Power MOSFET

-20 V, -3.16 A, Single P-Channel TSOP-6

Features

- Ultra Low R_{DS(on)} to Improve Conduction Loss
- Low Gate Charge to Improve Switching Losses
- TSOP-6 Surface Mount Package
- This is a Pb-Free Device

Applications

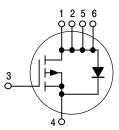
- High Side Switch in DC-DC Converters
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltag	V_{DSS}	-20	V		
Gate-to-Source Voltage	Gate-to-Source Voltage			±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	-2.5	Α
Current (Note 1)	State	T _A = 85°C	1	-1.8	
	t = 10 s	T _A = 25°C	1	-3.16	
Power Dissipation (Note 1)			P _D	0.98	W
	t = 10 s			1.60	eet4U.com
Continuous Drain	Steady State	T _A = 25°C	I _D	-1.8	Α
Current (Note 2)		T _A = 85°C		-1.3	
Power Dissipation (Note 2)	T _A = 25°C		P _D	0.51	W
Pulsed Drain Current	ulsed Drain Current t _p = 10 μs			-13	Α
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body D	I _S	-1.5	Α		
Lead Temperature for S (1/8" from case for 10 s	TL	260	°C		

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.0751 in sq)



ON Semiconductor®

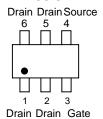
http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX
	91 mΩ @ 4.5 V	
–20 V	144 mΩ @ 2.7 V	–3.16 A
	188 mΩ @ 2.5 V	

P-Channel

MARKING DIAGRAM

TSOP-6 CASE 318G STYLE 1



PT = Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3441PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	128	°C/W
Junction-to-Ambient - t = 10 s (Note 3)	$R_{ heta JA}$	78	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	244	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
 Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = TBD in sq)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

	1				r	1	1
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				16		mV/ °C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -20 \text{ V}$	T _J = 125°C			-10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	s = ±12 V			±100	nA
ON CHARACTERISTICS (Note 5)					-		•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= –250 μA	0.6		1.6	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_{D} = -3.0 \text{ A}$			91	110	mΩ
		V _{GS} = 2.7 V, I _D	= -1.5 A		144	165	
		$V_{GS} = 2.5 \text{ V}, I_{D}$	= -1.5 A		188		
Forward Transconductance	9 _{FS}	$V_{DS} = -15 \text{ V}, I_{D} = -1.5 \text{ A}$			4.0		S
CHARGES, CAPACITANCES AND GATE RES	ISTANCE	•					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -15 V			345		pF
Output Capacitance	C _{OSS}				150		1
Reverse Transfer Capacitance	C _{RSS}				40		1
Total Gate Charge	Q _{G(TOT)}				3.25	6.0	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}; I_D = -3.0 \text{ A}$			0.3		1
Gate-to-Source Charge	Q_{GS}				0.6		1
Gate-to-Drain Charge	Q_{GD}				1.4		1
SWITCHING CHARACTERISTICS (Note 6)							-
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -1.5 \text{ A}, R_{G} = 4.7 \Omega$			7.0	12	ns
Rise Time	T _r				14	25	1
Turn-Off Delay Time	t _{d(OFF)}				13	25	1
Fall Time	T _f				4.0	8.0	1
DRAIN-SOURCE DIODE CHARACTERISTICS	3						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	T _J = 25°C		8.0	1.2	V
		$I_S = -3.0 \text{ A}$	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = -3.0 \text{ A}$			25		ns
Charge Time	Ta				10		1
Discharge Time	T _b				15		1
Reverse Recovery Charge	Q_{RR}				15		nC

^{5.} Switching characteristics are independent of operating junction temperatures

^{6.} Pulse Test: pulse width = 300 μ s, duty cycle = 2%

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

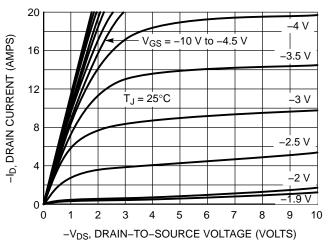


Figure 1. On-Region Characteristics

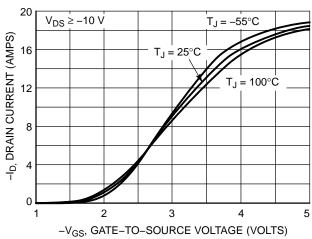


Figure 2. Transfer Characteristics

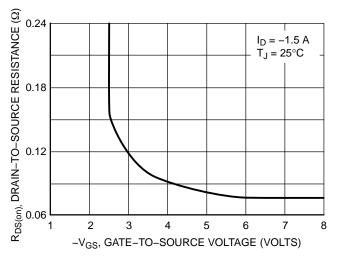


Figure 3. On-Resistance vs. Gate-to-Source Voltage

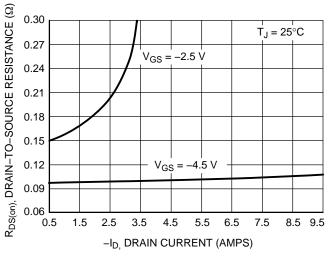


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

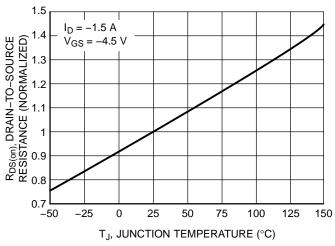


Figure 5. On–Resistance Variation with Temperature

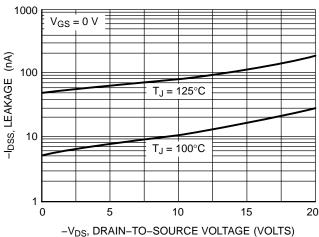


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

Figure 7. Capacitance Variation

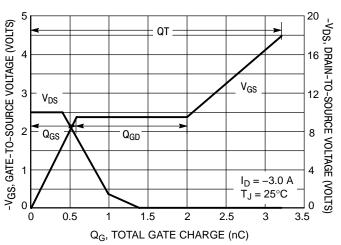


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Gate Threshold Voltage Variation with Temperature

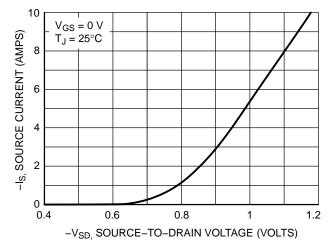
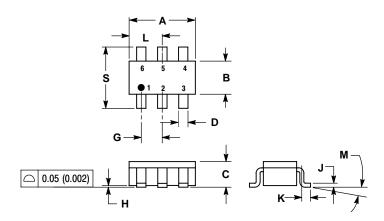
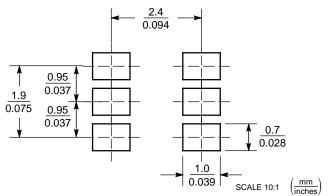



Figure 10. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE N**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

		MILLIN	METERS	INCHES		
DI	DIM MIN		MAX	MIN	MAX	
Α		2.90	3.10	0.1142	0.1220	
В		1.30	1.70	0.0512	0.0669	
С		0.90	1.10	0.0354	0.0433	
D		0.25	0.50	0.0098	0.0197	
G		0.85	1.05	0.0335	0.0413	
Н		0.013	0.100	0.0005	0.0040	
J		0.10	0.26	0.0040	0.0102	
K		0.20	0.60	0.0079	0.0236	
L	Ī	1.25	1.55	0.0493	0.0610	
M		0 °	10°	0 °	10°	
S		2.50	3.00	0.0985	0.1181	

STYLE 1:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.