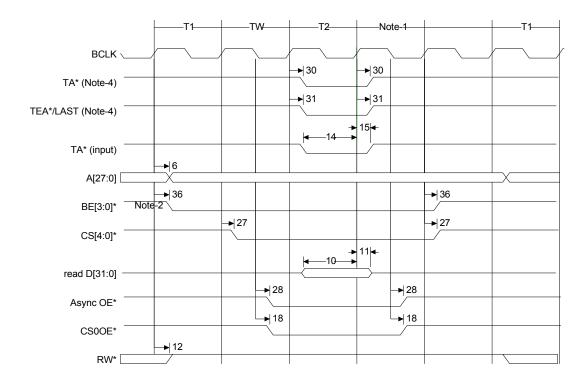
- If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TA* and TEA*/LAST signals are for reference only.

SRAM write


CS controlled write (internal and external), (wait = 2)

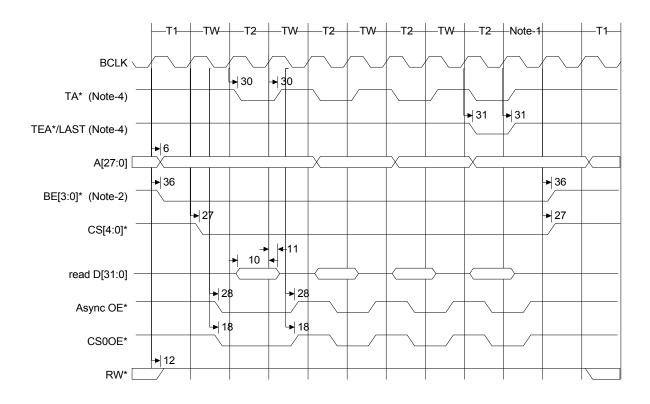
- 1 If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM burst write


CS controlled, four word (4-2-2-2), burst write (wait = 2, BCYC = 01)

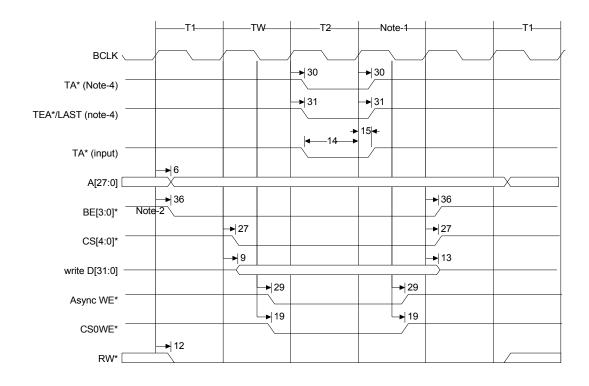
- If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM OE read


OE* controlled read (wait = 2)

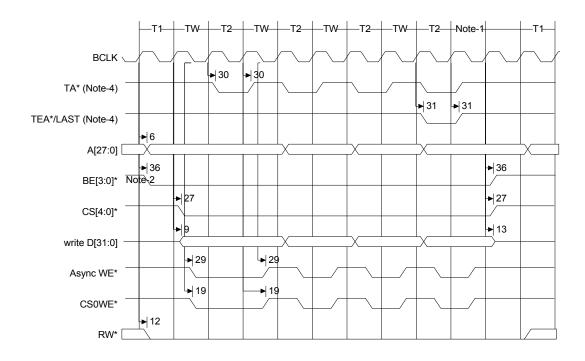
- At least one null period occurs between memory transfers. More null periods can occur if the next transfer is DMA. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM OE burst read


OE* controlled, four word (3-2-2-2), burst read (wait = 2, BCYC = 01)

- At least one null period occurs between memory transfers. More null periods can occur if the next transfer is DMA. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM WE write


WE* controlled write (wait = 2)

- 1 At least one null period occurs between memory transfers. More null periods can occur if the next transfer is DMA. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

SRAM WE burst write

WE* controlled, four word (3-2-2-2), burst write (wait = 2, BCYC = 01)

- 1 At least one null period occurs between memory transfers. More null periods can occur if the next transfer is DMA. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:0]
 - 32-bit port = BE[3:0]
- 3 The TW cycles are present when the WAIT field is set to 2 or more.
- 4 The TA* and TEA*/LAST signals are for reference only.

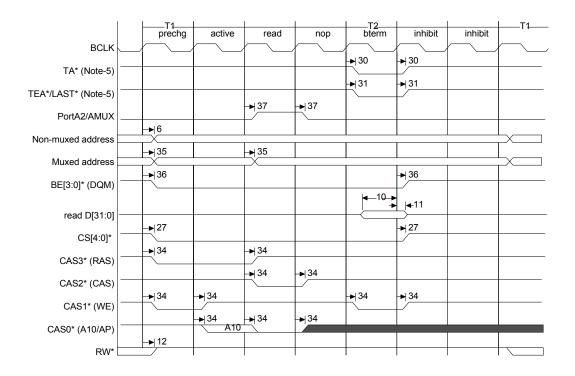
SDRAM timing

BCLK max frequency: 55.296 MHz

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)

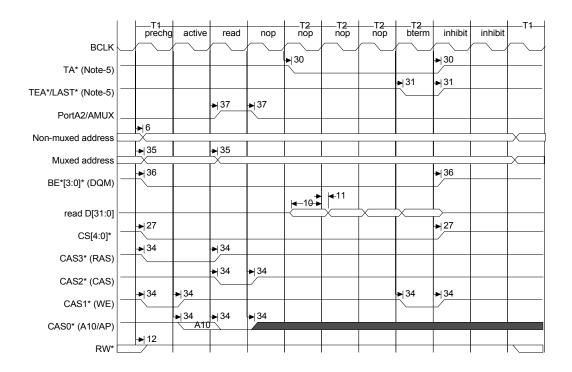
Output load: 25.0pf


Input drive: CMOS buffer

SDRAM timing parameters

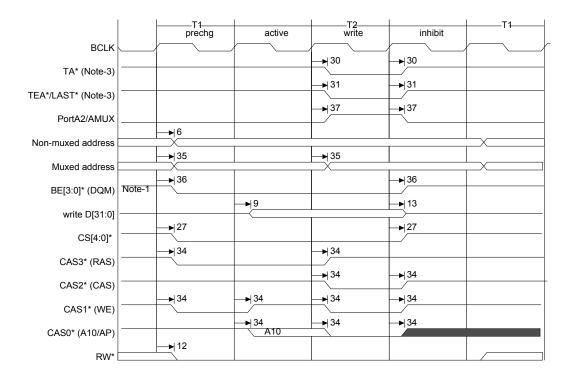
Num	Description	Min	Max	Unit
36	BCLK high to BE*/DQM* valid		15.5	ns
6	BCLK high to non-muxed address valid	5	13.5	ns
9	BCLK high to data out valid		14	ns
13	BCLK high to data out high impedance		13	ns
10	Data in valid to BCLK high (setup)	5		ns
11	BCLK high to data in invalid (hold)	3		ns
27	BCLK high to CS* valid		15.5	ns
30	BCLK high to TA* valid		13.5	ns
31	BCLK high to TEA* valid		16	ns
37	BCLK high to PORTA2/AMUX valid		14	ns
35	BCLK high to muxed address valid	6	14.5	ns
34	BCLK high to CAS* valid		12	ns
12	BCLK high to RW* valid		13.5	ns

SDRAM read


SDRAM read, CAS latency = 2

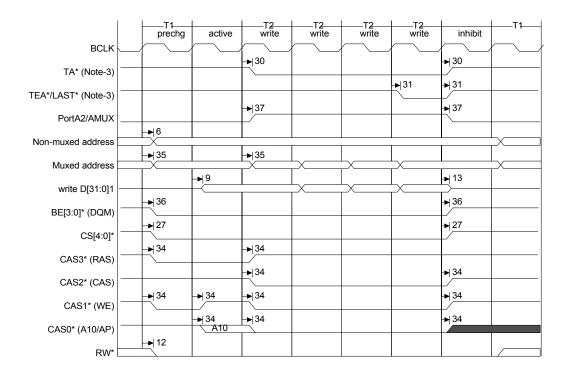
- 1 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- The precharge and/or active commands are not always present. These commands depend on the address of the previous SDRAM access.
- 3 If CAS latency = 3, 2 NOPs occur between the read and burst terminate commands.
- 4 If CAS latency = 3, 3 inhibits occur after burst terminate.
- 5 The TA* and TEA*/LAST signals are for reference only.

SDRAM burst read

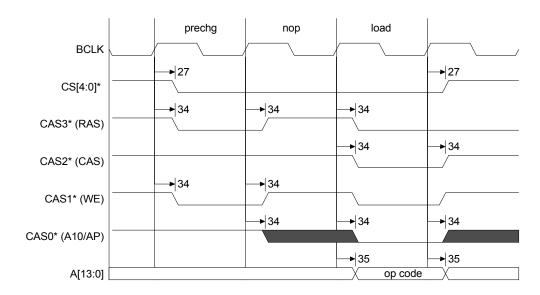

SDRAM read, CAS latency = 2

- 1 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- 2 The precharge and/or active commands are not always present. These commands depend on the address of the previous SDRAM access.
- 3 If CAS latency = 3, 5 NOPs occur between the read and burst terminate commands.
- 4 If CAS latency = 3, 3 inhibits occur after burst terminate.
- 5 The TA* and TEA*/LAST signals are for reference only.

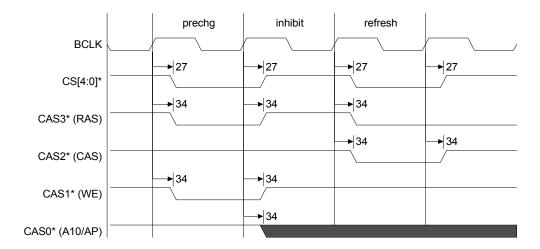
SDRAM write


SDRAM write

- 1 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- The precharge and/or active commands are not always present. These commands depend on the address of the previous SDRAM access.
- 3 The TA* and TEA*/LAST signals are for reference only.


SDRAM burst write

SDRAM burst write



- 1 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- The precharge and/or active commands are not always present. These commands depend on the address of the previous SDRAM access. When the active command is not present, parameter #35 is valid during the write (T2) cycle.
- 3 The TA* and TEA*/LAST signals are for reference only.

SDRAM load mode

SDRAM refresh

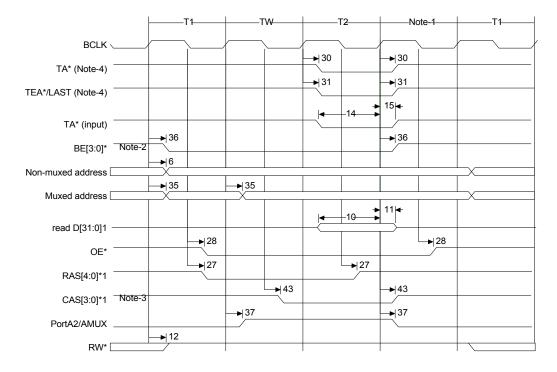
FP DRAM timing

BCLK max frequency: 55.296 MHz

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)

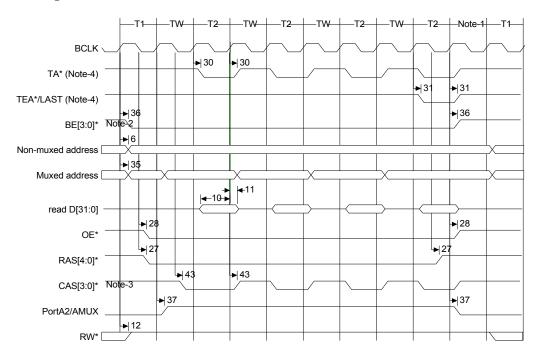
Output load: 25.0pf


Input drive: CMOS buffer

FP DRAM timing parameters

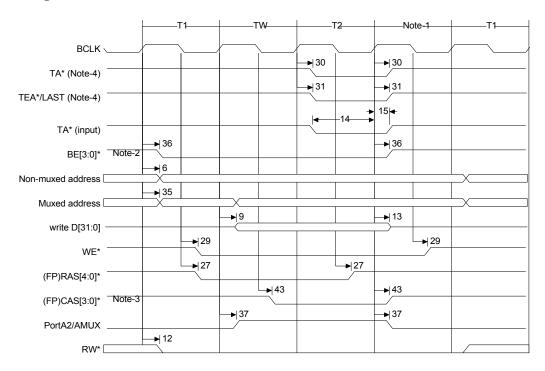
Num	Description	Min	Max	Unit
36	BCLK high to BE* valid		15.5	ns
6	BCLK high to address valid	5	13.5	ns
9	BCLK high to data out valid		14	ns
13	BCLK high to data out high impedance		13	ns
10	Data in valid to BCLK high (setup)	5		ns
11	BCLK high to data in invalid (hold)	3		ns
14	TA* valid to BCLK high (setup)	5		ns
15	BCLK high to TA* invalid (hold)	3		ns
28	BCLK low to OE* valid		12.5	ns
29	BCLK low to WE* valid		13	ns
30	BCLK high to TA* valid		13.5	ns
31	BCLK high to TEA* valid		16	ns
37	BCLK high to PORTA2/AMUX valid		14	ns
35	BCLK high to muxed address valid	6	14.5	ns
43	BCLK low to CAS* valid		13	ns
27	BCLK low to RAS* valid		12	ns
12	BCLK high to RW* valid		13.5	ns

FP DRAM read


Fast Page read

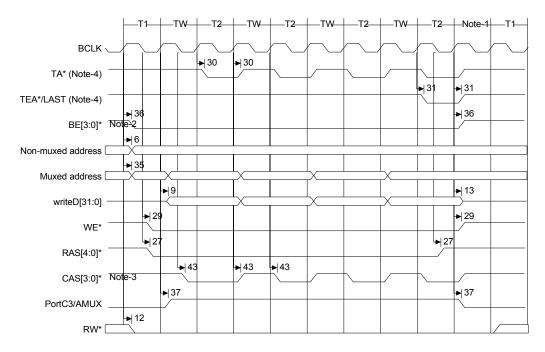
- 1 If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- 3 Port size determines which CAS signals are active:
 - 8-bit port = CAS3*
 - 16-bit port = CAS[3:2]
 - 32-bit port = CAS[3:0]
- 4 The TA* and TEA*/LAST signals are for reference only.

FP DRAM burst read


Fast Page burst read

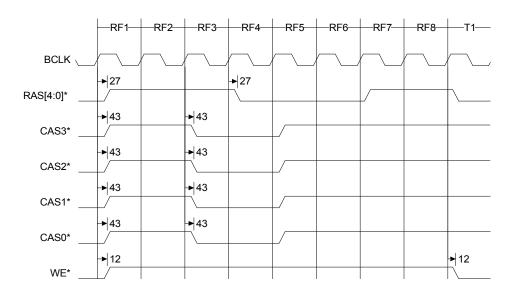
- If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- 3 Port size determines which CAS signals are active:
 - 8-bit port = CAS3*
 - 16-bit port = CAS[3:2]
 - 32-bit port = CAS[3:0]
- 4 The TA* and TEA*/LAST signals are for reference only.

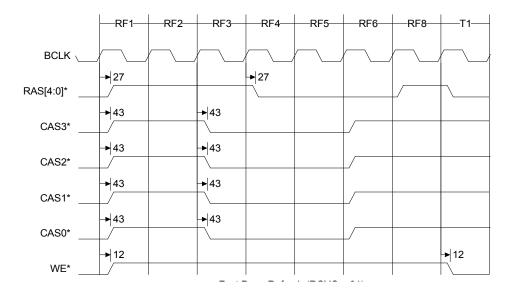
FP DRAM write


Fast Page write

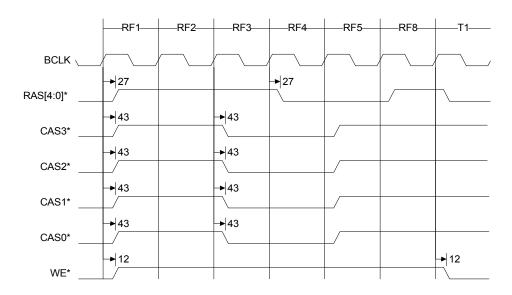
- If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- 3 Port size determines which CAS signals are active:
 - 8-bit port = CAS3*
 - 16-bit port = CAS[3:2]
 - 32-bit port = CAS[3:0]
- 4 The TA* and TEA*/LAST signals are for reference only.

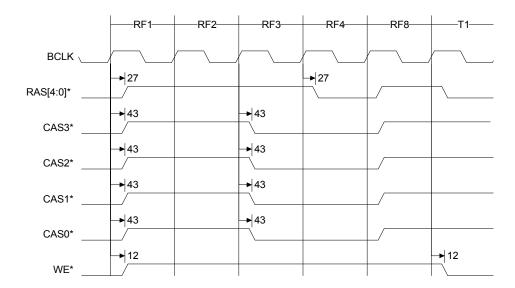
FP DRAM burst write


Fast Page burst write


- If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock pulses are required for DMA context switching.
- 2 Port size determines which byte enable signals are active:
 - 8-bit port = BE3*
 - 16-bit port = BE[3:2]
 - 32-bit port = BE[3:0]
- 3 Port size determines which CAS signals are active:
 - 8-bit port = CAS3*
 - 16-bit port = CAS[3:2]
 - 32-bit port = CAS[3:0]
- 4 The TA* and TEA*/LAST signals are for reference only.
- 5 The BCYC field should never be set to 00.

fp_refresh_cycles


Fast page refresh (RCYC = 00)


Fast page refresh (RCYC = 01)

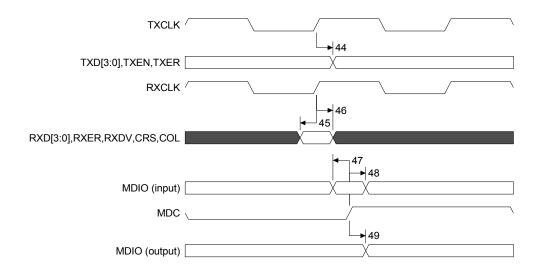
Fast page refresh (RCYC = 10)

Fast page refresh (RCYC = 11)

Ethernet timing

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)


Output load: 25.0pf

Input drive: CMOS buffer

Ethernet timing parameters

Num	Description	Min	Max	Unit
44	TXCLK high to TXD*, TXEN, TXER valid		11.5	ns
45	RXD*, RXER, RXDV, TXCOL, RXCRS valid to RXCLK high (setup)	3		ns
46	RXCLK high to RXD*, RXER, RXDV, TXCOL, RXCRS hold time	2		ns
49	MDC high to MDIO valid		50	ns
47	MDIO valid to MDC high (setup)	3		ns
48	MDC high to MDIO hold time	3		ns
50	RXCLK high to RSPF* valid		15.5	ns
52	REJECT* valid to RXCLK high (setup)	3		ns
53	REJECT* valid from RXCLK high (hold)	1.5		ns

