MOSFET – Power, N-Channel, Silicon Carbide, TO-247-3L

1200 V, 80 m Ω

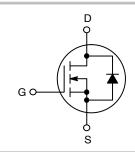
Description

Silicon Carbide (SiC) MOSFET uses a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size.

Features

- 1200 V @ $T_J = 175$ °C
- Max $R_{DS(on)} = 110 \text{ m}\Omega$ at $V_{GS} = 20 \text{ V}$, $I_D = 20 \text{ A}$
- High Speed Switching with Low Capacitance
- 100% UIL Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Industrial Motor Drive
- UPS
- Boost Inverter
- PV Charger

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
1200 V	80 mΩ	44 A

long leads CASE 340CX

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NTHL080N120SC1 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Ratings	Unit	
V _{DSmax}	Drain-to-Source Voltage		1200	V
V _{GSmax}	Max. Gate-to-Source Voltage	@ T _C < 150°C	-15 / +25	V
V _{GSop} (DC)	Recommended operation Values of Gate – Source Voltage	@ T _C < 150°C	-5 / +20	V
V _{GSop} (AC)	Recommended operation Values of Gate – Source Voltage (f > 1 Hz)	@ T _C < 150°C	-5 / +20	V
I _D	Continuous Drain Current	V _{GS} = 20 V, T _C = 25°C	44	А
		V _{GS} = 20 V, T _C = 100°C	31	=
I _{D(Pulse)}	Pulse Drain Current	Pulse width tp limited by Tj max	136	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	171	mJ	
P _{tot}	Power Dissipation	T _C = 25°C	348	W
		T _C = 150°C	58	1
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. E_{AS} of 171 mJ is based on starting Tj = 25°C, L = 1 mH, I_{AS} = 18.5 A, , V_{DD} = 50 V, R_G = 25 Ω .

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	0.43	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTHL080N120SC1	NTHL080N120SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Def CHARACTERISTICS BV _{DSS} Drain-to-Source Breakdown Voltage I _D = 100 μA, V _{GS} = 0 V 1200 − ABV _{DSS} /AT _J Breakdown Voltage Temperature I _D = 5 mA, Referenced to 25 °C − 0.3	Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
ΔBV _{DSS} /ΔT _J Breakdown Voltage Temperature Coefficient I _D = 5 mA. Referenced to 25°C - 0.3 I _{DSS} Zero Gate Voltage Drain Current V _{DS} = 1200 V, V _{GS} = 0 V T _C = 150°C	FF CHARACT	ERISTICS						
Coefficient Vision Visio	BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 100 \mu A, V_{GS} = 0 V$		1200	_	_	V
I_GSS Gate-to-Source Leakage Current V _{GS} = 25 V, V _{DS} = 0 V	$\Delta BV_{DSS}/\Delta T_{J}$		I _D = 5 mA, Referenced to 25°C		-	0.3	_	V/°C
GassR Gate-to-Source Leakage Current, Reverse VGS = -15 V, VDS = 0 V	I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1200 V, V _{GS} = 0			- -	100 1.0	μA mA
Provided Provide	I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = 25 V, V _{DS} = 0 V		_	-	1	μΑ
$ \begin{array}{c} V_{GS(ph)} \\ V_{GS(ph)} \\ \hline \\ R_{DS(on)} \\ \hline \\ Static Drain-to-Source On Resistance \\ \hline \\ R_{DS(on)} \\ \hline \\ Static Drain-to-Source On Resistance \\ \hline \\ R_{DS(on)} \\ \hline \\ Static Drain-to-Source On Resistance \\ \hline \\ R_{DS(on)} \\ \hline \\ Static Drain-to-Source On Resistance \\ \hline \\ R_{DS(on)} \\ \hline \\ Static Drain-to-Source On Resistance \\ \hline \\ R_{DS} \\ \hline \\ SpS \\ \hline \\ Forward Transconductance \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ T_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ T_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 150^{\circ}C \\ \hline \\ V_{DS} = 20 \ V, \ I_{D} = 20 \ A, \ I_{C} = 20 \ A,$	I _{GSSR}	, ,	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$,	-	-	-1	μΑ
Static Drain-to-Source On Resistance V _{GS} = 20 V, I _D = 20 A − 80	N CHARACTE	RISTICS						
V _{GS} = 20 V, I _D = 20 A, T _C = 150°C	V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$		1.8	2.5	4.3	V
Property	R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 20 V, I _D = 20 A		_	80	110	mΩ
V _{DS} = 20 V, I _D = 20 A, T _C = 150°C			V _{GS} = 20 V, I _D = 20 A, 7	Γ _C = 150°C	_	114	162	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g _F s	Forward Transconductance			-	13	-	S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{DS} = 20 V, I _D = 20 A, 7	Γ _C = 150°C	_	11	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	YNAMIC CHAI	RACTERISTICS	1			l	l	l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance	V _{DS} = 800 V, V _{GS} = 0 V	, f = 1 MHz	_	1112	1670	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Output Capacitance			_	80	120	pF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Reverse Transfer Capacitance			_	6.5	10	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Coss Stored Energy			_	32	_	μJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time	V _{CC} = 800 V, I _C = 20 A,		_	6.2	13	ns
t _d (off) Turn-Off Delay Time t _f Fall Time E _{on} Turn-on Switching Loss E _{off} Turn-off Switching Loss E _{ts} Total Switching Loss Q _g Total Gate Charge Q _{gs} Gate-to-Source Charge Q _{gd} Gate-to-Drain Charge R _G Gate input resistance V _{SD} Source-to-Drain Diode Forward Voltage V _{SD} Source-to-Drain Diode Forward V _{SD} Source-to-Drain Diode Forward Voltage V _{SD} Source-to-Drain Diode Forward V _{SD} Source-to-Drain Dio	. ,	Rise Time	$V_{GS} = -5/20 \text{ V}, R_{G} = 4.7 \Omega$		_	5.8	12	ns
t _f Fall Time Eon Turn-on Switching Loss Eoff Turn-off Switching Loss Ets Total Switching Loss Q _g Total Gate Charge Q _{gs} Gate-to-Source Charge Q _{gd} Gate input resistance V _{SD} Source-to-Drain Diode Forward Voltage V _{SD} Source-to-Drain Diode Forward Voltage t _{rr} Diode Reverse Recovery Time T _C = 150°C T	•	Turn-Off Delay Time	maddivo Edad, 10 = 20		_	28	45	ns
		·			_	8	16	ns
		Turn-on Switching Loss			_	361	_	μJ
		<u> </u>			_		_	μJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>			_		_	μJ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	V _{DD} = 600 V. I _D = 20 A		_		_	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•					_	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ţ.	f = 1 MHz. D–S short				_	Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		'				ı	<u> </u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			VG9 = -5 V	T _C = 25°C	_	4.0	_	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OD		len = 10 A	_			_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F.,.	Reverse Recovery Energy	len = 20 A.	_			_	μJ
$dl_{SD}/dt = 1000 \text{ A}/\mu\text{s}$ $T_C = 150^{\circ}\text{C}$ $-$ 31 $T_C = 25^{\circ}\text{C}$ $-$ 80		, ,,	$V_{GS} = -5 V$,	_			_	μυ ns
Q_{rr} Diode Reverse Recovery Charge $T_C = 25^{\circ}C$ - 80	۲rr	Diode Heverse Hecovery IIIIIe	dl /dt 1000 A/vs					119
	0	Diada Payarea Pagayar: Charas		-			-	20
T 45000 040	Q _{rr}	Didue neverse necovery Charge					-	nC
T _C = 150°C - 212		Dools Dossesson Doors and Occasion					-	
I_{rrm} Peak Reverse Recovery Current $ T_C = 25^{\circ}C - 9 $ $ T_C = 150^{\circ}C - 14 $	I _{rrm}	Реак Heverse Hecovery Current			_		_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

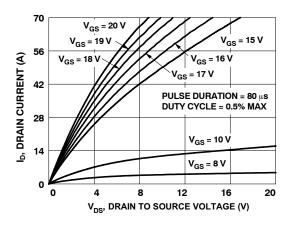


Figure 1. On Region Characteristics

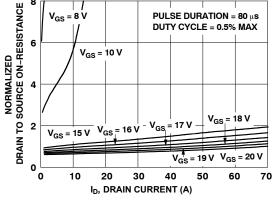


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

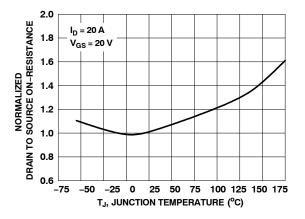


Figure 3. Normalized On Resistance vs. Junction Temperature

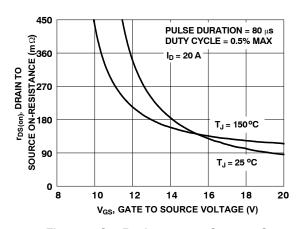


Figure 4. On-Resistance vs. Gate-to-Source Voltage

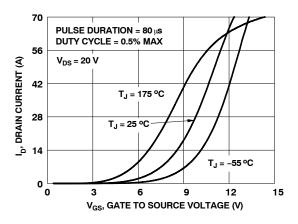


Figure 5. Transfer Characteristics

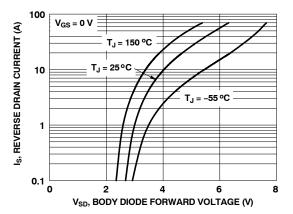


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

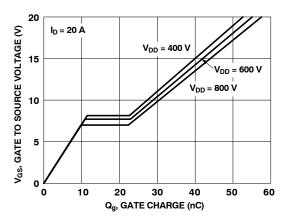


Figure 7. Gate Charge Characteristics

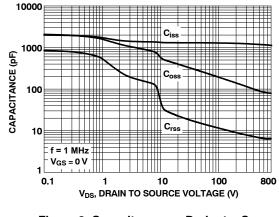


Figure 8. Capacitance vs. Drain-to-Source Voltage

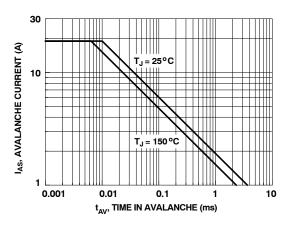


Figure 9. Unclamped Inductive Switching Capability

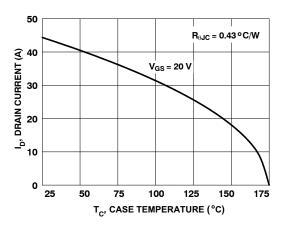


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

Figure 11. Forward Bias Safe Operating Area

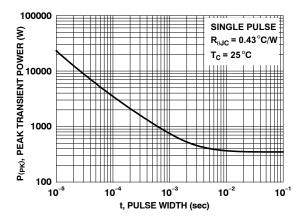


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

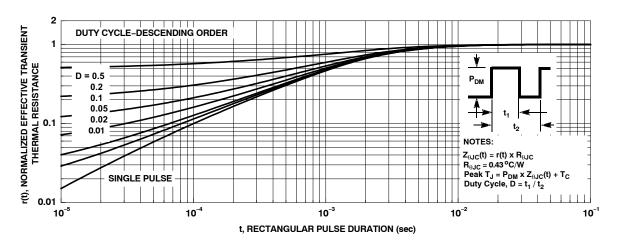
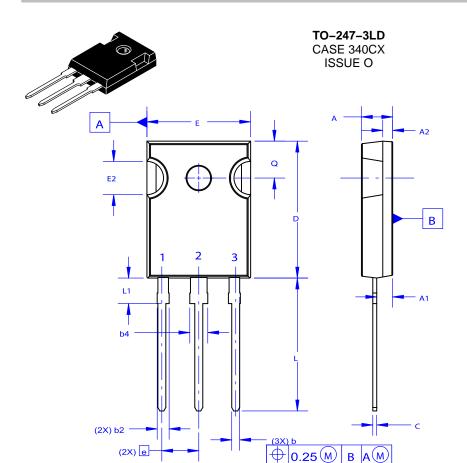
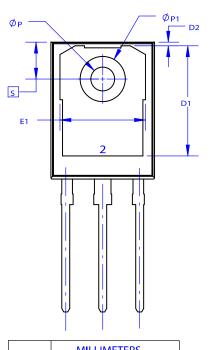
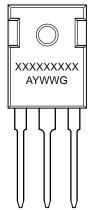




Figure 13. Junction-to-Case Transient Thermal Response Curve


DATE 27 JUN 2018

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
Ø P 1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative