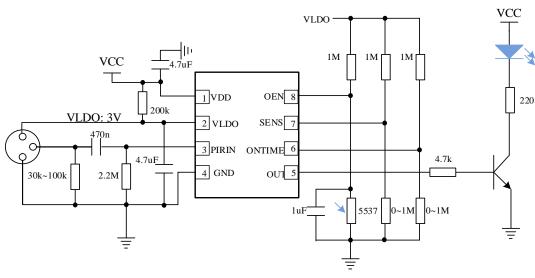
NSA3182FT100: PIR 传感器控制芯片

Datasheet 1.5

● 特征

- ▶ 模拟型 PIR 信号输入
- > 数字信号处理,人体接近报警
- ➤ 宽电压域供电 3.1~12V
- ▶ 输出可驱动继电器和 LED
- ▶ 可调灵敏度, 128档开关时间调节
- ▶ 超低功耗
- ▶ 内置 3V LDO 输出


● 应用场所

- ▶ 热释电运动检测
- ▶ 入侵探测
- ▶ 智能照明

产品概述

NSA3182是一颗高度集成的用于热释电红外传感器(PIR)的控制芯片。NSA3182单片集成了热释电被动红外移动探测的所有必需组件,模拟前端可以直接与模拟型PIR探测器使用电容连接,内置3V LDO,给PIR探测器供电。内置高精度模数转换器,可将探测器信号转化成数字信号,移动检测单元可以针对移动热源进行算法甄别,支持继电器输出,提高系统抗干扰性。传感器灵敏度阈值和报警维持时间可通过外部电阻调节。

订购信息	封装
NSA3182FT100	SOP8

NOTE:

- 1、OEN, SENS, ONTIME管脚不能悬空。
- 2、VDD和VLDO管脚之间200k的电阻,为针对不同应用方案的上电时间优化可选项且非必须,建议PCB预留此焊盘。是否焊接视实际应用方案决定,也可咨询原厂。

目录

1.0	极限参值	3
2.0	电气特性	3
	功能描述	
	管脚和封装信息	
4.1.	PAD 定义	7
	封装形式: SOP8	
	维持时间电阻设置(有限离散 128 档位,只能选取下图阻值):	
5.2.	阈值电阻设置(连续档位,阻值可以随需要的阈值变化相应取值):	9

1.0 极限参值

参数	标示	最小值	典型值	最大值	单位	备注
VDD 电压	VDD	-0.3		12	V	25℃
模拟引脚电压		-0.3		VDD+0.3	V	25℃
数字引脚电压		-0.3		VDD+0.3	V	25℃
储存温度		-40		125	$^{\circ}$	
工作温度	TBoperation	-25		85	$^{\circ}$	最佳工作温 度

2.0 电气特性

参数	标示	最小值	典型值	最大 值	单位	备注
供电						
工作电压范围	VDD	3.1		12	V	供电模式
工作电流			10		uA	10uA@3.3V @25°C
模拟输入引脚						
交流信号输入范围		-53		53	mV	
等效输入噪声	Vn			1.5	uV	RMS noise
VINP/N输入阻抗		30		60	Gohm	
SENS,ONTIME输 入范围		0		VDD		
SENS,ONTIME 输入电流				20	nA	下拉电流
OEN输入低电平	VIL_OEN			0.6	V	
OEN输入高电平	VIH_OEN	1.2V			V	
输出引脚 (OUT)						

输出驱动电流	IREL	-5		5	mA	
OSC						
时钟	FCLK		32		KHz	
时钟误差	FCLK_Err	-1000		1000	ppm/K	-20 ~ 80°C
数字滤波器						
LPF截止频率			7		Hz	
HPF截止频率			0.4		Hz	

3.0 功能描述

NSA3182FT100是一颗高度集成的用于PIR热释电传感器的信号调理专用芯片。NSA3182FT100主要由以下部分构成,分别是模拟前端,ADC,滤波器,检测算法,接口及其他控制模块,其框架图见图3.1。

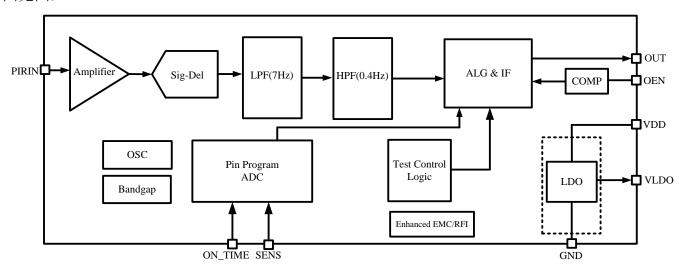
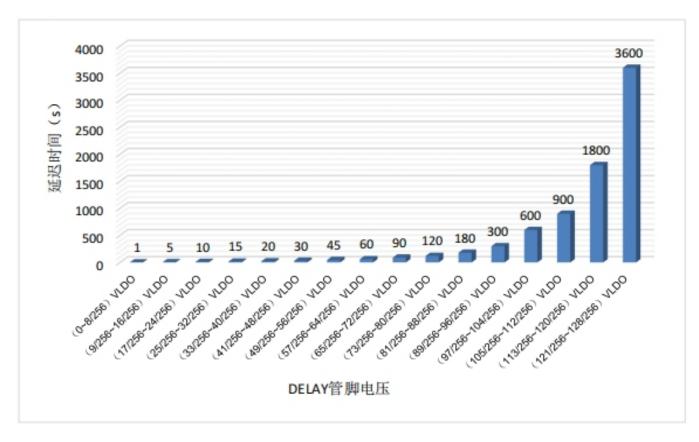


图3.1 芯片框架图

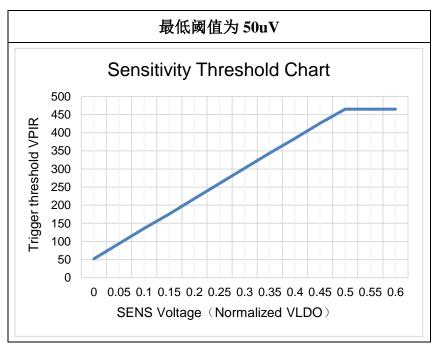
各模块功能如下:

热释电传感器输入: PINRIN 为信号的输入端。

晶振: 内置 32KHz 时钟振荡器,提供系统时钟共各模块使用。


滤波器:带通滤波器提供下截止频率为 0.4Hz,上截止频率为 7Hz 的滤波,可优先去除高频噪声和直流分量的影响。

管脚 ADC: 用于将 ON TIME 和 SENSE 的管脚电压转换成相应的档位。


运动检测算法:以下两种情况都将触发最终的算法检测事件,一旦事件触发芯片输入高电平,并维持一个预设的时间。(a)当4s内信号幅度相继超过正反阈值;(b)信号幅度超

出 5 倍阈值; 触发阈值和触发后的维持时间可以通过 ON_TIME 和 SENS 管脚的分压电阻设置,具体设置见下表。

ONTIME 输入定义:

SENS 管脚用来设置报警阈值,通过电阻网络为 SENS 管脚设置不同电压,相应阈值定义如下:

4.0 管脚和封装信息

4.1. PAD 定义

PAD	名称	方向	描述
1	VDD	输入	电源 3.1V ~~ 12V
2	VLDO	输出	3V VLDO 输出
3	PIRIN	输入	PIR 信号输入
4	GND	输入	接地
5	OUT	输出	判別信号输出引脚
6	ON_TIME	输入	128 档延迟时间长度,ONTIME 端电压,决定了传感器被触发后
			OUT 维持高电平输出信号的延迟时间,每次收到触发信号,延时时间重新开始计算,由于内部振荡器频率的离散性,延迟时间会有
			一定的误差范围。
7	SENS	输入	SENS 端电压,决定了内部阈值灵敏度,最低阈值为 50uV,每档
			3.23uV。
8	OEN	输入	外部使能,1为使能,0为除能。可配合外部光敏器件实现白天/夜晚的区分。

4.2. 封装形式: SOP8

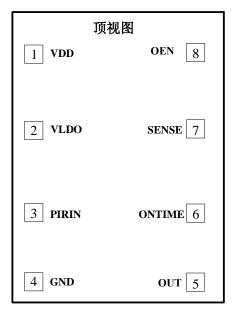
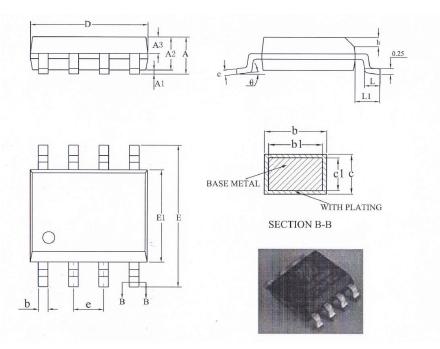



图4.1 管脚布局图

SYMBOL	MILLIMETER					
SIMBOL	MIN	NOM	MAX			
A	_	_	1.75			
A1	0.10	_	0.225			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
b	0.39	_	0.47			
b1	0.38	0.41	0.44			
c	0.20	_	0.24			
c1	0.19	0.20	0.21			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e	1.27BSC					
h	0.25	_	0.50			
L	0.50	_	0.80			
L1	1.05REF					
θ	0	_	8°			

图4.2 封装尺寸图

5.0 应用指南

5.1. DELAY 管脚的电压,决定了传感器被触发后 REL 维持高电平输出信号的延迟时间。通过外置不同的分压电阻,给 DELAY 管脚设置不同的电压,芯片内部 ADC 将电压转换成相应的档位,档位共有 16 档,从而获得不同的触发延迟时间。每次收到触发信号,延时时间重新开始计算,由。于内部振荡器频率的离散性,延迟时间会有一定的误差范围。DELAY 管脚电压和维持时间的关系如下表所示:

对应管脚电压范围	管脚电压	持续时间	上拉电阻	下拉电阻理	下拉电阻推
A) AL E DA PER TOLE	中间值	(秒)	ohm	论值 ohm	荐值 ohm
(0~8/256) *VLD0	1*VLD0/64	1	1 M	16k	接地
(9/256~16/256) *VLD0	3*VLD0/64	5	1M	49k	47k
(17/256~24/256) *VLDO	5*VLD0/64	10	1M	85k	82k
(25/256~32/256) *VLDO	7*VLD0/64	15	1M	122k	120k
(33/256~40/256) *VLDO	9*VLD0/64	20	1M	164k	160k
(41/256~48/256) *VLDO	11*VLD0/64	30	1M	208k	205k
(49/256~56/256) *VLDO	13*VLD0/64	45	1M	255k	261 k
(57/256~64/256) *VLDO	15*VLD0/64	60	1M	306k	300k
(65/256~72/256) *VLDO	17*VLD0/64	90	1M	362k	360k
: (73/256~80/256) *VLDO	19*VLD0/64	120	1M	422k	430k

5.2. 阈值电阻设置(连续档位,阻值可以随需要的阈值变化相应取值):

灵敏度	上拉电阻 ohm	下拉电阻 ohm
50uv	1M	接地
89uv	1M	47k
134uv	1M	110k
178uv	1M	180k
212uv	1M	240k
257uv	1M	330k
300uv	1M	430k
349uv	1M	560k
386uv	1M	680k
465uv	1M	1M