NTE30123 Super Bright LED Indicator Super Purple, 8mm ## Features: - Low Power Consumption - High Efficiency - Versatile Mounting on P.C. Board or Panel - Low Current Requirement - Reliable and Robust ## **Applications:** - TV Sets - Monitor - Telephone - Computer - Circuit Board | Absolute Maximum Ratings: $(T_A = +25^{\circ}C)$ unless otherwise specified) | | |---|-----| | Power Dissipation, P _D | ηW | | Peak Forward Current (1/10th Duty Cycle, 0.1ms Pulse Width), I _{FM} | mΑ | | Continuous Forward Current, I _F | mΑ | | Reverse Voltage, V _R | 5V | | Operating Temperature Range, Topr35° to +8 | 5°C | | Storage Temperature Range, T _{stq} 40° to +10° | 0°C | | Lead Temperature (During Soldering, 3mm from Body, 5sec Max), T _L +26 | | ## **Electrical Optical Characteristics:** $(T_A = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |------------------------------|--------------------|-----------------------|-----|------|-----|------| | Luminous Intensity | I _V | I _F = 20mA | 150 | 190 | _ | mcd | | View Angle of Half Power | 2 θ _{1/2} | I _F = 20mA | - | 25 | - | deg | | Peak Emission Wavelength | λ_{P} | I _F = 20mA | - | 400 | _ | nm | | Dominant Emission Wavelength | λ_{d} | I _F = 20mA | - | _ | _ | nm | | Full Width at Half Max | Δλ | I _F = 20mA | - | 13.3 | - | nm | | Forward Voltage | V _F | I _F = 20mA | 3.2 | 3.3 | 4.0 | V | | Reverse Current | I _R | V _R = 5V | - | _ | 10 | μΑ | - Note 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. - Note 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - Note 3. The dominant wavelength (λ_d) is derived from the CIE chromaticity diagram and represents the single wavelength, which defines the color of the device.