Power MOSFET

30 V, 52 A, Single N-Channel, SO-8 FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

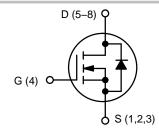
Applications

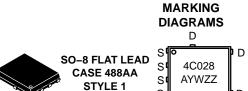
- CPU Power Delivery
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

			1			
Parameter			Symbol	Value	Unit	
Drain-to-Source Volt	age		V_{DSS}	30	V	
Gate-to-Source Volta	age		V_{GS}	±20	V	
Continuous Drain Current R _{B.IA}		T _A = 25°C	I _D	16.4	Α	
(Note 1)	Steady State T _A = 25° Package and Storage	$T_A = 80^{\circ}C$		12.3		
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.51	W	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	25.3	Α	
Current $R_{\theta JA} \le 10 \text{ s}$ (Note 1)		T _A = 80°C		19.0		
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	P _D	6.0	W	
Continuous Drain Current R _{0.1A}	State	T _A = 25°C	I _D	9.0	Α	
(Note 2)	Steady State TA = 25°C Package and Storage dy Diode) dt to-Source Av $V_{GS} = 10 \text{ V, I}$	T _A = 80°C		6.8		
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.76	W	
Continuous Drain Current R _{0.IC}		$T_C = 25^{\circ}C$	I _D	52	Α	
(Note 1)		T _C =80°C		39		
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	25.5	W	
Pulsed Drain Current	$T_A = 25^{\circ}$	$^{\circ}$ C, $t_{p} = 10 \ \mu s$	I _{DM}	146	Α	
Current Limited by Pa	ckage	$T_A = 25^{\circ}C$	I _{Dmax}	80	Α	
Operating Junction ar Temperature	nd Storage		T _J , T _{STG}	–55 to +150	°C	
Source Current (Body	/ Diode)		IS	23	Α	
Drain to Source dV/dt		dV/d _t	7.0	V/ns		
Single Pulse Drain–to–Source Avalanche Energy (T _J = 25° C, V _{GS} = 10 V, I _L = 29 A _{pk} , L = 0.1 mH, R _{GS} = 25 Ω) (Note 3)		E _{AS}	42	mJ		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface—mounted on FR4 board using the minimum recommended pad size.
- 3. Parts are 100% tested at $T_J = 25$ °C, $V_{GS} = 10$ V, $I_L = 20$ A_{pk} , EAS = 20 mJ.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	4.73 mΩ @ 10 V	52 A
30 V	7.0 mΩ @ 4.5 V	32 A

N-CHANNEL MOSFET

A = Assembly Location

Y = Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4C028NT1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel
NTMFS4C028NT3G	SO-8 FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

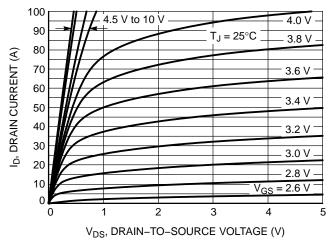
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.9	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	49.8	°C/W
Junction-to-Ambient - Steady State (Note 5)	$R_{\theta JA}$	164.6	*C/vv
Junction–to–Ambient – (t ≤ 10 s) (Note 4)	$R_{\theta JA}$	21.0	

- 4. Surface–mounted on FR4 board using 1 sq-in pad, 1 oz Cu.5. Surface–mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

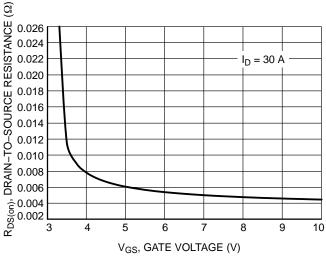
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage (transient)	V _{(BR)DSSt}	$V_{GS} = 0 \text{ V}, I_{D(aval)} = 8.4 \text{ A},$ $T_{case} = 25^{\circ}\text{C}, t_{transient} = 100 \text{ ns}$		34			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				14.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}				1.0		
			T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 6)					-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		1.3		2.1	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		3.9	4.73	<u> </u>
	V _{GS} = 4.5 V I _D = 18 A 5.8	5.8	7.0	mΩ			
Forward Transconductance	9FS	V _{DS} = 1.5 V, I _D = 15 A			50		S
Gate Resistance	R_{G}	T _A = 25°C		0.3	1.0	2.0	Ω
CHARGES AND CAPACITANCES	•				•		•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			1252		pF
Output Capacitance	C _{OSS}				610		
Reverse Transfer Capacitance	C _{RSS}				126		
Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			0.101		
Total Gate Charge	$Q_{G(TOT)}$				10.9		
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$			1.9		nC
Gate-to-Source Charge	Q_GS				3.4		
Gate-to-Drain Charge	Q_{GD}				5.4		
Gate Plateau Voltage	V_{GP}				3.1		V
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			22.2		nC
SWITCHING CHARACTERISTICS (Note 7)							
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			10		
Rise Time	t _r				32		ns
Turn-Off Delay Time	t _{d(OFF)}				16		
Fall Time	t _f				6.0		


- 6. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
 7. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	lote 7)			•	•	•	
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			7.0		- ns
Rise Time	t _r				28		
Turn-Off Delay Time	t _{d(OFF)}				20		
Fall Time	t _f				4.0		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$		0.79	1.1	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 10 \text{ A}$	T _J = 125°C		0.65		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			31		
Charge Time	t _a				15		ns
Discharge Time	t _b				16		1
Reverse Recovery Charge	Q_{RR}				15		nC

^{6.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
7. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

100 90 $V_{DS} = 5 V$ 80 ID, DRAIN CURRENT (A) 70 60 50 40 30 20 $T_J = 125^{\circ}C$ 10 $T_J = -55^{\circ}C$ $T_J = 25^{\circ}C$ 0.5 2.5 3.0 3.5 4.0 1.0 1.5 2.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

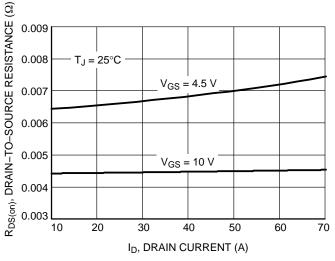
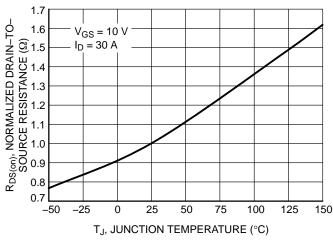



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

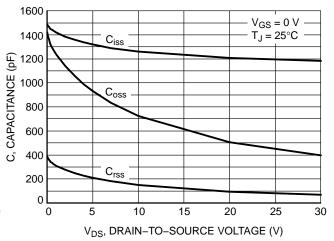


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS

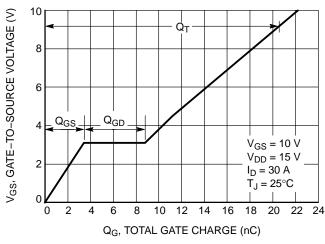


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

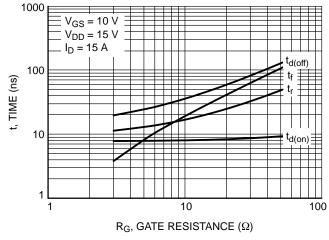


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

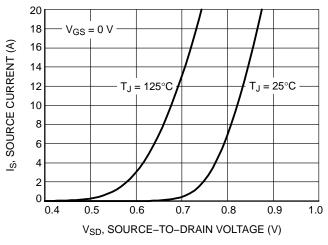


Figure 9. Diode Forward Voltage vs. Current

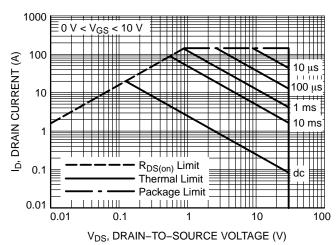


Figure 10. Maximum Rated Forward Biased Safe Operating Area

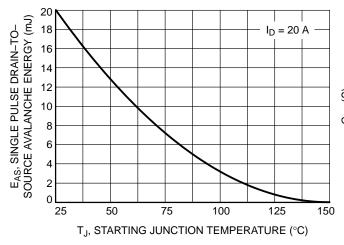


Figure 11. Maximum Avalanche Energy vs. Starting Junction Temperature

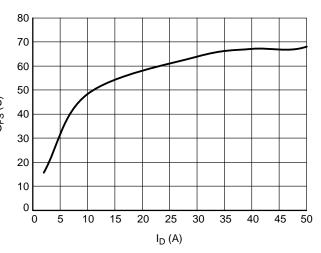


Figure 12. G_{FS} vs. I_D

TYPICAL CHARACTERISTICS

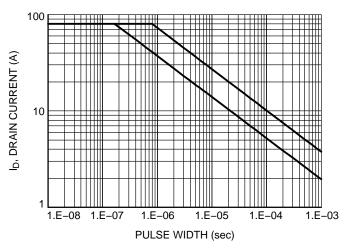


Figure 13. Avalanche Characteristics

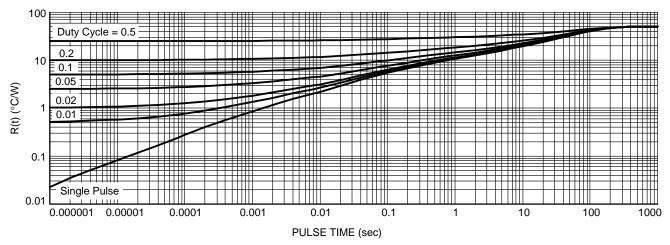
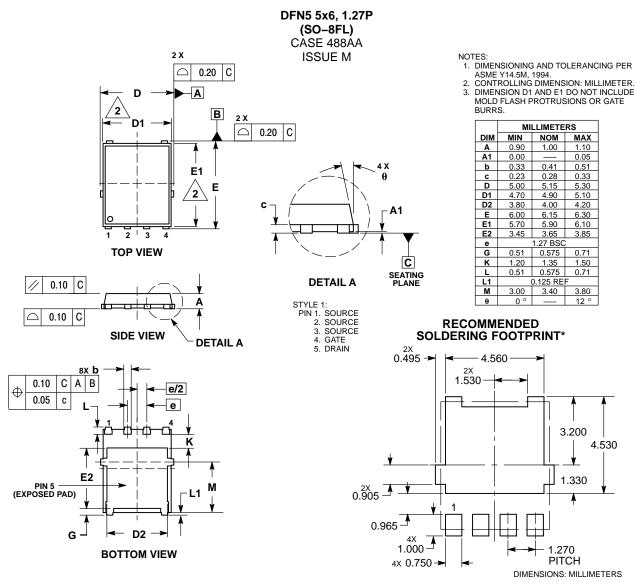



Figure 14. Thermal Response

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, Buyer shall indemnify and hold ON

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative