

NTE7483 Integrated Circuit TTL – 4–Bit Binary Full Adder with Fast Carry

Description:

The NTE7483 is a 4-bit binary full adder in a 16-Lead plastic DIP type package that performs the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. This device features full internal look-ahead across all four bits generating the carry term in ten nanoseconds (typ). This capability provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripply-carry implementation.

The adder logic, including the carry, is implemented in its true form. End around carry can be accomplished without the need for logic or level inversion.

Features:

- Full-Carry Look-Ahead Across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple-Carry
- The NTE74283 is Recommended for New Design as it Features Supply Voltage and GND on Corner Pins to Simplify Board Layout.

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	7V
Input Voltage, V _{IN}	5.5V
Interemitter Voltage (Note 2)	5.5V
Operating Temperature Range, T _A 0°C to	+70°C
Storage Temperature Range, T _{stg} –65°C to +	150°C

- Note 1. Unless otherwise specified, all voltages are referenced to GND.
- Note 2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies between the following pairs: A1 and B1, A and B2, A3 and B3, A4 and B4.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	V
High-Level Output Current Any Output Except C4	Гон	_	_	-800	μΑ
Output C4		_	_	-400	μΑ
Low-Level Output Current Any Output Except C4	I _{OL}	_	_	16	mA
Output C4		_	_	8	mA
Operating Temperature Range	T _A	0	-	+70	°C

Electrical Characteristics: (Note 3, Note 4)

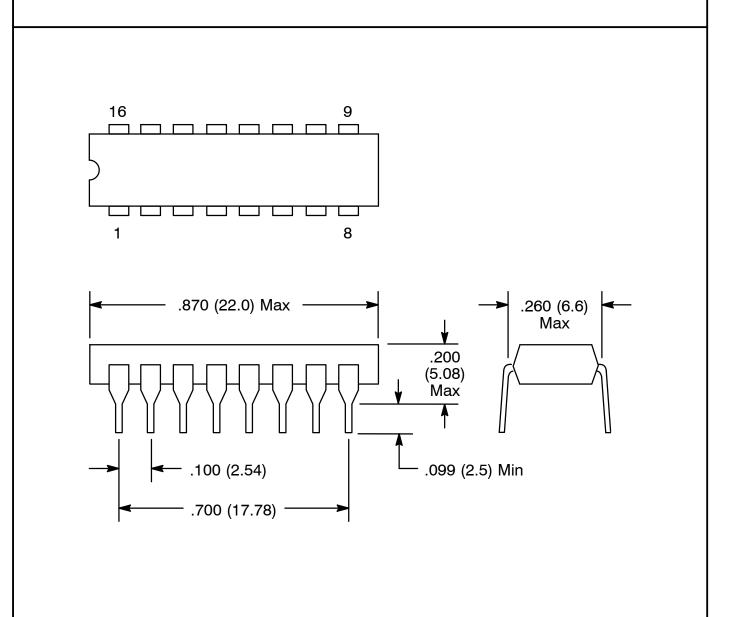
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High Level Input Voltage	V_{IH}		2	_	-	V
Low Level Input Voltage	V _{IL}		-	_	0.8	V
Input Clamp Voltage	V_{IK}	V _{CC} = MIN, I _I = -12mA	-	_	-1.5	V
High Level Output Voltage	V _{OH}	$V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = MAX$	2.4	3.4	_	V
Low Level Output Voltage	V _{OL}	V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 4mA	-	0.2	0.4	V
Input Current	I _I	V _{CC} = MAX, V _I = 5.5V	-	_	1	mA
High Level Input Current	I _{IH}	V _{CC} = MAX, V _I = 2.4V	-	_	40	μΑ
Low Level Input Current	I _{IL}	$V_{CC} = MAX, V_I = 0.4V$	-	_	-1.6	mA
Short-Circuit Output Current Any Output Except C4	los	V _{CC} = MAX, Note 5	-18	_	-55	mA
Output C4			-18	_	-70	mA
Supply Current All B Low, Other Inputs at 4.5V	I _{CC}	V _{CC} = MAX, Outputs Open	-	56	_	mA
All Inputs at 4.5V			-	66	110	mA

- Note 3. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 4. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.
- Note 5. Not more than one output should be shorted at a time.

<u>Switching Characteristics</u>: $(V_{CC} = 5V, R_L = 667\Omega, T_A = +25^{\circ}C)$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Propagation Delay Time	t _{PLH}	$R_L = 400\Omega$, $C_L = 15pF$	_	14	21	ns
(From C0 Input to Any Σ Output)	t _{PHL}		-	12	21	ns
Propagation Delay Time	t _{PLH}		-	16	24	ns
(From A_i or B_i Input to Σ_i Output)	t _{PHL}		-	16	24	ns
Output Enable Time	t _{PZH}	$R_L = 780\Omega, C_L = 15pF$	-	9	14	ns
(From C0 Input to C4 Output)	t _{PZL}		-	11	16	ns
Propagation Delay Time	t _{PLH}		-	9	14	ns
(From A _i or B _i Input to C4 Output)	t _{PHL}		_	11	16	ns

Function Table:


				Output					
	Inp	out					When C2 = H		
A1 A3	B1 B3	A2 A4	B2 B4	Σ1 Σ3	Σ2 Σ4	C2 C4	Σ1 Σ3	Σ2 Σ4	C2 C4
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	Н	L
L	Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	Н	L	L	L	Н
L	Н	Н	L	Н	Н	L	L	L	Н
Н	Н	Н	L	L	L	Н	Н	L	Н
L	L	L	Н	L	Н	L	Н	Н	L
Н	L	L	Н	Н	Н	L	L	L	Н
L	Н	L	Н	Н	Н	L	L	L	Н
Н	Н	L	Н	L	L	Н	Н	L	Н
L	L	Н	Н	L	L	Н	Н	L	Н
Н	L	Н	Н	Н	L	Н	L	Н	Н
L	Н	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	Н	Н

H = HIGH Level

L = LOW Level

NOTE: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4.

Pin Connection Diagram A4 1 **16** B4 **Σ3 2 15 ¾**4 A3 3 14 C4 B3 **4** 13 C0 V_{CC} 5 12 GND Σ2 6 **11** B1 B2 **7 10** A1 A2 8 **9** Σ1

