NTE784 Integrated Circuit Wide–Band Power Amplifier #### **Description:** The NTE784 is a multistage, multipurpose, wide—band power amplifier on a single monolithic silicon chip. This device employs a highly versitile and stable direct—coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the NTE784 extremely useful for a wide variety of applications in military, industrial, and commercial equipment. The NTE784 is particularly suited for service as a class B power amplifier and can provide a maximum power output of 1W from a 12V DC supply with a typical power gain of 75dB. #### Features: - High Power Output - Wide Frequency Range - High Power Gain - Single Power Supply for Class B Operation with Transformer - Built-In Temperature Tracking Voltage Regulator Provides Stable Operation ### **Applications:** - AF Power Amplifiers for Portable and Fixed Sound and Communications Systems - Servo–Control Amplifier - Wide–Band Linear Mixers - Video Power Amplifiers - Transmission–Line Driver Amplifier (Balanced and Unbalanced) - Fan-In and Fan-Out Amplifiers for Computer Logic Circuits - Lamp-Control Amplifiers - Motor–Control Amplifiers - Power Multivibrators - Power Switches #### **Absolute Maximum Ratings:** | Power Dissipation (Without Heatsink, T _A = +25°C), P _D | 1W | |--|----------------| | Derate Above 25°C | | | Power Dissipation (With Heatsink, T _C = +25°C), P _D | 2W | | Derate Above 55°C | | | Operating Temperature Range, Topr | –55° to +125°C | | Storage Temperature Range, T _{stq} | –65° to +150°C | | Maximum Thermal Resistance, Junction-to-Case, R _{th IC} | 60°C/W | # **Electrical Characteristics:** $(T_A = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---|-------------------------------------|--|------|------|------|------| | Collector-Emitter Breakdown Voltage | V _{(BR)CER} | (Q ₆ & Q ₇) I _C = 10mA | 25 | _ | _ | V | | | V _{(BR)CEO} | $(Q_1) I_C = 0.1 mA$ | 10 | _ | _ | V | | Idle Currents | I ₄ , I ₇ | (Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V | _ | 5.5 | _ | mA | | Peak Output Currents | I ₄ , I ₇ | (Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V | 180 | _ | _ | mA | | Cutoff Currents | I ₄ , I ₇ | (Q ₆ & Q ₇) V _{CC1} =9V, V _{CC2} = 2V | _ | _ | 1.0 | mA | | Differential Amplifier Current Drain | I _{CC1} | V _{CC1} = 9V, V _{CC2} = 9V | 6.3 | 9.4 | 12.5 | mA | | Total Current Drain | I _{CC1} + I _{CC2} | V _{CC1} = 9V, V _{CC2} = 9V | 14.5 | 21.5 | 30.0 | mA | | Differential Amplifier Input Pin Voltages | V ₂ , V ₃ | V _{CC1} = 9V, V _{CC2} = 2V | _ | 11.1 | _ | V | | Regulator Pin Voltage | V ₁₁ | V _{CC1} = 9V, V _{CC2} = 2V | _ | 2.35 | _ | V | | Collector–Emitter Cutoff Current | I _{CEO} | (Q) V _{CC1} = 10V | _ | _ | 100 | μΑ | | Emitter–Base Cutoff Current | I _{EBO} | (Q) V _{CC1} = 3V | _ | _ | 0.1 | μΑ | | Collector–Base Cutoff Current | I _{CBO} | (Q) V _{CC1} = 3V | _ | _ | 0.1 | μΑ | | Forward Current Transfer Ratio | h _{FE1} | $(Q_1) I_C = 3mA, V_{CC1} = 6V$ | 30 | 75 | _ | | | Bandwidth | BW | V _{CC1} = 6V, V _{CC2} = 6V, –3dB | _ | 8 | _ | MHz | | Maximum Power Output | P _{O(max)} | $V_{CC1} = 6V, V_{CC2} = 6V, R_{CC} = 130\Omega$ | 200 | 300 | _ | mW | | | | $V_{CC1} = 9V, V_{CC2} = 9V, R_{CC} = 130\Omega$ | 400 | 550 | _ | mW | | | | $V_{CC1} = 9V$, $V_{CC2} = 12V$, $R_{CC} = 200\Omega$ | 800 | 1000 | - | mW | | Sensitivity | e _{IN} | $V_{CC1} = 9V, V_{CC2} = 12V, P_{OUT} = 800mW, R_{CC} = 200\Omega$ | _ | 50 | 100 | mV | | Input Resistance | R _{IN3} | $V_{CC1} = 6V$, $V_{CC2} = 6V$, Pin3 to GND | _ | 1000 | _ | Ω |