Very Low Forward Voltage Trench-based Schottky Rectifier

Exceptionally Low $V_F = 0.50$ V at $I_F = 5$ A

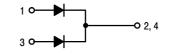
Features

- Fine Lithography Trench–based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

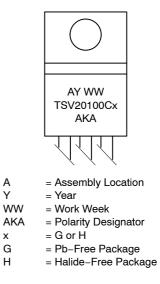
Typical Applications

- Switching Power Supplies including Notebook / Netbook Adapters, ATX and Flat Panel Display
- High Frequency and DC-DC Converters
- Freewheeling and OR-ing diodes
- Reverse Battery Protection
- Instrumentation

Mechanical Characteristics


- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec

ON Semiconductor®


http://onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS

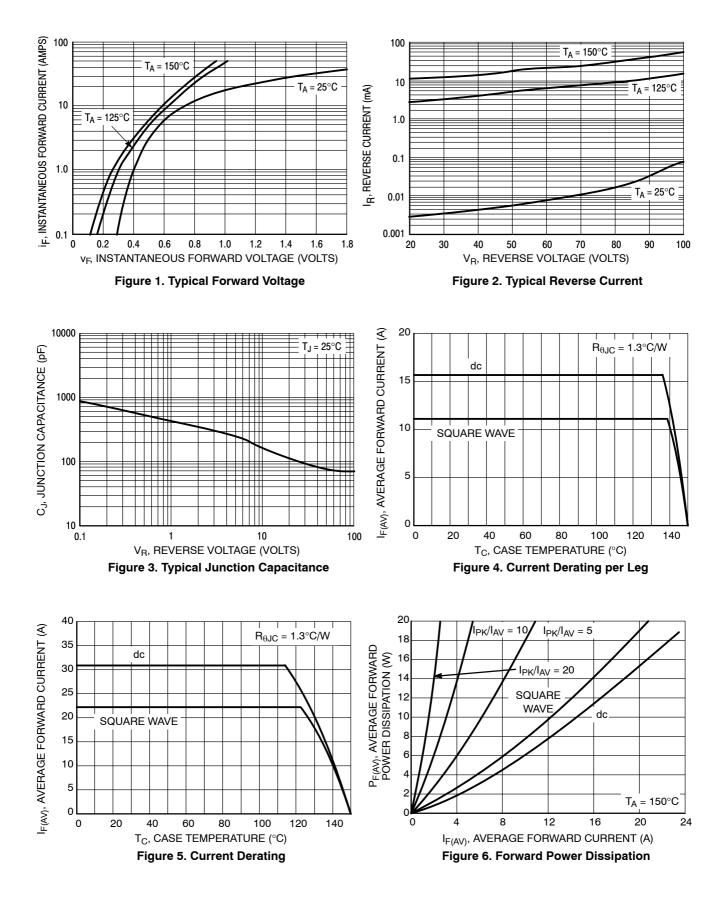
Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (Rated V_R , T_C = 130°C)	Per device Per diode	I _{F(AV)}	20 10	A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, T_C = 125°C)	Per device Per diode	I _{FRM}	40 20	A
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	100	A
Operating Junction Temperature		TJ	-40 to +150	°C
Storage Temperature		T _{stg}	-40 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10,000	V/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

	Rating		Value	Unit
Maximum Thermal Resistance	Junction-to-Case Junction-to-Ambient	$R_{ extsf{ heta}JC} \\ R_{ heta}JA$	2.0 70	°C/W °C/W

ELECTRICAL CHARACTERISTICS (Per Leg unless otherwise noted)


Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($I_F = 5 A, T_{,l} = 25^{\circ}C$)	٧ _F	0.55	-	V
$(I_F = 10 \text{ Å}, T_J = 25^{\circ}\text{C})$		0.65	0.98	
$(I_F = 5 \text{ A}, T_J = 125^{\circ}\text{C})$ $(I_F = 10 \text{ A}, T_J = 125^{\circ}\text{C})$		0.50 0.58	_ 0.82	
Maximum Instantaneous Reverse Current (Note 1) ($V_R = 70 \text{ V}, T_J = 25^{\circ}\text{C}$) ($V_R = 70 \text{ V}, T_J = 125^{\circ}\text{C}$)	I _R	17 5.3	_	μA mA
(Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$)		_ 12	800 25	μA mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

ORDERING INFORMATION

Device	Package	Shipping
NTSV20100CTG	TO-220AB (Pb-Free)	50 Units / Rail

TYPICAL CHARACTERISITICS

TYPICAL CHARACTERISITICS

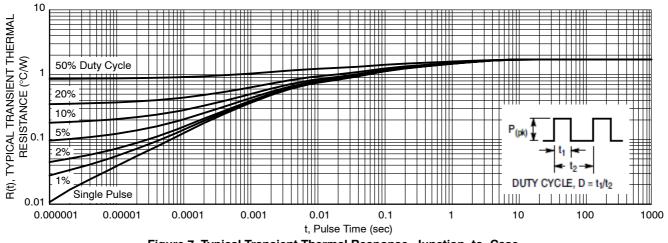
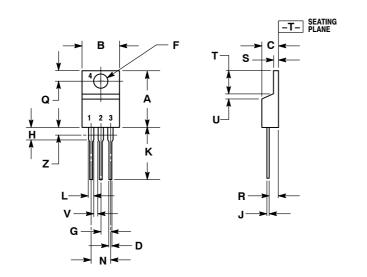



Figure 7. Typical Transient Thermal Response, Junction-to-Case

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AF

NOTES:

3

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.025	0.36	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
۷	0.045		1.15		
Z		0.080		2.04	

STYLE 6: PIN 1. ANODE

2. CATHODE 3. ANODE

4. CATHODE

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components instended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equilibrity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for researing out of, directly, or the reapering the design or manufacture is subject to all applicable copyright laws and is not for resaring out of, direct

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTSV20100CT/D