Feature - $1.5V \pm 0.075V / 1.35V 0.0675V / + 0.1V$ (JEDEC Standard Power Supply) - 8 Internal memory banks (BA0- BA2) - Differential clock input (CK, CK) - Programmable <u>CAS</u> Latency: 6, 7, 8, 9, 10, 11 - Programmable Additive Latency: 0, CL-1, CL-2 - Programmable Sequential / Interleave Burst Type - Programmable Burst Length: 4, 8 - 8 bit prefetch architecture - Output Driver Impedance Control - Write Leveling - OCD Calibration - Dynamic ODT (Rtt_Nom & Rtt_WR) - Auto Self-Refresh - Self-Refresh Temperature - RoHS compliance and Halogen free - Packages: 78-Ball BGA for x4 & x8 components 96-Ball BGA for x16 components # **Description** The 2Gb Double-Data-Rate-3 (DDR3) DRAMs is a high-speed CMOS Double Data Rate32 SDRAM containing 2,147,483,648 bits. It is internally configured as an octal-bank DRAM. The 2Gb chip is organized as 64Mbit x 4 I/O x 8 bank, 32Mbit x 8 I/O x 8 bank or 16Mbit x 16 I/O x 8 bank device. These synchronous devices achieve high speed double-data-rate transfer rates of up to 1600 Mb/sec/pin for general applications. The chip is designed to comply with all key DDR3 DRAM key features and all of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and $\overline{\text{CK}}$ falling). All I/Os are synchronized with a single ended DQS or differential DQS pair in a source synchronous fashion. These devices operate with a single $1.5V \pm 0.075V$ and 1.35V - 0.0675V + 0.1V power supply and are available in BGA packages. # Pin Configuration - 78 balls BGA Package (x4) < TOP View> See the balls through the package | | | | x 4 | | | | |--------|-------|-----|-------|--------|--------|------| | 1 | 2 | 3 | | 7 | 8 | 9 | | VSS | VDD | NC | A [| NC | VSS | VDD | | VSS | VSSQ | DQ0 | В [| DM | VSSQ | VDDQ | | VDDQ | DQ2 | DQS | c [| DQ1 | DQ3 | VSSQ | | VSSQ | NC | DQS | D [| VDD | VSS | VSSQ | | VREFDQ | VDDQ | NC | E [| NC | NC | VDDQ | | NC | VSS | RAS | F [| СК | VSS | NC | | ODT | VDD | CAS |] G [| CK | VDD | CKE | | NC | CS | WE |] н [| A10/AP | ZQ | NC | | VSS | BA0 | BA2 |] J [| NC | VERFCA | VSS | | VDD | A3 | A0 | K [| A12/BC | BA1 | VDD | | VSS | A 5 | A2 |] L [| A1 | A4 | VSS | | VDD | A7 | A9 |] M [| A11 | A6 | VDD | | VSS | RESET | A13 |] N [| A14 | A8 | VSS | # Pin Configuration - 78 balls BGA Package (x8) < TOP View> See the balls through the package | | | | x 8 | | | | |--------|-----------|-----|-----|---------|--------|------| | 1 | 2 | 3 | | 7 | 8 | 9 | | VSS | VDD | NC | A | NU/TDQS | VSS | VDD | | VSS | VSSQ | DQ0 | В | DM/TDQS | VSSQ | VDDQ | | VDDQ | DQ2 | DQS |] c | DQ1 | DQ3 | VSSQ | | VSSQ | DQ6 | DQS | D | VDD | VSS | VSSQ | | VREFDQ | VDDQ | DQ4 | E | DQ7 | DQ5 | VDDQ | | NC | VSS | RAS | F | CK | VSS | NC | | ODT | VDD | CAS | G | CK | VDD | CKE | | NC | <u>cs</u> | WE | Н | A10/AP | ZQ | NC | | VSS | BAO | BA2 | J | NC | VERFCA | VSS | | VDD | А3 | A 0 |] K | A12/ BC | BA1 | VDD | | VSS | A 5 | A2 |] L | A1 | A4 | VSS | | VDD | A7 | A9 | M | A11 | A6 | VDD | | VSS | RESET | A13 | N | A14 | A8 | VSS | # Pin Configuration - 96 balls BGA Package (x16) < TOP View> See the balls through the package | x 16 | | | | | | | | |--------|-------|------|-------|---------|--------|------|--| | 1 | 2 | 3 | | 7 | 8 | 9 | | | VDDQ | DQU5 | DQU7 |] A [| DQU4 | VDDQ | VSS | | | VSSQ | VDD | VSS |] в [| DQSU | DQU6 | VSSQ | | | VDDQ | DQU3 | DQU1 |] c [| DQSU | DQU2 | VDDQ | | | VSSQ | VDDQ | UDM | D [| DQU0 | VSSQ | VDD | | | VSS | VSSQ | DQL0 |] E [| DML | VSSQ | VDDQ | | | VDDQ | DQL2 | DQSL |] F [| DQL1 | DQL3 | VSSQ | | | VSSQ | DQL6 | DQSL |] G [| VDD | VSS | VSSQ | | | VREFDQ | VDDQ | DQL4 |] н [| DQL7 | DQL5 | VDDQ | | | NC | VSS | RAS |] J [| СК | VSS | NC | | | ODT | VDD | CAS |] K [| CK | VDD | CKE | | | NC | CS | WE |] L [| A10/AP | ZQ | NC | | | VSS | BA0 | BA2 | М | A15 | VREFCA | VSS | | | VDD | A3 | A0 | _ N [| A12/BC# | BA1 | VDD | | | VSS | A5 | A2 | P [| A1 | A4 | VSS | | | VDD | A7 | A9 | _ | A11 | A6 | VDD | | | VSS | RESET | A13 | _ | A14 | A8 | VSS | | **Input / Output Functional Description** | Symbol | Туре | Function | |---|--------------|---| | СК, СК | Input | Clock: CK and $\overline{\text{CK}}$ are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of $\overline{\text{CK}}$. | | CKE | Input | Clock Enable: CKE high activates, and CKE low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit and for Self-Refresh entry. CKE is asynchronous for Self-Refresh exit. After VREF has become stable during the power on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF must maintain to this input. CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, $\overline{\text{CK}}$, ODT and CKE are disabled during Power Down. Input buffers, excluding CKE, are disabled during Self-Refresh. | | <u>CS</u> | Input | Chip Select: All commands are masked when $\overline{\text{CS}}$ is registered high. $\overline{\text{CS}}$ provides for external rank selection on systems with multiple memory ranks. $\overline{\text{CS}}$ is considered part of the command code. | | \overline{RAS} , \overline{CAS} , \overline{WE} | Input | Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. | | DM, (DMU, DML) | Input | Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS / TQDS is enabled by Mode Register A11 setting in MR1 | | BA0 - BA2 | Input | Bank Address Inputs: BA0, BA1, and BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle. | | A0 – A14 | Input | Address Inputs: Provide the row address for Activate commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional function as below. The address inputs also provide the op-code during Mode Register Set commands. | | A12 / BC | Input | Burst Chop: A12/BC is sampled during Read and Write commands to determine if burst chop (on the fly) will be performed. (HIGH - no burst chop; LOW - burst chopped). | | DQ | Input/output | Data Inputs/Output: Bi-directional data bus. | | DQL, DQU, DQS,(DQS), DQSL,(DQSL), DQSU,(DQSU), | Input/output | Data Strobe: output with read data, input with write data. Edge aligned with read data, centered with write data. The data strobes DQS, DQSL, DQSU are paired with differential signals DQS, DQSL, DQSU, respectively, to provide differential pair signaling to the system during both reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended. | | Symbol | Туре | Function | |--------------------------|----------------|---| | | | On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 | | ODT | | SDRAM. When enabled, ODT is applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (when | | ODT | Input | TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be | | | | ignored if Mode-registers, MR1and MR2, are programmed to disable RTT. | | | | Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET | | RESET | Input | is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC | | | | high and low at 80% and 20% of VDD, i.e. 1.20V for DC high and 0.30V | | NC | | No Connect: No internal electrical connection is present. | | Vddq | Supply | DQ Power Supply: 1.5V ± 0.075V , 1.35V -0.0675V/+0.1V | | Vdd | Supply | Power Supply: 1.5V ± 0.075V, 1.35V -0.0675V/+0.1V | | Vssq | Supply | DQ Ground | | Vss | Supply | Ground | | Vrefca | Supply | Reference voltage for CA | | VREFDQ | Supply | Reference voltage for DQ | | ZQ | Supply | Reference pin for ZQ calibration. | | Note: Input only pins (B | A0-BA2, A0-A13 | , RAS, CAS, WE, CS, CKE, ODT, and RESET) do not supply termination. | # **DDR3 SDRAM Addressing** | <u> </u> | | | | | | | |----------------------|--------------|--------------|---------------|--|--|--| | Configuration | NT5CB512M4BN | NT5CB256M8BN | NT5CB128M16BP | | | | | Configuration | NT5CC512M4BN | NT5CC256M8BN | NT5CC128M16BP | | | | | # of Bank | 8 | 8 | 8 | | | | | Bank Address | BA0 – BA2 | BA0 – BA2 | BA0 – BA2 | | | | | Auto
precharge | A10 / AP | A10 / AP | A10/AP | | | | | BL switch on the fly | A12 / BC | A12 / BC | A12 / BC | | | | | Row Address | A0 – A14 | A0 – A14 | A0 – A13 | | | | | Column Address | A0 – A9, A11 | A0 – A9 | A0 – A9 | | | | | Page size | 1KB | 1KB | 2KB | | | | #### Note: Page size is the number of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: Page size = 2 COLBITS * ORG / 8 COLBITS = the number of column address bits ORG = the number of I/O (DQ) bits # **Ordering Information** # NT5CB512M4BN / NT5CB256M8BN / NT5CB128M16BP | | | | | Speed | | | |--------------|------|------------------|-----------------------------|---------|-----------|-------------| | Organization | VDD | Part Number | Package | Clock | Data Rate | CL-Trod-Trp | | | | | | (Mbp/s) | (Mb/s) | CL-TRCD-TRP | | | | NT5CB512M4BN-AC | | 400 | DDR3-800 | 5-5-5 | | | | NT5CB512M4BN-AD | | 400 | DDR3-800 | 6-6-6 | | 512M x 4 | | NT5CB512M4BN-BE | | 533 | DDR3-1066 | 7-7-7 | | | | NT5CB512M4BN-CG | 70 Dall M/DC A | 667 | DDR3-1333 | 9-9-9 | | | | NT5CB512M4BN-DI | 78-Ball WBGA
0.8mmx0.8mm | 800 | DDR3-1600 | 11-11-11 | | | | NT5CB256M8BN-AC | Pitch | 400 | DDR3-800 | 5-5-5 | | | 1.5V | NT5CB256M8BN -AD | FILCII | 400 | DDR3-800 | 6-6-6 | | 256M x 8 | | NT5CB256M8BN-BE | | 533 | DDR3-1066 | 7-7-7 | | | | NT5CB256M8BN-CG | | 667 | DDR3-1333 | 9-9-9 | | | | NT5CB256M8BN-DI | | 800 | DDR3-1600 | 11-11-11 | | | | NT5CB128M16BP-AC | | 400 | DDR3-800 | 5-5-5 | | | | NT5CB128M16BP-AD | 96-Ball WBGA | 400 | DDR3-800 | 6-6-6 | | 128M x 16 | | NT5CB128M16BP-BE | 0.8mmx0.8mm | 533 | DDR3-1066 | 7-7-7 | | | | NT5CB128M16BP-CG | Pitch | 667 | DDR3-1333 | 9-9-9 | | | | NT5CB128M16BP-DI | | 800 | DDR3-1600 | 11-11-11 | # **Ordering Information** # NT5CC512M4BN / NT5CC256M8BN / NT5CC128M16BP | | | | | | Speed | | | | |--------------|-------|------------------|-----------------------------|---------|-----------|-------------|--|--| | Organization | VDD | Part Number | Package | Clock | Data Rate | CL-Trod-Trp | | | | | | | | (Mbp/s) | (Mb/s) | CL-IRCD-IRP | | | | | | NT5CC512M4BN-AC | | 400 | DDR3-800 | 5-5-5 | | | | | | NT5CC512M4BN-AD | | 400 | DDR3-800 | 6-6-6 | | | | 512M x 4 | | NT5CC512M4BN-BE | | 533 | DDR3-1066 | 7-7-7 | | | | | | NT5CC512M4BN-CG | 70 Dall WDC A | 667 | DDR3-1333 | 9-9-9 | | | | | | NT5CC512M4BN-DI | 78-Ball WBGA
0.8mmx0.8mm | 800 | DDR3-1600 | 11-11-11 | | | | | | NT5CC256M8BN-AC | Pitch | 400 | DDR3-800 | 5-5-5 | | | | | 1.35V | NT5CC256M8BN -AD | FILCH | 400 | DDR3-800 | 6-6-6 | | | | 256M x 8 | | NT5CC256M8BN-BE | | 533 | DDR3-1066 | 7-7-7 | | | | | | NT5CC256M8BN-CG | | 667 | DDR3-1333 | 9-9-9 | | | | | | NT5CC256M8BN-DI | | 800 | DDR3-1600 | 11-11-11 | | | | | | NT5CC128M16BP-AC | | 400 | DDR3-800 | 5-5-5 | | | | | | NT5CC128M16BP-AD | 96-Ball WBGA | 400 | DDR3-800 | 6-6-6 | | | | 128M x 16 | | NT5CC128M16BP-BE | 0.8mmx0.8mm | 533 | DDR3-1066 | 7-7-7 | | | | | | NT5CC128M16BP-CG | Pitch | 667 | DDR3-1333 | 9-9-9 | | | | | | NT5CC128M16BP-DI | | 800 | DDR3-1600 | 11-11-11 | | | # **Simplified State Diagram** | Abbreviation | Function | Abbreviation | Function | Abbreviation | Function | |--------------|---------------------|---------------------|-----------------------|---------------------|------------------------| | ACT | Active | Read | RD, RDS4, RDS8 | PED | Enter Power-down | | PRE | Precharge | Read A | RDA, RDAS4, RDAS8 | PDX | Exit Power-down | | PREA | Precharge All | Write | WR, WRS4, WRS8 | SRE | Self-Refresh entry | | MRS | Mode Register Set | Write A | WRA, WRAS4, WRAS8 | SRX | Self-Refresh exit | | REF | Refresh | RESET | Start RESET Procedure | MPR | Multi-Purpose Register | | ZQCL | ZQ Calibration Long | ZQCS | ZQ Calibration Short | - | - | # **Basic Functionality** The DDR3 SDRAM is a high-speed dynamic random access memory internally configured as an eight-bank DRAM. The DDR3 SDRAM uses an 8n prefetch architecture to achieve high speed operation. The 8n prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write operation for the DDR3 SDRAM consists of a single 8n-bit wide, four clock data transfer at the internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins. Read and write operation to the DDR3 SDRAM are burst oriented, start at a selected location, and continue for a burst length of eight or a 'chopped' burst of four in a programmed sequence. Operation begins with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be activated (BA0-BA2 select the bank; A0-A13 select the row). The address bit registered coincident with the Read or Write command are used to select the starting column location for the burst operation, determine if the auto precharge command is to be issued (via A10), and select BC4 or BC8 mode 'on the fly' (via A12) if enabled in the mode register. Prior to normal operation, the DDR3 SDRAM must be powered up and initialized in a predefined manner. The following sections provide detailed information covering device reset and initialization, register definition, command descriptions and device operation. #### **DRAM Initialization and RESET** Power-up Initialization sequence The Following sequence is required for POWER UP and Initialization - 1. Apply power (RESET is recommended to be maintained below 0.2 x VDD, all other inputs may be undefined). RESET needs to be maintained for minimum 200µs with stable power. CKE is pulled "Low" anytime before RESET being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDD_{min} must be no greater than 200ms; and during the ramp, VDD>VDDQ and (VDD-VDDQ) <0.3 Volts. - VDD and VDDQ are driven from a single power converter output, AND - The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to 0.95V max once power ramp is finished, AND - V_{ref} tracks VDDQ/2. #### OR - Apply VDD without any slope reversal before or at the same time as VDDQ. - Apply VDDQ without any slope reversal before or at the same time as VTT & V_{ref}. - The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one side and must be larger than or equal to VSSQ and VSS on the other side. - 2. After RESET is de-asserted, wait for another 500us until CKE become active. During this time, the DRAM will start internal state initialization; this will be done independently of external clocks. - 3. Clock (CK, $\overline{\text{CK}}$) need to be started and stabilized for at least 10ns or 5tCK (which is larger) before CKE goes active. Since CKE is a synchronous signal, the corresponding set up time to clock (t_{IS}) must be meeting. Also a NOP or Deselect command must be registered (with t_{IS} set up time to clock) before CKE goes active. Once the CKE registered "High" after Reset, CKE needs to be continuously registered "High" until the initialization sequence is finished, including expiration of t_{DLLK} and t_{ZQinit} . - 4. The DDR3 DRAM will keep its on-die termination in high impedance state as long as RESET is asserted. Further, the DRAM keeps its on-die termination in high impedance state after RESET de-assertion until CKE is registered HIGH. The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal may be statically held at either LOW or HIGH. If RTT_NOM is to be enabled in MR1, the ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the power up initialization sequence is finished, including the expiration of tDLLK and tZQinit. - 5. After CKE being registered high, wait minimum of Reset CKE Exit time, tXPR, before issuing the first MRS command to load mode register. [tXPR=max(tXS, 5tCK)] - 6. Issue MRS command to load MR2 with all application settings. (To issue MRS command for MR2, provide "Low" to BA0 and BA2, "High" to BA1) - 7. Issue MRS command to load MR3 with all application settings. (To issue MRS command for MR3, provide "Low" to BA2, "High" to BA0 and BA1) - 8. Issue MRS command to load MR1 with all application settings and DLL enabled. (To issue "DLL Enable" command, provide "Low" to A0, "High" to BA0 and "Low" to BA1 and BA2) - 9. Issue MRS Command to load MR0 with all application settings and "DLL reset". (To issue DLL reset command, provide "High" to A8 and "Low" to BA0-BA2) - 10. Issue ZQCL command to starting ZQ calibration. - 11. Wait for both t_{DLLK} and t_{ZQinit} completed. - 12. The DDR3 SDRAM is now ready for normal operation. # **DDR3 Reset and Initialization Sequence at Power-on Ramping** # **DDR3 Reset Procedure at Power Stable Condition** The following sequence is required for RESET at no power interruption initialization. - 1. Asserted RESET below 0.2*VDD anytime when reset is needed (all other inputs may be undefined). RESET needs to be maintained for minimum 100ns. CKE is pulled "Low" before RESET being de-asserted (min. time 10ns). - 2. Follow Power-up Initialization Sequence step 2 to 11. - 3. The Reset sequence is now completed. DDR3 SDRAM is ready for normal operation. # **Register Definition** # **Programming the Mode Registers** For application flexibility, various functions, features, and modes are programmable in four Mode Registers, provided by the DDR3 SDRAM, as user defined variables and they must be programmed via a Mode Register Set (MRS) command. As the default values of the Mode Registers (MR#) are not defined, contents of Mode Registers must be
fully initialized and/or re-initialized, i.e. written, after power up and/or reset for proper operation. Also the contents of the Mode Registers can be altered by re-executing the MRS command during normal operation. When programming the mode registers, even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must be redefined when the MRS command is issued. MRS command and DLL Reset do not affect array contents, which means these commands can be executed any time after power-up without affecting the array contents The mode register set command cycle time, t_{MRD} is required to complete the write operation to the mode register and is the minimum time required between two MRS commands shown as below. The MRS command to Non-MRS command delay, tMOD, is require for the DRAM to update the features except DLL reset, and is the minimum time required from an MRS command to a non-MRS command excluding NOP and DES shown as the following figure. The mode register contents can be changed using the same command and timing requirements during normal operation as long as the DRAM is in idle state, i.e. all banks are in the precharged state with tRP satisfied, all data bursts are completed and CKE is high prior to writing into the mode register. The mode registers are divided into various fields depending on the functionality and/or modes. The mode-register MR0 stores data for controlling various operating modes of DDR3 SDRAM. It controls burst length, read burst type, CAS latency, test mode, DLL reset, WR, and DLL control for precharge Power-Down, which include various vendor specific options to make DDR3 SDRAM useful for various applications. The mode register is written by asserting low on $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$, BA0, BA1, and BA2, while controlling the states of address pins according to the following figure. # **MR0** Definition # **Burst Length, Type, and Order** Accesses within a given burst may be programmed to sequential or interleaved order. The burst type is selected via bit A3 as shown in the MR0 Definition as above figure. The ordering of access within a burst is determined by the burst length, burst type, and the starting column address. The burst length is defined by bits A0-A1. Burst lengths options include fix BC4, fixed BL8, and on the fly which allow BC4 or BL8 to be selected coincident with the registration of a Read or Write command via A12/BC. # **Burst Type and Burst Order** | _ | | Starting | Burst type: | Burst type: | | |--------|--------|-----------------------|---------------------|---------------------|---------| | Burst | Read | Column | Sequential | Interleaved | Note | | Length | Write | Address
(A2,A1,A0) | (decimal)
A3 = 0 | (decimal)
A3 = 1 | | | | | 0 , 0 , 0 | 0,1,2,3,T,T,T,T | 0,1,2,3,T,T,T,T | | | | | 0 , 0 , 1 | 1,2,3,0,T,T,T,T | 1,0,3,2,T,T,T,T | | | | | 0 , 1 , 0 | 2,3,0,1,T,T,T,T | 2,3,0,1,T,T,T,T | | | | Deed | 0 , 1 , 1 | 3,0,1,2,T,T,T,T | 3,2,1,0,T,T,T,T | 4.0.0 | | 4 | Read | 1 , 0 , 0 | 4,5,6,7,T,T,T,T | 4,5,6,7,T,T,T | 1,2,3 | | Chop | | 1 , 0 , 1 | 5,6,7,4,T,T,T,T | 5,4,7,6,T,T,T | | | | | 1 , 1 , 0 | 6,7,4,5,T,T,T,T | 6,7,4,5,T,T,T,T | | | | | 1 , 1 , 1 | 7,4,5,6,T,T,T,T | 7,6,5,4,T,T,T | | | | Write | 0 , V , V | 0,1,2,3,X,X,X,X | 0,1,2,3,X,X,X,X | 1,2,4,5 | | | VVIILE | 1 , V , V | 4,5,6,7,X,X,X,X | 4,5,6,7,X,X,X,X | 1,2,4,5 | | | | 0 , 0 , 0 | 0,1,2,3,4,5,6,7 | 0,1,2,3,4,5,6,7 | | | | | 0 , 0 , 1 | 1,2,3,0,5,6,7,4 | 1,0,3,2,5,4,7,6 | | | | | 0 , 1 , 0 | 2,3,0,1,6,7,4,5 | 2,3,0,1,6,7,4,5 | | | | Read | 0 , 1 , 1 | 3,0,1,2,7,4,5,6 | 3,2,1,0,7,6,5,4 | 2 | | 8 | rtcau | 1 , 0 , 0 | 4,5,6,7,0,1,2,3 | 4,5,6,7,0,1,2,3 | 2 | | | | 1 , 0 , 1 | 5,6,7,4,1,2,3,0 | 5,4,7,6,1,0,3,2 | | | | | 1 , 1 , 0 | 6,7,4,5,2,3,0,1 | 6,7,4,5,2,3,0,1 | | | | | 1 , 1 , 1 | 7,4,5,6,3,0,1,2 | 7,6,5,4,3,2,1,0 | | | | Write | V , V , V | 0,1,2,3,4,5,6,7 | 0,1,2,3,4,5,6,7 | 2,4 | #### Note: - 1. In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than the BL8 mode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of burst length being selected on-the-fly via A12/BC, the internal write operation starts at the same point in time like a burst of 8 write operation. This means that during on-the-fly control, the starting point for tWR and tWTR will not be pulled in by two clocks. - 2. 0~7 bit number is value of CA[2:0] that causes this bit to be the first read during a burst. - 3. T: Output driver for data and strobes are in high impedance. - 4. V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins. - 5. X: Do not Care. **CAS Latency** The CAS Latency is defined by MR0 (bit A9~A11) as shown in the MR0 Definition figure. CAS Latency is the delay, in clock cycles, between the internal Read command and the availability of the first bit of output data. DDR3 SDRAM does not support any half clock latencies. The overall Read Latency (RL) is defined as Additive Latency (AL) + CAS Latency (CL); RL = AL + CL. **Test Mode** The normal operating mode is selected by MR0 (bit7=0) and all other bits set to the desired values shown in the MR0 definition figure. Programming bit A7 to a '1' places the DDR3 SDRAM into a test mode that is only used by the DRAM manufacturer and should not be used. No operations or functionality is guaranteed if A7=1. **DLL Reset** The DLL Reset bit is self-clearing, meaning it returns back to the value of '0' after the DLL reset function has been issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Anytime the DLL reset function is used, tDLLK must be met before any functions that require the DLL can be used (i.e. Read commands or ODT synchronous operations.) Write Recovery The programmed WR value MR0(bits A9, A10, and A11) is used for the auto precharge feature along with tRP to determine tDAL WR (write recovery for auto-precharge)min in clock cycles is calculated by dividing tWR(ns) by tCK(ns) and rounding up to the next integer: WRmin[cycles] = Roundup(tWR[ns]/tCK[ns]). The WR must be programmed to be equal or larger than tWR(min). Precharge PD DLL MR0 (bit A12) is used to select the DLL usage during precharge power-down mode. When MR0 (A12=0), or 'slow-exit', the DLL is frozen after entering precharge power-down (for potential power savings) and upon exit requires tXPDLL to be met prior to the next valid command. When MR0 (A12=1), or 'fast-exit', the DLL is maintained after entering precharge power-down and upon exiting power-down requires tXP to be met prior to the next valid command. 17 # **Mode Register MR1** The Mode Register MR1 stores the data for enabling or disabling the DLL, output strength, Rtt_Nom impedance, additive latency, WRITE leveling enable and Qoff. The Mode Register 1 is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} high on BA0 and low on BA1 and BA2, while controlling the states of address pins according to the following figure. #### **DLL Enable/Disable** The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning to normal operation after having the DLL disabled. During normal operation (DLL-on) with MR1 (A0=0), the DLL is automatically disabled when entering Self-Refresh operation and is automatically re-enable upon exit of Self-Refresh operation. Any time the DLL is enabled and subsequently reset, tDLLK clock cycles must occur before a Read or synchronous ODT command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON, or tAOF parameters. During tDLLK, CKE must continuously be registered high. DDR3 SDRAM does not require DLL for any Write operation, expect when RTT_WR is enabled and the DLL is required for proper ODT operation. For more detailed information on DLL Disable operation in DLL-off Mode. The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by continuously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode register set command during DLL-off mode. The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set Rtt_WR, MR2{A10,A9}={0,0}, to disable Dynamic ODT externally. ## **Output Driver Impedance Control** The output driver impedance of the DDR3 SDRAM device is selected by MR1(bit A1 and A5) as shown in MR1 definition figure. #### **ODT Rtt Values** DDR3 SDRAM is capable of providing two different termination values (Rtt_Nom and Rtt_WR). The nominal termination value Rtt_Nom is programmable in MR1. A separate value (Rtt_WR) may be programmable in MR2 to enable a unique Rtt value when ODT is enabled during writes. The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled. #### Additive Latency (AL) Additive Latency (AL) operation is supported to make command and data bus efficient for sustainable bandwidth in DDR3 SDRAM. In this operation, the DDR3 SDRAM allows a read or write command (either with or without auto-precharge) to be issued immediately after the active command. The command is held for the time of the Additive Latency (AL) before it is issued inside the device. The Read Latency (RL) is controlled by the sum of the AL and CAS Latency (CL) register settings. Write Latency (WL) is controlled by the sum of the AL and CAS Write Latency (CWL) register settings. A summary of the AL register options are shown as the following table. #### Additive Latency (AL) Settings | A4 | А3 | AL | |----|----|-----------------| | 0 | 0 | 0, (AL Disable) | | 0 | 1 | CL-1 | | 1 | 0 | CL-2 | | 1 | 1 | Reserved | # Write leveling For better signal integrity,
DDR3 memory module adopted fly by topology for the commands, addresses, control signals, and clocks. The fly by topology has benefits from reducing number of stubs and their length but in other aspect, causes flight time skew between clock and strobe at every DRAM on DIMM. It makes difficult for the Controller to maintain tDQSS, tDSS, and tDSH specification. Therefore, the controller should support 'write leveling' in DDR3 SDRAM to compensate for skew. # **Output Disable** The DDR3 SDRAM outputs maybe enable/disabled by MR1 (bit12) as shown in MR1 definition. When this feature is enabled (A12=1) all output pins (DQs, DQS, DQS, dec.) are disconnected from the device removing any loading of the output drivers. This feature may be useful when measuring modules power for example. For normal operation A12 should be set to '0'. ### TDQS, TDQS TDQS (Termination Data Strobe) is a feature of x8 DDR3 SDRAM that provides additional termination resistance outputs that may be useful in some system configurations. TDQS is not supported in x4 configurations. When enabled via the mode register, the same termination resistance function is applied to be TDQS/TDQS pins that are applied to the DQS/DQS pins. In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termination resistance function only. The data strobe function of RDQS is not provided by TDQS. The TDQS and DM functions share the same pin. When the TDQS function is enabled via the mode register, the DM function is not supported. When the TDQS function is disabled, the DM function is provided and the TDQS pin is not used. The TDQS function is available in x8 DDR3 SDRAM only and must be disabled via the mode register A11=0 in MR1 for x4 configurations. TDQS, TDQS Function Matrix | MR1 (A11) | DM/TDQS | NU / TDQS | | | | | |--|---------|-----------|--|--|--|--| | 0 (TDQS Disabled) | DM | Hi-Z | | | | | | 1 (TDQS Enabled) | TDQS | TDQS | | | | | | Note: | | | | | | | | If TDQS is enabled, the DM function is disabled. | | | | | | | | 2. When not used, TDQS function can be disabled to save termination power. | | | | | | | | 3. TDQS function is only available for x8 DRAM and must be disabled for x4 | | | | | | | # **Mode Register MR2** The Mode Register MR2 stores the data for controlling refresh related features, Rtt_WR impedance, and CAS write latency. The Mode Register 2 is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} high on BA1 and low on BA0 and BA2, while controlling the states of address pins according to the table below. # **CAS Write Latency (CWL)** The CAS Write Latency is defined by MR2 (bits A3-A5) shown in MR2. CAS Write Latency is the delay, in clock cycles, between the internal Write command and the availability of the first bit of input data. DDR3 DRAM does not support any half clock latencies. The overall Write Latency (WL) is defined as Additive Latency (AL) + CAS Write Latency (CWL); WL=AL+CWL. For more information on the supported CWL and AL settings based on the operating clock frequency, refer to "Standard Speed Bins" on page159. For detailed Write operation refer to "WRITE Operation" on page70. # Auto Self-Refresh (ASR) and Self-Refresh Temperature (SRT) DDR3 SDRAM must support Self-Refresh operation at all supported temperatures. Applications requiring Self-Refresh operation in the Extended Temperature Range must use the ASR function or program the SRT bit appropriately. Optional in DDR3 SDRAM: Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. For more details refer to "Extended Temperature Usage" on page48. DDR3 SDRAMs must support Self-Refresh operation at all supported temperatures. Applications requiring Self-Refresh operation in the Extended Temperature Range must use the optional ASR function or program the SRT bit appropriately. # Dynamic ODT (Rtt_WR) DDR3 SDRAM introduces a new feature "Dynamic ODT". In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination strength of the DDR3 SDRAM can be changed without issuing an MRS command. MR2 Register locations A9 and A10 configure the Dynamic ODT settings. In Write leveling mode, only RTT Nom is available. For details on Dynamic ODT operation, refer to "Dynamic ODT" on page 69. #### **Mode Register MR3** The Mode Register MR3 controls Multi-purpose registers. The Mode Register 3 is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} high on BA1 and BA0, and low on BA2 while controlling the states of address pins according to the table below. # Multi-Purpose Register (MPR) The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. To enable the MPR, a Mode Register Set (MRS) command must be issued to MR3 register with bit A2=1. Prior to issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any subsequent RD or RDA commands will be redirected to the Multi Purpose Register. When the MPR is enabled, only RD or RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2=0). Power down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR enable mode. The RESET function is supported during MPR enable mode. The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. The basic concept of the MPR is shown in Figure 20. To enable the MPR, a MODE Register Set (MRS) command must be issued to MR3 Register with bit A2 = 1, as shown in Table12. Prior to issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any subsequent RD or RDA commands will be redirected to the Multi Purpose Register. The resulting operation, when a RD or RDA command is issued, is defined by MR3 bits A[1:0] when the MPR is enabled as shown in Table13. When the MPR is enabled, only RD or RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2 = 0). Note that in MPR mode RDA has the same functionality as a READ command which means the auto precharge part of RDA is ignored. Power-Down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR enable mode. The RESET function is supported during MPR enable mode. | MR3 A[2] | MR3 A[1:0] | Function | |----------|-----------------------|--| | MPR | MPR-Loc | | | | | Normal operation, no MPR transaction. | | 0b | don't care (0b or 1b) | All subsequent Reads will come from DRAM array. | | | | All subsequent Write will go to DRAM array. | | 1b | See Table 13 | Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0]. | #### **MPR Functional Description** - •One bit wide logical interface via all DQ pins during READ operation. - •Register Read on x4: - •DQ[0] drives information from MPR. - •DQ[3:1] either drive the same information as DQ[0], or they drive 0b. - •Register Read on x8: - •DQ[0] drives information from MPR. - •DQ[7:1] either drive the same information as DQ[0], or they drive 0b. - •Register Read on x16: - •DQL[0] and DQU[0] drive information from MPR. - •DQL[7:1] and DQU[7:1] either drive the same information as DQL[0], or they drive 0b. - •Addressing during for Multi Purpose Register reads for all MPR agents: - •BA[2:0]: don't care - •A[1:0]: A[1:0] must be equal to '00'b. Data read burst order in nibble is fixed - •A[2]: For BL=8, A[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *) For Burst Chop 4 cases, the burst order is switched on nibble base A[2]=0b, Burst order: 0,1,2,3 *) A[2]=1b, Burst order: 4,5,6,7 *) - •A[9:3]: don't care - •A10/AP: don't care - •A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0. - •A11, A13,... (if available): don't care - •Regular interface functionality during register reads: - •Support two Burst Ordering which are switched with A2 and A[1:0]=00b. - •Support of read burst chop (MRS and on-the-fly via A12/BC) - •All other address bits (remaining column address bits including A10, all bank address bits) will be ignored by the DDR3 SDRAM. - •Regular read latencies and AC timings apply. - •DLL must be locked prior to MPR Reads. NOTE: *) Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent. # **DDR3 SDRAM Command Description and Operation** # **Command Truth Table** | | | CKE | | | | | | BA0 | A13 | A12 | A10 | A0-9 | NOTE | |--|--------------|----------|--------------------|----|-----|-----|----|-----|---------|---------|----------|------|------| | Function | Abbreviation | Previous | Previous Current C | CS | RAS | CAS | WE | BA2 | A15 | BC | AP | A11 | | | | | Cycle | | | | | | | | | | | | | Mode Register Set | MRS | Н | Н | L | L | L | L | ВА | OP Code | | | | | | Refresh | REF | Н | н | L | L | L | Ħ | > | ٧ | ٧ | ٧ | > | | | Self Refresh Entry | SRE | н | L | L | L | L | Н | ٧ | ٧ | ٧ | ٧ | ٧ | | | , | | | | Н | Х | Х | Х | Х | Х | Х | Х | Х | | | Self Refresh Exit | SRX | L | Н | L | Н | Н | Н | ٧ | ٧ | ٧ | ٧ | ٧ | | | Single Bank Precharge | PRE | Н | н | L | L | Н | L | ВА | V | ٧ | L | ٧ | | | Precharge all Banks | PREA | Н | н | L | L | Н | L | > | ٧ | ٧ | Н | > | | | Bank Activate | ACT | Н | Н | L | L | Н | н | ВА | F | Row Add | lress (R | A) | | | Write (Fixed BL8 or BC4) | WR | Н | н | L | Ι | L | L | ВА | RFU | ٧ | L | CA | | | Write (BC4, on the Fly) | WRS4 | Н | Н | L | н | L | L | ВА | RFU | L | L | CA | | | Write (BL8, on the Fly) | WRS8 | Н | Н | L | Н | L | L | ВА | RFU | Н | L | CA | | | Write
with Auto Precharge (Fixed BL8 or BC4) | WRA | Н | Н | L | Н | L | L | ВА | RFU | ٧ | Н | CA | | | Write with Auto Precharge (BC4, on the Fly) | WRAS4 | Н | Н | L | Н | L | L | ВА | RFU | L | Н | CA | | | Write with Auto Precharge (BL8, on the Fly) | WRAS8 | Н | Н | L | Н | L | L | ВА | RFU | Н | Н | CA | | | Read (Fixed BL8 or BC4) | RD | Н | Н | L | Н | L | Н | ВА | RFU | ٧ | L | CA | | | Read (BC4, on the Fly | RDS4 | Н | Н | L | Н | L | Н | ВА | RFU | L | L | CA | | | Read (BL8, on the Fly) | RDS8 | Н | Н | L | Н | L | Н | ВА | RFU | Н | L | CA | | | Read with Auto Precharge (Fixed BL8 or BC4) | RDA | Н | Н | L | Н | L | Н | ВА | RFU | ٧ | Н | CA | | | Read with Auto Precharge (BC4, on the Fly) | RDAS4 | Н | Н | L | Н | L | Н | ВА | RFU | L | Н | CA | | | Read with Auto Precharge (BL8, on the Fly) | RDAS8 | Н | Н | L | Н | L | Н | ВА | RFU | Н | Н | CA | | | No Operation | NOP | Н | Н | L | н | Н | н | ٧ | ٧ | ٧ | ٧ | V | | | Device Deselected | DES | Н | Н | Н | х | Х | Х | х | Х | х | Х | Х | | | Power Down Entry | חחר | Н | L | L | Н | Н | Н | V | ٧ | ٧ | ٧ | ٧ | | | Power Down Entry | PDE | | | Н | х | х | Х | х | х | х | Х | Х | | | Dougr Doug Evit | PDX | L | Н | L | Н | Н | Н | ٧ | ٧ | ٧ | ٧ | ٧ | | | Power Down Exit | | | | Н | Х | х | Х | Х | х | х | х | Х | | | ZQ Calibration Long | ZQCL | Н | Н | L | Н | Н | L | Х | х | х | Н | Х | | | ZQ Calibration Short | zqcs | Н | Н | L | Н | Н | L | Х | х | х | L | Х | | # **DDR3 SDRAM Command Description and Operation** # **Command Truth Table (Conti.)** - NOTE1. All DDR3 SDRAM commands are defined by states of \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} and CKE at the rising edge of the clock. The MSB of BA, RA and CA are device density and configuration dependant. - NOTE2. RESET is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any function. - NOTE3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register. - NOTE4. "V" means "H or L (but a defined logic level)" and "X" means either "defined or undefined (like floating) logic level". - NOTE5. Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS. - NOTE6. The Power-Down Mode does not perform any refresh operation. - NOTE7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. - NOTE8. Self Refresh Exit is asynchronous. - NOTE9. VREF(Both VrefDQ and VrefCA) must be maintained during Self Refresh operation. - NOTE10. The No Operation command should be used in cases when the DDR3 SDRAM is in an idle or wait state. The purpose of the No Operation command (NOP) is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A No Operation command will not terminate a pervious operation that is still executing, such as a burst read or write cycle. - NOTE11. The Deselect command performs the same function as No Operation command. - NOTE12. Refer to the CKE Truth Table for more detail with CKE transition. #### **CKE Truth Table** | | СК | E | Common d (NI) | | Notes | |----------------|-------------------------|----------------------|-------------------------------|----------------------------|-------| | Current State | Previous Cycle
(N-1) | Current Cycle
(N) | Command (N) RAS, CAS, WE, CS | Action (N) | | | Power-Down | L | L | X | Maintain Power-Down | | | Power-Down | L | Н | DESELECT or NOP | Power-Down Exit | | | Self-Refresh | L | L | Х | Maintain Self-Refresh | | | Sell-Reflesh | L | Н | DESELECT or NOP | Self-Refresh Exit | | | Bank(s) Active | Н | L | DESELECT or NOP | Active Power-Down Entry | | | Reading | Н | L | DESELECT or NOP | Power-Down Entry | | | Writing | Н | L | DESELECT or NOP | Power-Down Entry | | | Precharging | Н | L | DESELECT or NOP | Power-Down Entry | | | Refreshing | Н | L | DESELECT or NOP | Precharge Power-Down Entry | | | All Banks Idle | Н | L | DESELECT or NOP | Precharge Power-Down Entry | | | All Danks Idle | Н | L | REFRESH | Self-Refresh | | - NOTE 1 CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. - NOTE 2 Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N. - NOTE 3 COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not included here. - NOTE 4 All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. - NOTE 5 The state of ODT does not affect the states described in this table. The ODT function is not available during Self-Refresh. - NOTE 6 CKE must be registered with the same value on tCKEmin consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the tCKEmin clocks of registrations. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + tCKEmin + tIH. - NOTE 7 DESELECT and NOP are defined in the Command Truth Table. - NOTE 8 On Self-Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period. Read or ODT commands may be issued only after tXSDLL is satisfied. - NOTE 9 Self-Refresh modes can only be entered from the All Banks Idle state. - NOTE 10 Must be a legal command as defined in the Command Truth Table. - NOTE 11 Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. - NOTE 12 Valid commands for Self-Refresh Exit are NOP and DESELECT only. - NOTE 13 Self-Refresh cannot be entered during Read or Write operations. - NOTE 14 The Power-Down does not perform any refresh operations. - NOTE 15"X" means "don't care" (including floating around VREF) in Self-Refresh and Power-Down. It also applies to Address pins. - NOTE 16 VREF (Both Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation. - NOTE 17 If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power-Down is entered, otherwise Active Power-Down is entered. - NOTE 18'Idle state' is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc). # No Operation (NOP) Command The No operation (NOP) command is used to instruct the selected DDR3 SDRAM to perform a NOP ($\overline{\text{CS}}$ low and $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and $\overline{\text{WE}}$ high). This prevents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. #### **Deselect Command** The Deselect function ($\overline{\text{CS}}$ HIGH) prevents new commands from being executed by the DDR3 SDRAM. The DDR3 SDRAM is effectively deselected. Operations already in progress are not affected. #### **DLL-off Mode** DDR3 DLL-off mode is entered by setting MR1 bit A0 to "1"; this will disable the DLL for subsequent operations until A0 bit set back to "0". The MR1 A0 bit for DLL control can be switched either during initialization or later. The DLL-off Mode operations listed below are an optional feature for DDR3. The maximum clock frequency for DLL-off Mode is specified by the parameter tCKDLL_OFF. There is no minimum frequency limit besides the need to satisfy the refresh interval, tREFI. Due to latency counter and timing restrictions, only one value of CAS Latency (CL) in MR0 and CAS Write Latency (CWL) in MR2 are supported. The DLL-off mode is only required to support setting of both CL=6 and CWL=6. DLL-off mode will affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the data Strobe to Data relationship (tDQSQ, tQH). Special attention is needed to line up Read data to controller time domain. Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL+CL) cycles after the Read command, the DLL-off mode tDQSCK starts (AL+CL-1) cycles after the read command. Another difference is that tDQSCK may not be small compared to tCK (it might even be larger than tCK) and the difference between tDQSCKmin and tDQSCKmax is significantly larger than in DLL-on mode. The timing relations on DLL-off mode READ operation have shown at the following Timing Diagram (CL=6, BL=8) # **DLL-off mode READ Timing Operation** Note: The tDQSCK is used here for DQS, DQS, and DQ to have a simplified diagram; the DLL_off shift will affect both timings in the same way and the skew between all DQ, DQS, and \overline{DQS} signals will still be tDQSQ. # DLL on/off switching procedure DDR3 DLL-off mode is entered by setting MR1 bit A0 to "1"; this will disable the DLL for subsequent operation until A0 bit set back to "0". #### DLL "on" to DLL "off" Procedure To switch from DLL "on" to DLL "off" requires the frequency to be changed during Self-Refresh outlined in the following procedure: - 1. Starting from Idle state (all banks pre-charged, all timing fulfilled, and DRAMs On-die Termination resistors, RTT, must be in high impedance state before MRS to MR1 to disable the DLL). - 2. Set MR1 Bit A0 to "1" to disable the DLL. - 3. Wait tMOD. - 4. Enter Self Refresh Mode; wait until (tCKSRE) satisfied. - 5. Change frequency, in guidance with "Input Clock Frequency Change" section. - 6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs. - 7. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until all tMOD timings from any MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when Self Refresh mode was entered, the ODT signal must continuously be registered LOW until all tMOD timings from any MRS command are
satisfied. If both ODT features were disabled in the mode registers when Self Refresh mode was entered, ODT signal can be registered LOW or HIGH. - **8.** Wait tXS, and then set Mode Registers with appropriate values (especially an update of CL, CWL, and WR may be necessary. A ZQCL command may also be issued after tXS). - 9. Wait for tMOD, and then DRAM is ready for next command. # **DLL Switch Sequence from DLL-on to DLL-off** # DLL "off" to DLL "on" Procedure To switch from DLL "off" to DLL "on" (with requires frequency change) during Self-Refresh: - 1. Starting from Idle state (all banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT) must be in high impedance state before Self-Refresh mode is entered). - 2. Enter Self Refresh Mode, wait until tCKSRE satisfied. - 3. Change frequency, in guidance with "Input clock frequency change" section. - 4. Wait until a stable is available for at least (tCKSRX) at DRAM inputs. - 5. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until tDLLK timing from subsequent DLL Reset command is satisfied. In addition, if any ODT features were enabled in the mode registers when Self Refresh mode was entered. the ODT signal must continuously be registered LOW until tDLLK timings from subsequent DLL Reset command is satisfied. If both ODT features are disabled in the mode registers when Self Refresh mode was entered, ODT signal can be registered LOW or HIGH. - 6. Wait tXS, then set MR1 Bit A0 to "0" to enable the DLL. - 7. Wait tMRD, then set MR0 Bit A8 to "1" to start DLL Reset. - **8.** Wait tMRD, then set Mode registers with appropriate values (especially an update of CL, CWL, and WR may be necessary. After tMOD satisfied from any proceeding MRS command, a ZQCL command may also be issued during or after tDLLK). - 9. Wait for tMOD, then DRAM is ready for next command (remember to wait tDLLK after DLL Reset before applying command requiring a locked DLL!). In addition, wait also for tZQoper in case a ZQCL command was issued. # Input Clock frequency change Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be "stable" during almost all states of normal operation. This means once the clock frequency has been set and is to be in the "stable state", the clock period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (spread spectrum clocking) specification. The input clock frequency can be changed from one stable clock rate to another stable clock rate under two conditions: (1) Self-Refresh mode and (2) Precharge Power-Down mode. Outside of these two modes, it is illegal to change the clock frequency. For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-Refresh mode and tCKSRE has been satisfied, the state of the clock becomes a don't care. Once a don't care, changing the clock frequency is permissible, provided the new clock frequency is stable prior to tCKSRX. When entering and exiting Self-Refresh mode of the sole purpose of changing the clock frequency. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum operating frequency specified for the particular speed grade. The second condition is when the DDR3 SDRAM is in Precharge Power-Down mode (either fast exit mode or slow exit mode). If the RTT_Nom feature was enabled in the mode register prior to entering Precharge power down mode, the ODT signal must continuously be registered LOW ensuring RTT is in an off state. If the RTT_Nom feature was disabled in the mode register prior to entering Precharge power down mode, RTT will remain in the off state. The ODT signal can be registered either LOW or HIGH in this case. A minimum of tCKSRE must occur after CKE goes LOW before the clock frequency may change. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum operating frequency specified for the particular speed grade. During the input clock frequency change, ODT and CKE must be held at stable LOW levels. Once the input clock frequency is changed, stable new clocks must be provided to the DRAM tCKSRX before precharge Power Down may be exited; after Precharge Power Down is exited and tXP has expired, the DLL must be RESET via MRS. Depending on the new clock frequency additional MRS commands may need to be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high. During DLL re-lock period, ODT must remain LOW and CKE must remain HIGH. After the DLL lock time, the DRAM is ready to operate with new clock frequency. # **Change Frequency during Precharge Power-down** # Write Leveling For better signal integrity, DDR3 memory adopted fly by topology for the commands, addresses, control signals, and clocks. The fly by topology has benefits from reducing number of stubs and their length but in other aspect, causes flight time skew between clock and strobe at every DRAM on DIMM. It makes it difficult for the Controller to maintain tDQSS, tDSS, and tDSH specification. Therefore, the controller should support "write leveling" in DDR3 SDRAM to compensate the skew. The memory controller can use the "write leveling" feature and feedback from the DDR3 SDRAM to adjust the DQS - \overline{DQS} to CK - \overline{CK} relationship. The memory controller involved in the leveling must have adjustable delay setting on DQS - \overline{DQS} to align the rising edge of DQS - \overline{DQS} with that of the clock at the DRAM pin. DRAM asynchronously feeds back CK - \overline{CK} , sampled with the rising edge of DQS - \overline{DQS} , through the DQ bus. The controller repeatedly delays DQS - \overline{DQS} until a transition from 0 to 1 is detected. The DQS - \overline{DQS} delay established though this exercise would ensure tDQSS specification. Besides tDQSS, tDSS, and tDSH specification also needs to be fulfilled. One way to achieve this is to combine the actual tDQSS in the application with an appropriate duty cycle and jitter on the DQS- \overline{DQS} signals. Depending on the actual tDQSS in the application, the actual values for tDQSL and tDQSH may have to be better than the absolute limits provided in "AC Timing Parameters" section in order to satisfy tDSS and tDSH specification. A conceptual timing of this scheme is show as below figure. DQS/DQS driven by the controller during leveling mode must be determined by the DRAM based on ranks populated. Similarly, the DQ bus driven by the DRAM must also be terminated at the controller. One or more data bits should carry the leveling feedback to the controller across the DRAM configurations x4, and x8. Therefore, a separate feedback mechanism should be able for each byte lane. The upper data bits should provide the feedback of the upper diff_DQS (diff_UDQS) to clock relationship whereas the lower data bits would indicate the lower diff_DQS (diff_LDQS) to clock relationship. # DRAM setting for write leveling and DRAM termination unction in that mode DRAM enters into Write leveling mode if A7 in MR1 set "High" and after finishing leveling, DRAM exits from write leveling mode if A7 in MR1 set "Low". Note that in write leveling mode, only DQS/DQS terminations are activated and deactivated via ODT pin not like normal operation. #### MR setting involved in the leveling procedure | Function | MR1 | Enable | Disable | | |---------------------------|-----|--------|---------|--| | Write leveling enable | A7 | 1 | 0 | | | Output buffer mode (Qoff) | A12 | 0 | 1 | | # DRAM termination function in the leveling mode | ODT pin at DRAM | DQS/DQS termination | DQs termination | |-----------------|---------------------|-----------------| | De-asserted | off | off | | Asserted | on | off | Note: In write leveling mode with its output buffer disabled (MR1[bit7]=1 with MR1[bit12]=1) all RTT_Nom settings are allowed; in Write Leveling Mode with its output buffer enabled (MR1[bit7]=1 with MR1[bit12]=0) only RTT_Nom settings of RZQ/2, RZQ/4, and RZQ/6 are allowed. # **Procedure Description** Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. With entering write leveling mode, the DQ pins are in undefined driving mode. During write leveling mode, only NOP or Deselect commands are allowed. As well as an MRS command to exit write leveling mode. Since the controller levels one rank at a time, the output of other rank must be disabled by setting MR1 bit A12 to 1. Controller may assert ODT after tMOD, time at which DRAM is ready to accept the ODT signal. Controller may drive DQS low and \overline{DQS} high after a delay of tWLDQSEN, at which time DRAM has applied on-die termination on these signals. After tDQSL and tWLMRD controller provides a single DQS, \overline{DQS} edge which is used by the DRAM to sample CK – \overline{CK} driven from controller. tWLMRD(max) timing is controller dependent. DRAM samples CK - $\overline{\text{CK}}$ status with rising edge of DQS and provides feedback on all the DQ bits asynchronously after tWLO timing. There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits; there are no read strobes (DQS/DQS) needed for these DQs. Controller samples incoming DQ and decides to increment or decrement DQS – $\overline{\text{DQS}}$ delay setting and launches the next DQS/ $\overline{\text{DQS}}$ pulse after some time, which is controller dependent. Once a 0 to 1 transition is detected, the controller locks DQS – $\overline{\text{DQS}}$ delay setting and write leveling is achieved for the device. The following figure describes the timing diagram and parameters for the overall Write leveling procedure. # Timing details of Write leveling sequence # DQS - DQS is capturing CK - CK low at T1 and CK - CK high at T2 # Write Leveling Mode Exit The following sequence describes how Write Leveling Mode should be exited: - 1. After the last rising strobe edge (see ~T0), stop driving the strobe
signals (see ~Tc0). Note: From now on, DQ pins are in undefined driving mode, and will remain undefined, until tMOD after the respective MR command (Te1). - 2. Drive ODT pin low (tIS must be satisfied) and keep it low (see Tb0). - 3. After the RTT is switched off, disable Write Level Mode via MRS command (see Tc2). - 4. After tMOD is satisfied (Te1), any valid command may be registered. (MR commands may be issued after tMRD (Td1). # Timing detail of Write Leveling exit #### **Extended Temperature Usage** - a. Auto Self-refresh supported - b. Extended Temperature Range supported - c. Double refresh required for operation in the Extended Temperature Range. #### **Mode Register Description** | Field | Bits | Description | |-------|---------|---| | | MR2(A6) | Auto Self-Refresh (ASR) | | | | When enabled, DDR3 SDRAM automatically provides Self-Refresh power management functions | | ASR | | for all supported operating temperature values. If not enabled, the SRT bit must be programmed to | | ASK | | indicate TOPER during subsequent Self-Refresh operation. | | | | 0 = Manual SR Reference (SRT) | | | | 1 = ASR enable | | | MR2(A7) | Self-Refresh Temperature (SRT) Range | | | | If ASR = 0, the SRT bit must be programmed to indicate TOPER during subsequent Self-Refresh | | SRT | | operation. If ASR = 1, SRT bit must be set to 0. | | | | 0 = Normal operating temperature range | | | | 1 = Extended operating temperature range | #### Auto Self-Refresh mode - ASR mode DDR3 SDRAM provides an Auto-Refresh mode (ASR) for application ease. ASR mode is enabled by setting MR2 bit A6=1 and MR2 bit A7=0. The DRAM will manage Self-Refresh entry in either the Normal or Extended Temperature Ranges. In this mode, the DRAM will also manage Self-Refresh power consumption when the DRAM operating temperature changes, lower at low temperatures and higher at high temperatures. If the ASR option is not supported by DRAM, MR2 bit A6 must set to 0. If the ASR option is not enabled (MR2 bit A6=0), the SRT bit (MR2 bit A7) must be manually programmed with the operating temperature range required during Self-Refresh operation. Support of the ASR option does not automatically imply support of the Extended Temperature Range. # Self-Refresh Temperature Range - SRT SRT applies to devices supporting Extended Temperature Range only. If ASR=0, the Self-Refresh Temperature (SRT) Range bit must be programmed to guarantee proper self-refresh operation. If SRT=0, then the DRAM will set an appropriate refresh rate for Self-Refresh operation in the Normal Temperature Range. If SRT=1, then the DRAM will set an appropriate, potentially different, refresh rate to allow Self-Refresh operation in either the Normal or Extended Temperature Ranges. The value of the SRT bit can effect self-refresh power consumption, please refer to IDD table for details. # Self-Refresh mode summary | MR2 | MR2 | Self-Refresh operation | Allowed Operating Temperature | |------|------|--|-------------------------------| | A[6] | A[7] | Sen-retresh operation | Range for Self-Refresh mode | | 0 | 0 | Self-Refresh rate appropriate for the Normal Temperature Range | Normal (0 ~ 85C) | | | | Self-Refresh appropriate for either the Normal or Extended Temperature Ranges. The DRAM must support Extended | | | 0 | 1 | Temperature Range. The value of the SRT bit can effect self-refresh power consumption, please refer to the IDD table | Normal and Extended (0 ~ 95C) | | | | for details. | | | 4 | | ASR enabled (for devices supporting ASR and Normal Temperature Range). Self-Refresh power consumption is | Normal (0 ~ 85C) | | ' | 0 | temperature dependent. | Normal (0 ~ 85C) | | 4 | 0 | ASR enabled (for devices supporting ASR and Extended Temperature Range). Self-Refresh power consumption is | Normal and Extended (0 ~ 95C) | | ' | U | temperature dependent. | Normal and Extended (0 ~ 95C) | | 1 | 1 | Illegal | | # **MPR MR3 Register Definition** | MR3 | MR3 | Eurotion | | | | |------|--------------------------|--|--|--|--| | A[2] | A[2] A[1:0] | Function | | | | | | doub | Normal operation, no MPR transaction. | | | | | 0 | don't care
0 (0 or 1) | All subsequent Reads will come from DRAM array. | | | | | | | All subsequent Writes will go to DRAM array. | | | | | 1 | See the following table | Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0]. | | | | #### **MPR Functional Description** One bit wide logical interface via all DQ pins during READ operation. Register Read on x4: DQ [0] drives information from MPR. DQ [3:1] either drive the same information as DQ [0], or they drive 0. Register Read on x8: DQ [0] drives information from MPR. DQ [7:1] either drive the same information as DQ [0], or they drive 0. Addressing during for Multi Purpose Register reads for all MPR agents: BA [2:0]: don't care. A [1:0]: A [1:0] must be equal to "00". Data read burst order in nibble is fixed. A[2]: For BL=8, A[2] must be equal to 0, burst order is fixed to [0,1,2,3,4,5,6,7]; For Burst chop 4 cases, the burst order is switched on nibble base, A[2]=0, burst order: 0,1,2,3, A[2]=1, burst order: 4,5,6,7. *) A [9:3]: don't care. A10/AP: don't care. A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0 A11, A13: don't care. Regular interface functionality during register reads: Support two Burst Ordering which are switched with A2 and A[1:0]=00. Support of read burst chop (MRS and on-the-fly via A12/BC). All other address bits (remaining column addresses bits including A10, all bank address bits) will be ignored by the DDR3 SDRAM. Regular read latencies and AC timings apply. DLL must be locked prior to MPR READs. Note *): Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent. # MPR Register Address Definition The following table provide an overview of the available data location, how they are addressed by MR3 A[1:0] during a MRS to MR3, and how their individual bits are mapped into the burst order bits during a Multi Purpose Register Read. # MPR MR3 Register Definition | MR3 | MR3 | Function | Burst Length | Read Address | | |------|--------|--|--------------|--------------|---| | A[2] | A[1:0] | Function | | A[2:0] | Burst Order and Data Pattern | | | | | BL8 | 000 | Burst order 0,1,2,3,4,5,6,7 Pre-defined Data Pattern [0,1,0,1,0,1,0,1] | | 1 | 00 | Read Predefined Pattern for System Calibration | BC4 | 000 | Burst order 0,1,2,3 Pre-defined Data Pattern [0,1,0,1] | | | | | BC4 | 100 | Burst order 4,5,6,7 Pre-defined Data Pattern [0,1,0,1] | | | | | BL8 | 000 | Burst order 0,1,2,3,4,5,6,7 | | 1 | 01 | 01 RFU | BC4 | 000 | Burst order 0,1,2,3 | | | | | BC4 | 100 | Burst order 4,5,6,7 | | | | | BL8 | 000 | Burst order 0,1,2,3,4,5,6,7 | | 1 | 10 | 10 RFU | BC4 | 000 | Burst order 0,1,2,3 | | | | | BC4 | 100 | Burst order 4,5,6,7 | | | | BL8 11 RFU BC4 | BL8 | 000 | Burst order 0,1,2,3,4,5,6,7 | | 1 | 11 | | BC4 | 000 | Burst order 0,1,2,3 | | | | | BC4 | 100 | Burst order 4,5,6,7 | #### **ACTIVE Command** The ACTIVE command is used to open (or activate) a row in a particular bank for subsequent access. The value on the BA0-BA2 inputs selects the bank, and the addresses provided on inputs A0-A13 selects the row. These rows remain active (or open) for accesses until a precharge command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank. #### **PRECHARGE Command** The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row activation a specified time (tRP) after the PRECHARGE command is issued, except in the case of concurrent auto precharge, where a READ or WRITE command to a different bank is allowed as long as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command is allowed if there is no open row in that bank (idle bank) or if the previously open row is already in the process of precharging. However, the precharge period will be determined by the last PRECHARGE command issued to the bank. # **READ Operation** #### **Read Burst Operation** During a READ or WRITE command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or WRITE (AUTO PRECHARGE can be enabled or disabled). A12=0, BC4 (BC4 = burst chop, tCCD=4) A12=1. BL8 A12 will be used only for burst length control, not a column address. ### Read Burst Operation RL=5 (AL=0, CL=5, BL=8) # READ Burst Operation RL = 9 (AL=4, CL=5, BL=8) # **READ Timing Definitions** Read timing is shown in the following figure and is applied when the DLL is enabled and locked. Rising data strobe edge parameters: tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK, CK. tDQSCK is the actual position of a rising strobe edge relative to CK, CK. tQSH describes the DQS, \overline{DQS} differential output high time. tDQSQ describes the latest valid transition of the associated DQ pins. tQH describes the earliest invalid transition of the associated DQ pins. Falling data strobe edge parameters: tQSL describes the DQS, \overline{DQS} differential output low time. tDQSQ describes the latest valid transition of the associated DQ pins. tQH describes the earliest invalid transition of the associated DQ pins. # **Read Timing Definition** # Read Timing; Clock to Data Strobe relationship Clock to Data Strobe
relationship is shown in the following figure and is applied when the DLL is enabled and locked. Rising data strobe edge parameters: tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK and $\overline{\text{CK}}$. tDQSCK is the actual position of a rising strobe edge relative to CK and $\overline{\text{CK}}$. tQSH describes the data strobe high pulse width. Falling data strobe edge parameters: tDSL describes the data strobe low pulse width # **Clock to Data Strobe Relationship** #### Read Timing; Data Strobe to Data Relationship The Data Strobe to Data relationship is shown in the following figure and is applied when the DLL and enabled and locked. Rising data strobe edge parameters: tDQSQ describes the latest valid transition of the associated DQ pins. tQH describes the earliest invalid transition of the associated DQ pins. Falling data strobe edge parameters: tDQSQ describes the latest valid transition of the associated DQ pins. tQH describes the earliest invalid transition of the associated DQ pins. # **Data Strobe to Data Relationship** # Read to Read (CL=5, AL=0) # READ to WRITE (CL=5, AL=0; CWL=5, AL=0) # READ to READ (CL=5, AL=0) # READ to WRITE (CL=5, AL=0; CWL=5, AL=0) ### **Write Operation** #### **DDR3 Burst Operation** During a READ or WRITE command, DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or WRITE (Auto Precharge can be enabled or disabled). A12=0, BC4 (BC4 = Burst Chop, tCCD=4) A12=1, BL8 A12 is used only for burst length control, not as a column address. # **WRITE Timing Violations** #### **Motivation** Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure the DRAM works properly. However, it is desirable for certain minor violations that the DRAM is guaranteed not to "hang up" and errors be limited to that particular operation. For the following, it will be assumed that there are no timing violations w.r.t. to the Write command itself (including ODT, etc.) and that it does satisfy all timing requirements not mentioned below. #### **Data Setup and Hold Violations** Should the strobe timing requirements (tDS, tDH) be violated, for any of the strobe edges associated with a write burst, then wrong data might be written to the memory location addressed with the offending WRITE command. Subsequent reads from that location might result in unpredictable read data, however, the DRAM will work properly otherwise. #### Strobe to Strobe and Strobe to Clock Violations Should the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements (tDSS, tDSH, tDQSS) be violated, for any of the strobe edges associated with a Write burst, then wrong data might be written to the memory location addressed with the offending WRITE command. Subsequent reads from that location might result in unpredictable read data, however the DRAM will work properly otherwise. #### **Write Timing Parameters** This drawing is for example only to enumerate the strobe edges that "belong" to a write burst. No actual timing violations are shown here. For a valid burst all timing parameters for each edge of a burst need to be satisfied (not only for one edge - as shown). # **Write Timing Definition** #### Note: - 1. BL=8, WL=5 (AL=0, CWL=5). - 2. Din n = data in from column n. - 3. NOP commands are shown for ease of illustration; other command may be valid at these times. - 4. BL8 setting activated by either MR0 [A1:0=00] or MR0 [A1:0=01] and A12 = 1 during WRITE command at T0. - 4. tDQSS must be met at each rising clock edge. # WRITE to WRITE (WL=5; CWL=5, AL=0) # WRITE to READ (RL=5, CL=5, AL=0; WL=5, CWL=5, AL=0; BL=4) # WRITE to WRITE (WL=5, CWL=5, AL=0) #### **Refresh Command** The Refresh command (REF) is used during normal operation of the DDR3 SDRAMs. This command is not persistent, so it must be issued each time a refresh is required. The DDR3 SDRAM requires Refresh cycles at an average periodic interval of tREFI. When \overline{CS} , \overline{RAS} , and \overline{CAS} are held Low and WE High at the rising edge of the clock, the chip enters a Refresh cycle. All banks of the SDRAM must be precharged and idle for a minimum of the precharge time tRP(min) before the Refresh Command can be applied. The refresh addressing is generated by the internal refresh controller. This makes the address bits "Don't Care" during a Refresh command. An internal address counter suppliers the address during the refresh cycle. No control of the external address bus is required once this cycle has started. When the refresh cycle has completed, all banks of the SDRAM will be in the precharged (idle) state. A delay between the Refresh Command and the next valid command, except NOP or DES, must be greater than or equal to the minimum Refresh cycle time tRFC(min) as shown in the following figure. In general, a Refresh command needs to be issued to the DDR3 SDRAM regularly every tREFI interval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of 8 Refresh commands can be postponed during operation of the DDR3 SDRAM, meaning that at no point in time more than a total of 8 Refresh commands are allowed to be postponed. In case that 8 Refresh commands are postponed in a row, the resulting maximum interval between the surrounding Refresh commands is limited to 9 x tREFI. A maximum of 8 additional Refresh commands can be issued in advance ("pulled in"), with each one reducing the number of regular Refresh commands required later by one. Note that pulling in more than 8 Refresh commands in advance does not further reduce the number of regular Refresh commands required later, so that the resulting maximum interval between two surrounding Refresh command is limited to 9 x tREFI. Before entering Self-Refresh Mode, all postponed Refresh commands must be executed. # Self-Refresh Entry/Exit Timing # **Postponing Refresh Commands (Example)** # **Pulled-in Refresh Commands (Example)** **Self-Refresh Operation** The Self-Refresh command can be used to retain data in the DDR3 SDRAM, even if the reset of the system is powered down. When in the Self-Refresh mode, the DDR3 SDRAM retains data without external clocking. The DDR3 SDRAM device has a built-in timer to accommodate Self-Refresh operation. The Self-Refresh Entry (SRE) Command is defined by having $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and $\overline{\text{CKE}}$ held low with WE high at the rising edge of the clock. Before issuing the Self-Refreshing-Entry command, the DDR3 SDRAM must be idle with all bank precharge state with tRP satisfied. Also, on-die termination must be turned off before issuing Self-Refresh-Entry command, by either registering ODT pin low "ODTL + 0.5tCK" prior to the Self-Refresh Entry command or using MRS to MR1 command. Once the Self-Refresh Entry command is registered, CKE must be held low to keep the device in Self-Refresh mode. During normal operation (DLL on), MR1 (A0=0), the DLL is automatically disabled upon entering Self-Refresh and is automatically enabled (including a DLL-RESET) upon exiting Self-Refresh. When the DDR3 SDRAM has entered Self-Refresh mode, all of the external control signals, except CKE and RESET, are "don't care". For proper Self-Refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ, VRefCA, and VRefDQ) must be at valid levels. The DRAM initiates a minimum of one Refresh command internally within tCKE period once it enters Self-Refresh mode. The clock is internally disabled during Self-Refresh operation to save power. The minimum time that the DDR3 SDRAM must remain in Self-Refresh mode is tCKE. The user may change the external clock frequency or halt the external clock tCKSRE after Self-Refresh entry is registered; however, the clock must be restarted and stable tCKSRX before the device can exit Self-Refresh mode. The procedure for exiting Self-Refresh requires a sequence of events. First, the clock must be stable prior to CKE going back HIGH. Once a Self-Refresh Exit Command (SRX, combination of CKE going high and either NOP or Deselect on command bus) is registered, a delay of at least tXS must be satisfied before a valid command not requiring a locked DLL can be issued to the device to allow for any internal refresh in progress. Before a command which requires a locked DLL can be applied, a delay of at least tXSDLL and applicable ZQCAL function requirements [TBD] must be satisfied. Before a command that requires a locked DLL can be applied, a delay of at least tXSDLL must be satisfied. Depending on the system environment and the amount of time spent in Self-Refresh, ZQ calibration commands may be required to compensate for the voltage and temperature drift as described in "ZQ Calibration Commands". To issue ZQ calibration commands, applicable timing requirements must be satisfied. CKE must remain HIGH for the entire Self-Refresh exit period tXSDLL for proper operation except for Self-Refresh re-entry. Upon exit from Self-Refresh, the DDR3 SDRAM can be put back into Self-Refresh mode after waiting at least tXS period and issuing one refresh command (refresh period of tRFC). NOP or deselect commands must be registered on each positive clock edge during the Self-Refresh exit interval tXS. ODT must be turned off during tXSDLL. 59 The use of Self-Refresh mode instructs the possibility that an internally times refresh event can be missed when CKE is raised for exit from Self-Refresh mode. Upon exit from Self-Refresh, the DDR3 SDRAM requires a minimum of one extra refresh command before it is put back into Self-Refresh mode. # Self-Refresh Entry/Exit Timing #### **Power-Down Modes** #### **Power-Down Entry and Exit** Power-Down is synchronously entered when CKE is registered low (along with NOP or Deselect command). CKE is not allowed
to go low while mode register set command, MPR operations, ZQCAL operations, DLL locking or read/write operation are in progress. CKE is allowed to go low while any of other operation such as row activation, precharge or auto precharge and refresh are in progress, but power-down IDD spec will not be applied until finishing those operation. The DLL should be in a locked state when power-down is entered for fastest power-down exit timing. If the DLL is not locked during power-down entry, the DLL must be reset after exiting power-down mode for proper read operation and synchronous ODT operation. DRAM design provides all AC and DC timing and voltage specification as well proper DLL operation with any CKE intensive operations as long as DRAM controller complies with DRAM specifications. During Power-Down, if all banks are closed after any in progress commands are completed, the device will be in precharge Power-Down mode; if any bank is open after in progress commands are completed, the device will be in active Power-Down mode. Entering Power-down deactivates the input and output buffers, excluding CK, CK, ODT, CKE, and RESET. To protect DRAM internal delay on CKE line to block the input signals, multiple NOP or Deselect commands are needed during the CKE switch off and cycle(s) after, this timing period are defined as tCPDED. CKE_low will result in deactivation of command and address receivers after tCPDED has expired. #### **Power-Down Entry Definitions** | Status of DRAM | MRS bit A12 | DLL | PD Exit | Relevant Parameters | |------------------------|---|-----------------------------------|--------------------------|--| | Active | Dealt Community of the | | tVD to any valid command | | | (A Bank or more open) | Don't Care | On Fast tXP to any valid command. | | tap to any valid command. | | | | | | tXP to any valid command. Since it is in precharge state, commands | | Precharged | 0 Off | 0" | Slow | here will be ACT, AR, MRS/EMRS, PR, or PRA. | | (All Banks Precharged) | | OII | | tXPDLL to commands who need DLL to operate, such as RD, RDA, | | | | | | or ODT control line. | | Precharged | 1 On Fast tXP to any valid command. | | AVD to converted command | | | (All Banks Precharged) | 1 | 1 On F | | tXP to any valid command. | Also the DLL is disabled upon entering precharge power-down (Slow Exit Mode), but the DLL is kept enabled during precharge power-down (Fast Exit Mode) or active power-down. In power-down mode, CKE low, RESET high, and a stable clock signal must be maintained at the inputs of the DDR3 SDRAM, and ODT should be in a valid state but all other input signals are "Don't care" (If RESET goes low during Power-Down, the DRAM will be out of PD mode and into reset state). CKE low must be maintain until tCKE has been satisfied. Power-down duration is limited by 9 times tREFI of the device. The power-down state is synchronously exited when CKE is registered high (along with a NOP or Deselect command). CKE high must be maintained until tCKE has been satisfied. A valid, executable command can be applied with power-down exit latency, tXP and/or tXPDLL after CKE goes high. Power-down exit latency is defined at AC spec table of this datasheet. ### **Active Power-Down Entry and Exit timing diagram** Timing Diagrams for CKE with PD Entry, PD Exit with Read, READ with Auto Precharge, Write and Write with Auto Precharge, Activate, Precharge, Refresh, MRS: # Power-Down Entry after Read and Read with Auto Precharge ### **Power-Down Entry after Write with Auto Precharge** ### **Power-Down Entry after Write** ### Precharge Power-Down (Fast Exit Mode) Entry and Exit # Precharge Power-Down (Slow Exit Mode) Entry and Exit # **Refresh Command to Power-Down Entry** # **Active Command to Power-Down Entry** # Precharge/Precharge all Command to Power-Down Entry # MRS Command to Power-Down Entry # **On-Die Termination (ODT)** ODT (On-Die Termination) is a feature of the DDR3 SDRAM that allows the DRAM to turn on/off termination resistance for each DQ, DQS, \overline{DQS} , and DM for x4 and x8 configuration and TDQS, \overline{TDQS} for x8 configuration, when enabled via A11=1 in MR1) via the ODT control pin. The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM controller to independently turn on/off termination resistance for any or all DRAM devices. The ODT feature is turned off and not supported in Self-Refresh mode. A simple functional representation of the DRAM ODT feature is shown as below. The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other control information. The value of RTT is determined by the settings of Mode Register bits. The ODT pin will be ignored if the Mode Register MR1 and MR2 are programmed to disable ODT and in self-refresh mode. #### **ODT Mode Register and ODT Truth Table** The ODT Mode is enabled if either of MR1 {A2, A6, A9} or MR2 {A9, A10} are non-zero. In this case, the value of RTT is determined by the settings of those bits. Application: Controller sends WR command together with ODT asserted. One possible application: The rank that is being written to provides termination. DRAM turns ON termination if it sees ODT asserted (except ODT is disabled by MR) DRAM does not use any write or read command decode information. #### **Termination Truth Table** | ODT pin | DRAM Termination State | | | | | |---------|--|--|--|--|--| | 0 | 0 OFF | | | | | | 1 | ON, (OFF, if disabled by MR1 {A2, A6, A9} and MR2{A9, A10} in general) | | | | | # **Synchronous ODT Mode** Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down definition, these modes are: Any bank active with CKE high Refresh with CKE high Idle mode with CKE high Active power down mode (regardless of MR0 bit A12) Precharge power down mode if DLL is enabled during precharge power down by MR0 bit A12 The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by continuously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode register set command during DLL-off mode. In synchronous ODT mode, RTT will be turned on ODTLon clock cycles after ODT is sampled high by a rising clock edge and turned off ODTLoff clock cycles after ODT is registered low by a rising clock edge. The ODT latency is tied to the write latency (WL) by: ODTLonn = WL - 2; ODTLoff = WL-2. #### **ODT Latency and Posted ODT** In synchronous ODT Mode, the Additive Latency (AL) programmed into the Mode Register (MR1) also applies to the ODT signal. The DRAM internal ODT signal is delayed for a number of clock cycles defined by the Additive Latency (AL) relative to the external ODT signal. ODTLon = CWL + AL - 2; ODTLoff = CWL + AL - 2. For details, refer to DDR3 SDRAM latency definitions. ### **ODT Latency** | Symbol | Parameter | DDR3 SDRAM | Unit | |---------|----------------------|-----------------------|------| | ODTLon | ODT turn on Latency | WL - 2 = CWL + AL - 2 | tCK | | ODTLoff | ODT turn off Latency | WL - 2 = CWL + AL - 2 | tCK | # **Timing Parameters** In synchronous ODT mode, the following timing parameters apply: ODTLon, ODTLoff, tAON min/max, AOF min/max. Minimum RTT turn-on time (tAON min) is the point in time when the device leaves high impedance and ODT resistance begins to turn on. Maximum RTT turn-on time (tAON max) is the point in time when the ODT resistance is fully on. Both are measured from ODTLon. Minimum RTT turn-off time (tAOF min) is the point in time when the device starts to turn off the ODT resistance. Maximum RTT turn off time (tAOF max) is the point in time when the on-die termination has reached high impedance. Both are measured from ODTLoff. When ODT is asserted, it must remain
high until ODTH4 is satisfied. If a Write command is registered by the SDRAM with ODT high, then ODT must remain high until ODTH4 (BL=4) or ODTH8 (BL=8) after the write command. ODTH4 and ODTH8 are measured from ODT registered high to ODT registered low or from the registration of a write command until ODT is registered low. # Synchronous ODT Timing Example for AL=3; CWL=5; ODTLon=AL+CWL-2=6; ODTLoff=AL+CWL-2=6 #### Synchronous ODT example with BL=4, WL=7 ODT must be held for at least ODTH4 after assertion (T1); ODT must be kept high ODTH4 (BL=4) or ODTH8 (BL=8) after Write command (T7). ODTH is measured from ODT first registered high to ODT first registered low, or from registration of Write command with ODT high to ODT registered low. Note that although ODTH4 is satisfied from ODT registered at T6 ODT must not go low before T11 as ODTH4 must also be satisfied from the registration of the Write command at T7. #### **ODT during Reads:** As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled at least half a clock cycle before the read preamble by driving the ODT pin low appropriately. RTT may not be enabled until the end of the post-amble as shown in the following figure. DRAM turns on the termination when it stops driving which is determined by tHZ. If DRAM stops driving early (i.e. tHZ is early), then tAONmin time may apply. If DRAM stops driving late (i.e. tHZ is late), then DRAM complies with tAONmax timing. Note that ODT may be disabled earlier before the Read and enabled later after the Read than shown in this example. ODT must be disabled externally during Reads by driving ODT low. (Example: CL=6; AL=CL-1=5; RL=AL+CL=11; CWL=5; ODTLon=CWL+AL-2=8; ODTLoff=CWL+AL-2=8) # **Dynamic ODT** In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination strength of the DDR3 SDRAM can be changed without issuing an MRS command. This requirement is supported by the "Dynamic ODT" feature as described as follows: #### **Functional Description** The Dynamic ODT Mode is enabled if bit (A9) or (A10) of MR2 is set to '1'. The function is described as follows: Two RTT values are available: RTT_Nom and RTT_WR. The value for RTT_Nom is preselected via bits A[9,6,2] in MR1. The value for RTT_WR is preselected via bits A[10,9] in MR2. During operation without write commands, the termination is controlled as follows: Nominal termination strength RTT_Nom is selected. Termination on/off timing is controlled via ODT pin and latencies ODTLon and ODTLoff. When a Write command (WR, WRA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if Dynamic ODT is enabled, the termination is controlled as follows: A latency ODTLcnw after the write command, termination strength RTT_WR is selected. A latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected OTF) after the write command, termination strength RTT_Nom is selected. Termination on/off timing is controlled via ODT pin and ODTLon, ODTLoff. The following table shows latencies and timing parameters which are relevant for the on-die termination control in Dynamic ODT mode. The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set RTT_WR, MR2[A10,A9 = [0,0], to disable Dynamic ODT externally. When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered by the SDRAM with ODT high, then ODT must remain high until ODTH4 (BL=4) or ODTH8 (BL=8) after the Write command. ODTH4 and ODTH8 are measured from ODT registered high to ODT registered low or from the registration of Write command until ODT is register low. # Latencies and timing parameters relevant for Dynamic ODT | Name and Description | Abbr. | Defined from | Defined to | Definition for all DDR3 speed pin | Unit | |-------------------------------|----------|--------------------------------------|--------------------------|-----------------------------------|----------| | ODT turn-on Latency | ODTLon | registering external ODT signal high | turning termination on | ODTLon=WL-2 | tCK | | ODT turn-off Latency | ODTLoff | registering external ODT signal low | turning termination off | ODTLoff=WL-2 | tCK | | ODT Latency for changing from | ODTLcnw | registering external write command | change RTT strength from | ODTLcnw=WL-2 | tCK | | RTT_Nom to RTT_WR | | | RTT_Nom to RTT_WR | | | | ODT Latency for change from | ODTLcwn4 | registering external write command | change RTT strength from | ODTLcwn4=4+ODTLoff | tCK | | RTT_WR to RTT_Nom (BL=4) | | | RTT_WR to RTT_Nom | | | | ODT Latency for change from | ODTLcwn8 | registering external write command | change RTT strength from | ODTLcwn8=6+ODTLoff | tCK(avg) | | RTT_WR to RTT_Nom (BL=8) | | | RTT_WR to RTT_Nom | | | | Minimum ODT high time | ODTH4 | registering ODT high | ODT registered low | ODTH4=4 | tCK(avg) | | after ODT assertion | | | | | | | Minimum ODT high time | ODTH4 | registering write with ODT high | ODT registered low | ODTH4=4 | tCK(avg) | | after Write (BL=4) | | | | | | | Minimum ODT high time | ODTH8 | registering write with ODT high | ODT register low | ODTH8=6 | tCK(avg) | | after Write (BL=8) | | | | | | | RTT change skew | tADC | ODTLcnw | RTT valid | tADC(min)=0.3tCK(avg) | tCK(avg) | | | | ODTLcwn | | tADC(max)=0.7tCK(avg) | | Note: tAOF,nom and tADC,nom are 0.5tCK (effectively adding half a clock cycle to ODTLoff, ODTcnw, and ODTLcwn) # **ODT Timing Diagrams** # Dynamic ODT: Behavior with ODT being asserted before and after the write Note: Example for BC4 (via MRS or OTF), AL=0, CWL=5. ODTH4 applies to first registering ODT high and to the registration of the Write command. In this example ODTH4 would be satisfied if ODT went low at T8. (4 clocks after the Write command). # Dynamic ODT: Behavior without write command, AL=0, CWL=5 Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied; ODT registered low at T5 would also be legal. # Dynamic ODT: Behavior with ODT pin being asserted together with write command for the duration of 6 clock cycles. Note: Example for BL8 (via MRS or OTF), AL=0, CWL=5. In this example ODTH8=6 is exactly satisfied. NVNAV # Dynamic ODT: Behavior with ODT pin being asserted together with write command for a duration of 6 clock cycles, example for BC4 (via MRS or OTF), AL=0, CWL=5. # Dynamic ODT: Behavior with ODT pin being asserted together with write command for the duration of 4 clock cycles. # **Asynchronous ODT Mode** Asynchronous ODT mode is selected when DRAM runs in DLLon mode, but DLL is temporarily disabled (i.e. frozen) in precharge power-down (by MR0 bit A12). Based on the power down mode definitions, this is currently Precharge power down mode if DLL is disabled during precharge power down by MR0 bit A12. In asynchronous ODT timing mode, internal ODT command is NOT delayed by Additive Latency (AL) relative to the external ODT command. In asynchronous ODT mode, the following timing parameters apply: tAONPD min/max, tAOFPD min/max. Minimum RTT turn-on time (tAONPD min) is the point in time when the device termination circuit leaves high impedance state and ODT resistance begins to turn on. Maximum RTT turn on time (tAONPD max) is the point in time when the ODT resistance is fully on. tAONPDmin and tAONPDmax are measured from ODT being sampled high. Minimum RTT turn-off time (tAOFPDmin) is the point in time when the devices termination circuit starts to turn off the ODT resistance. Maximum ODT turn off time (tAOFPDmax) is the point in time when the on-die termination has reached high impedance. tAOFPDmin and tAOFPDmax are measured from ODT being sample low. # Asynchronous ODT Timings on DDR3 SDRAM with fast ODT transition: AL is ignored. In Precharge Power Down, ODT receiver remains active, however no Read or Write command can be issued, as the respective ADD/CMD receivers may be disabled. # **Asynchronous ODT Timing Parameters for all Speed Bins** | Symbol | Description | min | max | Unit | |--------|--|-----|-----|------| | tAONPD | Asynchronous RTT turn-on delay (Power-Down with DLL frozen) | 1 | 9 | ns | | tAOFPD | Asynchronous RTT turn-off delay (Power-Down with DLL frozen) | 1 | 9 | ns | # ODT timing parameters for Power Down (with DLL frozen) entry and exit transition period | P | | | | |----------------|--|--|--| | Description | min | max | | | ODT to RTT | min{ ODTLon * tCK + tAONmin; tAONPDmin } | max{ ODTLon * tCK + tAONmax; tAONPDmax } | | | turn-on delay | min{ (WL - 2) * tCK + tAONmin; tAONPDmin } | max{ (WL - 2) * tCK + tAONmax; tAONPFmax } | | | ODT to RTT | min{ ODTLoff * tCK + tAOFmin; tAOFPDmin } | max{ ODTLoff * tCK + tAOFmax; tAOFPDmax } | | | turn-off delay | min{ (WL - 2) * tCK + tAOFmin; tAOFPDmin } | max{ (WL - 2) * tCK + tAOFmax; tAOFPDmax } | | | tANPD | WL-1 | | | # Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to "0", there is a transition period around power down entry, where the DDR3 SDRAM may show either synchronous or asynchronous ODT behavior. The transition period is defined by the parameters tANPD and tCPDED(min). tANPD is equal to (WL-1) and is counted backwards in time from the clock cycle where CKE is first registered low. tCPDED(min) starts with the clock cycle where CKE is first registered low. The transition period begins with the starting point of tANPD and terminates at the end point of tCPDED(min). If there is a Refresh command in progress while CKE goes low, then the transition period ends at the later one of tRFC(min) after the Refresh command and the end point of tCPDED(min). Please note that the actual starting point at tANPD is excluded from the transition period, and the
actual end point at tCPDED(min) and tRFC(min, respectively, are included in the transition period. ODT assertion during the transition period may result in an RTT changes as early as the smaller of tAONPDmin and (ODTLon*tck+tAONmin) and as late as the larger of tAONPDmax and (ODTLon*tCK+tAONmax). ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPDmin and (ODTLoff*tCK+tAOFmin) and as late as the larger of tAOFPDmax and (ODTLoff*tCK+tAOFmax). Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. The following figure shows the three different cases: ODT_A, synchronous behavior before tANPD; ODT_B has a state change during the transition period; ODT_C shows a state change after the transition period. # Synchronous to asynchronous transition during Precharge Power Down (with DLL frozen) entry (AL=0; CWL=5; tANPD=WL-1=4) # Asynchronous to Synchronous ODT Mode transition during Power-Down Exit If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to "0", there is also a transition period around power down exit, where either synchronous or asynchronous response to a change in ODT must be expected from the DDR3 SDRAM. This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered high. tANPD is equal to (WL -1) and is counted (backwards) from the clock cycle where CKE is first registered high. ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPDmin and (ODTLon*tCK+tAONmin) and as late as the larger of tAONPDmax and (ODTLon*tCK+tAONmax). ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPDmin and (ODTLoff*tCK+tAOFmin) and as late as the larger of tAOFPDmax and (ODToff*tCK+tAOFmax). Note that if AL has a large value, the range where RTT is uncertain becomes quite large. The following figure shows the three different cases: ODT_C, asynchronous response before tANPD; ODT_B has a state change of ODT during the transition period; ODT_A shows a state change of ODT after the transition period with synchronous response. # Asynchronous to synchronous transition during Precharge Power Down (with DLL frozen) exit (CL=6; AL=CL-1; CWL=5; tANPD=WL-1=9) # Asynchronous to Synchronous ODT Mode during short CKE high and short CKE low periods If the total time in Precharge Power Down state or Idle state is very short, the transition periods for PD entry and PD exit may overlap. In this case, the response of the DDR3 SDRAMs RTT to a change in ODT state at the input may be synchronous or asynchronous from the state of the PD entry transition period to the end of the PD exit transition period (even if the entry ends later than the exit period). If the total time in Idle state is very short, the transition periods for PD exit and PD entry may overlap. In this case, the response of the DDR3 SDRAMs RTT to a change in ODT state at the input may be synchronous or asynchronous from the state of the PD exit transition period to the end of the PD entry transition period. Note that in the following figure, it is assumed that there was no Refresh command in progress when Idle state was entered. # Transition period for short CKE cycles with entry and exit period overlapping (AL=0; WL=5; tANPD=WL-1=4) #### **ZQ Calibration Commands** ## **ZQ Calibration Description** ZQ Calibration command is used to calibrate DRAM Ron and ODT values. DDR3 SDRAM needs longer time to calibrate output driver and on-die termination circuits at initialization and relatively smaller time to perform periodic calibrations. ZQCL command is used to perform the initial calibration during power-up initialization sequence. This command may be issued at any time by the controller depending on the system environment. ZQCL command triggers the calibration engine inside the DRAM and once calibration is achieved the calibrated values are transferred from calibration engine to DRAM IO which gets reflected as updated output driver and on-die termination values. The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the transfer of values. All other ZQCL commands except the first ZQCL command issued after RESET is allowed a timing period of tZQoper. ZQCS command is used to perform periodic calibrations to account for voltage and temperature variations. A shorter timing window is provided to perform the calibration and transfer of values as defined by timing parameter tZQCS. No other activities should be performed on the DRAM channel by the controller for the duration of tZQinit, tZQoper, or tZQCS. The quiet time on the DRAM channel allows calibration of output driver and on-die termination values. Once DRAM calibration is achieved, the DRAM should disable ZQ current consumption path to reduce power. All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller. ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self refresh. Upon self-refresh exit, DDR3 SDRAM will not perform an IO calibration without an explicit ZQ calibration command. The earliest possible time for ZQ Calibration command (short or long) after self refresh exit is tXS. In systems that share the ZQ resistor between devices, the controller must not allow any overlap of tZQoper, tZQinit, or tZQCS between ranks. # **ZQ Calibration Timing** #### Note: - 1. CKE must be continuously registered high during the calibration procedure. - 2. On-die termination must be disabled via the ODT signal or MRS during the calibration procedure. - 3. All devices connected to the DQ bus should be high impedance during the calibration procedure. # **ZQ External Resistor Value, Tolerance, and Capacitive loading** In order to use the ZQ calibration function, a 240 ohm +/- 1% tolerance external resistor connected between the ZQ pin and ground. The single resistor can be used for each SDRAM or one resistor can be shared between two SDRAMs if the ZQ calibration timings for each SDRAM do not overlap. The total capacitive loading on the ZQ pin must be limited. # **Absolute Maximum Ratings** # **Absolute Maximum DC Ratings** | Symbol | Parameter | Rating | Units | Note | |-----------|-------------------------------------|--------------|-------|------| | VDD | Voltage on VDD pin relative to Vss | -0.4 ~ 1.975 | V | 1,3 | | VDDQ | Voltage on VDDQ pin relative to Vss | -0.4 ~ 1.975 | V | 1,3 | | Vin, Vout | Voltage on any pin relative to Vss | -0.4 ~ 1.975 | V | 1 | | Tstg | Storage Temperature | -55 ~ 100 | °C | 1,2 | #### Note: - 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. - 3. VDD and VDDQ must be within 300mV of each other at all times; and Vref must be not greater than 0.6VDDQ, when VDD and VDDQ are less than 500mV; Vref may be equal to or less than 300mV. ## **Temperature Range** | Symbol | Parameter | Rating | Units | Notes | |--------|------------------------------------|----------|-------|-------| | Topor | Normal Operating Temperature Range | 0 to 85 | °C | 1,2 | | Toper | Extended Temperature Range | 85 to 95 | °C | 1,3 | - 1. Operating Temperature Toper is the case surface temperature on the center/top side of the DRAM. - 2. The Normal Temperature Range specifies the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions. - 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional apply: - a) Refresh commands must be doubled in frequency, therefore, reducing the Refresh interval tREFI to 3.9us. It is also possible to specify a component with 1x refresh (tREFI to 7.8us) in the Extended Temperature Range. - b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6=0 and MR2 A7=1) or enable the optional Auto Self-Refresh mode (MR2 A6=1 and MR2 A7=0). # AC & DC Operating Conditions Recommended DC Operating Conditions | Symbol | Parameter | | Rating | Unit | Note | | |--------|---------------------------|-------|--------|-------|------|-------| | Cymbol | T didiliotoi | Min. | Тур. | Max. | Onne | 14010 | | VDD | Supply Voltage | 1.425 | 1.5 | 1.575 | V | 1,2 | | VDDQ | Supply Voltage for Output | 1.425 | 1.5 | 1.575 | V | 1,2 | | VDD | Supply Voltage | 1.28 | 1.35 | 1.45 | V | 1,2 | | VDDQ | Supply Voltage for Output | 1.28 | 1.35 | 1.45 | V | 1,2 | ^{1.} Under all conditions VDDQ must be less than or equal to VDD. ^{2.} VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. # **AC & DC Input Measurement Levels** # AC and DC Logic Input Levels for Single-Ended Signals & Command and Address | Symbol | Parameter | DDR3-800/10 | Unit | Note | | |---------------|---------------------------------------|--------------|--------------|-------|------| | Symbol | raidilletei | Min. | Max. | Ullit | Note | | VIH.CA(DC100) | DC input logic high | Vref + 0.100 | VDD | V | 1 | | VIL.CA(DC100) | DC input logic low | VSS | Vref - 0.100 | V | 1 | | VIH.CA(AC175) | AC input logic high | Vref + 0.175 | Note2 | V | 1,2 | | VIL.CA(AC175) | AC input logic low | Note2 | Vref - 0.175 | V | 1,2 | |
VIH.CA(AC150) | AC input logic high | Vref + 0.150 | Note2 | V | 1,2 | | VIL.CA(AC150) | AC input logic low | Note2 | Vref - 0.150 | V | 1,2 | | VREFCA(DC) | Reference Voltage for ADD, CMD inputs | 0.49 * VDD | 0.51 * VDD | V | 3,4 | - 1. For input only pins except RESET.Vref=VrefCA(DC) - 2. See "Overshoot and Undershoot Specifications" - 3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than +/- 0.1% VDD. - 4. For reference: approx. VDD/2 +/- 15mV. - 5. To allow VREFCA margining, all DRAM Command and Address Input Buffers MUST use external VREF (provided by system) as the input for their VREFCA pins. All VIH/L input level MUST be compared with the external VREF level at the 1st stage of the Command and Address input buffer # AC and DC Logic Input Levels for Single-Ended Signals & DQ and DM | Cumbal | Barrantan | DDR3-800/1066 | | DDR3-1333/1600 | | Unit | Note | |---------------|---|---------------|--------------|----------------|--------------|------|-------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Unit | Note | | VIH.DQ(DC100) | DC input logic high | Vref + 0.100 | VDD | Vref + 0.100 | VDD | ٧ | 1 | | VIL.DQ(DC100) | DC input logic low | VSS | Vref - 0.100 | VSS | Vref - 0.100 | V | 1 | | VIH.DQ(AC175) | AC input logic high | Vref + 0.175 | Note2 | Vref + 0.150 | Note2 | V | 1,2,5 | | VIL.DQ(AC175) | AC input logic low | Note2 | Vref - 0.175 | Note2 | Vref - 0.150 | V | 1,2,5 | | VIH.DQ(AC150) | AC input logic high | Vref + 0.150 | Note2 | Vref + 0.150 | Note2 | V | 1,2,5 | | VIL.DQ(AC150) | AC input logic low | Note2 | Vref - 0.150 | Note2 | Vref - 0.150 | V | 1,2,5 | | VREFDQ(DC) | Reference Voltage for DQ, DM inputs | 0.49 * VDD | 0.51 * VDD | 0.49 * VDD | 0.51 * VDD | V | 3,4 | | \/PEEDO +/DC\ | Reference Voltage for trained DO DM inputs | 0.45 * VDD | 0.55 * VDD | 0.45 * VDD | 0.55 * VDD | ٧ | 3,4 | | VREFDQ_t(DC) | Reference Voltage for trained DQ, DM inputs | 0.45 * VDD | บ.จจ * ขบบ | V.45 " VDD | 0.55 ° VUU | V | 6,7 | - For input only pins except RESET. Vref = VrefDQ(DC) - 2. See "Overshoot and Undershoot Specifications" - 3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than ± 0.1% VDD. - 4. For reference: approx. VDD/2 ±15mV. - 5. Single-ended swing requirement for DQS-DQS, is 350mV (peak to peak). Differential swing requirement for DQS-DQS, is 700mV (peak to peak) - 6. VRefDQ training is performed only during system boot. Once the training is completed and an optimal VRefDQ_t(DC) voltage level is identified, the optimal VRefDQ_t(DC) voltage level will be used during system runtime. During VRefDQ training, VRefDQ is swept from 40% of VDD to 60% of VDD to find the optimal VRefDQ_t(DC) voltage level; and once the optimal VRefDQ_t(DC) is set, it must stay within +/- 1% of its set value as well as not be less than 45% of VDD or exceed 55% of VDD. VIH.DQ(AC)min/VIL.DQ(AC)max = Optimal VRefDQ_t(DC) +/- AC Level, where "AC Level" is the actual AC voltage level per DDR3 speed bins as specified in JESD79-3 specification. After VRefDQ training is completed and the optimal VRefDQ_t(DC) is set, the Memory Controller provides the DRAM device a valid write window. Through DQS placement optimization and VRefDQ centering, the valid write window is optimized for both input voltage margin and tDS+tDH window for the DRAM receiver. The DRAM device supports the use of the above techniques to optimize the write timing and voltage margin, as long as the technique does not create any DIMM failures due to DRAM input voltage and/or timing spec violations as defined in JESD79-3 specification. - 7. To allow VREFDQ margining, all DRAM Data Input Buffers MUST use external VREF (provided by system) as the input for their VREFDQ pins. All VIH/L input level MUST be compared with the external VREF level at the 1st stage of the Data input buffer. #### **Vref Tolerances** The dc-tolerance limits and ac-moist limits for the reference voltages V_{refCA} and V_{refDQ} are illustrated in the following figure. It shows a valid reference voltage $V_{ref}(t)$ as a function of time. (V_{ref} stands for V_{refCA} and V_{refDQ} likewise). $V_{ref}(DC)$ is the linear average of $V_{ref}(t)$ over a very long period of time (e.g.,1 sec). This average has to meet the min/max requirement in previous page. Furthermore $V_{ref}(t)$ may temporarily deviate from $V_{ref}(DC)$ by no more than $\pm 1\%$ VDD. The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on V_{ref} . " V_{ref} " shall be understood as $V_{ref}(DC)$. The clarifies that dc-variations of V_{ref} affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for $V_{ref}(DC)$ deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and de-rating values need to include time and voltage associated with V_{ref} ac-noise. Timing and voltage effects due to ac-noise on V_{ref} up to the specified limit ($\pm 1\%$ of VDD) are included in DRAM timing and their associated de-ratings. # Illustration of V_{ref(DC)} tolerance and V_{ref}ac-noise limits # AC and DC Logic Input Levels for Differential Signals | C. mahal | Darameter | DDR3-800, 10 | l lmit | Natas | | |------------------|-------------------------------|------------------------|------------------------|-------|-------| | Symbol | Parameter | Min. | Max. | Unit | Notes | | V_{IHdiff} | Differential input logic high | +0.200 | Note3 | V | 1 | | V_{ILdiff} | Differential input logic low | Note3 | -0.200 | V | 1 | | $V_{IHdiff(ac)}$ | Differential input high ac | 2 x (VIH(ac) – Vref) | Note3 | V | 2 | | $V_{ILdiff(ac)}$ | Differential input low ac | Note3 | 2 x (Vref - VIL(ac)) | V | 2 | #### Note: - 1. Used to define a differential signal slew-rate. - 2. For CK CK use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also there. - 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(dc)max, VIL(dc)min) for single-ended signals as well as limitations for overshoot and undershoot. # Definition of differential ac-swing and "time above ac-level" # Allowed time before ring-back (tDVAC) for CK - CK and DQS - DQS | Slew Rate [V/ns] | | /AC [ps]
ff(ac)l = 350mV | tDVAC [ps]
@IVIH/Ldiff(ac)I = 300mV | | | |------------------|-----|-----------------------------|--|-----|--| | | min | max | min | max | | | > 4.0 | 75 | - | 175 | - | | | 4.0 | 57 | - | 170 | - | | | 3.0 | 50 | - | 167 | - | | | 2.0 | 38 | - | 163 | - | | | 1.8 | 34 | - | 162 | - | | | 1.6 | 29 | - | 161 | - | | | 1.4 | 22 | - | 159 | - | | | 1.2 | 13 | - | 155 | - | | | 1.0 | 0 | - | 150 | - | | | < 1.0 | 0 | - | 150 | - | | # Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, \overline{CK} , \overline{DQS} , \overline{DQSL} , or \overline{DQSU}) has also to comply with certain requirements for single-ended signals. CK and $\overline{\text{CK}}$ have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH(ac) / VIL(ac)) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSL, DQSL, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH(ac) / VIL(ac)) for DQ signals) in every half-cycle proceeding and following a valid transition. # Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU | Cumbal | Paramatar. | DDR3-800, 100 | l lmit | Notes | | | |--------|-------------------------------------|------------------|------------------|-------|-------|--| | Symbol | Parameter | Min Max | | Unit | Notes | | | Veen | Single-ended high-level for strobes | (VDDQ/2) + 0.175 | note3 | V | 1, 2 | | | VSEH | Single-ended high-level for CK, CK | (VDDQ/2) + 0.175 | note3 | V | 1, 2 | | | VCEL | Single-ended low-level for strobes | note3 | (VDDQ/2) - 0.175 | V | 1, 2 | | | VSEL | Single-ended Low-level for CK, CK | note3 | (VDDQ/2) - 0.175 | V | 1, 2 | | #### Note: - 1. For CK, CK use VIH/VIL(ac) of ADD/CMD; for strobes (DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) use VIH/VIL(ac) of DQs. - 2. VIH(ac)/VIL(ac) for DQs is based on VREFDQ; VIH(ac)/VIL(ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also there. - 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(dc)max, VIL(dc)min) for single-ended signals as well as limitations for overshoot and undershoot. # **Differential Input Cross Point Voltage** To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in the following table. The differential input cross point voltage Vix is measured from the actual cross point of true and complete signal to the midlevel between of VDD and VSS. ### **Vix Definition** # Cross point voltage for differential input signals (CK, DQS) | Symbol | Parameter | DDR3-800, 106 | 11::4 | Note | | |--------|---|---------------|-------|------|------| | | Parameter | Min. | Max. | Unit | Note | | | Differential Input Cross Boint Voltage valetive to VDD/2 for CV. CV | -150 | 150 | mV | | | Vix | Differential Input Cross Point Voltage relative to VDD/2 for CK, CK | -175 | 175 | mV | 1 | | |
Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS | -150 | 150 | mV | | Note1: Extended range for Vix is only allowed for clock and if single-ended clock input signals CK and $\overline{\text{CK}}$ are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 \pm 250mV, and when the differential slew rate of CK - $\overline{\text{CK}}$ is larger than 3V/ns. # Slew Rate Definition for Differential Input Signals Differential Input Slew Rate Definition | Billerenda input ciew rate beninden | | | | | | | |---|------------|------------|---------------------------------------|--|--|--| | Description | Meas | ured | Defined by | | | | | Description | From | То | Defined by | | | | | Differential input slew rate for rising edge (CK-CK & DQS-DQS) | VILdiffmax | VIHdiffmin | [VIHdiffmin-VILdiffmax] / DeltaTRdiff | | | | | Differential input slew rate for falling edge (CK-CK & DQS-DQS) VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff | | | | | | | | The differential signal (i.e., CK-CK & DQS-DQS) must be linear between these thresholds. | | | | | | | # Input Nominal Slew Rate Definition for single ended signals # **AC and DC Output Measurement Levels** # Single Ended AC and DC Output Levels | | <u> </u> | | | | |---------|---|--------------|------|-------| | Symbol | Parameter | Value | Unit | Notes | | VOH(DC) | DC output high measurement level (for IV curve linearity) | 0.8xVDDQ | V | | | VOM(DC) | DC output mid measurement level (for IV curve linearity) | 0.5xVDDQ | V | | | VOL(DC) | DC output low measurement level (fro IV curve linearity) | 0.2xVDDQ | V | | | VOH(AC) | AC output high measurement level (for output SR) | VTT+0.1xVDDQ | V | 1 | | VOL(AC) | AC output low measurement level (for output SR) | VTT-0.1xVDDQ | V | 1 | #### Note: 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ/2. # **Differential AC and DC Output Levels** | Symbol | Parameter | DDR3 | Unit | Notes | |-------------|---|-------------|------|-------| | VOHdiff(AC) | AC differential output high measurement level (for output SR) | +0.2 x VDDQ | V | 1 | | VOLdiff(AC) | AC differential output low measurement level (for output SR) | -0.2 x VDDQ | V | 1 | #### Note: 1. The swing of \pm 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT=VDDQ/2 at each of the differential outputs. **Single Ended Output Slew Rate** | December 1 and a | Me | asured | Defined by | | | | | |--|---------|---------|-------------------------------|--|--|--|--| | Description | From | То | Defined by | | | | | | Single ended output slew rate for rising edge | VOL(AC) | VOH(AC) | [VOH(AC)-VOL(AC)] / DeltaTRse | | | | | | Single ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / DeltaTFse | | | | | | | | | Note: Output slew rate is verified by design and characterization, and may not be subject to production test. | | | | | | | | # **Single Ended Output Slew Rate Definition** **Output Slew Rate (single-ended)** | Parameter | Svmbol | DDR | 3-800 | DDR3 | -1066 | DDR3 | -1333 | DDR3 | -1600 | Unit | |-------------------------------|--------|------|-------|------|-------|------|-------|------|-------|------| | | Symbol | Min. | Max. | Min. | Max. | Max. | Max. | Max. | Max. | Unit | | Single-ended Output Slew Rate | SRQse | 2.5 | 5 | 2.5 | 5 | 2.5 | 5 | TBD | 5 | V/ns | Note: SR: Slew Rate. Q: Query Output (like in DQ, which stands for Data-in, Query -Output). se: Single-ended signals. For Ron = RZQ/7 setting. **Differential Output Slew Rate** | Description | Mea | sured | Defined by | | | | | |--|-------------|-------------|---|--|--|--|--| | Description | From | То | Defined by | | | | | | Differential output slew rate for rising edge | VOLdiff(AC) | VOHdiff(AC) | [VOHdiff(AC)-VOLdiff(AC)] / DeltaTRdiff | | | | | | Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] / DeltaTFdiff | | | | | | | | | Note: Output slew rate is verified by design and characterization, and may not be subject to production test. | | | | | | | | **Differential Output Slew Rate Definition** **Differential Output Slew Rate** | Parameter | Operation | | DDR3-800 DDR3 | | DDR3-1066 | | DDR3-1333 | | DDR3-1600 | | Unit | |------------------------------------|-----------|---------|---------------|------|-----------|------|-----------|------|-----------|------|-------| | rarameter | Symbol | Voltage | Min. | Max. | Min. | Max. | Max. | Max. | Мах. | Max. | Offic | | Oin also and al Outrant Olson Data | CDO: | 1.35V | 3.5 | 12 | 3.5 | 12 | 3.5 | 12 | 3.5 | 12 | V/ns | | Single-ended Output Slew Rate | SRQse | 1.5V | 5 | 12 | 5 | 12 | 5 | 12 | 5 | 12 | V/ns | Note: SR: Slew Rate. Q: Query Output (like in DQ, which stands for Data-in, Query -Output). diff: Differential signals. For Ron = RZQ/7 setting. # Reference Load for AC Timing and Output Slew Rate The following figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. # **Overshoot and Undershoot Specifications** # AC Overshoot/Undershoot Specification for Address and Control Pins | <u>-</u> | | | | | | | | | |--|----------|-----------|-----------|-----------|-------|--|--|--| | Item | DDR3-800 | DDR3-1066 | DDR3-1333 | DDR3-1600 | Units | | | | | Maximum peak amplitude allowed for overshoot area | 0.4 | 0.4 | 0.4 | 0.4 | V | | | | | Maximum peak amplitude allowed for undershoot area | 0.4 | 0.4 | 0.4 | 0.4 | V | | | | | Maximum overshoot area above VDD | 0.67 | 0.5 | 0.4 | 0.33 | V-ns | | | | | Maximum undershoot area below VSS | 0.67 | 0.5 | 0.4 | 0.33 | V-ns | | | | | (A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT) | | | | | | | | | | <u> </u> | | | | | | | | | # AC Overshoot/Undershoot Specification for Clock, Data, Strobe, and Mask | ltem | DDR3-800 | DDR3-1066 | DDR3-1333 | DDR3-1600 | Units | |--|----------|-----------|-----------|-----------|-------| | Maximum peak amplitude allowed for overshoot area | 0.4 | 0.4 | 0.4 | 0.4 | V | | Maximum peak amplitude allowed for undershoot area | 0.4 | 0.4 | 0.4 | 0.4 | V | | Maximum overshoot area above VDD | 0.25 | 0.19 | 0.15 | 0.13 | V-ns | | Maximum undershoot area below VSS | 0.25 | 0.19 | 0.15 | 0.13 | V-ns | # 34 Ohm Output Driver DC Electrical Characteristics A Functional representation of the output buffer is shown as below. Output driver impedance RON is defined by the value of the external reference resistor RZQ as follows: $RON_{34} = R_{ZQ} / 7$ (nominal 34.4ohms +/-10% with nominal R_{ZQ} =240ohms) The individual pull-up and pull-down resistors (RON_{Pu} and RON_{Pd}) are defined as follows: RON_{Pu} = [VDDQ-Vout] / I lout I ----- under the condition that RON_{Pd} is turned off (1) RON_{Pd} = Vout /
I lout I -----under the condition that RON_{Pu} is turned off (2) # Output Driver DC Electrical Characteristics, assuming R_{ZQ} = 240ohms; entire operating temperature range; after proper ZQ calibration | RON _{Nom} | Resistor | Vout | min | nom | max | Unit | Notes | |--|---------------------|--------------------|-----|-----|-----|---------------------|-------| | | RON _{34Pd} | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} / 7 | 1,2,3 | | | | VOMdc = 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} / 7 | 1,2,3 | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} / 7 | 1,2,3 | | 34 ohms | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} / 7 | 1,2,3 | | | | VOMdc = 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} / 7 | 1,2,3 | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} / 7 | 1,2,3 | | Mismatch between pull-up and pull-down, MMPuPd | | VOMdc = 0.5 x VDDQ | -10 | | +10 | % | 1,2,4 | #### Note: - 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. - 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. - 3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 x VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above. e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ. - 4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd: Measure RONPu and RONPd, but at 0.5 x VDDQ: MMPuPd = [RONPu - RONPd] / RONNom x 100 # **Output Driver Temperature and Voltage sensitivity** If temperature and/or voltage after calibration, the tolerance limits widen according to the following table. Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ Note: dR_{ON}dT and dR_{ON}dV are not subject to production test but are verified by design and characterization. | Items | Min. | Max. | Unit | |-------------|---|---|--------------------| | RONPU@VOHdc | 0.6 - dR _{ON} dTH*IDelta TI - dR _{ON} dVH*IDelta VI | 1.1 + dR _{ON} dTH*lDelta TI - dR _{ON} dVH*lDelta VI | R _{ZQ} /7 | | RON@VOMdc | 0.9 - dR _{ON} dTM*IDelta TI - dR _{ON} dVM*IDelta VI | 1.1 + dR _{ON} dTM*IDelta TI - dR _{ON} dVM*IDelta VI | R _{ZQ} /7 | | RONPD@VOLdc | 0.6 - dR _{ON} dTL*IDelta TI - dR _{ON} dVL*IDelta VI | 1.1 + dR _{ON} dTL*IDelta TI - dR _{ON} dVL*IDelta VI | R _{ZQ} /7 | # **Output Driver Voltage and Temperature Sensitivity** | Speed Bin | DDR3-800/ | DDR3- | DDR3-1600 | | | |-----------|-----------|-------|-----------|------|------| | Items | Min. | Max | Min. | Max | Unit | | dRONdTM | 0 | 1.5 | 0 | 1.5 | %/°C | | dRONdVM | 0 | 0.15 | 0 | 0.13 | %/mV | | dRONdTL | 0 | 1.5 | 0 | 1.5 | %/°C | | dRONdVL | 0 | 0.15 | 0 | 0.13 | %/mV | | dRONdTH | 0 | 1.5 | 0 | 1.5 | %/°C | | dRONdVH | 0 | 0.15 | 0 | 0.13 | %/mV | Note: These parameters may not be subject to production test. They are verified by design and characterization. # On-Die Termination (ODT) Levels and I-V Characteristics On-Die Termination effective resistance RTT is defined by bits A9, A6, and A2 of the MR1 Register. ODT is applied to the DQ, DM, DQS/DQS, and TDQS/TDQS (x8 devices only) pins. A functional representation of the on-die termination is shown in the following figure. The individual pull-up and pull-down resistors (RTT_{Pu} and RTT_{Pd}) are defined as follows: $RTT_{Pu} = [VDDQ - Vout] / I lout I$ ----- under the condition that RTT_{Pd} is turned off (3) RTT_{Pd} = Vout / I lout I ----- under the condition that RTT_{Pu} is turned off (4) #### **ODT DC Electrical Characteristics** The following table provides an overview of the ODT DC electrical characteristics. The values for RTT_{60Pd120}, RTT_{60Pu120}, RTT_{120Pd240}, RTT_{120Pu240}, RTT_{40Pd80}, RTT_{30Pd60}, RTT_{30Pd60}, RTT_{20Pd40}, RTT_{20Pu40} are not specification requirements, but can be used as design guide lines: # ODT DC Electrical Characteristics, assuming R_{ZQ} = 240ohms +/- 1% entire operating temperature range; after proper ZQ calibration | MR1 A9, A6, A2 | RTT | Resistor | Vout | min | nom | max | Unit | Notes | |-------------------|------------------------|-------------------------|--------------------|-----|-----|--------------------|---------------------|---------| | | | | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} | 1,2,3,4 | | | | RTT _{120Pd240} | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} | 1,2,3,4 | | 0,1,0 | 120Ω | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} | 1,2,3,4 | | | | RTT _{120Pu240} | 0.5 x VDDQ | 0.9 | 1 | 1,1 | R _{ZQ} | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} | 1,2,3,4 | | | | RTT ₁₂₀ | VIL(ac) to VIH(ac) | 0.9 | 1 | 1.6 | R _{ZQ} /2 | 1,2,5 | | | | | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} /2 | 1,2,3,4 | | | | RTT _{60Pd120} | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} /2 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} /2 | 1,2,3,4 | | 0, 0, 1 60Ω | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{zQ} /2 | 1,2,3,4 | | | | RTT _{60Pu120} | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{zQ} /2 | 1,2,3,4 | | | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{zQ} /2 | 1,2,3,4 | | | | RTT ₆₀ | VIL(ac) to VIH(ac) | 0.9 | 1 | 1.6 | R _{ZQ} /4 | 1,2,5 | | | | | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{zQ} /3 | 1,2,3,4 | | | | RTT _{40Pd80} | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{zQ} /3 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} /3 | 1,2,3,4 | | 0, 1, 1 | 40Ω | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} /3 | 1,2,3,4 | | | | RTT40Pu80 | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} /3 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} /3 | 1,2,3,4 | | | | RTT40 | VIL(ac) to VIH(ac) | 0.9 | 1 | 1.6 | R _{zQ} /6 | 1,2,5 | | | | | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{ZQ} /4 | 1,2,3,4 | | | | RTT30Pd60 | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} /4 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} /4 | 1,2,3,4 | | 1, 0, 1 | 30Ω | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{ZQ} /4 | 1,2,3,4 | | | | RTT30Pu60 | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{zQ} /4 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{zQ} /4 | 1,2,3,4 | | | | RTT30 | VIL(ac) to VIH(ac) | 0.9 | 1 | 1.6 | R _{ZQ} /8 | 1,2,5 | | | | | VOLdc = 0.2 x VDDQ | 0.6 | 1 | 1.1 | R _{zQ} /6 | 1,2,3,4 | | | | RTT20Pd40 | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{zQ} /6 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.9 | 1 | 1.4 | R _{zQ} /6 | 1,2,3,4 | | 1, 0, 0 | 20Ω | | VOLdc = 0.2 x VDDQ | 0.9 | 1 | 1.4 | R _{zQ} /6 | 1,2,3,4 | | | | RTT20Pu40 | 0.5 x VDDQ | 0.9 | 1 | 1.1 | R _{ZQ} /6 | 1,2,3,4 | | | | | VOHdc = 0.8 x VDDQ | 0.6 | 1 | 1.1 | R _{zQ} /6 | 1,2,3,4 | | | | RTT20 | VIL(ac) to VIH(ac) | 0.9 | 1 | 1.6 | R _{zQ} /12 | 1,2,5 | | Deviation of VM w | .r.t. VDDQ/ | 2, DVm | | -5 | | +5 | % | 1,2,5,6 | #### Note: - 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. - 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. - 3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 x VDDQ. Other calibration may be used to achieve the linearity spec shown above. - 4. Not a specification requirement, but a design guide line. - 5. Measurement definition for RTT: Apply VIH(ac) to pin under test and measure current / (VIH(ac)), then apply VIL(ac) to pin under test and measure current / (VIL(ac)) respectively. RTT = [VIH(ac) - VIL(ac)] / [I(VIH(ac)) - I(VIL(ac))] 6. Measurement definition for $V_{\mbox{\scriptsize M}}$ and $DV_{\mbox{\scriptsize M}}$: Measure voltage (V_M) at test pin (midpoint) with no lead: Delta $V_M = [2V_M / VDDQ -1] \times 100$ # **ODT Temperature and Voltage sensitivity** If temperature and/or voltage after calibration, the tolerance limits widen according to the following table. Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ # **ODT Sensitivity Definition** | | min | max | Unit | | |-----|---|---|----------------|--| | RTT | 0.9 - dRTTdT*IDelta TI - dRTTdV*IDelta VI | 1.6 + dRTTdT*lDelta TI + dRTTdV*lDelta VI | RZQ/2,4,6,8,12 | | ### **ODT Voltage and Temperature Sensitivity** | | min | max | Unit | |--------|-----|------|------| | dRTTdT | 0 | 1.5 | %/°C | | dRTTdV | 0 | 0.15 | %/mV | Note: These parameters may not be subject to production test. They are verified by design and characterization. # **Test Load for ODT Timings** Different than for timing measurements, the reference load for ODT timings is defined in the following figure. ### **ODT Timing Definitions** Definitions for t_{AON} , t_{AONPD} , t_{AOFPD} , and t_{ADC} are provided in the following table and subsequent figures. | Symbol | Begin Point Definition | End Point Definition | |--------|---|--| | tAON | Rising edge of CK - CK defined by the end point of ODTLon | Extrapolated point at VSSQ | | tAONPD | Rising edge of CK - CK with ODT being first registered high | Extrapolated point at VSSQ | | tAOF | Rising edge of CK - CK defined by the end point of ODTLoff | End point: Extrapolated point at VRTT_Nom | | tAOFPD | Rising edge of CK - CK with ODT being first registered low | End point: Extrapolated point at VRTT_Nom | | tADC | Rising edge of CK - CK defined by the end point of ODTLcnw, | End point: Extrapolated point at VRTT_Wr and | | | ODTLcwn4, or ODTLcwn8 | VRTT_Nom
respectively | # **Reference Settings for ODT Timing Measurements** | Measured Parameter | RTT_Nom Setting | RTT_Wr Setting | VSW1[V] | VSW2[V] | Note | |--------------------|-----------------|----------------|---------|---------|------| | tAON | RZQ/4 | NA | 0.05 | 0.10 | | | IAON | RZQ/12 | NA | 0.10 | 0.20 | | | tAONPD | RZQ/4 | NA | 0.05 | 0.10 | | | IAONPD | RZQ/12 | NA | 0.10 | 0.20 | | | tAOF | RZQ/4 | NA | 0.05 | 0.10 | | | IAOF | RZQ/12 | NA | 0.10 | 0.20 | | | tAOFPD | RZQ/4 | NA | 0.05 | 0.10 | | | IAOFPD | RZQ/12 | NA | 0.10 | 0.20 | | | tADC | RZQ/12 | RZQ/2 | 0.20 | 0.30 | | # **Definition of taon** # **Definition of tanner** # **Definition of taof** # **Definition of taoppo** # **Definition of tabc** #### **Input / Output Capacitance** | Comple of | Parameter | DDR | 8-800 | DDR3 | -1066 | DDR3-1333 | | DDR3-1600 | | Units | Natas | |-------------------------|--|-------|-------|-------|-------|-----------|------|-----------|------|-------|----------| | Symbol | Parameter | Min. | Max | Min. | Max | Min. | Max | Min. | Max | Onits | Notes | | C _{IO} | Input/output capacitance (DQ, DM, DQS, DQS , TDQS, TDQS) | 1.50 | 3.00 | 1.50 | 3.00 | 1.50 | 2.50 | 1.50 | 2.30 | рF | 1,2,3 | | Сск | Input capacitance, CK and CK | 0.80 | 1.60 | 0.80 | 1.60 | 0.80 | 1.40 | 0.80 | 1.40 | рF | 2,3 | | C _{DCK} | Input capacitance delta, $$ CK and $\overline{ ext{CK}}$ | 0.00 | 0.15 | 0.00 | 0.15 | 0.00 | 0.15 | 0.00 | 0.15 | pF | 2,3,4 | | C_{DDQS} | Input/output capacitance delta, DQS and $ extstyle e$ | 0.00 | 0.20 | 0.00 | 0.20 | 0.00 | 0.15 | 0.00 | 0.15 | pF | 2,3,5 | | Cı | Input capacitance, CTRL, ADD, CMD input-only pins | 0.75 | 1.40 | 0.75 | 1.35 | 0.75 | 1.30 | 0.75 | 1.30 | pF | 2,3,7,8 | | C _{DI_CTRL} | Input capacitance delta, all CTRL input-only pins | -0.50 | 0.30 | -0.50 | 0.30 | -0.40 | 0.20 | -0.40 | 0.20 | pF | 2,3,7,8 | | C _{DI_ADD_CMD} | Input capacitance delta, all ADD/CMD input-only pins | -0.50 | 0.50 | -0.50 | 0.50 | -0.40 | 0.40 | -0.40 | 0.40 | pF | 2,3,9,10 | | C_{DIO} | Input/output capacitance delta, DQ, DM, DQS, DQS , TDQS, TDQS | -0.50 | 0.30 | -0.50 | 0.30 | -0.50 | 0.30 | -0.50 | 0.30 | рF | 2,3,11 | | C_{ZQ} | Input/output capacitance of ZQ pin | - | 3.00 | - | 3.00 | - | 3.00 | - | 3.00 | рF | 2,3,12 | - 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS - 2. This parameter is not subject to production test. It is verified by design and characterization. VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. - 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here - 4. Absolute value of CCK-CCK - 5. Absolute value of CIO(DQS)-CIO(DQS) - 6. CI applies to ODT, CS, CKE, A0-A13, BA0-BA2, RAS, CAS, WE. - CDI_CTRL applies to ODT, CS and CKE - 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) - 9. CDI_ADD_CMD applies to A0-A13, BA0-BA2, RAS, CAS and WE - 10. CDI_ADD_CMD=CI(ADD_CMD) 0.5*(CI(CLK)+CI(\overline{CLK})) - 11. CDIO=CIO(DQ,DM) $0.5*(CIO(DQS)+CIO\overline{(DQS)})$ - 12. Maximum external load capacitance on ZQ pin: 5 pF. # IDD Specifications and Measurement Conditions NT5CB512M4BN / NT5CB256M8BN / NT5CB128M16BP | | | DDF | R3-800 | MHz | DDR | 3-1066 | SMHz | DDR3-1333MHz | | | DDR3-1600MHz | | | Unit | |--------|---|-----|-----------|-----|-----|--------|------|--------------|-----|-----|--------------|-----|-----|------| | Symbol | Parameter/Condition | (- | (-AC/-AD) | | | (-BE) | | (-CG) | | | (DI) | | | Unit | | | | X4 | X8 | X16 | | | IDD0 | Operating Current 0 -> One Bank Activate -> Precharge | 70 | 70 | 80 | 75 | 75 | 90 | 85 | 85 | 100 | 95 | 95 | 110 | mA | | IDD1 | Operating Current 1 -> One Bank Activate -> Read -> Precharge | 90 | 90 | 120 | 95 | 95 | 125 | 100 | 100 | 130 | 105 | 105 | 135 | mA | | IDD2P0 | Precharge Power-Down Current Slow Exit - MR0 bit A12 = 0 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | mA | | IDD2P1 | Precharge Power-Down Current Fast Exit - MR0 bit A12 = 1 | 20 | 20 | 25 | 25 | 25 | 30 | 30 | 30 | 35 | 35 | 35 | 40 | mA | | IDD2Q | Precharge Quiet Standby Current | 25 | 25 | 25 | 30 | 30 | 30 | 35 | 35 | 35 | 40 | 40 | 40 | mΑ | | IDD2N | Precharge Standby Current | 30 | 30 | 30 | 35 | 35 | 35 | 40 | 40 | 40 | 45 | 45 | 45 | mA | | IDD3P | Active Power-Down Current
Always Fast Exit | 25 | 25 | 30 | 30 | 30 | 35 | 35 | 35 | 40 | 40 | 40 | 45 | mA | | IDD3N | Active Standby Current | 30 | 30 | 30 | 35 | 35 | 35 | 40 | 40 | 40 | 45 | 45 | 45 | mA | | IDD4R | Operating Current Burst Read | 120 | 120 | 180 | 140 | 140 | 210 | 160 | 160 | 240 | 180 | 180 | 270 | mΑ | | IDD4W | Operating Current Burst Write | 125 | 125 | 190 | 145 | 145 | 210 | 165 | 165 | 255 | 185 | 185 | 280 | mA | | IDD5B | Burst Refresh Current | 180 | 180 | 180 | 190 | 190 | 190 | 200 | 200 | 200 | 210 | 210 | 210 | mA | | IDD6 | Self-Refresh Current Normal Temperature Range (0-85°C) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | mA | | IDD7 | All Bank Interleave Read Current | 280 | 280 | 300 | 310 | 310 | 330 | 330 | 330 | 370 | 370 | 370 | 400 | mA | # NT5CC512M4BN / NT5CC256M8BN / NT5CC128M16BP | | | | R3-800 | MHz | DDR | 3-1066 | SMHz | DDR3-1333MHz | | | DDR3-1600MHz | | | Unit | |--------|---|------|---------|------|------|--------|------|--------------|-------|------|--------------|------|-------|------| | Symbol | Parameter/Condition | (- | -AC/-AI | D) | | (-BE) | | | (-CG) | | (-DI) | | | Unit | | | | X4 | X8 | X16 | | | IDD0 | Operating Current 0 -> One Bank Activate -> Precharge | 65 | 65 | 73 | 69 | 69 | 83 | 78 | 78 | 92 | 87 | 87 | 100 | mA | | IDD1 | Operating Current 1 -> One Bank Activate -> Read -> Precharge | 83 | 83 | 110 | 87 | 87 | 115 | 92 | 92 | 120 | 96 | 96 | 124 | mA | | IDD2P0 | Precharge Power-Down Current Slow Exit - MR0 bit A12 = 0 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | mA | | IDD2P1 | Precharge Power-Down Current Fast Exit - MR0 bit A12 = 1 | 18.5 | 18.5 | 23 | 23 | 23 | 27.5 | 27.5 | 27.5 | 32 | 32 | 32 | 36.5 | mA | | IDD2Q | Precharge Quiet Standby Current | 23 | 23 | 23 | 27.5 | 27.5 | 27.5 | 32 | 32 | 32 | 36.5 | 36.5 | 36.5 | mA | | IDD2N | Precharge Standby Current | 27.5 | 27.5 | 27.5 | 32 | 32 | 32 | 36.5 | 36.5 | 36.5 | 41.5 | 41.5 | 41.5 | mA | | IDD3P | Active Power-Down Current
Always Fast Exit | 23 | 23 | 27.5 | 27.5 | 27.5 | 32 | 32 | 32 | 36.5 | 36.5 | 36.5 | 41.5 | mA | | IDD3N | Active Standby Current | 27.5 | 27.5 | 27.5 | 32 | 32 | 32 | 36.5 | 36.5 | 36.5 | 41.5 | 41.5 | 41.5 | mA | | IDD4R | Operating Current Burst Read | 110 | 110 | 165 | 130 | 130 | 190 | 147 | 147 | 220 | 165 | 165 | 247.5 | mA | | IDD4W | Operating Current Burst Write | 115 | 115 | 175 | 130 | 130 | 190 | 150 | 150 | 235 | 170 | 170 | 255 | mA | | IDD5B | Burst Refresh Current | 165 | 165 | 165 | 175 | 175 | 175 | 185 | 185 | 185 | 190 | 190 | 190 | mA | | IDD6 | Self-Refresh Current Normal Temperature Range (0-85°C) | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | mA | | IDD7 | All Bank Interleave Read Current | 250 | 250 | 270 | 280 | 280 | 300 | 300 | 300 | 340 | 330 | 330 | 370 | mA | #### **IDD Measurement Conditions** | Symbol | Parameter/Condition | |----------
--| | - | Operating Current - One bank Active - Precharge current | | IDD0 | CKE: High; External clock: On; tCK, tRC, tRAS: see table in the next page; CS: High between ACT and PRE; Command Inputs: SWITCHING ¹ (except for ACT and PRE); Row, Column Address, Data I/O: SWITCHING1 (A10 Low permanently); Bank Address: fixed (Bank 0); Output Buffer: off ² ; ODT: disabled ³ ; Active Banks: one (ACT-PRE loop); Idle Banks all other; Pattern example: A0 D DD | | IDD1 | Operating One bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, tRC, tRAS, tRCD, CL, AL: see table in the next page; CS: High between ACT, RD, and PRE; Command Inputs: SWITCHING¹ (except ACT, RD and PRE Commands); Row, Column Address: SWITCHING1 (A10 Low permanently); Bank Address: fixed (Bank 0); Data I/O: switching every clock (RD Data stable during one Clock cycle); floating when no burst activity; Output Buffer: Off²; ODT: disabled ³; Burst Length: BL85; Active Banks: one (ACT-RD-PRE loop); Idle Banks: all other; Pattern example A0 D DD DD DD DD DD DD DD DP0⁴ (DDR3-800-5-5-5: tRCD=12.5ns). | | IDD2N | Precharge Standby Current CKE=High; External Clock=On; tCK: see table in the next page; CS: High; Command Inputs, Row, Column, Bank Address, Data I/O: SWITCHING ¹ ; Output Buffer: Off ² ; ODT: disabled ³ ; Active / Idle Banks: none / all. | | IDD2P(0) | Precharge Power-Down Current - (Slow Exit) CKE=Low; External Clock=On; tCK: see table in the next page; CS: Stable; Command Inputs: Stable; Row, Column / Bank Address: Stable; Data I/O: floating; Output Buffer: Off ² ; ODT: disabled ³ ; Active / Idle Banks: none / all. Precharge Power Down Mode: Slow Exit ⁶ (RD and ODT must satisfy tXPDLL - AL) | | IDD2P(1) | Precharge Power-Down Current - (Fast Exit) CKE=Low; External Clock=On; tCK: see table in the next page; CS: Stable; Command Inputs, Row, Column, Bank Address: Stable; Data I/O: floating; Output Buffer: Off ² ; ODT: disabled ³ ; Active / Idle Banks: none / all. Precharge Power Down Mode: Fast Exit 6(any valid Command after tXP) ⁷ | | IDD2Q | Precharge Quiet Standby Current CKE=High; External Clock=On; tCK: see table in the next page; CS=High; Command Inputs, Row, Column, Bank Address: Stable; Data I/O: floating; Output Buffer: Off2; ODT: disabled ³ ; Active / Idle Banks: none / all. | | IDD3N | Active Standby Current CKE=High; External Clock=On; tCK: see table in the next page; CS=High; Command Inputs, Row, Column, Bank Address, Data I/O: SWITCHING ¹ ; Output Buffer: Off2; ODT: disabled ³ ; Active / Idle Banks: All / none. | | IDD3P | Active Power-Down Current CKE=Low; External Clock=On; tCK: see table in the next page; CS, Command Inputs, Row, Column, Bank Address: Stable; Data I/O: floating; Output Buffer: Off2; ODT: disabled ³ ; Active / Idle Banks: All / none. | | IDD4R | Operating Burst Read Current CKE=High; External Clock=On; tCK, CL: see table in the next page; AL: 0; CS: High between valid Commands; Command Inputs: SWITCHING¹(except RD Commands); Row, Column Address: SWITCHING¹(A10: Low permanently); Bank Address: cycling¹⁰; Data I/O: Seamless Read Data Burst: Output Data switches every clock cycle (i.e. data stable during one clock cycle); Output Buffer: Off²; ODT: disabled ³; Burst Length: BL8⁵; Active / Idle Banks: All / none¹⁰; Pattern: R0 D DD R1 D DD R2 D DD R3 D DD R4⁴ | | IDD4W | Operating Burst Write Current CKE=High; External Clock=On; tCK, CL: see table in the next page; AL: 0; CS: High between valid Commands; Command Inputs: SWITCHING¹(except WR Commands); Row, Column Address: SWITCHING¹(A10: Low permanently); Bank Address: cycling¹0; Data I/O: Seamless Write Data Burst: Input Data switches every clock cycle (i.e. data stable durin one clock cycle); DM: L permanently; Output Buffer: Off²; ODT: disabled ³; Burst Length: BL8⁵; Active / Idle Banks: All / none¹0; Pattern: W0 D DD W1 D DD W2 D DD W3 D DD W4 | | IDD5B | Burst Refresh Current CKE=High; External Clock=On; tCK, tRFC: see table in the next page; CS: High between valid Commands; Command Inputs, Row, Column, Bank Addresses, Data I/O: SWITCHING ¹ ; Output Buffer: Off ² ; ODT: disabled ³ ; Active Banks: Refresh Command every tRFC=tRFC(IDD); Idle banks: none. | | IDD6 | Self-Refresh Current Tcase=0-85°C; Auto Self Refresh =Disable; Self Refresh Temperature Range=Normal ⁹ ; CKE=Low; External Clock=Off (CK and CK: Low); CS, Command Inputs, Row, Column Address, Bank Address, Data I/O: Floating; Output Buffer: off ² ; ODT: disabled ³ ; Active Banks: All (during Self-Refresh action); Idle Banks: all (between Self-Rerefresh actions) | | IDD6ET | Self-Refresh Current: extended temperature range Tcase=0-95°C; Auto Self Refresh =Disable; Self Refresh Temperature Range=Extended ⁹ ; CKE=Low; External Clock=Off (CK and CK: Low); CS, Command Inputs, Row, Column Address, Bank Address, Data I/O: Floating; Output Buffer: off ² ; ODT: disabled ³ ; Active Banks: All (during Self-Refresh action); Idle Banks: all (between Self-Rerefresh actions) | | IDD6TC | Auto Self-Refresh Current Tcase=0-95°C; Auto Self Refresh =Enable ⁸ ; Self Refresh Temperature Range=Normal ⁹ ; CKE=Low; External Clock=Off (CK and CK: Low); CS, Command Inputs, Row, Column Address, Bank Address, Data I/O: Floating; Output Buffer: off ² ; ODT: disabled ³ ; Active Banks: All (during Self-Refresh action); Idle Banks: all (between Self-Rerefresh actions) | | IDD7 | Operating Bank Interleave Read Current CKE=High; External Clock=On; tCK, tRC, tRAS, tRCD, tRRD, CL: see table as below; AL=tRCD.min-tCK; CS=High between valid commands; Command Input: see table; Row, Column Address: Stable during DESELECT; Bank Address: cycling ¹⁰ ; Data I/O: Read Data: Output Data switches every clock cycle (i.e. data stable during one clock cycle); Output Buffer: Off ² ;ODT: disabled ³ ; Burst Length: BL8; Active / Idle Banks: All ¹⁰ / none. | Note1: SWITCHING for Address and Command Input Signals as described in Definition of SWITCHING for Address and Command Input Signals Table. Note2: Output Buffer off: set MR1 A[12] = 1 Note3: ODT disable: set MR1 A[9,6,2]=000 and MR2 A[10,9]=00 Note4: Definition of D and D: described in Definition of SWITCHING for Address and Command Input Signals Table; Ax/Rx/Wx: Activate/Read/Write to Bank x. Note5: BL8 fixed by MRS: set MR0 A[1,0]=00 Note6: Precharge Power Down Mode: set MR0 A12=0/1 for Slow/Fast Exit Note7: Because it is an exit after precharge power down, the valid commands are: ACT, REF, MRS, Enter Self-Refresh. Note8: Auto Self-Refresh(ASR): set MR2 A6 = 0/1 to disable/enable feature Note9: Self-Refresh Temperature Range (SRT): set MR2 A7 = 0/1 for normal/extended temperature range Note10: Cycle banks as follows: 0,1,2,3,...,7,0,1,... # For ID testing the following parameters are utilized. # For testing the IDD parameters, the following timing parameters are used: | | | | DDR | 3-800 | DDR3-1066 | DDR3-1333 | DDR3-1600 | Unit | |---|--------------|--------------|--------|--------|-----------|-----------|-----------|------| | Parameter | | Symbol | (-AC) | (-AD) | (-BE) | (-CG) | (-DI) | | | | | -5-5-5 | -6-6-6 | -7-7-7 | -9-9-9 | -11-11-11 | | | | Clock Cycle Time | tCKmin(IDD) | 2.5 | 2.5 | 1.875 | 1.5 | 1.25 | ns | | | CAS Latency | | CL(IDD) | 5 | 6 | 7 | 9 | 11 | nCK | | Active to Read or Write delay | tRCDmin(IDD) | 12.5 | 15 | 13.125 | 12 | 13.125 | ns | | | Active to Active / Auto-Refresh comm | tRCmin(IDD) | 50 | 52.5 | 50.63 | 48 | 48.125 | ns | | | Active to Precharge Command | | tRASmin(IDD) | 37.5 | 37.5 | 37.5 | 36 | 35 | ns | | Precharge Command Period | | tRPmin(IDD) | 12.5 | 15 | 13.13 | 12 | 13.75 | ns | | Four activate window | 1kB | +EAM/(IDD) | 40 | 40 | 37.5 | 30 | 30 | ns | | Four activate window | 2kB | tFAW(IDD) | 50 | 50 | 50 | 45 | 40 | ns | | A still a to A still a source and a said d | 1kB | +DDD/IDD) | 10 | 10 | 7.5 | 6 | 6 | nCK | | Active to Active command period | 2kB | tRRD(IDD) | 10 | 10 | 10 | 7.5 | 7.5 | nCK | | Auto-Refresh to Active / Auto-Refresh command | | tRFC(IDD) | 160 | 160 | 160 | 160 | 160 | no | | period | period | | | 100 | 100 | 160 | 160 | ns | # **Definition of SWITCHING for Address and Command Input Signals** | SWITCHING for | Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as: | | | | | | |--|---|--|--|--|--|--| | | If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change | | | | | | | Address | then to the opposite value | | | | | | | (row, column) | (e.g. Ax Ax Ax A x Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax | | | | | | | Please see each IDDx definition for details | | | | | | | | Bank Address | If not otherwise mentioned the bank addresses should be switched like the row/column address - | | | | | | | Dalik Address | please see each IDDx for details | | | | | | | | Define D = $\{\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}\} := \{HIGH, LOW, LOW, LOW\}$ | | | | | | | | Define D = $\{\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}\} := \{HIGH, HIGH, HIGH, HIGH\}$ | | | | | | | Command | Define Command Background Pattern = D D D D D D D D D D D | | | | | | | $(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE})$ |
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background | | | | | | | | Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary | | | | | | | | command. See each IDDx definition for details. | | | | | | # **Standard Speed Bins** # DDR3-800MHz | Speed Bin | | | DDR3-80 | | | | | | |--------------------|------------------------|----------|-------------|---------|-------------|-------------|-----|--| | CL-nRCD-nR | Р | | 5-5-5 (-AC) | | | 6-6-6 (-AD) | | | | Parameter | | Symbol | Min | Мах | lax Min Max | | | | | | command to first data | | 12.500 | 20.000 | 15.000 | 20.000 | ns | | | ACT to internatime | al read or write delay | tRCD | 12.500 | - | 15.000 | - | ns | | | PRE comman | d period | tRP | 12.500 | - | 15.000 | - | ns | | | ACT to ACT period | or REF command | tRC | 50.000 | - | 52.200 | - | ns | | | ACT to PRE c | ommand period | tRAS | 37.500 | 9*tREFI | 37.500 | 9*tREFI | ns | | | CL=5 | CWL =5 | tCK(AVG) | 2.500 | 3.300 | 3.000 | 3.300 | ns | | | CL=6 | CWL =5 | tCK(AVG) | 2.500 | 3.300 | 2.500 | 3.300 | ns | | | Supported CL | Settings | | 5,6 | 5,6 | | | nCK | | | Supported CW | /L Settings | | 5 | | 5 | | nCK | | # DDR3-1066MHz | Speed Bin | | | DDR3-1066 | | | |------------------|--------------------------|----------|-------------|---------|------| | CL-nRCD-nRP | | | 7-7-7 (-BE) | | Unit | | Parameter | | Symbol | Min | Max | | | Internal read co | mmand to first data | tAA | 13.125 | 20.000 | ns | | ACT to internal | read or write delay time | tRCD | 13.125 | - | ns | | PRE command | period | tRP | 13.125 | - | ns | | ACT to ACT or I | REF command period | tRC | 50.625 | - | ns | | ACT to PRE cor | mmand period | tRAS | 37.500 | 9*tREFI | ns | | CL=5 | CWL=5 | tCK(AVG) | 3.000 | 3.300 | ns | | CL=5 | CWL=6 | tCK(AVG) | Reserved | | ns | | CL=6 | CWL=5 | tCK(AVG) | 2.500 | 3.300 | ns | | CL=0 | CWL=6 | tCK(AVG) | Reserved | | ns | | CL=7 | CWL=5 | tCK(AVG) | Reserved | | ns | | CL=1 | CWL=6 | tCK(AVG) | 1.875 | <2.5 | ns | | CL=8 | CWL=5 | tCK(AVG) | Reserved | | ns | | CWL=6 | | tCK(AVG) | 1.875 | <2.5 | ns | | Supported CL S | Settings | | 6,7,8 | | nCK | | Supported CWL | Settings | | 5,6 | | nCK | # **DDR3-1333MHz** | Speed Bin | | | DDR3-1333 | | | | |-------------------|-------------------------|----------|--------------|----------|------|--| | CL-nRCD-nRP | | | 9-9-9 (-CG) | | Unit | | | Parameter | | Symbol | Min | Мах | | | | Internal read con | nmand to first data | tAA | 13.125 | 20.000 | ns | | | ACT to internal r | ead or write delay time | tRCD | 13.125 | - | ns | | | PRE command p | period | tRP | 13.125 | - | ns | | | ACT to ACT or F | REF command period | tRC | 49.125 | - | ns | | | ACT to PRE com | nmand period | tRAS | 36.000 | 9*tREFI | ns | | | | CWL=5 | tCK(AVG) | 3.000 | 3.300 | ns | | | CL=5 | CWL=6 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=7 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=5 | tCK(AVG) | 2.500 | 3.300 | ns | | | CL=6 | CWL=6 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=7 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=5 | tCK(AVG) | Reserved | Reserved | ns | | | CL=7 | CWL=6 | tCK(AVG) | 1.875* | <2.5* | ns | | | | CWL=7 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=5 | tCK(AVG) | Reserved | Reserved | ns | | | CL=8 | CWL=6 | tCK(AVG) | 1.875 | <2.5 | ns | | | | CWL=7 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=5 | tCK(AVG) | Reserved | Reserved | ns | | | CL=9 | CWL=6 | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=7 | tCK(AVG) | 1.500 | <1.875 | ns | | | | CWL=5 | tCK(AVG) | Reserved | Reserved | ns | | | CL=10 CWL=6 | | tCK(AVG) | Reserved | Reserved | ns | | | | CWL=7 | tCK(AVG) | 1.500* | <1.875* | ns | | | Supported CL Se | ettings | | 6,7,8,9,(10) | nCK | | | | Supported CWL | Settings | | 5,6,7 | | nCK | | # DDR3-1600MHz | Speed Bin | | | D | | | |-------------------|--------------------------|----------|------------------------------------|--------------|------| | CL-nRCD-nRP | | | 11 | -11-11 (-DI) | Unit | | Parameter | | Symbol | Min | Max | | | Internal read cor | mmand to first data | tAA | 13.750
(13.125)5,11 | 20.000 | ns | | ACT to internal r | read or write delay time | tRCD | 13.750
(13.125) _{5,11} | - | ns | | PRE command p | period | tRP | 13.750
(13.125)5,11 | - | ns | | ACT to ACT or F | REF command period | tRC | 48.750
(48.125)5,11 | - | ns | | ACT to PRE con | nmand period | tRAS | 35.000 | 9*tREFI | ns | | | CWL =5 | tCK(AVG) | 3.000 | 3.300 | ns | | CL=5 | CWL =6 | tCK(AVG) | Reserved | Reserved | ns | | OL=3 | CWL =7 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =8 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =5 | tCK(AVG) | 2.500 | 3.300 | ns | | CL=6 | CWL =6 | tCK(AVG) | Reserved | Reserved | ns | | OL=U | CWL =7 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =8 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =5 | tCK(AVG) | Reserved | Reserved | ns | | CL=7 | CWL =6 | tCK(AVG) | 1.875 | <2.5 | ns | | CL=1 | CWL =7 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =8 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =5 | tCK(AVG) | Reserved | Reserved | ns | | 0. 0 | CWL =6 | tCK(AVG) | 1.875 | <2.5 | ns | | CL=8 | CWL =7 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =8 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =5 | tCK(AVG) | Reserved | Reserved | ns | | 01.0 | CWL =6 | tCK(AVG) | Reserved | Reserved | ns | | CL=9 | CWL =7 | tCK(AVG) | 1.500 | <1.875 | ns | | | CWL =8 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =5 | tCK(AVG) | Reserved | Reserved | ns | | OL 40 | CWL =6 | tCK(AVG) | Reserved | Reserved | ns | | CL=10 | CWL =7 | tCK(AVG) | 1.500 | <1.875 | ns | | | CWL =8 | tCK(AVG) | 1.250 | <1.5 | ns | | | CWL =5 | tCK(AVG) | Reserved | Reserved | ns | | 01.44 | CWL =6 | tCK(AVG) | Reserved | Reserved | ns | | CL=11 | CWL =7 | tCK(AVG) | Reserved | Reserved | ns | | | CWL =8 | tCK(AVG) | 1.250* | ns | | | Supported CL S | ettings | 1 | 6,7,8,9,10,(11) | nCK | | | Supported CWL | Settings | | 5,6,7,8 | | nCK | # **Electrical Characteristics & AC Timing** # Timing Parameter by Speed Bin (DDR3-800, 1066MHz) | Parameter | Symbol | DDR3 | 3-800 | DDR | 3-1066 | Units | Notes | |---|--------------------|------------------|--|-------|---------|----------|-------| | raidifietei | Symbol | Min. | Max. | Min. | Max. | Ullits | Notes | | Clock Timing | | | | | | | | | Minimum Clock Cycle Time (DLL off mode) | tCK (DLL_OFF) | 8 | - | 8 | - | ns | | | Average Clock Period | tCK(avg) | Refer to "Standa | ard Speed Bins |) | | ps | | | Average high pulse width | tCH(avg) | 0.47 | 0.53 | 0.47 | 0.53 | tCK(avg) | | | Average low pulse width | tCL(avg) | 0.47 | 0.53 | 0.47 | 0.53 | tCK(avg) | | | Absolute Clock Period | tCK(abs) | | Min.: tCK(avg)min + tJIT(per)min
Max.: tCK(avg)max + tJIT(per)max | | | | | | Absolute clock HIGH pulse width | tCH(abs) | 0.43 | - | 0.43 | - | tCK(avg) | | | Absolute clock LOW pulse width | tCL(abs) | 0.43 | - | 0.43 | - | tCK(avg) | | | Clock Period Jitter | JIT(per) | -100 | 100 | -90 | 90 | ps | | | Clock Period Jitter during DLL locking period | JIT(per, lck) | -90 | 90 | -80 | 80 | ps | | | Cycle to Cycle Period Jitter | tJIT(cc) | 200 | 200 | 180 | 180 | ps | | | Cycle to Cycle Period Jitter during DLL locking period | JIT(cc, lck) | 180 | 180 | 160 | 160 | ps | | | Duty Cycle Jitter | tJIT(duty) | - | - | - | - | ps | | | Cumulative error across 2 cycles | tERR(2per) | -147 | 147 | -132 | 132 | ps | | | Cumulative error across 3 cycles | tERR(3per) | -175 | 175 | -157 | 157 | ps | | | Cumulative error across 4 cycles | tERR(4per) | -194 | 194 | -175 | 175 | ps | | | Cumulative error across 5 cycles | tERR(5per) | -209 | 209 | -188 | 188 | ps | | | Cumulative error across 6 cycles | tERR(5per) | -209 | 222 | -200 | 200 | ps | | | <u>, </u> | | | 232 | -200 | 200 | | | | Cumulative error across 7 cycles | tERR(7per) | -232 | | | | ps | | | Cumulative error across 8 cycles | tERR(8per) | -241 | 241 | -217 | 217 | ps | | | Cumulative error across 9 cycles | tERR(9per) | -249 | 249 | -224 | 224 | ps | | | Cumulative error across 10 cycles | tERR(10per) | -257 | 257 | -231 | 231 | ps | | | Cumulative error across 11 cycles | tERR(11per) | -263 | 263 | -237 | 237 | ps | | | Cumulative error across 12 cycles | tERR(12per) | -269 | 269 | -242 | 242 | ps | | | unulative error across n = 13, 14 49, 50 cycles $tERR(nper) = (1 + 0.68ln(n)) * tJIT(per)min \\ tERR(nper)max = (1 + 0.68ln(n)) * tJIT(per)max$ | | | | | | ps | | | Data Timing | | | | | | | | | DQS, DQS# to DQ skew, per group, per access | tDQSQ | - | 200 | - | 150 | ps | | | DQ output hold time from DQS, DQS# | tQH | 0.38 | - | 0.38 | - | tCK(avg) | | | DQ low-impedance time from CK, CK# | tLZ(DQ) | -800 | 400 | -600 | 300 | ps | | | DQ high impedance time from CK, CK# | tHZ(DQ) | - | 400 | - | 300 | ps | | | Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels | tDS(base)
AC175 | 75 | | 25 | | ps | | | Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels | tDS(base)
AC150 | 125 | | 75 | | ps | | | Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels | tDH(base)
DC100 | 150 | | 100 | | ps | | | DQ and DM Input pulse width for each input | tDIPW | 600 | | 490 | | ps | | | Data Strobe Timing | | -50 | | .50 | | P-0 | | | DQS,DQS# differential READ Preamble | tRPRE | 0.9 | Note 19 | 0.9 | Note 19 | tCK(avg) | | | DQS,DQS# differential READ Preamble | tRPST | 0.9 | Note 19 | 0.9 | Note 11 | tCK(avg) | | | | | | Note 11 | | Note 11 | | | | DQS, DQS# differential output high time | tQSH | 0.38 | | 0.38 | - | tCK(avg) | | | DQS, DQS# differential output low time | tQSL | 0.38 | - | 0.38 | - | tCK(avg) | | | DQS, DQS# differential WRITE Preamble | tWPRE | 0.9 | - | 0.9 | -
 tCK(avg) | | | DQS, DQS# differential WRITE Postamble | tWPST | 0.3 | - | 0.3 | - | tCK(avg) | | | DQS, DQS# rising edge output access time from rising CK, CK# | tDQSCK | -400 | 400 | -300 | 300 | tCK(avg) | | | DQS and DQS# low-impedance time | tLZ(DQS) | -800 | 400 | -600 | 300 | tCK(avg) | | | (Referenced from RL - 1) | 1 | | | | | | | | DQS and DQS# high-impedance time | tHZ(DQS) | - | 400 | - | 300 | tCK(avg) | | | (Referenced from RL + BL/2) | 'DOO' | 0.45 | 0.55 | 0.45 | 0.55 | 1014 | | | DQS, DQS# differential input low pulse width | tDQSL | 0.45 | 0.55 | 0.45 | 0.55 | tCK(avg) | | | DQS, DQS# differential input high pulse width | tDQSH | 0.45 | 0.55 | 0.45 | 0.55 | tCK(avg) | | | DQS, DQS# rising edge to CK, CK# rising edge | tDQSS | -0.25 | 0.25 | -0.25 | 0.25 | tCK(avg) | | | DQS, DQS# falling edge setup time to CK, CK# rising edge | tDSS | 0.2 | - | 0.2 | - | tCK(avg) | | | DQS, DQS# falling edge hold time from CK, CK# rising edge | tDSH | 0.2 | - | 0.2 | - | tCK(avg) | | | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | | | | | | | DLL locking time | tDLLK | 512 | - | 512 | - | nCK | | | |--|-----------------|------------------------------------|----------------|--------------------------------|---------------|------|--|--| | Internal READ Command to PRECHARGE Command delay | tRTP | tRTPmin.: max(4 | 1nCK, 7.5ns) | | | | | | | | | tRTPmax.: - | . 014 7.5 \ | | | | | | | Delay from start of internal write transaction to internal read command | tWTR | tWTRmin.: max(
tWTRmax.: | 4nCK, 7.5ns) | | | | | | | WRITE recovery time | tWR | 15 | 15 - 15 - | | | | | | | Mode Register Set command cycle time | tMRD | 4 | - | 4 | - | nCK | | | | Mode Register Set command update delay | tMOD | tMODmin.: max(| 12nCK, 15ns) | | | | | | | ACT to internal read or write delay time | tRCD | tMODmax.: | | | | | | | | PRE command period | tRP | | | | | | | | | ACT to ACT or REF command period | tRC | | | | | | | | | CAS# to CAS# command delay | tCCD | 4 | - | 4 | - | nCK | | | | Auto precharge write recovery + precharge time | tDAL(min) | WR + roundup(t | RP / tCK(avg)) | | | nCK | | | | Multi-Purpose Register Recovery Time | tMPRR | 1 | _ | 1 | l. | nCK | | | | | tRAS | Standard Speed | Pino | | <u> </u> | HOIX | | | | ACTIVE to PRECHARGE command period | INAS | Standard Speed | DIIIS | may/AnCl/ | | | | | | ACTIVE to ACTIVE command period for 1KB page size | tRRD | max(4nCK,
10ns) | - | max(4nCK,
7.5ns) | - | | | | | ACTIVE to ACTIVE command period for 2KB page size | tRRD | tRRDmin.: max(-
tRRDmax.: | 4nCK, 10ns) | | | | | | | Four activate window for 1KB page size | tFAW | 40 | - | 37.5 | - | ns | | | | Four activate window for 2KB page size | tFAW | 50 | - | 50 | - | ns | | | | Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels | tIS(base) | 200 | - | 125 | - | ps | | | | Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels | tlH(base) | 275 | - | 200 | - | ps | | | | Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels | tIS(base) AC150 | 200+150 | - | 125+150 | - | ps | | | | | tIPW | 900 | | 780 | | | | | | Control and Address Input pulse width for each input | UPVV | 900 | - | 780 | - | ps | | | | Calibration Timing | .70: " | 540 | - | 540 | | 014 | | | | Power-up and RESET calibration time | tZQinit | 512 | - | 512 | - | nCK | | | | Normal operation Full calibration time | tZQoper | 256 | - | 256 | - | nCK | | | | Normal operation Short calibration time | tZQCS | 64 | - | 64 | - | nCK | | | | Reset Timing | | | | | | | | | | Exit Reset from CKE HIGH to a valid command | tXPR | tXPRmin.: max(stxPRmax.: - | 5nCK, tRFC(mi | n) + 10ns) | | | | | | Self Refresh Timings | | | | | | | | | | Exit Self Refresh to commands not requiring a locked DLL | tXS | tXSmin.: max(5r
tXSmax.: - | nCK, tRFC(min) | + 10ns) | | | | | | | | tXSDLLmin.: tDl | I K(min) | | | | | | | Exit Self Refresh to commands requiring a locked DLL | tXSDLL | tXSDLLmax.: - | -LIX(IIIIII) | | | nCK | | | | | | tCKESRmin.: tC | KE(min) + 1 nC | :ĸ | | | | | | Minimum CKE low width for Self Refresh entry to exit timing | tCKESR | tCKESRmax.: - | . , | | | | | | | Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) | tCKSRE | tCKSREmin.: ma
tCKSREmax.: - | ax(5 nCK, 10 n | s) | | | | | | Valid Clock Requirement before Self Refresh Exit (SRX) | *CKODY | tCKSRXmin.: ma | ax(5 nCK, 10 n | s) | | | | | | or Power-Down Exit (PDX) or Reset Exit | tCKSRX | tCKSRXmax.: - | | | | | | | | Power Down Timings | | | | | | | | | | Exit Power Down with DLL on to any valid command;
Exit Precharge Power Down with DLL frozen to commands | tXP | tXPmin.: max(3r | nCK, 7.5ns) | | | | | | | not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands | | tXPDLLmin.: ma | x(10nCK, 24ns | .) | | | | | | requiring a locked DLL | tXPDLL | tXPDLLmax.: - | • | ·
- | 01/5 | | | | | CKE minimum pulse width | tCKE | tCKEmin.: max(3
tCKEmax.: - | onuk 7.5ns) | tCKEmin.: max(3
tCKEmax.: - | 11UK 5.625NS) | | | | | Command pass disable delay | tCPDED | tCPDEDmin.: 1
tCPDEDmin.: - | | nCK | | | | | | Power Down Entry to Exit Timing | tPD | tPDmin.: tCKE(n
tPDmax.: 9*tREI | | | | | | | | Timing of ACT command to Power Down entry | tACTPDEN | tACTPDENmin.: 1
tACTPDENmax.: - | | | | | | | | Timing of PRE or PREA command to Power Down entry | tPRPDEN | tPRPDENmin.: 1 tPRPDENmax.: - | | | | | | | | Timing of RD/RDA command to Power Down entry | tRDPDEN | tRDPDENmin.: I | | | | nCK | | | | · · · · · · · · · · · · · · · · · · · | | PEN TRUPPDENTITION: RE+4+1 TICK | | | | | | | | | | tRDPDENmax.: | - | | | | | |--|------------|--|---------------|---------------|-----|----------|--| | Timing of WR command to Power Down entry | AMPROPENT | tWRPDENmin.: | WL + 4 + (tWF | R / tCK(avg)) | | =CV | | | (BL8OTF, BL8MRS, BC4OTF) | tWRPDEN | tWRPDENmax. | :- | | | nCK | | | Timing of WRA command to Power Down entry | UMD A DDEN | tWRAPDENmin | .: WL+4+WR+ | 1 | | - 014 | | | (BL8OTF, BL8MRS, BC4OTF) | tWRAPDEN | tWRAPDENmax | K.: - | | | nCK | | | Timing of WR command to Power Down entry (BC4MRS) | tWRPDEN | RPDEN tWRPDENmin.: WL + 2 + (tWR / tCK(avg))tWRPDENmax.: - | | | | | | | Timing of WRA command to Power Down entry | tWRAPDEN | tWRAPDENmin | .: WL + 2 +WR | + 1 | | nCK | | | (BC4MRS) | IWRAPDEN | tWRAPDENmax | K.: - | | | nck | | | Timing of REF command to Power Down entry | tREFPDEN | tREFPDENmin. | : 1 | | | nCK | | | Timing of REF command to Power Down entry | IREFPUEN | tREFPDENmax | .: - | | | nck | | | Timing of MRS command to Dower Down ontry | tMRSPDEN | tMRSPDENmin | .: tMOD(min) | | | | | | Timing of MRS command to Power Down entry | IIVIKSPDEN | tMRSPDENmax | c.: - | | | | | | ODT Timings | | | | | | | | | ODT high time without write command or | ODTH4 | ODTH4min.: 4 | | | | nCK | | | with write command and BC4 | ODTH4 | ODTH4max.: - | | | | nck | | | ODT high time with Write command and BL8 | ODTH8 | ODTH8min.: 6 | nCK | | | | | | ODT High time with write command and BLo | ОВТНО | ODTH8max.: - | | | | | | | Asynchronous RTT turn-on delay | tAONPD | 2 | 8.5 | 2 | 8.5 | ns | | | (Power-Down with DLL frozen) | IAONED | 2 | 0.0 | 2 | 6.5 | 115 | | | Asynchronous RTT turn-off delay | tAOFPD | 2 | 8.5 | 2 | 8.5 | ns | | | (Power-Down with DLL frozen) | IAOFE | 2 | 0.5 | 2 | 6.5 | 115 | | | RTT turn-on | tAON | -400 | 400 | -300 | 300 | ps | | | RTT_Nom and RTT_WR turn-off time | tAOF | 0.3 | 0.7 | 0.3 | 0.7 | tCK(avg) | | | from ODTLoff reference | IAOF | 0.3 | 0.7 | 0.3 | 0.7 | ick(avg) | | | RTT dynamic change skew | tADC | 0.3 | 0.7 | 0.3 | 0.7 | tCK(avg) | | | Write Leveling Timings | | | | | | | | | First DQS/DQS# rising edge after | ANII MADD | 40 | | 40 | | - 014 | | | write leveling mode is programmed | tWLMRD | 40 | - | 40 | - | nCK | | | DQS/DQS# delay after write leveling mode is programmed | tWLDQSEN | 25 | - | 25 | - | nCK | | | Write leveling setup time from rising CK, CK# | 44/1.6 | 225 | | 245 | | | | | crossing to rising DQS, DQS# crossing | tWLS | 325 | - | 245 | - | ps | | | Write leveling hold time from rising DQS, DQS# | tWLH | 225 | | 245 | | | | | crossing to rising CK, CK# crossing | TVVLH | 325 | - | 245 | | ps | | | Write leveling output delay | tWLO | 0 | 9 | 0 | 9 | ns | | | Write leveling output error | tWLOE | 0 | 2 | 0 | 2 | ns | | | | | | | | | | | # **Electrical Characteristics & AC Timing** # Timing Parameter by Speed Bin (DDR3-1333, 1600MHz) | Parameter | Symbol | DDR3 | 3-1333 | DDF | R3-1600 | Units | Notes | |---
---|-----------------|---------------------------------------|-------|---------|----------------------|-------| | raianielei | Symbol | Min. | Max. | Min. | Max. | Offics | Notes | | Clock Timing | | | | | | | | | Minimum Clock Cycle Time (DLL off mode) | tCK (DLL_OFF) | 8 | - | 8 | - | ns | | | Average Clock Period | tCK(avg) | Refer to "Stand | ard Speed Bins) | | | ps | | | Average high pulse width | tCH(avg) | 0.47 | 0.53 | 0.47 | 0.53 | tCK(avg) | | | Average low pulse width | tCL(avg) | 0.47 | 0.53 | 0.47 | 0.53 | tCK(avg) | | | Absolute Clock Period | tCK(abs) | | min + tJIT(per)mi
max + tJIT(per)n | | | ps | | | Absolute clock HIGH pulse width | tCH(abs) | 0.43 | - | 0.43 | - | tCK(avg) | | | Absolute clock LOW pulse width | tCL(abs) | 0.43 | - | 0.43 | - | tCK(avg) | | | Clock Period Jitter | JIT(per) | -80 | 80 | -70 | 70 | ps | | | Clock Period Jitter during DLL locking period | JIT(per, lck) | -70 | 70 | -60 | 60 | ps | | | Cycle to Cycle Period Jitter | tJIT(cc) | 160 | 160 | 140 | 140 | ps | | | Cycle to Cycle Period Jitter during DLL locking period | JIT(cc, lck) | 140 | 140 | 120 | 120 | ps | | | Duty Cycle Jitter | tJIT(duty) | - | - | - | - | ps | | | Cumulative error across 2 cycles | tERR(2per) | -118 | 118 | -103 | 103 | ps | | | Cumulative error across 3 cycles | tERR(3per) | -140 | 140 | -122 | 122 | ps | | | Cumulative error across 4 cycles | tERR(4per) | -155 | 155 | -136 | 136 | ps | | | Cumulative error across 5 cycles | tERR(5per) | -168 | 168 | -147 | 147 | ps | | | Cumulative error across 6 cycles | tERR(6per) | -177 | 177 | -155 | 155 | ps | | | Cumulative error across 7 cycles | tERR(7per) | -186 | 186 | -163 | 163 | ps | | | Cumulative error across 8 cycles | tERR(8per) | -193 | 193 | -169 | 169 | ps | | | Cumulative error across 9 cycles | tERR(9per) | -200 | 200 | -175 | 175 | ps | | | Cumulative error across 10 cycles | tERR(10per) | -205 | 205 | -180 | 180 | ps | | | · | | -210 | 210 | -184 | 184 | | | | Cumulative error across 11 cycles | tERR(11per) | | | | | ps | | | Cumulative error across 12 cycles | tERR(12per) | -215 | 215 | -188 | 188 | ps | | | Cumulative error across n = 13, 14 49, 50 cycles | ulative error across n = 13, 14 49, 50 cycles $ tERR(nper) \\ tE$ | | | | | | | | Data Timing | | | | | | | | | DQS, DQS# to DQ skew, per group, per access | tDQSQ | - | 125 | - | 100 | ps | | | DQ output hold time from DQS, DQS# | tQH | 0.38 | - | 0.38 | - | tCK(avg) | | | DQ low-impedance time from CK, CK# | tLZ(DQ) | -500 | 250 | -450 | 225 | ps | | | DQ high impedance time from CK, CK# | tHZ(DQ) | - | 250 | - | 225 | ps | | | Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels | tDS(base)
AC175 | - | | - | | ps | | | Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels | tDS(base)
AC150 | 30 | | 10 | | ps | | | Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels | tDH(base)
DC100 | 65 | | 45 | | ps | | | DQ and DM Input pulse width for each input | tDIPW | 400 | - | 360 | | ps | | | Data Strobe Timing | | | | | | | | | DQS,DQS# differential READ Preamble | tRPRE | 0.9 | Note 19 | 0.9 | Note 19 | tCK(avg) | | | DQS, DQS# differential READ Postamble | tRPST | 0.3 | Note 11 | 0.3 | Note 11 | tCK(avg) | | | DQS, DQS# differential output high time | tQSH | 0.4 | - | 0.4 | - | tCK(avg) | | | DQS, DQS# differential output low time | tQSL | 0.4 | - | 0.4 | - | tCK(avg) | | | DQS, DQS# differential WRITE Preamble | tWPRE | 0.9 | - | 0.9 | - | tCK(avg) | | | DQS, DQS# differential WRITE Postamble | tWPST | 0.3 | - | 0.3 | _ | tCK(avg) | | | DQS, DQS# rising edge output access time from rising CK, CK# | tDQSCK | -255 | 255 | -225 | 225 | tCK(avg) | | | DQS and DQS# low-impedance time | IDQOUN | -200 | 200 | -223 | LLJ | ion(avy) | | | Page and DQS# low-impedance time (Referenced from RL - 1) | tLZ(DQS) | -500 | 250 | -450 | 225 | tCK(avg) | | | DQS and DQS# high-impedance time | tHZ(DQS) | | 250 | - | 225 | tCK(avg) | | | (Referenced from RL + BL/2) | 1 1 | 0.45 | 0.55 | 0.45 | | | | | DQS, DQS# differential input low pulse width | tDQSL | 0.45 | 0.55 | 0.45 | 0.55 | tCK(avg) | | | DQS, DQS# differential input high pulse width | tDQSH | 0.45 | 0.55 | 0.45 | 0.55 | tCK(avg) | | | | | 0.05 | 0.25 | -0.27 | 0.27 | tCK(avg) | | | DQS, DQS# rising edge to CK, CK# rising edge | tDQSS | -0.25 | 0.23 | | | | | | DQS, DQS# rising edge to CK, CK# rising edge DQS, DQS# falling edge setup time to CK, CK# rising edge | tDSS | 0.2 | - | 0.18 | - | tCK(avg) | | | DQS, DQS# rising edge to CK, CK# rising edge | | | - | | - | tCK(avg)
tCK(avg) | | | DLL locking time | tDLLK | 512 | - | 512 | - | nCK | | |---|--------------------|---|--|-------------------------------|-------------|------|--| | Internal READ Command to PRECHARGE Command delay | tRTP | tRTPmin.: max
tRTPmax.: - | (4nCK, 7.5ns) | | | | | | Delay from start of internal write transaction to internal read command | tWTR | tWTRmin.: max | (4nCK, 7.5ns) | | | | | | WRITE recovery time | tWR | 15 | | 15 | _ | ns | | | Mode Register Set command cycle time | tMRD | 4 | - | 4 | - | nCK | | | Mode Register Set command cycle time | UVIND | | (12nCK 15nc) | 4 | <u> </u> - | IIOK | | | Mode Register Set command update delay | tMOD | tMODmin.: max(12nCK, 15ns) tMODmax.: | | | | | | | ACT to internal read or write delay time | tRCD | | | | | | | | PRE command period | tRP | | | | | | | | ACT to ACT or REF command period | tRC | | | | | | | | CAS# to CAS# command delay | tCCD | 4 | - | 4 | - | nCK | | | Auto precharge write recovery + precharge time | tDAL(min) | WR + roundup | tRP / tCK(avg)) | | 1 | nCK | | | Multi-Purpose Register Recovery Time | tMPRR | 1 | - | 1 | - | nCK | | | ACTIVE to PRECHARGE command period | tRAS | Standard Spee | d Bins | | | | | | ACTIVE to ACTIVE command period for 1KB page size | tRRD | tRRDmin.: max
tRRDmax.: | (4nCK, 6ns) | | | | | | ACTIVE to ACTIVE command period for 2KB page size | tRRD | tRRDmin.: max
tRRDmax.: | (4nCK, 7.5ns) | | | | | | Four activate window for 1KB page size | tFAW | 30 | 0 | 30 | - | ns | | | Four activate window for 2KB page size | tFAW | 45 | 0 | 40 | - | ns | | | Command and Address setup time to CK, CK#
referenced to Vih(ac) / Vil(ac) levels | tIS(base) | 65 | - | 45 | - | ps | | | Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels | tIH(base) | 140 | - | 120 | - | ps | | | Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels | tIS(base) AC150 | 65+125 | - | 170 | - | ps | | | Control and Address Input pulse width for each input | tIPW | 620 | _ | 560 | _ | ps | | | Calibration Timing | tii vv | 020 | | 300 | | ρσ | | | Power-up and RESET calibration time | tZQinit | 512 | - | 512 | - | nCK | | | Normal operation Full calibration time | tZQoper | 256 | _ | 256 | _ | nCK | | | Normal operation Short calibration time | tZQCS | 64 | _ | 64 | | nCK | | | Reset Timing | LEGGG | 0-1 | | 04 | | non | | | Exit Reset from CKE HIGH to a valid command | tXPR | tXPRmin.: max | (5nCK, tRFC(mi | n) + 10ns) | | | | | Self Refresh Timings | | | | | | | | | Exit Self Refresh to commands not requiring a locked DLL | tXS | tXSmin.: max(5 | inCK, tRFC(min) | + 10ns) | | | | | Exit Self Refresh to commands requiring a locked DLL | tXSDLL | tXSDLLmin.: tD | DLLK(min) | | | nCK | | | Minimum CKE low width for Self Refresh entry to exit timing | tCKESR | | CKE(min) + 1 nC | K |
 | | | | | tCKESRmax.: - | | ` | | | | | Valid Clock Requirement after Self Refresh Entry (SRE)
or Power-Down Entry (PDE) | tCKSRE | tCKSREmin.: n
tCKSREmax.: - | nax(5 nCK, 10 ns | s) | | | | | Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit | tCKSRX | tCKSRXmin.: n
tCKSRXmax.: - | nax(5 nCK, 10 ns | s) | | | | | Power Down Timings | | | | | | | | | Exit Power Down with DLL on to any valid command; | | | | | | | | | EXIL I OWEL DOWN WITH DEE ON TO ALLY VALID COMMING. | | | | | | | | | · · · · · · · · · · · · · · · · · · · | tXP | tXPmin.: max(3 | nCK, 6ns) | tXPmin.: max(3r | nCK, 6ns) | | | | Exit Precharge Power Down with DLL frozen to commands | tXP | tXPmin.: max(3 | inCK, 6ns) | tXPmin.: max(3r
tXPmax.: - | nCK, 6ns) | | | | Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL | tXP | tXPmax.: - | | tXPmax.: - | nCK, 6ns) | | | | Exit Prover Down with DLL on to any variet commands Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL | tXP | tXPmax.: - tXPDLLmin.: m tXPDLLmax.: - | ax(10nCK, 24ns | tXPmax.: - | | | | | Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands | | tXPmax.: - tXPDLLmin.: m tXPDLLmax.: - | ax(10nCK, 24ns | tXPmax.: - | | | | | Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL | tXPDLL | tXPmax.: - tXPDLLmin.: m tXPDLLmax.: - tCKEmin.: max | ax(10nCK, 24ns) | tXPmax.: -) tCKEmin.: max(| | nCK | | | Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width | tXPDLL
tCKE | tXPmax.: - tXPDLLmin.: m tXPDLLmax.: - tCKEmin.: max tCKEmax.: - | ax(10nCK, 24ns)
(3nCK ,5.625ns)
-
min) | tXPmax.: -) tCKEmin.: max(| | nCK | | | Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width Command pass disable delay | tXPDLL tCKE tCPDED | tXPmax.: - tXPDLLmin.: m tXPDLLmax.: - tCKEmin.: max tCKEmax.: - tCPDEDmin.: 1 tCPDEDmin.: tCKE | ax(10nCK, 24ns) (3nCK ,5.625ns) - fmin) EFI .: 1 | tXPmax.: -) tCKEmin.: max(| | nCK | | | | | (DDDDEN : | DI 4.4 | | | | 1 | | |--|----------|------------------------------|--|------------------|---------------|----------|---|--| | Timing of RD/RDA command to Power Down entry | tRDPDEN | tRDPDENmin.
tRDPDENmax | | | | nCK | | | | Firming of WR command to Power Down entry | tWRPDEN | | .: WL + 4 + (ť | WR / tCK(avg)) | | nCK | | | | Firming of WRA command to Power Down entry BL8OTF, BL8MRS, BC4OTF) | tWRAPDEN | | tWRAPDENmin.: WL+4+WR+1
tWRAPDENmax.: - | | | | | | | Timing of WR command to Power Down entry (BC4MRS) | tWRPDEN | tWRPDENmin | .: WL + 2 + (ť | NR / tCK(avg))t\ | WRPDENmax.: - | nCK | | | | Firming of WRA command to Power Down entry BC4MRS) | tWRAPDEN | tWRAPDENmi | | VR + 1 | | nCK | | | | Timing of REF command to Power Down entry | tREFPDEN | tREFPDENmir
tREFPDENma | | | | nCK | | | | Timing of MRS command to Power Down entry | tMRSPDEN | tMRSPDENmi
tMRSPDENma | , |) | | | | | | ODT Timings | | | | | | | | | | ODT high time without write command or with write command and BC4 | ODTH4 | ODTH4min.: 4
ODTH4max.: - | | | | nCK | | | | DDT high time with Write command and BL8 | ODTH8 | ODTH8min.: 6 ODTH8max.: - | | | | nCK | | | | Asynchronous RTT turn-on delay
(Power-Down with DLL frozen) | tAONPD | 2 | 8.5 | 2 | 8.5 | ns | | | | Asynchronous RTT turn-off delay
(Power-Down with DLL frozen) | tAOFPD | 2 | 8.5 | 2 | 8.5 | ns | | | | RTT turn-on | tAON | -250 | 250 | -225 | 225 | ps | | | | RTT_Nom and RTT_WR turn-off time rom ODTLoff reference | tAOF | 0.3 | 0.7 | 0.3 | 0.7 | tCK(avg) | | | | RTT dynamic change skew | tADC | 0.3 | 0.7 | 0.3 | 0.7 | tCK(avg) | | | | Vrite Leveling Timings | | | | | | | | | | First DQS/DQS# rising edge after vrite leveling mode is programmed | tWLMRD | 40 | - | 40 | - | nCK | | | | DQS/DQS# delay after write leveling mode is programmed | tWLDQSEN | 25 | - | 25 | - | nCK | | | | Vrite leveling setup time from rising CK, CK#
crossing to rising DQS, DQS# crossing | tWLS | 195 | - | 165 | - | ps | | | | Nrite leveling hold time from rising DQS, DQS# crossing to rising CK, CK# crossing | tWLH | 195 | - | 165 | - | ps | | | | Write leveling output delay | tWLO | 0 | 9 | 0 | 7.5 | ns | | | | Vrite leveling output error | tWLOE | 0 | 2 | 0 | 2 | ns | | | #### **Jitter Notes** #### Specific Note a Unit "tCK(avg)" represents the actual tCK(avg) of the input clock under operation. Unit "nCK" represents one clock cycle of the input clock, counting the actual clock edges. ex) tMRD=4 [nCK] means; if one Mode Register Set command is registered at Tm, anther Mode Register Set command may be registered at Tm+4, even if (Tm+4-Tm) is 4 x tCK(avg) + tERR(4per), min. #### Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. #### Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not #### Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)) crossing. #### Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{tPARAM[ns] / tCK(avg)[ns]}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP/tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP/tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6-Tm) is less than 15ns due to input clock jitter. #### Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper), act of the input clock, where 2 <= m <=12. (output derating are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper), act,min = -172ps and tERR(mper), act,max = 193ps, then tDQSCK,min(derated) = tDQSCK,min - <math>tERR(mper), act,max = -400ps - 193ps = -593ps and tDQSCK,max(derated) = tDQSCK,max - <math>tERR(mper), act,min = 400ps + 172ps = 572ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ), min(derated) = -800ps - 193ps = -993ps and tLZ(DQ), max(derated) = 400ps + 172ps = 572ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where $2 \le n \le 12$, and tERR(mper),act,max is the maximum measured value of tERR(nper) where $2 \le n \le 12$. #### Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act=2500ps, tJIT(per),act,min = -72ps and tJIT(per),act,max = 93ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500ps - 72ps = 2178ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500ps - 72ps = 878ps. (Caution on the min/max usage!) ### **Timing Parameter Notes** - 1. Actual value dependent upon measurement level definitions which are TBD. - 2. Commands requiring a locked DLL are: READ (and RAP) is synchronous ODT commands. - 3. The max values are system dependent. - 4. WR as programmed in mode register. - 5. Value must be rounded-up to next higher integer value. - 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. - 7. For definition of RTT-on time tAON See "Timing Parameters". - 8. For definition of RTT-off time tAOF See "Timing Parameters". - 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. - 10. WR in clock cycles are programmed in MR0. - 11. The maximum read post-amble is bounded by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. - 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by TBD. - 13. Value is only valid for RON34. - 14. Single ended signal parameter. - 15. tREFI depends on TOPER. - tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC). - 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS,
DQS differential slew rate. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC). - 18. Start of internal write transaction is defined as follows: - For BL8 (fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL. - For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL. - For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL. - 19. The maximum preamble is bound by tLZ(DQS)max on the left side and tDQSCK(max) on the right side. - 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. - 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. - 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. - 23. One ZQCS command can effectively correct a minimum of 0.5% (ZQ Correction) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the "Output Driver Voltage and Temperature Sensitivity" and "ODT Voltage and Temperature Sensitivity" tables. The appropriate interval between ZQCS commands can be determined from these tables and other application-specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated, the interval could be defined by the following formula: ZQCorrection / [(TSens x Tdriftrate) + (VSens x Vdriftrate)] where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5%/C, VSens = 0.15%/mV, Tdriftrate = 1 C/sec and Vdriftrate = 15mV/sec, then the interval between ZQCS commands is calculated as $0.5 / [(1.5x1) + (0.15x15)] = 0.133 \sim 128$ ms - 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters. - 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. - 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. - 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100ps of derating to accommodate for the lower ultimate threshold of 150mV and another 25ps to account for the earlier reference point [(175mV 150mV) / 1V/ns]. ## Address / Command Setup, Hold, and De-rating For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) and tIH(base) value to the delta tIS and delta tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + delta tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vref(dc) and the first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vref(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded 'Vref(dc) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded 'Vref(dc) to ac region', the slew rate of the tangent line to the actual signal from the ac level to dc level is used for derating value. Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of Vref(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(dc)min and the first crossing of Vref(dc). If the actual signal is always later than the nominal slew rate line between shaded 'dc to Vref(dc) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to Vref(dc) region', the slew rate of a tangent line to the actual signal from the dc level to Vref(dc) level is used for derating value. For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC. Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac). ### ADD/CMD Setup and Hold Base-Values for 1V/ns | linit [ma] | DDR3-800 | DDR3-1066 | DDR3-1333 | DDR3-1600 | roforonos | |-----------------|-----------|-----------|-----------|-----------|-----------| | Unit [ps] | (-AC/-AD) | (-BE) | (-CG) | (-DI) | reference | | tIS(base) | 200 | 125 | 65 | 45 | VIH/L(ac) | | tIH(base) | 275 | 200 | 140 | 120 | VIH/L(dc) | | tIH(base) AC150 | 350 | 275 | 190 | 170 | VIH/L(dc) | #### Note: - 1. (ac/dc referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate. - 2. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100ps of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mV 150mV) / 1V/ns]. # De-rating values DDR3-800/1066/1333/1600 tlS/tlH - (AC175) | | | | | | | | Delta | tIS, Delt | a tlH dei | rating in | AC/DC b | ased | | | | | | |----------|-----|-------|-------------------|-------|-------|-------|-------------------|-----------|-----------|-----------|---------|-------|----------|-------|----------|-------|-------| | | | | | | | | | DQS, DO | S Differ | ential SI | ew Rate | | | | | | | | | | 4.0 | 4.0 V/ns 3.0 V/ns | | | 2.0 ` | 2.0 V/ns 1.8 V/ns | | 1.6 | V/ns | 1.4 | V/ns | 1.2 V/ns | | 1.0 V/ns | | | | | | D tIS | D tlH | D tIS | D tlH | D tIS | D tIH | D tIS | D tlH | | | 2 | 88 | 50 | 88 | 50 | 88 | 50 | 96 | 58 | 104 | 66 | 112 | 74 | 120 | 84 | 128 | 100 | | (SL | 1.5 | 59 | 34 | 59 | 34 | 59 | 34 | 67 | 42 | 75 | 50 | 83 | 58 | 91 | 68 | 99 | 84 | | (V/ns) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 16 | 16 | 24 | 24 | 32 | 34 | 40 | 50 | | <u>a</u> | 0.9 | -2 | -4 | -2 | -4 | -2 | -4 | 6 | 4 | 14 | 12 | 22 | 20 | 30 | 30 | 38 | 46 | | ā | 0.8 | -6 | -10 | -6 | -10 | -6 | -10 | 2 | -2 | 10 | 6 | 18 | 14 | 26 | 24 | 34 | 40 | | Slew | 0.7 | -11 | -16 | -11 | -16 | -11 | -16 | -3 | -8 | 5 | 0 | 13 | 8 | 21 | 18 | 29 | 34 | | QS | 0.6 | -17 | -26 | -17 | -26 | -17 | -26 | -9 | -18 | -1 | -10 | 7 | -2 | 15 | 8 | 23 | 24 | | ă | 0.5 | -35 | -40 | -35 | -40 | -35 | -40 | -27 | -32 | -19 | -24 | -11 | -16 | -2 | -6 | 5 | 10 | | | 0.4 | -62 | -60 | -62 | -60 | -62 | -60 | -54 | -52 | -46 | -44 | -38 | -36 | -30 | -26 | -22 | -10 | # De-rating values DDR3-800/1066/1333/1600 tlS/tlH - (AC150) | | | . , | | | | | | | | | | | | | | | | |-------|-----|-------|-------|-------|-------|-------|-------|-----------|-----------|-----------|---------|-------|-------|-------|-------|-------|-------| | | | | | | | | Delta | tlS, Delt | a tlH dei | rating in | AC/DC b | ased | | | | | | | | | | | | | | | DQS, DO | S Differ | ential SI | ew Rate | | | | | | | | | | 4.0 | V/ns | 3.0 | V/ns | 2.0 | V/ns | 1.8 | V/ns | 1.6 | V/ns | 1.4 | V/ns | 1.2 | V/ns | 1.0 | V/ns | | | | D tIS | D tIH | D tIS | D tIH | D tIS | D tIH | D tIS | D tlH | | | 2 | 75 | 50 | 75 | 50 | 75 | 50 | 83 | 58 | 91 | 66 | 99 | 74 | 107 | 84 | 115 | 100 | | V/ns) | 1.5 | 50 | 34 | 50 | 34 | 50 | 34 | 58 | 42 | 66 | 50 | 74 | 58 | 82 | 68 | 90 | 84 | | Š | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 16 | 16 | 24 | 24 | 32 | 34 | 40 | 50 | | rate | 0.9 | 0 | -4 | 0 | -4 | 0 | -4 | 8 | 4 | 16 | 12 | 24 | 20 | 32 | 30 | 40 | 46 | | | 0.8 | 0 | -10 | 0 | -10 | 0 | -10 | 8 | -2 | 16 | 6 | 24 | 14 | 32 | 24 | 40 | 40 | | Slew | 0.7 | 0 | -16 | 0 | -16 | 0 | -16 | 8 | -8 | 16 | 0 | 24 | 8 | 32 | 18 | 40 | 34 | | QS | 0.6 | -1 | -26 | -1 | -26 | -1 | -26 | 7 | -18 | 15 | -10 | 23 | -2 | 31 | 8 | 39 | 24 | | ă | 0.5 | -10 | -40 | -10 | -40 | -10 | -40 | -2 | -32 | 6 | -24 | 14 | -16 | 22 | -6 | 30 | 10 | | | 0.4 | -25 | -60 | -25 | -60 | -25 | -60 | -17 | -52 | -9 | -44 | -1 | -36 | 7 | -26 | 15 | -10 | ## Required time tyac above VIH(ac) {below VIL(ac)} for valid transition | Oleve Bete Byteel | tVAC@17 | 5mV [ps] | tVAC@175mV [ps] | | | | |-------------------|---------|----------|-----------------|-----|--|--| | Slew Rate [V/ns] | min | max | min | max | | | | >2.0 | 75 | - | 175 | - | | | | 2 | 57 | - | 170 | - | | | | 1.5 | 50 | - | 167 | - | | | | 1 | 38 | - | 163 | - | | | | 0.9 | 34 | - | 162 | - | | | | 0.8 | 29 | - | 161 | - | | | | 0.7 | 22 | - | 159 | - | | | | 0.6 | 13 | - | 155 | - | | | | 0.5 | 0 | - | 150 | - | | | | <0.5 | 0 | - | 150 | - | | | # Data Setup, Hold, and Slew Rate De-rating For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDH(base) and tDH(base) value to the delta tDS and delta tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + delta tDS Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vref(dc) and the first crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vref(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded 'Vref(dc) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded 'Vref(dc) to ac region', the slew rate of the tangent line to the actual signal from the ac level to dc level is used for derating value. Hold
(tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of Vref(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(dc)min and the first crossing of Vref(dc). If the actual signal is always later than the nominal slew rate line between shaded 'dc level to Vref(dc) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to Vref(dc) region', the slew rate of a tangent line to the actual signal from the dc level to Vref(dc) level is used for derating value. For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC. Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rates in between the values listed in the following tables, the derating values may be obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. ### **Data Setup and Hold Base-Values** | Unit [ps] | DDR3-800
(-AC/-AD) | DDR3-1066
(-BE) | DDR3-1333
(-CG) | DDR3-1600
(-DI) | reference | | | | |---|-----------------------|--------------------|--------------------|--------------------|-----------|--|--|--| | tDS(base) | 75 | 25 | - | - | VIH/L(ac) | | | | | tDS(AC150) | 125 | 75 | 30 | 10 | VIH/L(ac) | | | | | tDH(base) | 150 | 100 | 65 | 45 | VIH/L(dc) | | | | | Note: ac/dc referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate | | | | | | | | | # De-rating values DDR3-800/1066/1333/1600 tDS/tDH - (AC175) | | | Delta tDS, Delta tDH derating in AC/DC based | | | | | | | | | | | | | | | | |--------|-----|--|---------------------------------|-------|-------|------------|-------|--------------|-------|-------|-------------|-------|-------|-------|----------|-------|-------| | | | | DQS, DQS Differential Slew Rate | | | | | | | | | | | | | | | | | | 4.0 V/ns 3.0 V | | V/ns | 2.0 | √/ns 1.8 \ | | V/ns 1.6 V/r | | V/ns | //ns 1.4 V/ | | 1.2 | V/ns | 1.0 V/ns | | | | | | D tDS | D tDH | | 2 | 88 | 50 | 88 | 50 | 88 | 50 | - | - | - | - | - | - | - | - | - | - | | (SL | 1.5 | 59 | 34 | 59 | 34 | 59 | 34 | 67 | 42 | - | - | - | - | - | - | - | - | | (V/ns) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 16 | 16 | - | - | - | - | - | - | | rate | 0.9 | - | - | -2 | -4 | -2 | -4 | 6 | 4 | 14 | 12 | 22 | 20 | - | - | - | - | | | 8.0 | - | - | - | - | -6 | -10 | 2 | -2 | 10 | 6 | 18 | 14 | 26 | 24 | - | - | | Slew | 0.7 | - | - | - | - | - | - | -3 | -8 | 5 | 0 | 13 | 8 | 21 | 18 | 29 | 34 | | ΩS | 0.6 | - | - | - | - | - | - | - | - | -1 | -10 | 7 | -2 | 15 | 8 | 23 | 24 | | ă | 0.5 | - | - | - | - | - | - | - | - | - | - | -11 | -16 | -2 | -6 | 5 | 10 | | | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | -30 | -26 | -22 | -10 | # De-rating values DDR3-800/1066/1333/1600 tDS/tDH - (AC150) | | | Delta tDS, Delta tDH derating in AC/DC based | | | | | | | | | | | | | | | | |--------|-----|--|---------------------------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|-------|-------|-------| | | | | DQS, DQS Differential Slew Rate | | | | | | | | | | | | | | | | | | 4.0 V/ns 3.0 V/ns 2.0 V | | V/ns | 1.8 V/ns | | 1.6 V/ns | | 1.4 V/ns | | 1.2 V/ns | | 1.0 V/ns | | | | | | | | D tDS | D tDH | | 2 | 75 | 50 | 75 | 50 | 75 | 50 | - | - | - | - | - | - | - | - | - | - | | (Sr | 1.5 | 50 | 34 | 50 | 34 | 50 | 34 | 58 | 42 | - | - | - | - | - | - | - | - | | (V/ns) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 16 | 16 | - | - | - | - | - | - | | rate | 0.9 | - | - | 0 | -4 | 0 | -4 | 8 | 4 | 16 | 12 | 24 | 20 | - | - | - | - | | | 0.8 | - | - | - | - | 0 | -10 | 8 | -2 | 16 | 6 | 24 | 14 | 32 | 24 | - | - | | Slew | 0.7 | - | - | - | - | - | - | 8 | -8 | 16 | 0 | 24 | 8 | 32 | 18 | 40 | 34 | | | 0.6 | - | - | - | - | - | - | - | - | 15 | -10 | 23 | -2 | 31 | 8 | 39 | 24 | | g | 0.5 | - | - | - | - | - | - | - | - | - | - | 14 | -16 | 22 | -6 | 30 | 10 | | | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | 7 | -26 | 15 | -10 | # Required time t_{VAC} above VIH(ac) {below VIL(ac)} for valid transition | | DDR3-800 | D/1066 (AC175) | DDR3-1333/1600 (AC150)
t _{VAC} [ps] | | | | |------------------|----------|---------------------|---|-----|--|--| | Slew Rate [V/ns] | t. | _{VAC} [ps] | | | | | | | min | max | min | max | | | | >2.0 | 75 | - | 175 | - | | | | 2 | 57 | - | 170 | - | | | | 1.5 | 50 | - | 167 | - | | | | 1 | 38 | - | 163 | - | | | | 0.9 | 34 | - | 162 | - | | | | 0.8 | 29 | - | 161 | - | | | | 0.7 | 22 | - | 159 | - | | | | 0.6 | 13 | - | 155 | - | | | | 0.5 | 0 | - | 155 | - | | | | <0.5 | 0 | - | 150 | - | | | Package Dimensions (x4; 78 balls; 0.8mmx0.8mm Pitch; BGA) Package Dimensions (x8; 78 balls; 0.8mmx0.8mm Pitch; BGA) Package Dimensions (x16; 96 balls; 0.8mmx0.8mm Pitch; BGA) # **Revision Log** | Rev | Date | Modification | |-----|---------|----------------------------| | 0.1 | 01/2010 | Preliminary Release | | 1.0 | 04/2010 | Official revision released | | 1.1 | 08/2010 | Add DDR3L (VDD=1.35V) | Nanya Technology Corporation. All rights reserved. Printed in Taiwan, R.O.C., 2006 The following are trademarks of NANYA TECHNOLOGY CORPORATION in R.O.C, or other countries, or both. NANYA and NANYA logo Other company, product and service names may be trademarks or service marks of others. NANYA TECHNOLOGY CORPORATION (NTC) reserves the right to make changes without notice. NTC warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with NTC's standard warranty. Testing and other quality control techniques are utilized to the extent NTC deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). NTC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTEND, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of NTC products in such applications is understood to be fully at the risk of the customer. Use of NTC products in such applications requires the written approval of an appropriate NTC officer. Question concerning potential risk applications should be directed to NTC through a local sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by customer to minimize the inherent or procedural hazards.NTC assumes no liability of applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does NTC warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of NTC covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. NANYA TECHNOLOGY CORPORATION **HWA YA Technology Park** 669, FU HSING 3rd Rd., Kuei-Shan, Tao-Yuan, Taiwan, R.O.C. The NANYA TECHNOLOGY CORPORATION Home page can be found at http:\\www.nanya.com