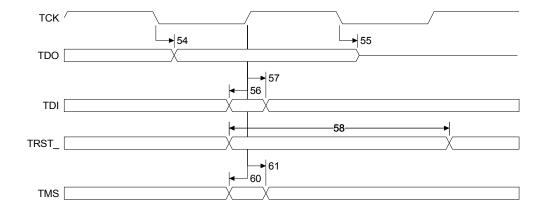
Ethernet PHY timing

Ethernet cam timing

JTAG timing

Operating conditions:

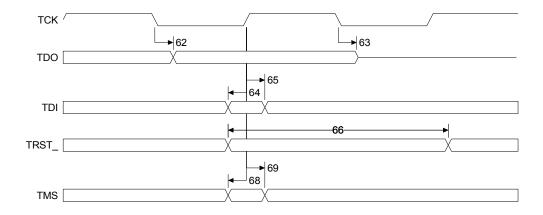
Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)


Output load: 25.0pf

Input drive: CMOS buffer

jtag arm ice timing parameters

Num	Description	Min	Max	Units
54	TCK to TDO valid		21	ns
55	TCK to TDO HighZ		21	ns
56	TDI setup to TCK rising	1		ns
57	TDI hold from TCK rising	3		ns
58	TRST* width	1		T _{TCK}
60	TMS setup to TCK rising	1		ns
61	TMS hold from TCK rising	3		ns


jtag arm ice timing diagram

jtag bscan timing parameters

Num	Description	Min	Max	Units
62	TCK to TDO valid		21	ns
63	TCK to TDO HighZ		21	ns
64	TDI setup to TCK rising	1		ns
65	TDI hold from TCK rising	3		ns
66	TRST* width	1		T _{TCK}
68	TMS setup to TCK rising	1		ns
69	TMS hold to TCK rising	3		ns

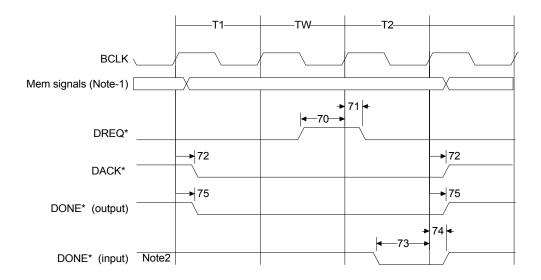
jtag bscan timing diagram

External DMA timing

BCLK max frequency: 55.296 MHz

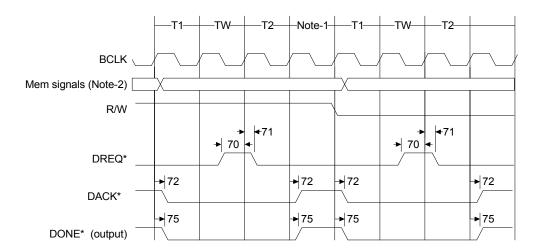
Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)


Output load: 25.0pf

Input drive: CMOS buffer

External DMA timing parameters


Num	Description	Min	Max	Unit
72	BCLK high to DACK* valid		14	ns
75	BCLK high to DONE* (output) valid		15	ns
70	DREQ* low to BCLK high (setup)	5		ns
71	BCLK high to DREQ* valid (hold)	0		ns
73	DONE* (input) valid BCLK high (setup)	5		ns
74	BLCK high to DONE* (input) valid (hold)	0		ns

Fly-by external DMA

- 1 The memory signals are data[31:0], addr[27:0], BE[3:0], CS/RAS[4:0], CAS[3:0], RW, OE*. WE*, and PORTC3/AMUX. The timing of these signals depends on how the memory is configured (Sync SRAM, Async SRAM, FP DRAM, or SDRAM).
- 2 The DONE* signal works as an input only when the DMA channel is configured as fly-by write.

Memory-to-memory external DMA

- 1 A null period sometimes occurs between memory cycles.
- The memory signals are data[31:0], addr[27:0], BE[3:0], CS/RAS[4:0], CAS[3:0], RW, OE*. WE*, and PORTA2/AMUX. The timing of these signals depends on how the memory is configured (Sync SRAM, Async SRAM, FP DRAM, or SDRAM).

Serial internal/external timing

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)

Output load: 25.0pf

Input drive: CMOS buffer

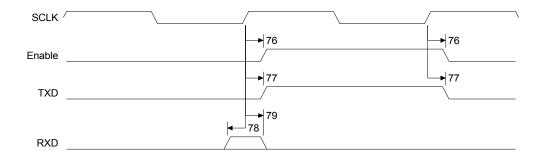
Note: SPI timing diagrams are in Chapter 10, "Serial Controller Module." See Figure 25, "SPI

master mode 0 and 1 two-byte transfer," on page 219 and Figure 26, "SPI slave mode 0

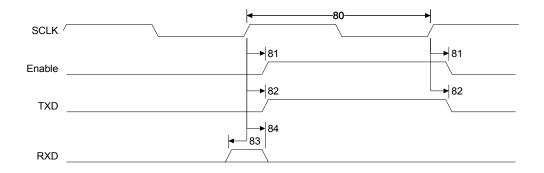
and 1 two-byte transfer," on page 222. Only SPI modes 0 and 1 are supported.

Serial internal timing characteristics

Num	Description	Min	Max	Unit
76	SCLK to ENABLE high	1		T_{SCLK}
77	SCLK to TXD (PORTA7/C7)		1 T _{SYS} *	ns
78	RXD (PORTA3/C3) setup to SCLK	1		ns
79	RXD hold to SCLK	1		ns


^{*} The T_{SYS} parameter represents one period of the internal system clock.

Serial external timing characteristics


Num	Description	Min	Max	Unit
80	SCLK frequency		10	MHz
	SCLK duty cycle	45	55	%
81	SCLK to ENABLE	1		T_{SCLK}
82	SCLK to TXD (PORTA7/C7)		2T _{SYS} *	ns
83	RXD (PORTA3/C3) setup to SCLK	2		ns
84	RXD hold to SCLK	1.5		ns

^{*} The $T_{\mbox{\scriptsize SYS}}$ parameter represents one period of the internal system clock.

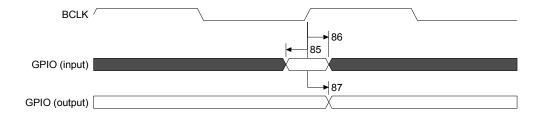
synchronous serial internal clock

synchronous serial external clock

GPIO timing

Operating conditions:

Temperature: -15.00 (min) 110.00 (max)
Voltage: 1.60 (min) 1.40 (max)


Output load: 25.0pf

Input drive: CMOS buffer

GPIO timing parameters

Num	Description	Min	Max	Unit
85	GPIO (setup) to BCLK rising	3		ns
86	GPIO (hold) from BCLK rising	0		ns
87	BCLK to GPIO (output)		17	ns

GPIO timing diagram

P/N: 90000303_E

© Digi International Inc. 2005-2007 All rights reserved.

Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a Digi International Company, NET+, NET+OS and NET+Works are trademarks or registered trademarks of Digi International, Inc. in the United States and other countries worldwide. All other trademarks are the property of their respective owners.

Information in this document is subject to change without notice and does not represent a committment on the part of Digi International.

Digi provides this document "as is," without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of, fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made periodically to the information herein; these changes may be incorporated in new editions of the publication.

Digi International 11001 Bren Road East Minnetonka, MN 55343 U.S.A. United States: +1 877 912-3444 Other locations: +1 952 912-3444

Fax: +1 952 912-4960 www.digiembedded.com