

NTE784 Integrated Circuit Wide–Band Power Amplifier

Description:

The NTE784 is a multistage, multipurpose, wide—band power amplifier on a single monolithic silicon chip. This device employs a highly versitile and stable direct—coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the NTE784 extremely useful for a wide variety of applications in military, industrial, and commercial equipment.

The NTE784 is particularly suited for service as a class B power amplifier and can provide a maximum power output of 1W from a 12V DC supply with a typical power gain of 75dB.

Features:

- High Power Output
- Wide Frequency Range
- High Power Gain
- Single Power Supply for Class B Operation with Transformer
- Built-In Temperature Tracking Voltage Regulator Provides Stable Operation

Applications:

- AF Power Amplifiers for Portable and Fixed Sound and Communications Systems
- Servo–Control Amplifier
- Wide–Band Linear Mixers
- Video Power Amplifiers
- Transmission–Line Driver Amplifier (Balanced and Unbalanced)
- Fan-In and Fan-Out Amplifiers for Computer Logic Circuits
- Lamp-Control Amplifiers
- Motor–Control Amplifiers
- Power Multivibrators
- Power Switches

Absolute Maximum Ratings:

Power Dissipation (Without Heatsink, T _A = +25°C), P _D	1W
Derate Above 25°C	
Power Dissipation (With Heatsink, T _C = +25°C), P _D	2W
Derate Above 55°C	
Operating Temperature Range, Topr	–55° to +125°C
Storage Temperature Range, T _{stq}	–65° to +150°C
Maximum Thermal Resistance, Junction-to-Case, R _{th IC}	60°C/W

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	V _{(BR)CER}	(Q ₆ & Q ₇) I _C = 10mA	25	_	_	V
	V _{(BR)CEO}	$(Q_1) I_C = 0.1 mA$	10	_	_	V
Idle Currents	I ₄ , I ₇	(Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V	_	5.5	_	mA
Peak Output Currents	I ₄ , I ₇	(Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V	180	_	_	mA
Cutoff Currents	I ₄ , I ₇	(Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V	_	_	1.0	mA
Differential Amplifier Current Drain	I _{CC1}	V _{CC1} = 9V, V _{CC2} = 9V	6.3	9.4	12.5	mA
Total Current Drain	I _{CC1} + I _{CC2}	V _{CC1} = 9V, V _{CC2} = 9V	14.5	21.5	30.0	mA
Differential Amplifier Input Pin Voltages	V ₂ , V ₃	V _{CC1} = 9V, V _{CC2} = 2V	_	11.1	_	V
Regulator Pin Voltage	V ₁₁	V _{CC1} = 9V, V _{CC2} = 2V	_	2.35	_	V
Collector–Emitter Cutoff Current	I _{CEO}	(Q) V _{CC1} = 10V	_	_	100	μΑ
Emitter–Base Cutoff Current	I _{EBO}	(Q) V _{CC1} = 3V	_	_	0.1	μΑ
Collector–Base Cutoff Current	I _{CBO}	(Q) V _{CC1} = 3V	_	_	0.1	μΑ
Forward Current Transfer Ratio	h _{FE1}	$(Q_1) I_C = 3mA, V_{CC1} = 6V$	30	75	_	
Bandwidth	BW	V _{CC1} = 6V, V _{CC2} = 6V, –3dB	_	8	_	MHz
Maximum Power Output	P _{O(max)}	$V_{CC1} = 6V, V_{CC2} = 6V, R_{CC} = 130\Omega$	200	300	_	mW
		$V_{CC1} = 9V, V_{CC2} = 9V, R_{CC} = 130\Omega$	400	550	_	mW
		$V_{CC1} = 9V$, $V_{CC2} = 12V$, $R_{CC} = 200\Omega$	800	1000	-	mW
Sensitivity	e _{IN}	$V_{CC1} = 9V, V_{CC2} = 12V, P_{OUT} = 800mW, R_{CC} = 200\Omega$	_	50	100	mV
Input Resistance	R _{IN3}	$V_{CC1} = 6V$, $V_{CC2} = 6V$, Pin3 to GND	_	1000	_	Ω

