Power MOSFET 30 V, 51 A, Single N–Channel, TO–220AB

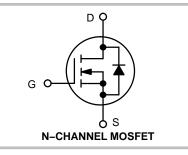
Features

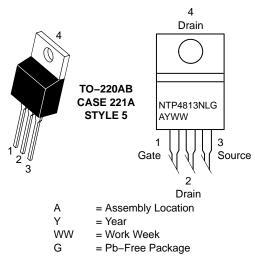
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Low R_G
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Motor Control
- High Current, High Side Switching
- DC–DC Converters

Para	ameter		Symbol	Value	Unit
Drain-to-Source Vo	tage		V _{DSS}	30	V
Gate-to-Source Vol	tage		V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	Ι _D	12.8	Α
Current R _{θJA} (Note 1)		T _A = 85°C		9.9	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	3.75	W
Continuous Drain		T _A = 25°C	ID	10.2	А
Current R _{0JA} (Note 2)	Steady State	T _A = 85°C		7.9	
Power Dissipation $R_{\theta JA}$ (Note 2)	Sidle	T _A = 25°C	PD	2.40	W
Continuous Drain		T _C = 25°C	Ι _D	51	А
Current R _{θJC} (Note 1)		T _C = 85°C		39.5	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	60	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	154	A
Current Limited by P	ackage	T _A = 25°C	I _{DmaxPkg}	95	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	50	Α
Drain to Source dV/dt			dV/dt	6	V/ns
Single Pulse Drain-t Energy ($V_{DD} = 24 V$, $I_L = 18 A_{pk}$, L = 0.3 n	$V_{GS} = 10 V$	Ι,	EAS	48.6	mJ
Lead Temperature for (1/8" from case for 1		Purposes	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	13.1 mΩ @ 10 V	51 A
30 V	22 mΩ @ 4.5 V	317

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

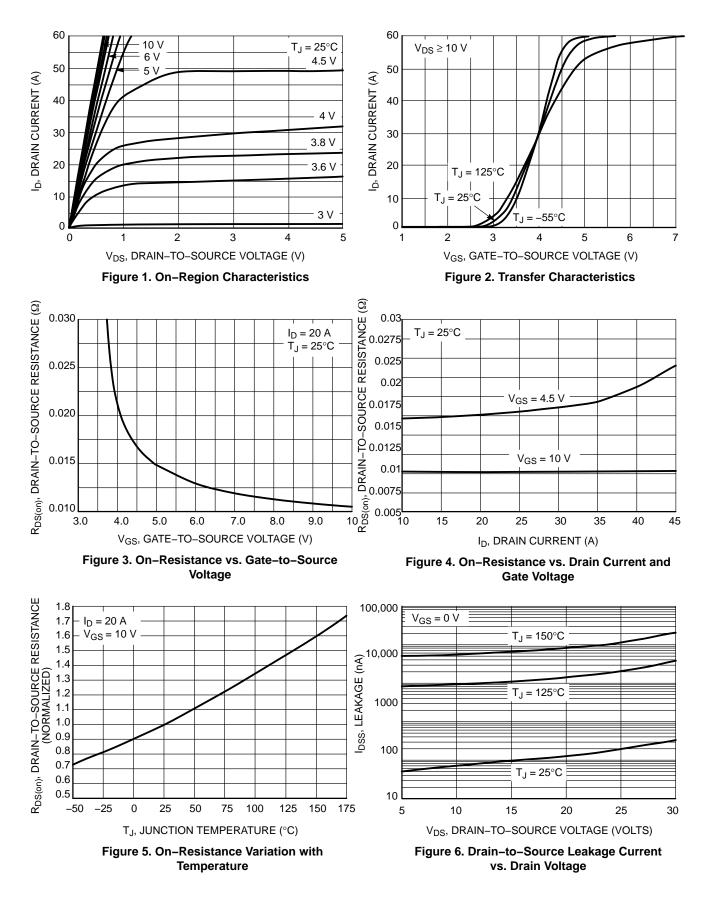
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	2.5	
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	40	°C/W
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	62.5	

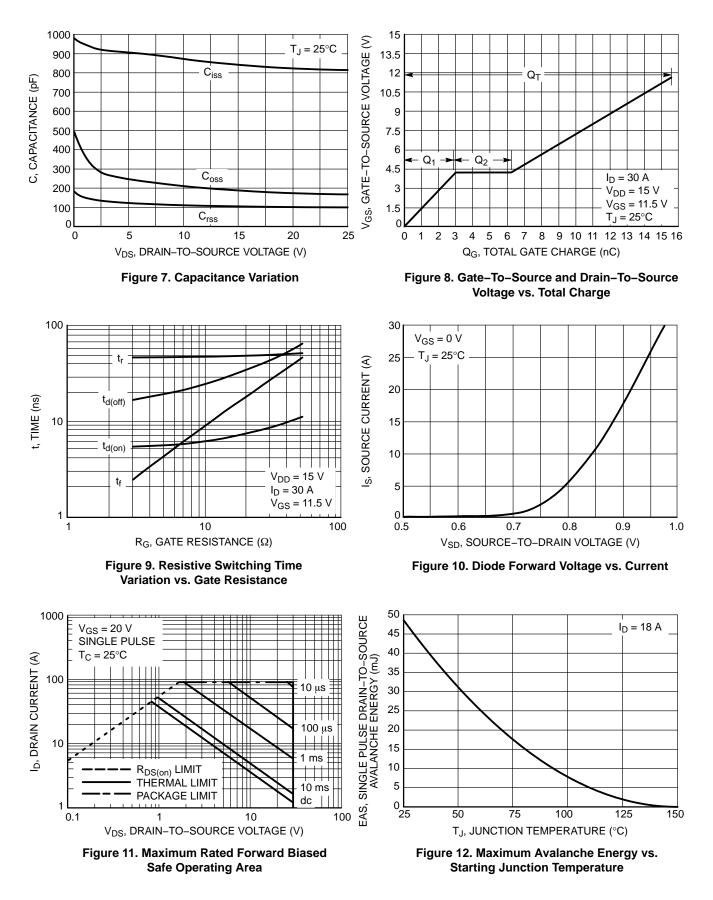
Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condit	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS	-						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				24.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1	
		$V_{DS} = 24 V$	T _J = 125°C			10	μA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		10.5	13.1	~ 0
		V _{GS} = 4.5 V	I _D = 20 A		17.6	22	mΩ
Forward Transconductance	9 FS	V _{DS} = 15 V, I _D	= 10 A		6.7		S
Gate Resistance	R _G	T _A = 25°0	2		0.80		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				895		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MH	z, V _{DS} = 12 V		220		pF
Reverse Transfer Capacitance	C _{RSS}				120		
Total Gate Charge	Q _{G(TOT)}				7.7	10.8	
Threshold Gate Charge	Q _{G(TH)}			1.6			
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$ 3.4		nC			
Gate-to-Drain Charge	Q _{GD}				3.6		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 11.5 V, V _D I _D = 30 A			17		nC
SWITCHING CHARACTERISTICS (Note 4)							
Turn–On Delay Time	t _{d(ON)}				10		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A,			21.5]
Turn–Off Delay Time	t _{d(OFF)}	$R_{G} = 3.0$	Ω		12		ns
Fall Time	t _f				3.2		
Turn–On Delay Time	t _{d(ON)}				6.3		
Rise Time	t _r	V _{GS} = 11.5 V, V _D	_S = 15 V,		13.4		
Turn–Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 15$ Å, $R_{\rm G} =$	3.0 Ω		17.6		ns
Fall Time	t _f				1.6		1


Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condi	ion	Min	Тур	Мах	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V_{SD} $V_{GS} = 0 V,$ $T_{J} = 25^{\circ}C$ $I_{S} = 30 A$ $T_{L} = 125^{\circ}C$		0.95	1.2	V		
		$I_{\rm S} = 30 {\rm A}$	T _J = 125°C		0.85		v
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 30 A			14.8		
Charge Time	ta				8.3		ns
Discharge Time	t _b				6.5		
Reverse Recovery Charge	Q _{RR}				5.3		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

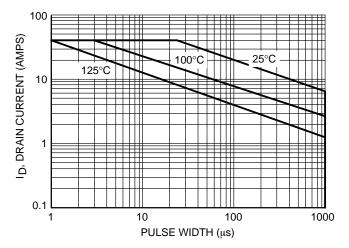


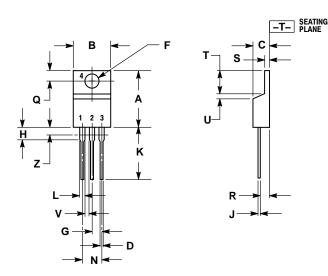
Figure 13. Avalanche Characteristics

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP4813NLT4G	TO–220AB (Pb–Free)	50 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


TO-220, SINGLE GAUGE CASE 221A-09

ISSUE AH

NOTES

2

Y14.5M, 1982.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
ſ	0.014	0.024	0.36	0.61
Κ	0.500	0.562	12.70	14.27
Г	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
ð	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Ζ		0.080		2.04

DRAIN
SOURCE
DRAIN

DIMENSIONING AND TOLERANCING PER ANSI

CONTROLLING DIMENSION: INCH.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended to support or sustain life, or for any other application in which the failure of the SCILLC product out of use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees ansing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright as and is not for resade in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 700 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative