MOSFET - Power, Single N-Channel, LFPAK8 30 V, 0.65 mΩ, 410 A

NTMJS0D7N03CG

Features

- Wide SOA to Improve Inrush Current Management
- Advanced LFPAK Package (5x6mm) with Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Improve System Efficiency
- These Devices are Pb–Free, Halogen/BFR–Free and are RoHS Compliant

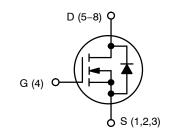
Typical Applications

- Hot Swap Application
- Motor Drive
- Power Load Switch
- Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

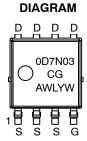
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	410	Α
Current R _{0JC} (Note 1)	Steady	T _C = 100°C	1	290	
Power Dissipation R _{θJC} (Note 1)	State	T _C = 25°C	P _D	188	W
Continuous Drain		T _A = 25°C	I _D	59	Α
Current R _{θJA} (Notes 1, 2)	Steady	T _A = 100°C		42	
Power Dissipation R _{θJA} (Notes 1, 2)	State	T _A = 25°C	P _D	4.0	W
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 40.8 A)			E _{AS}	1080	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in2, 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
30 V	0.65 m Ω @ 10 V	410 A	

N-CHANNEL MOSFET

Proposition of the second

LFPAK8 CASE 760AA

MARKING

0D7N03CG = Specific Device Code

A = Assembly Location

WL = Wafer Lot
 Y = Year
 W = Work Week

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{ heta JC}$	0.8	°C/W
Junction-to-Ambient - Steady State (Note 1)		38	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	134	

ELECTRICAL CHARACTERISTICS (T. - 25°C unloss otherwise specified)

Parameter	Symbol	Symbol Test Condition			Тур	Max	Unit
OFF CHARACTERISTICS						<u> </u>	<u>.</u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	
		V _{DS} = 30 V	$V_{DS} = 30 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$ 100	μΑ			
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 280 \mu A$		1.3		2.2	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 280 μA, ref to 25°C			-5.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		0.55	0.65	mΩ
Forward Transconductance	9FS	V _{DS} = 3 V, I _D = 30 A			100		S
Gate Resistance	R _G	T _A = 25°C			0.4		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			12300		pF
Output Capacitance	C _{OSS}				5800		
Reverse Transfer Capacitance	C _{RSS}				88		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			147		nC
Threshold Gate Charge	Q _{G(TH)}				19		
Gate-to-Drain Charge	Q_{GD}				8.6		
Gate-to-Source Charge	Q_{GS}				34		
SWITCHING CHARACTERISTICS (Note 4))						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A, R_{G} = 3 Ω			28		
Rise Time	t _r				13		ns
Turn-Off Delay Time	t _{d(OFF)}				85		
Fall Time	t _f				16		
DRAIN-SOURCE DIODE CHARACTERIS	rics						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.78 1.2		
		I _S = 30 A T _J = 125°C		0.62		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _R = 15 V, I _S = 30 A, dIS/dt = 100 A/μs			98		ns
Reverse Recovery Charge	Q_{RR}				143		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

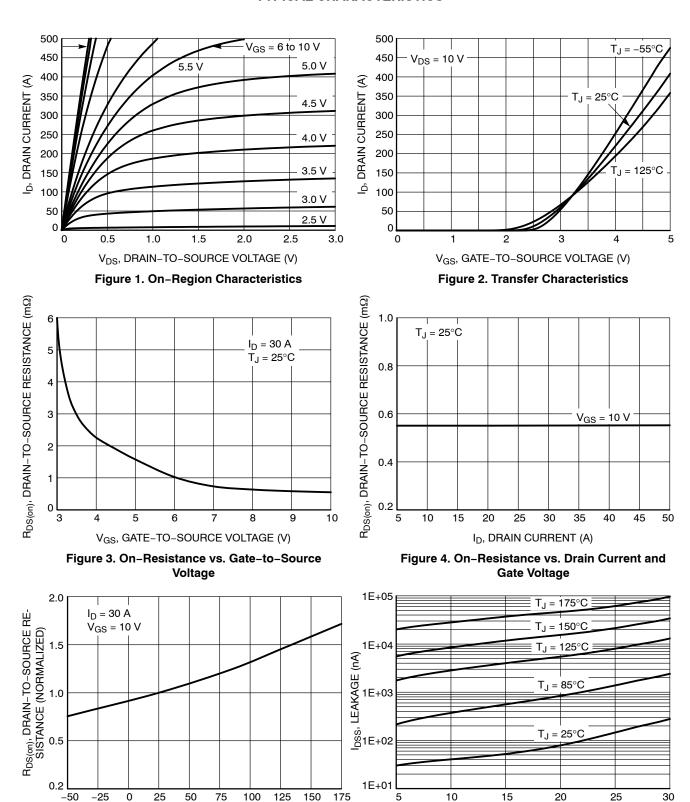


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

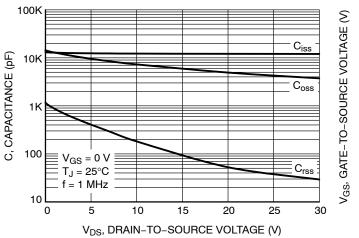


Figure 7. Capacitance Variation

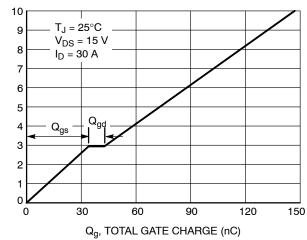


Figure 8. Gate-to-Source vs. Total Charge

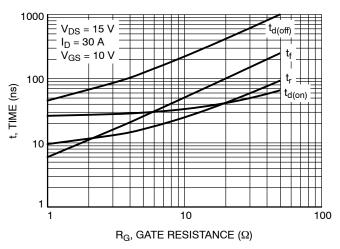


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

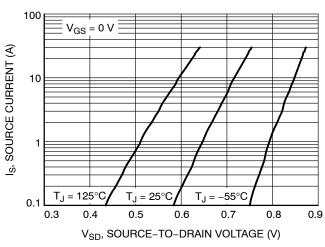


Figure 10. Diode Forward Voltage vs. Current

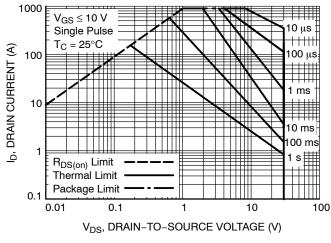


Figure 11. Maximum Rated Forward Biased Safe Operating Area

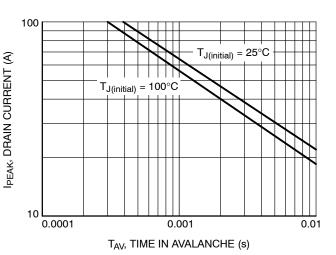


Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS

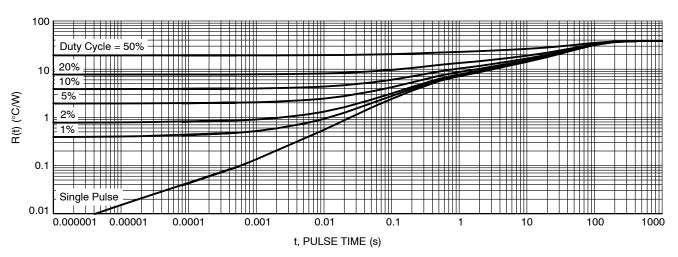
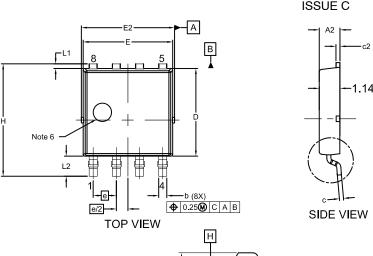
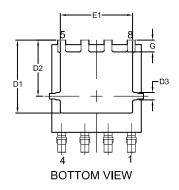


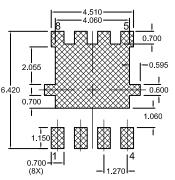
Figure 13. Thermal Response


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMJS0D7N03CGTWG	0D7N03 CG	LFPAK8 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS


LFPAK8 5x6 CASE 760AA ISSUE C

DETAIL 'A'

RECOMMENDED LAND PAD

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- 4. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- OPTIONAL MOLD FEATURE.

MILLIMETERS					
DIM	MIN	NOM	MAX		
Α	1.10	1.20	1.30		
A1	0.00	0.08	0.15		
A2	1.10	1.15	1.20		
A3	().25 REF	-		
A4	0.45	0.50	0.55		
b	0.40	0.45	0.50		
С	0.19	0.22	0.25		
c2	0.19	0.22	0.25		
D	4.70	4.80	4.90		
D1	3.80	4.00	4.20		
D2	3.00	3.10	3.20		
D3	0.30	0.40	0.50		
Е	4.80	4.90	5.00		
E1	3.90	4.00	4.10		
E2	5.00	5.15	5.30		
е	1.27 BSC				
O	0.55	0.65	0.75		
Н	6.00	6.15	6.30		
L	0.45	0.65	0.85		
L1	0.15	0.25	0.35		
L2	0.90	1.10	1.30		
q	0°	4°	8°		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

ON Semiconductor Website: www.onsemi.com

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Voice Mail: 1 800–282–9855 Toll Free USA/Cana Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative