This device has been replaced by NTE30128

NTE30122 LED Indicator Ultraviolet, 5mm

Features:

- High Intensity
- Normal T−1 3/4 (5mm) Diameter Package
- General Purpose Leads
- Reliable and Rugged

Applications:

- Identifies Counterfeit U.S. Currency
- Identification of UV Watermark on Credit Cards, Drivers Licenses, Passports, etc.
- UV Illumination of Detailed Seals, Stamps, Stickers, Images, and Multicolored Fibers on Visas, Passports and Currencies of Various Nations

Absolute Maximum Ratings: $(T_A = +25^{\circ}C)$ unless otherwise specified)

Power Dissipation, P _D	120mW
Peak Forward Current (1/10th Duty Cycle, 0.1ms Pulse Width), I _{FM}	
Continuous Forward Current, I _F	
Derate Linearly From +50°C	0.4mA/°C
Reverse Voltage, V _R	5V
Operating Temperature Range, Topr	–40° to +80°C
Storage Temperature Range, T _{stq}	–40° to +80°C
Lead Temperature (During Soldering, 4mm from Body, 5sec Max), T ₁	+260°C

CAUTION: UV light can be harmful to the eyes even for a brief period. If it is necessary to view UV light, filtered glasses must be used. Affix a caution label if the UV light in your product can be viewed directly.

<u>Electrical Optical Characteristics:</u> (T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Luminous Intensity	Ι _V	I _F = 20mA, Note 1	60	_	90	mcd
View Angle of Half Power	2 θ _{1/2}	Note 2	10	15	20	deg
Peak Emission Wavelength	λ_{P}	I _F = 20mA	_	_	_	nm
Dominant Emission Wavelength	λ_{d}	I _F = 20mA, Note 3	380	_	385	nm
Spectral Line Half-Width	Δλ	I _F = 20mA	_	25	_	nm
Forward Voltage	V _F	I _F = 20mA	3.0	3.3	3.7	V
Reverse Current	I _R	V _R = 5V	_	_	10	μΑ

- Note 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye–response curve.
- Note 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- Note 3. The dominant wavelength (λ_d) is derived from the CIE chromaticity diagram and represents the single wavelength, which defines the color of the device.

