Power MOSFET

30 V, 7.3 A, Dual N–Channel, 2.0x2.0x0.55 mm μCool [™] UDFN6 Package

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 2.0 x 2.0 x 0.55 mm for Board Space Saving
- Ultra Low R_{DS(on)}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

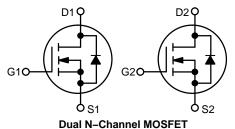
Applications

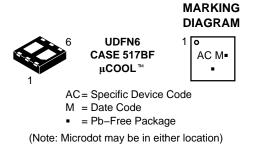
- Power Load Switch
- Wireless Charging
- DC–DC Converters

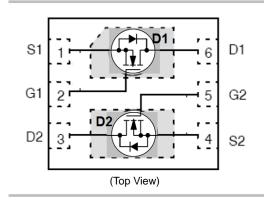
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Pa	Parameter			Value	Unit
Drain-to-Source Vo	ltage		V _{DSS}	30	V
Gate-to-Source Vol	tage		V _{GS}	±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	7.3	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		5.3	
	t ≤ 5 s	$T_A = 25^{\circ}C$		9.1	
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	1.70	W
	t ≤ 5 s	T _A = 25°C		2.63	
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	I _D	4.8	А
Current (Note 2)	State	T _A = 85°C		3.4	
Power Dissipation (Note 2)		$T_A = 25^{\circ}C$	PD	0.72	W
Pulsed Drain Curre	Pulsed Drain Current $t_p = 10 \ \mu s$			22	А
MOSFET Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 1)			۱ _S	3.0	А
Lead Temperature f (1/8" from case for		g Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 2. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.


ON Semiconductor®


www.onsemi.com

MOSFET						
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX				
	21 mΩ @ 10 V					
30 V	24 mΩ @ 4.5 V					
	26 mΩ @ 3.7 V	7.3 A				
30 V	28 mΩ @ 3.3 V	7.3 A				
	36 mΩ @ 2.5 V					
	65 mΩ @ 1.8 V					

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{ extsf{ heta}JA}$	73.6	
Junction-to-Ambient – t \leq 5 s (Note 3)	R _{θJA}	47.6	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	174.4	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS							1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$	I _D = 250 μA	, ref to 25°C		7		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1	μΑ
		$V_{DS} = 24 V$	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	V _{GS} = ±12 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		0.6		1.1	V
Negative Threshold Temp. Coefficient	$V_{GS(TH)}/T_J$				2.8		mV/∘C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	V, I _D = 6.0 A		17.5	21	mΩ
		V _{GS} = 4.5	V, I _D = 5.0 A		20	24	
		V _{GS} = 3.7	V, I _D = 3.0 A		21	26	
		V _{GS} = 3.3	V, I _D = 3.0 A		22	28	
		V _{GS} = 2.5	V, I _D = 2.0 A		25	36	
		V _{GS} = 1.8	V, I _D = 1.0 A		40	65	
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D = 5.0 A		1	23		S

Input Capacitance	C _{ISS}		460	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V	225	1
Reverse Transfer Capacitance	C _{RSS}		27	1
Total Gate Charge	Q _{G(TOT)}		5.5	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 5.0 A	0.55	1
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 5.0$ Å	2.5	1
Gate-to-Drain Charge	Q _{GD}	7	1.1	1

SWITCHING CHARACTERISTICS, V_{GS} = 4.5 V (Note 6)

Turn-On Delay Time	t _{d(ON)}		5	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 15 V,	15	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 5.0 \text{ A}, \text{ R}_G = 1 \Omega$	13	
Fall Time	t _f		1.7	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.7	1.0	V
		I _S = 2.0 A	T _J = 125°C	0.6		

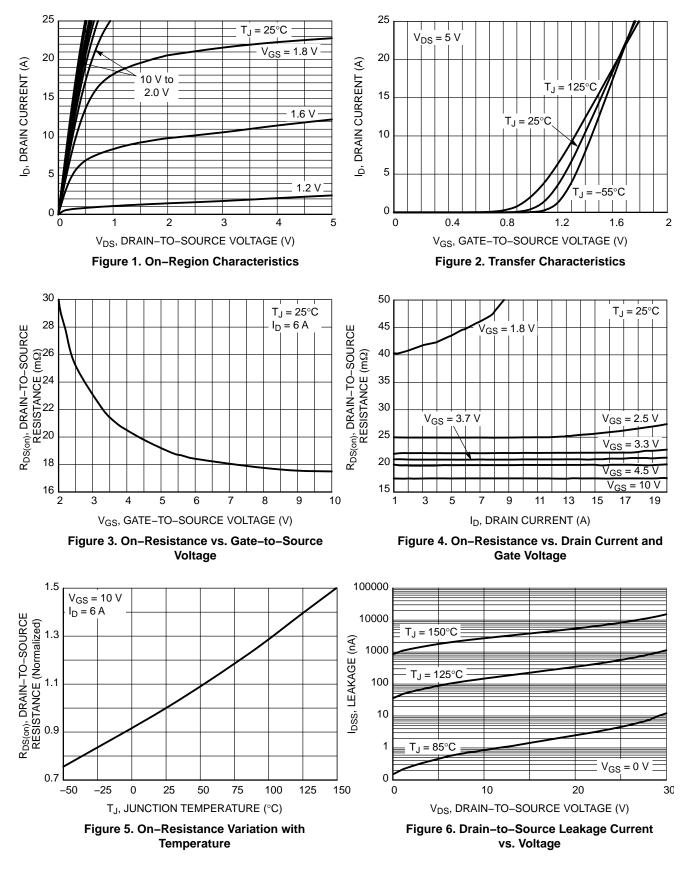
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

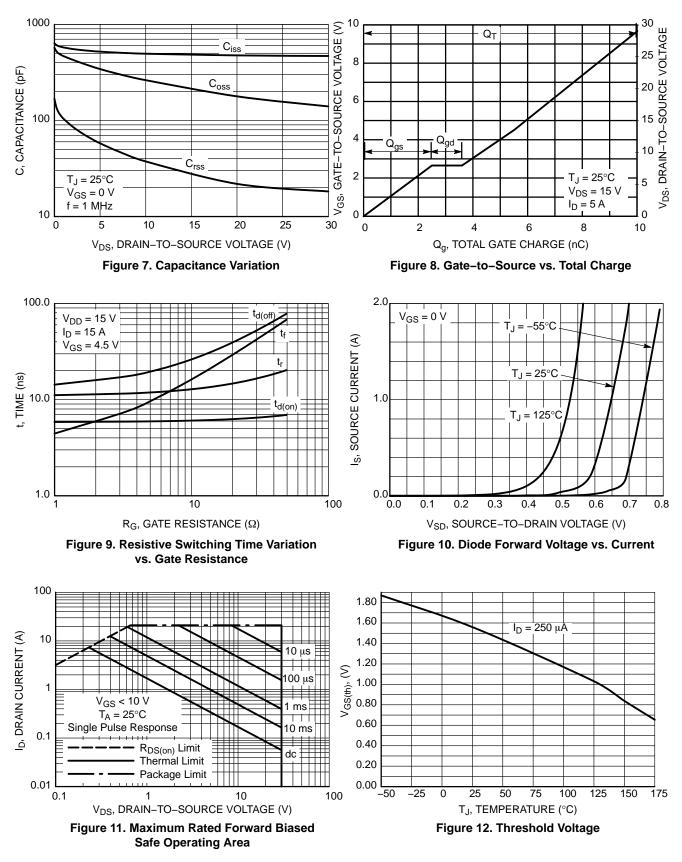
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
DRAIN-SOURCE DIODE CHARACTE	RISTICS					
Reverse Recovery Time	t _{RR}			18.5		ns
Charge Time	t _a	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 2.0 A		9.3		
Discharge Time	t _b	I _S = 2.0 A		9.1		
Reverse Recovery Charge	Q _{RR}			7.8		nC

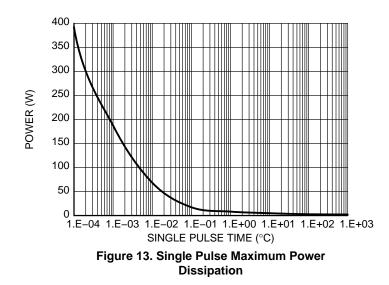
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

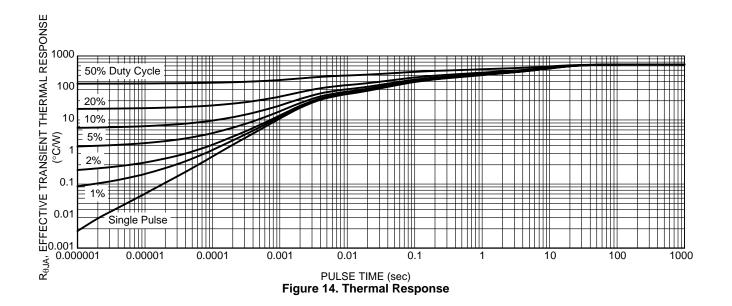

6. Switching characteristics are independent of operating junction temperatures.

DEVICE ORDERING INFORMATION


Device	Package	Shipping [†]
NTLUD4C26NTAG	UDFN6 (Pb–Free)	3000 / Tape & Reel
NTLUD4C26NTBG	UDFN6 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

UDFN6 2x2, 0.65P CASE 517BF ISSUE B

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the intervent and the intervent of the pattern of the patter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative