

NUC960ADN 32-bit ARM926EJ-S Based Microcontroller Product Data Sheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NUC960ADN-based system design.

Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice..

For additional information or questions, please contact: Nuvoton Technology Corporation.

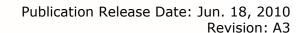
Publication Release Date: Jun. 18, 2010

Table of Contents

1.		RAL DESCRIPTION5
2.	FEAT	URES6
3.	PINE	0IAGRAM10
4.	PIN A	SSIGNMENT11
5.	PINE	DESCRIPTION
	5.1	Pin Description for Interface
	5.2	GPIO Share Pin Description
6.	FUNC	TIONAL DESCRIPTION21
	6.1	ARM926EJ-S CPU CORE
	6.2	System Manager
		6.2.1 Overview
		6.2.2 System Memory Map
		6.2.3 Address Bus Generation
		6.2.4 AHB Bus Arbitration
		6.2.5 Power-On Setting
		6.2.6 System Booting
		6.2.7 System Global Control Registers Map
	6.3	Clock Controller
		6.3.1 Power management
		6.3.2 Clock Control Registers Map
	6.4	External Bus Interface
		6.4.1 Overview
		6.4.2 Functional Description
		6.4.3 EBI Register Mapping
		6.4.4 EBI Register Details
	6.5	PCI Bus Interface
		6.5.1 Address Mapping Space82
		6.5.2 Supported PCI Command
		6.5.3 PCI Control Registers Map
	6.6	Ethernet MAC Controller
		6.6.1 EMC Descriptors
		6.6.2 EMC Register Mapping109

nuvoTon

7.


32-BIT ARM926EJ-S BASED MCU

	6.6.3 EMC Register Details	112
	6.6.4 Operation Notes	162
6.7	GDMA Controller	164
	6.7.1 Overview & Features	164
	6.7.2 GDMA Non-Descriptor Functional Description	164
	6.7.3 GDMA Descriptor Functional Description	
	6.7.4 GDMA Register Map	169
6.8	USB Host Controller (USBH)	
	6.8.1 Register Mapping	187
	6.8.2 Register Details	190
6.9	USB 2.0 Device Controller	251
	6.9.1 USB Device Register Group Summary	251
	6.9.2 USB Device Control Registers Map	251
	6.9.3 USB Device Control Registers	255
6.10	UART Controller	303
	6.10.1 UART Feature Description	
	6.10.2 UART Control Registers Map	305
6.11	TIMER Controller	323
	6.11.1 General Timer Controller	323
	6.11.2 Watchdog Timer	323
	6.11.3 Timer Control Registers Map	324
6.12	Advanced Interrupt Controller	333
	6.12.1 Interrupt Sources	334
	6.12.2 AIC Registers Map	336
6.13	General-Purpose Input/Output (GPIO)	355
	6.13.1 Overview	355
	6.13.2 GPIO Multiplexed Functions Table	356
	6.13.3 GPIO Control Registers Map	358
6.14	I ² C Synchronous Serial Interface Controller	381
	6.14.1 I ² C Protocol	382
	6.14.2 I2C Serial Interface Control Registers Map	386
6.15	Universal Serial Interface Controller (USI)	395
	6.15.1 USI Timing Diagram	
	6.15.2 USI Control Registers Map	397
ELEC	TRICAL SPECIFICATIONS	
7.1	Absolute Maximum Ratings	
	2 Dublication Delegas Date: Jun	

nuvoTon

32-BIT ARM926EJ-S BASED MCU

	7.2	DC Sp	pecifications	407
		7.2.1	Digital DC Characteristics	407
		7.2.2	USB Low-/Full-Speed DC Electrical Specifications	408
		7.2.3	USB High-Speed DC Electrical Specifications	408
	7.3	AC Sp	pecifications	409
			RESET AC Characteristics	
		7.3.2	Clock Input Characteristics	409
		7.3.3	EBI/SDRAM Interface AC Characteristics	410
			EBI/ (ROM/SRAM/External I/O) AC Characteristics	
		7.3.5	USI (SPI/MW) Interface AC Characteristics	413
		7.3.6	USB Transceiver AC Characteristics	414
		7.3.7	EMC RMII AC Characteristics	415
		7.3.8	PCI Interface AC Characteristics	417
8.	PACI	KAGE S	PECIFICATIONS	418
9.	REVI	SION H	HISTORY	419

1. GENERAL DESCRIPTION

This chip is built around an outstanding CPU core: the 16/32 ARM926EJ-S RISC processor designed by Advanced RISC Machines, Ltd. The ARM926EJ-S core, offers 8K-byte I-cache and 8K-byte D-cache with MMU. One 10/100 Mb MAC of Ethernet controller is built-in to reduce total system cost and one PCI Interface is used to extend the PCI peripheral device. It is suitable for a high end, high performance and low cost related products as well as general purpose applications.

The following integrated on-chip functions are described in detail in this document.

	Main Function	
CPU	• ARM926EJ-S	
Platform	Programmable PLL System Clock Synthesizer	
	AMBA Peripherals	
	Timer, Watchdog Timer	
	Advanced Interrupt Controller	
	General DMA Controller	
	External Bus Interface Controller	
Networking • Ethernet MAC Controller		
USB Interface	• USB 1.1/2.0 High/Full/Low Speed Host Controller	
	USB 2.0 High/Full Speed Device Controller	
Peripheral & Misc.	• GPIO	
Č.	UART/HS-UART	
Y.	USI (SPI/uWire)	
186	I 2C (Master) Controller	
	PCI Host Controller	

5

Publication Release Date: Jun. 18, 2010

2. FEATURES

Architecture

- Efficient and powerful ARM926EJ-S core with fully 16/32-bit RISC architecture
- Little Endian mode supported
- 8K-byte I-cache and 8K-byte D-cache with MMU
- Cost-effective JTAG-based debug solution

Power management

- Programmable clock enable for individual peripherals
- IDLE mode to halt ARM Core and keep peripheral working
- Power-Down mode to stop all clocks included external crystal oscillator.
- Wakeup by interrupt and USB device

PLL

- Supports two on-chip PLLs
- The external clock can be multiplied by on-chip PLL to provide high frequency system clock
- The input frequency range is 4-30MHz; 15MHz is preferred.
- Programmable clock frequency

Advanced Interrupt Controller

- 31 interrupt sources, including 3 external interrupt sources
- Programmable normal or fast interrupt mode (IRQ, FIQ)
- Programmable as either edge-triggered or level-sensitive for 3 external interrupt sources
- Programmable as either low-active or high-active for 3 external interrupt sources
- Priority methodology is encoded to allow for interrupt daisy-chaining
- Automatically mask out the lower priority interrupt during interrupt nesting
- Automatically clear the interrupt flag when the interrupt source is programmed to be edge-triggered

General DMA Controller

- 2-channel General DMA for memory-to-memory data transfers without CPU intervention
- Increments or decrements a source or destination address in 8-bit, 16-bit or 32-bit data transfers

6

Publication Release Date: Jun. 18, 2010

8-data burst mode

External Bus Interface

- 8/16/32-bit external bus support for ROM/SRAM, flash memory, SDRAM and external I/Os
- Programmable access cycle (0-7 wait cycle)
- Four-word depth write buffer

Ethernet MAC Controller

- 100/10-Mbps operation
- DMA engine with burst mode
- MAC Tx/Rx buffers (256 bytes Tx, 256 bytes Rx)
- Full compliance with IEEE standard 802.3
- RMII interface only
- Station Management Signaling
- On-Chip CAM (up to 16 destination addresses)
- Full-duplex mode with PAUSE feature
- Long/short packet modes

USB Host Controller with transceiver

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Built-in DMA for real-time data transfer.
- Support two ports (one port transceiver is shared with USB Device Controller)

USB Device Controller with transceiver

- Compliant with USB version 2.0 specification.
- Software control for device remote-wakeup.
- Supports 6 configurable IN/OUT endpoints in addition to Control Endpoint. Each of these endpoints can be configures as IN or OUT with Isochronous, Bulk or Interrupt transfer.
- Three different modes of operation of an in-endpoint (Auto validation mode, manual validation mode, Fly mode.
- Supports Endpoint Maximum Packet Size up to 1024 bytes.

Publication Release Date: Jun. 18, 2010

12C Master

- Compatible with I²C standard, support master mode only
- Multi Master Operation
- Clock stretching and wait state generation
- Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer
- Software programmable acknowledge bit
- Arbitration lost interrupt, with automatic transfer cancellation
- Start/Stop/Repeated Start/Acknowledge generation
- Start/Stop/Repeated Start detection
- Bus busy detection
- Supports 7 bit addressing mode
- Software mode I²C

Universal Serial Interface (USI)

- Support MICROWIRE/SPI master mode
- Support full/half duplex synchronous serial data transfer
- Variable length of transfer word up to 32 bits
- Provide burst mode operation, transmit/receive can be executed up to four times in one transfer
- MSB or LSB first data transfer
- Receive and Transmit on both rising or falling edge of serial clock independently

UART

- Three UART (serial I/O) blocks with interrupt-based operation
- Support for 5-bit, 6-bit, 7-bit or 8-bit serial data transmit and receive
- Programmable baud rates
- 1,1½ or 2 stop bits
- Odd or even parity
- Break generation and detection
- Parity, overrun and framing error detection
- X16 clock mode
- Support for IrDA and two debug ports

PCI Host Interface

Publication Release Date: Jun. 18, 2010

- PCI interface including host mode
- PCI Local Bus Specification Rev. 2.2 supported
- 32-bit data bus width
- Support maximum 2 external masters
- Two 16-word deep read FIFO, two 16-word deep write FIFO
- Support maximum 16-word target burst write
- Support internal arbiter

Timers

- Five programmable 24-bit timers with 8-bit pre-scalar
- One programmable 20-bit Watchdog timer
- One-short mode, period mode or toggle mode operation

Programmable I/Os

• Pins individually configurable to input, output or I/O mode for dedicated signals

9

• I/O ports are Programmable and Configurable for Multiple functions

Operation Voltage Range

- VDD18 for IO Buffer: 1.8V+/-10%
- VDD33 for Core Logic: 3.3V+/-10%
- USBVDDC0/USBVDDC1/USBVDDT0/USBVDDT1 for USB: 3.3V+/-5%
- PLLVDD18 for PLL: 1.8V+/-10%

Operation Temperature Range

-40°C ~+85°C

Operating Frequency

Up to 200 MHz for ARM926EJ-S CPU

Package Type

216-Pin LQFP, Pb free

Publication Release Date: Jun. 18, 2010

3. PIN DIAGRAM

NUC960ADN Pin Diagram

Publication Release Date: Jun. 18, 2010

4. PIN ASSIGNMENT

Table 4.1 NUC960ADN Pins Assignment

Pad Name	NUC960ADN
Clock & Reset	(5 pins)
EXTAL15M	102
XTAL15M	103
EXTAL48MO	209
XTAL48MO	208
nRESET	1
TAP Interface	(5 pins)
TMS	10
TDI	11
TDO	12
тск	13
nTRST	14
External Bus Interface	(71 pins)
MA [21:0]	60-48,46-38
MD [31:0]	100-98,95-88,86,84-78,75-63
nWBE [3:0] /	32-29
SDQM [3:0]	
nSCS [1:0]	23-22
nSRAS	35
nSCAS	36
MCKE	33
nSWE	34
MCLK	25
nWAIT	16
nBTCS	21
nECS [2:0]	20-18
nOE	17
Ethernet RMII Interface	(10 pins)
PHY_MDC /	177
GPIOF[0]	5
PHY_MDIO /	178
GPIOF[1]	

11

Publication Release Date: Jun. 18, 2010

	02 B11 / (((()) / 2023 0 B)
PHY_TXD [1:0] /	180-179
GPIOF[3:2]	
PHY_TXEN /	181
GPIOF[4]	
PHY_REFCLK /	182
GPIOF[5]	100 250
PHY_RXD [1:0] /	184-183
GPIOF[7:6]	95.40
PHY_CRSDV /	185
GPIOF[8]	NO 6
PHY_RXERR /	186
GPIOF[9]	y(O) _~
Pad Name	NUC960ADN
USB Interface	(10 pins)
DP0	215
DNO	214
REXTO	212
UPWRO	195
OVI	196
HDS	198
DP1	206
DN1	205
REXT1	203
UPWR1	200
I2C/USI(SPI/MW)	(4 pins)
SCL0 /	3
SFRM /	
GPIOG[0]	
SDAO /	4
SSPTXD /	
GPIOG[1]	
SCL1 /	5
SCLK /	
GPIOG[2]	
SDA1 /	6
SSPRXD /	
GPIOG[3]	
Pad Name	NUC960ADN
7.72.67	

12

	32	DIT AKW1920L3-3 D
UART /		(UART : 6 pins)
PCI		(PCI : 3 pins)
TXD0 /	189	
GPIOE[0]		X6, 20
RXD0 /	190	
GPIOE[1]		150 F 172
TXD1(B) /	191	
GPIOE[2]		95 40
RXD1(B) /	192	
GPIOE[3]		000
TXD2(IrDA) /	193	
GPIOE[6]		(O) _~
RXD2(IrDA) /	194	70
GPIOE[7]		
PCIGNTn[1] /	166	
GPIOE[10]		
PCIRSTn /	167	
GPIOE[11]		
PCICLK /	169	
GPIOE[13]		
Pad Name		NUC960ADN
PCI		(47 pins)
PCIAD[31:26] /	161-156	
GPIOD[5:0]		
PCIREQn[0] /	163	
GPIOD[6]		
PCIGNTn[0] /	164	
GPIOD[7]		
PCIREQn[1] /	165	
GPIOD[8]		
PCIFRAMEn /	142	
GPIOC[0]		
PCITRDYn /	140	
GPIOC[1]		
PCIIRDYn /	141	
GPIOC[2]		
PCICBE[2] /	143	

13

Publication Release Date: Jun. 18, 2010

DOLADIOE O.47	454 452 452 454 444
PCIAD[25:24],	154-153,152,151-144
PCICBE[3],	
PCIAD[23:16] /	The " (II)"
GPIOC[14:4]	Y() * \$ y
PCICBE[1],	130,129-122,120,118-117,114-109
PCIAD[15:8],	60%
PCICBE[0],	
PCIAD[7:0]	92.40
PCIPAR	131
PCIDESELn	139
PCISERRn	132
PCIPERRn	133
PCISTOPn	137
Miscellaneous	(5 pins)
nIRQ [2:0] /	174-172
GPIOH[2:0]	
nWDOG /	2
GPIOI[16]	
TEST	171
Power/Ground	(50 pins)
VDD18	9,27,76,96,115,135,175,197,
VDD33	15,26,47,62,87,101,119,136,162,168,187
vss	7-8,24,28,37,61,77,85,97,104,116,121,134,138,155,170, 176,188,199
USBVDDC0 (3.3V)	211
USBVSSCO	210
USBVDDTO (3.3V)	216
USBVSST0	213
USBVDDC1 (3.3V)	202
USBVSSC1	201
	η.
USBVDDT1 (3.3V)	207
USBVDDT1 (3.3V) USBVSST1	207 204

Publication Release Date: Jun. 18, 2010

5. PIN DESCRIPTION

5.1 Pin Description for Interface

Pin Name	10 Туре	Description		
Clock & Reset (5)				
EXTAL15M	I	15MHz External Clock / Crystal Input for Both PLLs		
XTAL15M	0	15MHz Crystal Output		
EXTAL48MO	I	48MHz External Clock / Crystal Input for USB2.0 PHY0/1		
XTAL48M0	0	48MHz Crystal Output		
nRESET	I	System Reset (Low active)		
TAP Interface (5)				
тск	ID	JTAG Test Clock, internal pull-down		
TMS	ΙU	JTAG Test Mode Select, internal pull-up		
TDI	IU	JTAG Test Data in, internal pull-up		
TDO	0	JTAG Test Data out		
nTRST	IU	JTAG Reset, active-low, internal pull-up		
External Bus Interface	ce (71)			
MA [21:0]	0	Address Bus of external memory and IO devices.		
		(MA[21:13] are set to input mode when nRESET low active)		
MD [31:0]	IO (D)	Data Bus of external memory and IO device		
a Barrier		(Pull-down are programmable)		
nWBE [3:0] /	0	Write Byte Enable for specific device (nECS [3:0]).		
SDQM [3:0]		Data Bus Mask signal for SDRAM (nSCS [1:0]), (Low active)		
nSCS [1:0]	0	SDRAM chip select for two external banks, (Low active)		
nSRAS	0	Row Address Strobe for SDRAM, (Low active)		
nSCAS	0	Column Address Strobe for SDRAM, (Low active)		
nSWE	0	SDRAM Write Enable, (Low active)		
MCKE	О	SDRAM Clock Enable		
MCLK	0	System Master Clock Out, SDRAM clock		
nWAIT	10	External Wait, (Low active), internal pull-up		
nBTCS	000	ROM/Flash Chip Select, (Low active)		
nECS [2:0]	0	External I/O Chip Select, (Low active)		
nOE	0	ROM/Flash, External Memory Output Enable, (Low active)		
Ethernet RMII Interf	ace (10)			
PHY_MDC	O(IS)	RMII Management Data Clock		

Publication Release Date: Jun. 18, 2010

		32 BH ARM 720E3 3 BA
PHY_MDIO	10(D)	RMII Management Data I/O
		(Pull-down is programmable)
PHY_TXD [1:0]	O(IU)	RMII Transmit Data bus
		(Pull-up are programmable)
PHY_TXEN	O(ID)	RMII Transmit Enable
		(Pull-down is programmable)
PHY_REFCLK	O(ID)	RMII Reference Clock.
		(Pull-down is programmable)
PHY_RXD [1:0]	I (OU)	RMII Receive Data bus
		(Pull-up are programmable)
PHY_CRSDV	I (OD)	RMII Carrier Sense / Receive Data Valid
		(Pull-down is programmable)
PHY_RXERR	I (OD)	RMII Receive Data Error
		(Pull-down is programmable)
USB Interface (10)		
DP0	10	Differential Positive USB Port0 IO signal
DNO	10	Differential Negative USB Port0 IO signal
REXTO	Α	External Resister Connect for Port0
UPWR0	0	USB Port0 Power Control signal
		This pin is always driven to Low when USB Port0 is at Device mode (the HDS pin at high state)
DP1	10	Differential Positive USB Port1 IO signal
DN1	10	Differential Negative USB Port1 IO signal
REXT1	Α	External Resister Connect for Port1
UPWR1	0	USB Port1 Power Control signal
OVI	ı	USB Over Current Detection signal
HDS	ı	USB PHY 0 Device/Host Mode Select Control signal
I2C/USI(SPI/MW) I	nterface (4	1)
SCL0 /	10(U)	12C Serial Clock Line 0.
SFRM		USI Serial Frame.
160 3	5	(Pull-up is programmable)
SDA0 /	10(U)	12C Serial Data Line 0.
SSPTXD	5	USI Serial Transmit Data.
	2-40	(Pull-up is programmable)
SCL1 /	10(U)	12C Serial Clock Line 1.
SCLK	200	USI Serial Clock.
	(6)	(Pull-up is programmable)
SDA1 /	10(U)	I2C Serial Data Line 1.
SSPRXD		USI Serial Receive Data.
SSERAD		4 C12 4C1 - 1 (C211 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Publication Release Date: Jun. 18, 2010 Revision: A3

02 BH /HRW/2013 C B/10					
UARTO/UART1/UAR	UARTO/UART1/UART2 Interface (6)				
TXD0	IO(D)	UARTO Transmit Data.			
		(Pull-down is programmable)			
RXD0	IO(D)	UARTO Receive Data.			
		(Pull-down is programmable)			
TXD1	IO(D)	UART1 Transmit Data			
		(Pull-down is programmable)			
RXD1	IO(D)	UART1 Receive Data			
		(Pull-down is programmable)			
TXD2(IrDA)	IO(D)	UART2 Transmit Data supporting SIR IrDA.			
		(Pull-down is programmable)			
RXD2(IrDA)	IO(D)	UART2 Receive Data supporting SIR IrDA.			
PCI Interface (50)					
PCIAD[31:0]	10(U)	PCI Address and Data bus			
		(Pull-up is programmable)			
PCIPAR	10(U)	PCI Parity			
		(Pull-up is programmable)			
PCICBE[3:0]	10(U)	PCI Bus Command and Byte Enable			
		(Pull-up is programmable)			
PCICLK	10(U)	PCI Clock			
		(Pull-up is programmable)			
PCIRSTn	O(IU)	PCI Reset (Low active)			
		(Pull-up is programmable)			
DOLEDAME»	10(U)	PCI Cycle Frame (Low active)			
PCIFRAMEn		(Pull-up is programmable)			
DCIDEDD	10(U)	PCI Parity Error (Low active)			
PCIPERRn		(Pull-up is programmable)			
PCISERRn	10(U)	PCI System Error (Low active)			
PCISERRI		(Pull-up is programmable)			
PCIIRDYn	10(U)	PCI Initiator Ready (Low active)			
DOLTDDV-	10(U)	PCI Target Ready (Low active)			
PCITRDYn	-	(Pull-up is programmable)			
DCI STOD»	10(U)	PCI Stop (Low active)			
PCISTOPn	20 40	(Pull-up is programmable)			
DCIDEVEEL	10(U)	PCI Device Select (Low active)			
PCIDEVSELn	(0)	(Pull-up is programmable)			
DCIDEO~[4:0]	10(U)	PCI External Master Request (Low active)			
PCIREQn[1:0]	16	(Pull-up is programmable)			

17

Publication Release Date: Jun. 18, 2010

PCIGNTn[1:0]	10(U)	PCI External Master Grant (Low active)
		(Pull-up is programmable)
Miscellaneous (5)		
nIRQ[2:0]	I (OU)	External Interrupt Request
		(Pull-up is programmable)
nWDOG	0	Watchdog Timer Timeout Flag (Low active)
TEST	I	Test Mode
Power/Ground		
VDD18	Р	Core Logic power (1.8V)
VDD33	Р	IO Buffer power (3.3V)
VSS	G	IO Buffer and Core ground (OV)
USBVDDCO	Р	USB Port0 PHY power (3.3V)
USBVSSC0	G	USB Port0 PHY ground (0V)
USBVDDT0	P	USB Port0 PHY Transceiver power (3.3V)
USBVSST0	G	USB Port0 PHY Transceiver ground (0V)
USBVDDC1	P	USB Port1 PHY power (3.3V)
USBVSSC1	G	USB Port1 PHY ground (0V)
USBVDDT1	Р	USB Port1 PHY Transceiver power (3.3V)
USBVSST1	G	USB Port1 PHY Transceiver ground (0V)
PLLVDD18	Р	PLL power (1.8V)
PLLVSS18	G	PLL ground (0V)

5.2 GPIO Share Pin Description

In this chip, there are GPIOC \sim GPIOI groups for general IO control. All of GPIO pins are shared with the other interface and define as the following

GPIO Group	Shared Interface	
GPIOC (15 pins)	PCI Interface	
GPIOC[0]	PCIFRAMEn	
GPIOC[1]	PCITRDYn	
GPIOC[2]	PCIIRDYn	
GPIOC[3]	PCICBE[2]	
GPIOC[4]	PCIAD[16]	
GPIOC[5]	PCIAD[17]	
GPIOC[6]	PCIAD[18]	
GPIOC[7]	PCIAD[19]	
GPIOC[8]	PCIAD[20]	

18

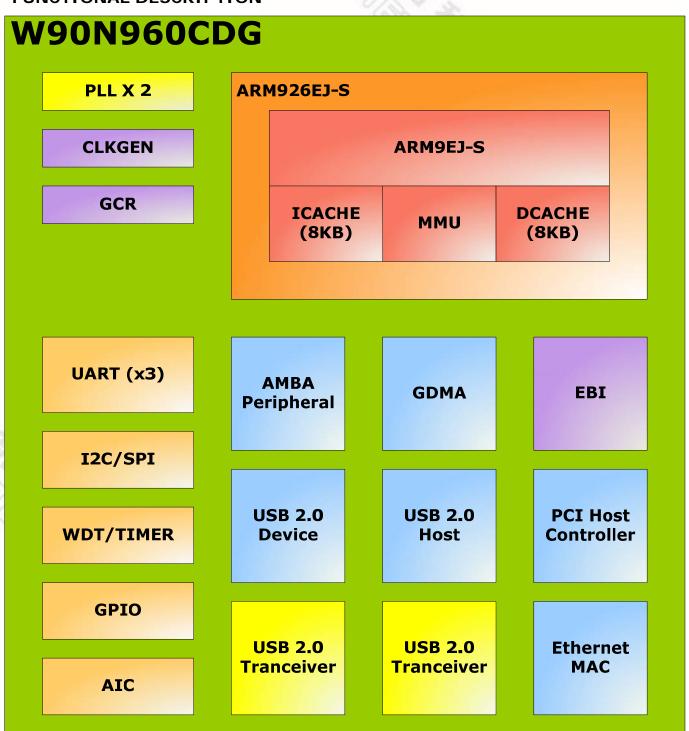
Publication Release Date: Jun. 18, 2010

GPIOC[9]	PCIAD[21]		
GPIOC[10]	PCIAD[22]		
GPIOC[11]	PCIAD[23]		
GPIOC[12]	PCICBE[3]		
GPIOC[13]	PCIAD[24]		
GPIOC[14]	PCIAD[25]		

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GPIOD (9 pins)	PCI Interface	
GPIOD[0]	PCIAD[26]	
GPIOD[1]	PCIAD[27]	
GPIOD[2]	PCIAD[28]	
GPIOD[3]	PCIAD[29]	
GPIOD[4]	PCIAD[30]	
GPIOD[5]	PCIAD[31]	
GPIOD[6]	PCIREQn[0]	
GPIOD[7]	PCIGNTn[0]	
GPIOD[8]	PCIREQn[1]	
GPIOE (9 pins)	UART, PCI Interface	
GPIOE[0]	TXD0	
GPIOE[1]	RXD0	
GPIOE[2]	TXD1	
GPIOE[3]	RXD1	
GPIOE[6]	TXD2(IrDA)	
GPIOE[7]	RXD2(IrDA)	
GPIOE[10]	PCIGNTn[1]	
GPIOE[11]	PCIRSTn	
GPIOE[13]	PCICLK	
GPIOF (10 pins)	RMII Interface	
GPIOF[0]	PHY_MDC	
GPIOF [1]	PHY_MDIO	
GPIOF [3:2]	PHY_TXD [1:0]	
GPIOF [4]	PHY_TXEN	
GPIOF [5]	PHY_REFCLK	
GPIOF [7:6]	PHY_RXD [1:0]	
GPIOF [8]	PHY_CRSDV	
GPIOF [9]	PHY_RXERR	

19

Publication Release Date: Jun. 18, 2010 Revision: A3


GPIOG (4 pins)	I2C / USI	
GPIOG[0]	SCLO /	
	SFRM	
GPIOG[1]	SDAO /	
	SSPTXD	
GPIOG[2]	SCL1 /	
	SCLK	
GPIOG[3]	SDA1 /	
	SSPRXD	
GPIOH (3 pins)	nIRQ Interface	
GPIOH[2:0]	nIRQ[2:0]	
GPIOI (1 pins)	-	
GPIOI [16]	nWDOG	

Publication Release Date: Jun. 18, 2010 Revision: A3

20

6. FUNCTIONAL DESCRIPTION

Publication Release Date: Jun. 18, 2010

6.1 ARM926EJ-S CPU CORE

The ARM926EJ-S CPU core is a member of the ARM9 family of general-purpose microprocessors. The ARM926EJ-S CPU core supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to trade off between high performance and high code density. The ARM926EJ-S processor has a Harvard cached architecture with MMU.

6.2 System Manager

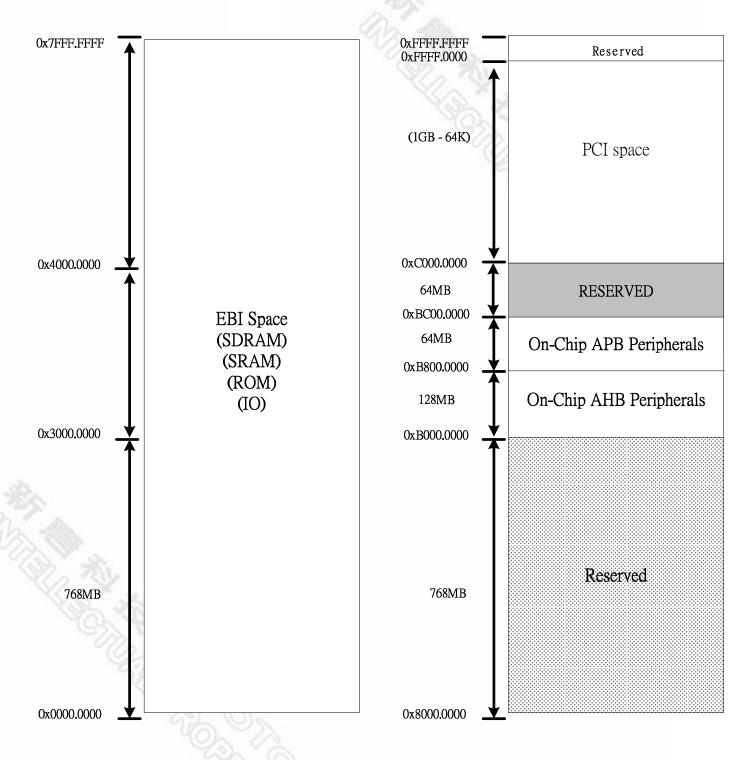
6.2.1 Overview

The System Manager has the following functions.

- System memory map
- The width of external memory address
- Data bus connection with external memory
- Product identifier register
- Bus arbitration
- PLL module
- Clock select register
- Power-On setting

6.2.2 System Memory Map

This chip provides 2G bytes memory space (0x0000_0000~0x3FFF_FFFF) for the SDRAM, RAM, ROM and IO Devices, 192M bytes memory space (0xB000_0000~0xBBFF_FFFF) for the On-Chip Peripherals, and the other memory spaces are reserved.


The size and location of each SDRAM memory bank is determined by the register settings for "current bank base address pointer" and "current bank size" (SDCONFO and SDCONF1). Please note that when setting the bank control registers, the address boundaries of consecutive banks must not be overlapped.

Except On-Chip Peripherals, the start address of each memory bank is not fixed. The bank control registers can be used to assign a specific bank start address by setting the bank's base pointer (13 bits). The address resolution is 256K bytes. The bank's start address is defined as "base pointer << 18" and the bank's size is "current bank size". (EXTOCON ~ EXT2CON)

The CPU booting start address is fixed at address 0x0000_0000 after reset or power-on. In the event of an access request to an address outside any programmed bank size, an abort signal is generated. The maximum accessible memory size of each external IO bank is 16M bytes@32bit, and 128M bytes on SDRAM banks.

Publication Release Date: Jun. 18, 2010

23

Publication Release Date: Jun. 18, 2010

Address Space	Token	Modules	
0x0000_0000 - 0x7FFF_FFFF		EBI (SDRAM, ROM, RAM, IO) Memory Space	
0x8000_0000 - 0xAFFF_FFFF		Reserved Shadow of EBI Memory Space(0x0000_0000~0x2FFF_FFFF)	
0xB000_0000 - 0xB000_01FF	GCR_BA	System Global Control Registers	
0xB000_0200 - 0xB000_02FF	CLK_BA	Clock Control Registers	
0xB000_1000 - 0xB000_1FFF	EBI_BA	EBI Control Registers	
0xB000_2000 - 0xB000_2FFF	PCI_BA	PCI Interface Control Registers	
0xB000_3000 - 0xB000_3FFF	EMC_BA	Ethernet MAC Control Registers	
0xB000_4000 - 0xB000_4FFF	GDMA_BA	GDMA Control Registers	
0xB000_5000 - 0xB000_5FFF	USBH_BA	EHCI USB Host Control Registers	
0xB000_6000 - 0xB000_6FFF	USBD_BA	USB Device Control Registers	
0xB000_7000 - 0xB000_7FFF	USBO_BA	OHCI USB Host Control Registers	
0xB800_0000 - 0xB800_00FF	UARTO_BA	UART 0 Control Registers (Tx,Rx for console)	
0xB800_0100 - 0xB800_01FF	UART1_BA	UART 1 Control Registers (Tx,Rx for High Speed UART)	
0xB800_0200 - 0xB800_02FF	UART2_BA	UART 2 Control Registers (Tx,Rx for IrDA)	
0xB800_1000 -	TMR_BA	Timer Control Registers	

Publication Release Date: Jun. 18, 2010 Revision: A3

0xB800_1FFF			
0xB800_2000 - 0xB800_2FFF	AIC_BA	Interrupt Controller Registers	
0xB800_3000 - 0xB800_3FFF	GPIO_BA	GPIO Control Registers	
0xB800_6000 - 0xB800_60FF	I2CO_BA	I 2C 0 Control Register	
0xB800_6100 - 0xB800_61FF	I2C1_BA	I 2C 1 Control Register	
0xB800_6200 - 0xB800_62FF	USI_BA	Universal Serial Interface Register (USI)	

6.2.3 Address Bus Generation

The address bus generation is depended on the required data bus width **(DBWD)** and address bus alignment control bit **(ADRS)** of each IO bank. The maximum accessible memory size of each external IO bank is 16M bytes@32-bit, 8Mbytes@16-bit, and 4Mbytes@8-bit. (EXTOCON ~ EXT2CON)

Address Bus Generation Guidelines (When ADRS bit = 0)

Data Bus Width	External Address Pins	Maximum Accessible
	MA [21:0]	Memory Size
8-bit	MA21 – MA0 (Internal)	4M bytes
16-bit	MA22 – MA1 (Internal)	8M bytes (4M half-words)
32-bit	MA23 – MA2 (Internal)	16M bytes (4M words)

Address Bus Generation Guidelines (When ADRS bit = 1)

Data Bus	External Address Pins	Maximum Accessible
Width	MA [21:0]	Memory Size
8-bit	MA21 – MA0 (Internal)	4M bytes
16-bit	MA21 – MA0 (Internal)	4M bytes, MA[0] ignored (2M half-words)
32-bit	MA21 – MA0 (Internal)	4M bytes, MA[1:0] ignored (1M words)

Publication Release Date: Jun. 18, 2010

AHB Bus Arbitration

The system bus is AHB-compliant and supports modules with standard AHB master or slave interfaces. The AHB arbiter has two priority-decision modes, i.e., the fixed priority mode and the rotate priority mode. In the rotate priority mode, there are three types for AHB-Master bus. The selection of modes and types is determined on the **PRTMODO** and **PRTMOD1** bits in the Arbitration Control Register. **PRTMODO** is used to control the fixed priority of AHB1 (CPU AHB-Lite) Bus and **PRTMOD1** is used to control the fixed priority of AHB2 Master Bus.

6.2.4.1 Fixed Priority Mode

Fixed priority mode is selected if PRTMODx = 0. The order of priorities on the AHB mastership among the on-chip master modules, listed in following table, is fixed. If two or more master modules request to AHB at the same time, the mastership is always granted to the module with the highest priority.

	<u> </u>	<u> </u>
Priority Sequence	PRTMODO = 0 AHB1 Bus	PRTMOD1 = 0 AHB2 Bus
1 (Lowest)	ARM CPU Instruction	AHB Bridge
2	ARM CPU Data	PCI Controller
3	GDMAO	USB Device
4	GDMA1	USB Host
5(Highest)		EMC Controller

AHB Bus Priority Order in Fixed Priority Mode

The ARM core normally has the lowest priority under the fixed priority mode; however, this chip provides a mechanism to raise the priority to the highest. If the IPEN bit (bit-1 of Arbitration Control Register) is set to 1, the IPACT bit (bit-2 of Arbitration Control Register) will be automatically set to 1 while an unmasked external interrupt occurs. Under this circumstance, the ARM core gains the highest AHB priority.

The programmer can recover the original priority order by directly writing "0" to clear the **IPACT** bit. For example, this can be done that at the end of an interrupt service routine. Note that **IPACT** only can be automatically set to 1 by an external interrupt when **IPEN** = 1. It will not take effect if a programmer to directly write 1 to **IPACT** to raise ARM core's AHB priority.

Publication Release Date: Jun. 18, 2010

6.2.4.2 Rotate Priority Mode

Rotate priority mode is selected if PRTMODx = 1. The AHB arbiter uses a round robin arbitration scheme by which every master module can gain the bus ownership in turn.

For AHB2 DMA Master Bus, the Audio have the higher priority in the rotate type.

Power-On Setting

After power on reset, Power-On setting registers are latched from EBI Address pins (MA [21:13]) to configure this chip.

Power-On Setting	Pin
Booting Device Select	MA [21:20]
Internal System Clock Select	MA17
GPIO Pin Configuration Select	MA [15:14]
USB PHY0 Mode Select	HDS

MA [21:20] : Booting Device Select

MA[21:20]		Booting Device
Pull-down	Pull-down	SPI Flash ROM
Pull-down	Pull-up	Reserved
Pull-up	Pull-down	USB ISP
Pull-up	Pull-up	NOR-type Flash ROM

MA19: Pull-up is necessary

MA18: Pull-down is necessary

MA17: Internal System Clock Select

If pin MA17 is pull-down, the external clock from EXTAL15M pin is served as internal system clock.

If pin MA17 is pull-up, the PLL output clock is used as internal system clock.

MA16: Pull-down

MA [15:14] : GPIO Pin Configuration Select

MA[15:14]	State	GPIO Pin Function
Pull-down	Pull-down	GPIOC/D/E Group Select
MA14	Pull-up	PCI Group Select

Publication Release Date: Jun. 18, 2010

MAJE	Pull-down	GPIOF Group Select
MA15	Pull-up	RMII Group Select

MA13: Pull-up is necessary

HDS: USB PHY0 Mode Select

HDS	USB PHY0 Mode			
Pull-down	USB20 Host			
Pull-up	USB20 Device			

System Booting

NUC960ADN supports three kinds of system booting devices, which including

- (1) SPI Flash ROM device
- (2) USB ISP
- (3) NOR-type Flash ROM

Booting Device Select

MA[21	1:20]	Booting Device		
Pull-down	Pull-down	SPI Flash ROM		
Pull-down Pull-up		Reserved		
Pull-up	Pull-down	USB ISP		
Pull-up Pull-up		NOR-type Flash ROM		

Publication Release Date: Jun. 18, 2010

6.2.7 System Global Control Registers Map

Register	Address	R/W	Description	Reset Value			
GCR_BA = 0xB000_0000							
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_0960			
PWRON	0xB000_0004	R/W	Power-On Setting Register	Undefined			
ARBCON	0xB000_0008	R/W	Arbitration Control Register	0x0000_0000			
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000			
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-up/down Enable Register	0xFFFF_FFFF			
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up/down Enable Register	0x0000_7FFF			
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up/down Enable Register	0x0000_07FF			
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF			
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF			
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF			
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up/down Enable Register	0x0000_00FF			
GTMP1	0xB000_0034	R/W	General Temporary Register 1	Undefined			
GTMP2	0xB000_0038	R/W	General Temporary Register 2	Undefined			
GTMP3	0xB000_003C	R/W	General Temporary Register 3	Undefined			

29

Publication Release Date: Jun. 18, 2010

Product Identifier Register (PDID)

This register is for only read and enables software to recognize certain characteristics of the chip ID and the version number.

Register	Address	R/W	Description	Reset Value
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_0960

					17/20	4///			
31	30	29	28	27	26	25	24		
VERSION									
23	22	21	20	19	18	17	16		
CHPID									
15	14	13	12	11	10	9	8		
	CHPID								
7	6	5	4	3	2	1	0		
	CHPID								

Bits	Descriptions	
[31:24]	VERSION	Version of chip 02: Version C
[23:0]	CHIPID	Chip identifier The NUC960ADN Chip identifier is 0x90_0960.

30

Publication Release Date: Jun. 18, 2010

Power-On Setting Register (PWRON)

This register latches the chip power-on setting from EBI Address Bus during chip reset.

Register	Address	R/W	Description	Reset Value
PWRON	0xB000_0004	R/W	Power-On Setting Register	Undefined

					6/// 5/	33			
31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
			RVED		200	27			
15	14	13	12	11	10	9	8		
	R	ESERVED			USBDEN	USBHD	RESERVED		
7	6	5	4	3	2	1	0		
Booting Device Select RESERVED			GPIOS	SEL	PLL				

Bits	Descriptions	Descriptions							
[0]	PLL	Power-C	nternal System Clock Select (Read/Write) Power-On value latched from MA17 D= the external clock from EXTAL15M pin is served as internal system clock. L= the PLL output clock is used as internal system clock.						
表		GPIO P	in Configuration	n Sele	ct(Read Only) GPIO Pin Function				
[2:1]	GPIOSEL	[1]	MA14	0	GPIOC/D/E PCI				
	C. Th	[2]	MA15	0 1	GPIOF RMII				
[5:3]	RESERVED	>-1)	Read Only These three bits are read only and are [0,0,x]						

31

Publication Release Date: Jun. 18, 2010

		Booting Device Select (Read Only)						
		these two bits are power-on reset from MA[21:20]						
[7.6]	Booting	Booting Device Select [7:6]		Booting	Device			
[7:6]	Device Select	0	0 SPI Flash ROM		sh ROM			
	Sciect	0	1	Rese	erved			
		1	0	USB	ISP			
		1	1	NOR-type	Flash ROM			
503		Read Only	Read Only					
[8]	RESERVED	_	This bit is read only					
		USB PHY0 Mode Select (Read/Write)						
		this bit is powe	er-on reset from	HDS				
[9]	USBHD	USBHD	USB PHYO	Mode	HDS Pin			
		0	USB20 Devi	ce	External Pull-Up			
		1	USB20 Host		External Pull-Down			
		USB PHY0 En	able Control fo	r USB Device M	lode (Read/Write)			
		This bit is only	This bit is only active when the USBHD bit be zero (Device Mode)					
[10]	USBDEN	USBDEN	USB PHY0	Enable				
		0	Set Device F	PHY at SE0 (Not	active to external host)			
		1	Set Device F USB Device		y the UTMI interface of the			

Publication Release Date: Jun. 18, 2010 Revision: A3

32

Arbitration Control Register (ARBCON)

Register	Address	R/W	Description	Reset Value
ARBCON	0xB000_0008	R/W	Arbitration Control Register	0x0000_0000

					1/232 102			
31	30	29	28	27	26	25	24	
RESERVED								
23	22	21	20	19	18	17	16	
RESERVED								
15	14	13	12	11	10	9	8	
RESERVED								
7	6	5	4	3	2	1	0	
F	RESERVED		DGMASK	IPACT	IPEN	PRTMOD1	PRTMODO	

Bits	Descriptions	
[4]	DGMASK	Default Grant Master Mask Control 0 = AHB-Bridge always be the default grant master (default) 1 = No default grant master on AHB-2 Bus
[3]	IPACT	Interrupt Priority Active When IPEN="1", this bit is set when the ARM core has an unmasked interrupt request. This bit is available only when the PRTMOD1=0 and PRTMOD0=0.
[2]	IPEN	Interrupt Priority Enable Bit 0 = the ARM core has the lowest priority. 1 = enable to raise the ARM core priority to second This bit is available only when the PRTMOD=0 and PRTMOD0=0.
[1]	PRTMOD1	Priority Mode Select for AHB2 (AHB Master Bus) 0 = Fixed Priority Mode (default) 1 = Rotate Priority Mode
[0]	PRTMOD0	Priority Mode Select for AHB1 (CPU AHB-Lite Bus) 0 = Fixed Priority Mode (default) 1 = Rotate Priority Mode

33

Publication Release Date: Jun. 18, 2010

Multiple Function Pin Select Register (MFSEL)

Register	Address	R/W	Description	Reset Value
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000

					N / 31 1 10 3		
31	30	29	28	27	26	25	24
RESERVED				GPSELI	RESERVED		GPSELH
23	22	21	20	19	18	17	16
RESERVED						SELG	
15	14	13	12	11	10	9	8
GPS	GPSELG RESERVED				GPSELE	700	9 (0)
7	6	5	4	3	2	1	0
	GPSELD				ELC	GPSELF	RESERVED

Bits	Descriptions						
		GPIOI Pin Function Select Control Register					
		PIN	GPSELI[27]	GPIO Pin Function			
[27]	GPSELI	CDIOI[1/]	0	GPIOI[16]			
		GPIOI[16]	1	nWDOG			
4/2		See GPIO Shared	Pin Description for	more detail			
		GPSELG[27] defa	ault value is 1 for nW	/DOG (Watch-Dog Timer Output)			
	P	GPIOH Pin Function Select Control Register					
[24]	GPSELH	PIN	GPSELH[24]	GPIO Pin Function			
[27]		GPIOH[2:0]	0	GPIOH[2:0]			
		Gi Tori[2:0]	1	nIRQ[2:0]			
		GPSELG [24] default value is 0 for GPIOH group.					
			34	Publication Release D	rate: Jun. 18, 2010 Revision: A3		

Bits	Descriptions						
		GPIOG Pin Function Select Control Register					
		PIN	GPSELG[17:16]	GPIO Pin Function			
			00	GPIOG[3:2]			
			01	I2C Line1			
		GPIOG[3:2]	10	USI Interface			
[17,14]	CDCELC		11	Reserved			
[17:14]	GPSELG	PIN	GPSELG[15:14]	GPIO Pin Function			
			00	GPIOG[1:0]			
			01	I2C Line0			
		GPIOG[1:0]	10	USI Interface			
			11	Reserved			
		See GPIO Shared Pin	Description for more de	etail			
		GPSELG [17:14] defau	ult value is 0, GPIOG gr	oup.			
		PIN	GPSELE[12]	GPIO Pin Function			
			0	GPIOE[13:12]			
		GPIOE[13:12]	1	PCI			
		PIN	GPSELE[11]	GPIO Pin Function			
		CDIOE[11.0]	0	GPIOE[11:8]			
		GPIOE[11:8]	1	PCI			
		PIN	GPSELE[10]	GPIO Pin Function			
[12:8]	GPSELE	GPIOE[7:4]	0	GPIOE[7:6]			
	OFSELL	GPIOE[7:4]	1	UART2(IrDA)			
	-325	PIN	GPSELE[9]	GPIO Pin Function			
	130	GPIOE[3:2]	0	GPIOE[5:2]			
		GPTOE[3.2]	1	UART1			
		PIN	GPSELE[8]	GPIO Pin Function			
		GPIOE[1:0]	0	GPIOE[1:0]			
		5. 152[1.0]	1	UARTO			
		A 11 -	Description for more de t value is 0 for GPIOE g				

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Description	าร						
		GPIOD Pin Functi	GPIOD Pin Function Select Control Register					
		PIN	GPSELD[7:6]	GPIO Pin Function				
			00	GPIOD[10:5]				
			01	PCI Interface				
		GPIOD[10:5]	10	Reserved				
			11	Reserved				
[7:4]	GPSELD	PIN	PIN GPSELD[5:4] GPIO Pin Function					
			00	GPIOD[4:0]				
		CDLOD[4:0]	01	PCI Interface	2			
		GPIOD[4:0]	10	Reserved				
			11	Reserved	(0)			
			See GPIO Shared Pin Description for more detail GPSELD[7:4] default value is depend on power-on setting					
		GPIOC Pin Function Select Control Register						
		PIN	GPSELC[3:2]	GPIO Pin Function				
			00	GPIOC[14:0]				
[3:2]	GPSELC	GPIOC[14:0]	01	PCI Interface				
[3.2]	0.0220	GF100[14.0]	10	Reserved				
			11	Reserved				
			Description for more d value is depend on pov					
dis		GPIOF Pin Functi						
[1]		PIN	GPSELF[1]	GPIO Pin Function				
	GPSELF		0	GPIOF[9:0]				
	GPSELF	GPIOF[9:0]	1	RMII Interface				
	T. Will	See GPIO Shared Pin Description for more detail						
	Z X	GPSELF[1] default va	lue is depend on powe	r-on setting				

Publication Release Date: Jun. 18, 2010 Revision: A3

EBI Data Pin Pull-up/down Enable Register (EBIDPE)

GPIOC~GPIOH Pin Pull-up/down Enable Register (GPIOCPE~GPIOHPE)

These registers are used to control the IO pins to be internal pull-up or down, which can avoid the input pins floating if there is no external resistors.

Register	Address	R/W	Description	Reset Value
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-down Enable Register	0xFFFF_FFFF
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up Enable Register	0x0000_7FFF
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up Enable Register	0x0000_07FF
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up Enable Register	0x0000_00FF

31	30	29	28	27	26	25	24	
	PPE							
23	22	21	20	19	18	17	16	
			PF	PE				
15	14	13	12	11	10	9	8	
			PF	PE				
7	6	5	4	3	2	1	0	
Sh.	PPE							

	7.00	
Bits	Descriptions	
1	174 6	Pin Pull-down Enable Register
[31:0]	PPE	1 = Disable the Pull-high/down for each relative pin (default)
	(0,0)	0 = Enable the Pull-high/down for each relative pin

Publication Release Date: Jun. 18, 2010

Register	Descriptions
EBIDPE	EBI Data Pin Pull-down Enable Register PPE[31:0] Controls the Pull-down of the EBI Data Bus[31:0]
GPIOCPE	GPIOC Pin Pull-up Enable Register PPE[31:15] is reserved in this register PPE[14:0] Controls the Pull-up of the GPIOC[14:0]
GPI ODPE	GPI OD Pin Pull-up Enable Register PPE[31:9] is reserved in this register PPE[8:0] Controls the Pull-up of the GPIOD[10:0]
GPI OEPE	GPIOE Pin Pull-up/down Enable Register PPE[31:14] is reserved in this register PPE[13:0] Controls the Pull-up/down of the GPIOE[13:0] Pull-down: GPIOE[6:0] Pull-up: GPIOE[13:8] No action: GPIOE[7] GPIOE [12], [9:8], [5:4] are reserved in this chip.
GPIOFPE	GPIOF Pin Pull-up/down Enable Register PPE[31:10] is reserved in this register PPE[9:0] Controls the Pull-up/down of the GPIOF[9:0] Pull-down: GPIOF[9:8], GPIOF[5:4], GPIOF[1] Pull-up: GPIOF[7:6], GPIOF[3:2] No action: GPIOF[0]
GPIOGPE	GPI OG Pin Pull-down Enable Register PPE[31:4] is reserved in this register PPE[3:0] Controls the Pull-down of the GPIOG[3:0]
GPIOHPE	GPIOH Pin Pull-up Enable Register PPE[31:8] is reserved in this register PPE[2:0] Controls the Pull-up of the GPIOH[2:0]

1 = Disable the Pull-high/down for each relative pin

0 = Enable the Pull-high/down for each relative pin

General Temporary Register 1 ~ 3 (GTMP1 ~GTMP3)

Register	Address	R/W	Description	Reset Value
GTMP1	0xB000_0034	R/W	General Temporary Register 1	Undefined
GTMP2	0xB000_0038	R/W	General Temporary Register 2	Undefined
GTMP3	0xB000_003C	R/W	General Temporary Register 3	Undefined

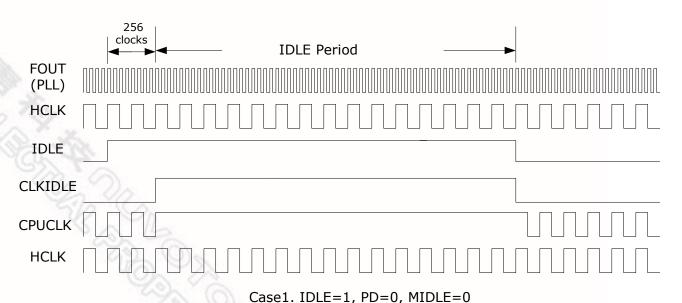
						at the second second		
31	30	29	28	27	26	25	24	
	DATA							
23	22	21	20	19	18	17	16	
			DA	ΓΑ		0		
15	14	13	12	11	10	9	8	
			DA	ГА			2	
7	6	5	4	3	2	1	0	
	DATA							

Bits	Descriptions	
[31:0]	DATA	General Temporary Data

39

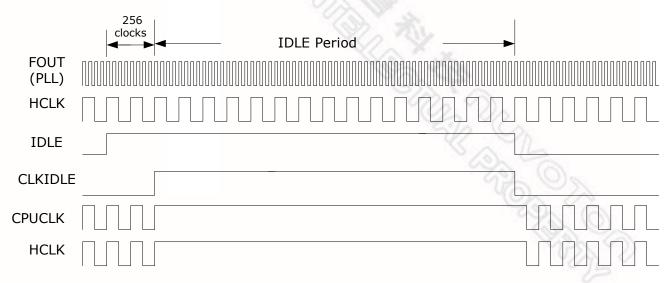
Publication Release Date: Jun. 18, 2010

6.3 Clock Controller


The clock controller generates all clocks for PCI, CPU, AMBA and all the engine modules. The clock source of each module is coming from the PLL, or from the external crystal input directly, and there is relative bit on the CLKEN register to control the clock ON or OFF individually, and the divider setting is on the CLKDIV register. The register can also be used to control the clock enable or disable for power control.

6.3.1 Power management

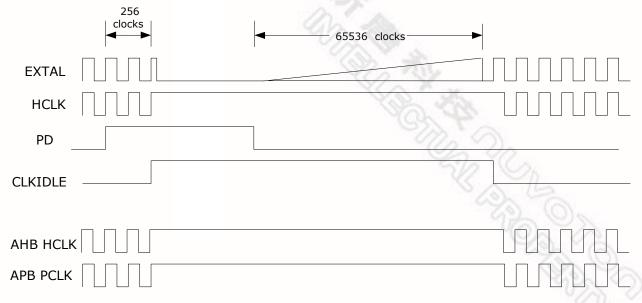
This chip provides three power management scenarios to reduce power consumption. The peripheral clocks can be enabled / disabled individually by controlling the corresponding bit in CLKSEL control register. Software can turn-off the unused modules' clock for power saving. It also provides **IDLE** and **Power-down** modes to reduce the power consumption.


IDLE MODE

If the IDLE bit in Power Management Control Register (PMCON) is set, the ARM CORE clock source will be halted after 256 cycles, and then the ARM core will stop. The AHB or APB clocks are still active except the clock to cache controller and ARM core. This ARM core will exit from this mode when a nIRQ or nFIQ signals from any peripheral, such as Timer overflow interrupts. The memory controller can also be forced to enter idle state if both the MIDLE and IDLE bits are set.

. IDLL-1, I D-0, MIDLL-0

Publication Release Date: Jun. 18, 2010


Case2. IDLE=1, PD=0, MIDLE=1

Power-Down Mode

The mode provides the minimum power consumption. When the system is not working or waiting an external event, software can write PD bit to turn off all the clocks includes system crystal oscillator and PLL to let ARM core to enter sleep mode after 256 clock cycles. In this state, all peripherals are also in sleep mode since the clock source is stopped. This system will exit from this mode when external interrupts (nIRQ signals) are detected; this chip provides external interrupts and USB device to wakeup the clock.

Publication Release Date: Jun. 18, 2010

Case3. IDLE=0, PD=1, MIDLE=0

6.3.2 Clock Control Registers Map

Register	Address	R/W	Description	Reset Value
CLK_BA = 0xB00	00_0200			
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000
PLLCONO	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63
PLLCON1	0xB000_0210	R/W	PLL Control Register 1	0x0001_4F64
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000
IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000
IPSRST	0xB000_0220	R/W	IP Software Reset Register	0x0000_0000
CLKEN1	0xB000_0224	R/W	Clock Enable Register	0x0000_0000
CLKDIV1	0xB000_0228	R/W	Clock Divider Control 1 Register	0x0000_0000

42

Publication Release Date: Jun. 18, 2010

Clock Enable Register (CLKEN)

Register	Address	R/W	Description	Reset Value
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834

31	30	29	28	27	26	25	24
I2C1	1200	USI	RESERVED	GDMA	WDT	RESE	RVED
23	22	21	20	19	18	17	16
TIMER4	TIMER3	TIMER2	TIMER1	TIMERO		RESERVED	W.
15	14	13	12	11	10	9	8
RESI	ERVED	UART2	UART1	UART0	RESERVED	USBH	USBD
7	6	5	4	3	2	1	0
EMC	RESERVED			P	CI	RESEI	RVED

Bits	Descriptio	ns
		I2C Interface 1 Clock Enable Bit
[31]	12C1	0 = Disable I2C-1 clock
		1 = Enable I2C-1 clock
		I2C Interface 0 Clock Enable Bit
[30]	1200	0 = Disable I2C-0 clock
	754	1 = Enable I2C-0 clock
::/ <u>[</u>	6	USI Clock Enable Bit
[29]	USI	0 = Disable USI clock
	O X X	1 = Enable USI clock
12	3 120	GDMA Clock Enable Bit
[27]	GDMA	0 = Disable GDMA clock
	570	1 = Enable GDMA clock
	13/3	WDT Clock Enable Bit
[26]	WDT	0 = Disable WDT counting clock
		1 = Enable WDT counting clock

43

Publication Release Date: Jun. 18, 2010

Bits	Description	ns
[23]	TIMER4	Timer4 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[22]	TIMER3	Timer3 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[21]	TIMER2	Timer2 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[20]	TIMER1	Timer1 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[19]	TIMERO	Timer0 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock
[13]	UART2	UART2 Clock Enable Bit 0 = Disable UART2 clock 1 = Enable UART2 clock
[12]	UART1	UART1 Clock Enable Bit 0 = Disable UART1 clock 1 = Enable UART1 clock
[11]	UARTO	UARTO Clock Enable Bit 0 = Disable UARTO clock 1 = Enable UARTO clock
[9]	USBH	USB Host Clock Enable Bit 0 = Disable USB Host Controller clock 1 = Enable USB Host Controller clock
[8]	USBD	USB Device Clock Enable Bit 0 = Disable USB Device Controller clock 1 = Enable USB Device Controller clock

44

Bits	Descriptions					
[7]	ЕМС	EMC Clock Enable Bit 0 = Disable EMC Controller clock 1 = Enable EMC Controller clock				
		PCI Clock	Enable Bi	t (3) 1/2		
		PCI[[3:2]	PCI Clock Enable Control		
[3:2]	PCI	0 0 Disable PCI Controller Clock				
			1	Enable PCI Controller Clock		
		1	Х	Reserved		

Clock Select Register (CLKSEL)

Register	Address	R/W	Description	Reset Value
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX

					-///		
31	30	29	28	27	26	25	24
			RESE	RVED	2	0 00	
23	22	21	20	19	18	17	16
			RESE	RVED		97	(A)2/
15	14	13	12	11	10	9	8
		RESE	RVED			UART	1SEL
7	6	5	4	3	2	1	0
	RESE	RVED		СКЗ	3SEL	CPUC	KSEL

Bits	Descriptions				
		UART1 Clo	ock Source	e Select Bit	
		UART	1SEL	Clock Source	1
[9:8]	UART1SEL	0	0	PLL0 Clock	Ì
		0	1	PLL1 Clock	
		1	0	EXTAL15M pin	Ī
		1	1	EXTAL15M pin (Default)	
	10	33MHz CI		e Select Bit Clock Source	1
[3:2]	CK33SEL	0	0	PLL0 Clock	
	J. COS 120	0	1	PLL1 Clock	İ
	(M) (S)	1	0	EXTAL15M pin	İ
	95 V	2 1	1	EXTAL15M pin (Default)	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	escriptions							
				ource Select Bit nded on power-on setting (Pin MA17)					
		CPUCKSEL		Clock Source					
[1:0]	CPUCKSEL	0	0	PLL0 Clock					
		0	1	PLL1 Clock					
		1	0	PLL0 /2 Clock					
		EXTAL15M pin							

Clock Divider Control Register (CLKDIV)

Register	Address	R/W	Description	Reset Value
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000

31	30	29	28	27	26	25	24	
	RESERVED				APBCKDIV AHBCKDIV			
23	22	21	20	19	18	17	16	
	RESE	RVED		UART1DIV				
15	14	13	12	11	10	9	8	
			RESE	RVED				
7	6	5	4	3	2	1	0	
	СКЗ	3DIV			CPUC	KDIV		

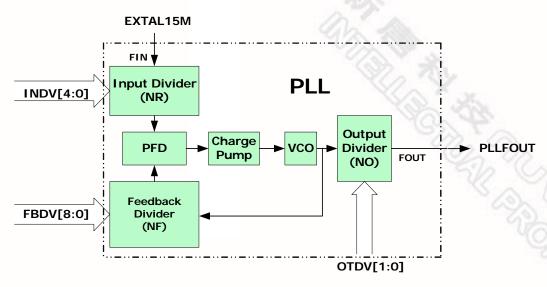
Bits	Descriptions							
10	- SV	AMBA API	AMBA APB Clock Divider Control Register					
	100	APBC	KDIV	Clock Frequency				
[27:26]	APBCKDIV	0	0	Reserved				
[27.20]	AFBCKDIV	0	1	AHBCLK/2				
	(2) C	1	0	AHBCLK/4				
	3//	1	1	AHBCLK/8				

47

Bits	Descriptions						
		AMBA AHB Clock (AHBCLK) Divider Control Register					
		AHBCK	DIV	Clock Frequency			
[25:24]	AHBCKDIV	0	0	CPUCLK/1			
[23,21]	7 II IBONDI I	0	1	CPUCLK/2			
		1	0	CPUCLK/4			
		1	1	CPUCLK/8			
[19:16]	UART1DIV	UART1CK = Where (1) U	UART1 clo ART1DIV	e Divider Control Register ock/(UART1DIV +1) is 0~15 ck is the clock source output by UART1SEL control reg.			
[7:4]	CK33DIV	CLK33 = CK Where (1) C	33 clock/(K33DIV is	e Divider Control Register (CK33DIV +1) s 0~15 is the clock source output by CK33SEL control register			
[3:0]	CPUCKDIV	CPUCLK = C Where (1) C	CK clock/ PUCKDIV	ivider Control Register (CPUCKDIV +1) is 0~15 s the clock source output by CPUCKSEL control register			

Publication Release Date: Jun. 18, 2010

PLL Control Register 0/1 (PLLCON0/1)


Register	Address	R/W	Description	Reset Value
PLLCON0	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63
PLLCON1	0xB000_0210	R/W	PLL Control Register 1	0x0001_4F64

31	30	29	28	27	26	25	24
			RESE	RVED	3	200	31-
23	22	21	20	19	18	17	16
			RESERVED			500	PWDEN
15	14	13	12	11	10	9	8
			FBI	ΟV			J. T.
7	6	5	4	3	2	1	0
FBDV	ОТ	DV			INDV		

Bits	Descriptions								
		Power I	Power Down Mode Enable						
[16]	PWDEN	0 = PLL	is in no	rmal mode (defa	ault)				
. Ele.		1 = PLL	is in po	wer down mode					
[15:7]	FBDV		-	ut Clock Feedber divides the ou	eack Divider Struct clock from VCO of PLL.				
	132	PLL Out	put Clo	ock Divider					
	337	ОТ	DV	Divided by					
	10 M	0	0	1					
[6:5]	OTDV	0	1	2					
	0	1	0	2					
	J. S. C.	2/1	1	4					
[4:0]	INDV	PLL Input Clock Divider Input Divider divides the input reference clock into the PLL.							

Publication Release Date: Jun. 18, 2010

The formula of output clock of PLL is:

Fout = Fin
$$*\frac{NF}{NR}*\frac{1}{NO}$$

FOUT: Output clock of **Output Divider**

FIN: External clock into the **Input Divider**

NR : Input divider value (NR = INDV + 2)

NF : Feedback divider value (NF = FBDV + 2)

NO: Output divider value (NO = OTDV)

Example Case:

The input clock frequency of EXTAL15M pin is 15MHz

PLL Output Frequency	200MHz	166MHz	133MHz	100MHz
PLLCON Reg.	0x0000_4F24	0x0000_4124	0x0000_22A2	0x0000_4F64

PLL Output Frequency	66MHz	169.34MHz	122.88MHz	
40	< C	(44.1K*3840)	(48K*2560)	
PLLCON Reg.	0x0000_2B63	0x0000_4E25	0x0000_92E7	

50

Publication Release Date: Jun. 18, 2010

Power Management Control Register (PMCON)

Register	Address	R/W	Description	Reset Value
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000

					011 n V	33	
31	30	29	28	27	26	25	24
			RESI	ERVED	8	2/2	
23	22	21	20	19	18	17	16
			RESI	ERVED		(O)	
15	14	13	12	11	10	9	8
RESERVED					3/20)		
7	6	5	4	3	2	1	0
RESERVED			RESET	MIDLE	PD	IDLE	

Bits	Descriptions	
		Software Reset
[3]	RESET	This is a software reset control bit. Set logic 1 to generate an internal reset pulse. This bit is auto-clear to logic 0 at the end of the reset pulse.
. 222		Memory Controller IDLE enable
[2]	MIDLE	Setting this bit HIGH to enable memory controller enter IDLE mode, the clock source of memory controller will be halted while ARM CORE enter IDLE mode.
	The Steel	1 = Memory controller will enter IDLE mode when IDLE bit is set.
	2 3 3 4	0 = Memory controller still active when IDLE bit is set.
	100	Power Down Enable
[1]	[1] PD	Setting this bit HIGH, this chip enters power saving mode. The clock source 15M crystal oscillator and PLL both will stop to generate clock. User can use nIRQ [2:0], USB Device and external nRESET to wakeup chip.
		1 = Power down mode enable
	~?	0 = Normal mode

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		CPU IDLE mode Enable
[0]	IDLE	Setting this bit HIGH, ARM CPU Core enters power saving mode. The peripherals still working if the clock enable bit in CONSEL is set. Any nIRQ or nFIQ to ARM core will let ARM core to exit IDLE state.
		1 = CPU IDLE mode enable
		0 = Normal mode

IRQ Wakeup Control Register (IRQWAKECON)

Register	Address	R/W	Description	Reset Value
IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	RESERVED						
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
RESERVED					IRC	WAKEUPPO	LO
7	6	5	4	3	2	1	0
RESERVED				IR	QWAKEUPE	NO	

Bits	Descriptions	
[10:8]	IRQWAKEUPPOLO Wakeup Polarity for nIRQ[2:0] 1 = nIRQx is high level wakeup 0 = nIRQx is low level wakeup	
[2:0]	IRQWAKEUPENO	Wakeup Enable for nIRQ[2:0] 1 = nIRQx wakeup enable 0 = nIRQx wakeup disable

Publication Release Date: Jun. 18, 2010

IRQ Wakeup Flag Register (IRQWAKEFLAG)

Register	Address	R/W	Description	Reset Value
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000

					7 (///	21 m	
31	30	29	28	27	26	25	24
			RESE	RVED	1	a 16	
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						
7	6	5	4	3	2	1	0
RESERVED				I F	ROWAKEFLA	G	

Bits	Descriptions	
		Wakeup Flag for nIRQ[2:0]
[2:0]	IRQWAKEFLAG	After power down wakeup, software should check these flags to identify which IRQ is used to wakeup the system. And clear the flags in IRQ interrupt service routine.
BILL	30	1 = CPU is wakeup by nIRQx
	4	0 = not wakeup

Publication Release Date: Jun. 18, 2010

IP Software Reset Register (IPSRST)

Register	Address	R/W	Description	Reset Value
IPSRST	0xB000_0220	W	IP Software Reset Register	0x0000_0000

					- 1 / 7/7		
31	30	29	28	27	26	25	24
RESERVED	12C	USI			RESERVE	12 Vh	
23	22	21	20	19	18	17	16
	RESER	VED		TIMER		RESERVED	(A) 21
15	14	13	12	11	10	9	8
	RESER	VED		UART	RESERVED	USBH	USBD
7	6	5	4	3	2	1	0
EMC	F	RESERVED		GDMA	PCI	RESE	RVED

Bits	Descriptions	
[30]	12C	I 2C Interface Software Reset Control Bit 0 = write 0 is no action for both I2C0 and I2C1 1 = write 1 , a reset pulse is generated to reset both I2C0 and I2C1, and This bit will be auto clear to zero.
[29]	USI	USI Software Reset Control Bit 0 = write 0 is no action for USI 1 = write 1 , a reset pulse is generated to reset USI, and This bit will be auto clear to zero.
[19]	TIMER	Timer Software Reset Control Bit 0 = write 0 is no action for all of TIMERs and WDT 1 = write 1 , a reset pulse is generated to reset all of TIMERs and WDT, and This bit will be auto clear to zero.
[11]	UART	UART Software Reset Control Bit 0 = write 0 is no action for all of UARTs 1 = write 1 , a reset pulse is generated to reset all of UARTs, and This bit will be auto clear to zero.

55

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[9]	USBH	USB Software Reset Control Bit 0 = write 0 is no action for USB Host Controller 1 = write 1 , a reset pulse is generated to reset USB Host Controller, and This bit will be auto clear to zero.
[8]	USBD	USB Device Software Reset Control Bit 0 = write 0 is no action for USB Device Controller 1 = write 1 , a reset pulse is generated to reset USB Device Controller, and This bit will be auto clear to zero.
[7]	ЕМС	EMC Software Reset Control Bit 0 = write 0 is no action for EMC Controller 1 = write 1 , a reset pulse is generated to reset EMC Controller, and This bit will be auto clear to zero.
[3]	GDMA	GDMA Software Reset Control Bit 0 = write 0 is no action for GDMA Controller 1 = write 1 , a reset pulse is generated to reset GDMA Controller, and This bit will be auto clear to zero.
[2]	PCI	PCI Software Reset Control Bit 0 = write 0 is no action for PCI Controller 1 = write 1 , a reset pulse is generated to reset PCI Controller, and This bit will be auto clear to zero.

Publication Release Date: Jun. 18, 2010

Clock Enable 1 Register (CLKEN1)

Register	Address	R/W	Description	Reset Value
CLKEN1	0xB000_0224	R/W	Clock Enable 1 Register	0x0000_0000

					-1///						
31	30	29	28	27	26	25	24				
RESERVED											
23	22	21	20	19	18	17	16				
			RESE	RVED		23					
15	14	13	12	11	10	9	8				
			RESE	RVED			6				
7	6	5	4	3	2	1	0				
	F	RESERVED	RMII	RESE	RVED						

Bits	Descriptions	
1000		RMII Clock Enable Bit
[2]	RMII	0 = Disable RMII 50MHz clock
1	A.	1 = Enable RMII 50MHz clock

57

Publication Release Date: Jun. 18, 2010

6.4 External Bus Interface

6.4.1 Overview

This chip supports External Bus Interface (**EBI**), which controls the access to the external memory (ROM/FLASH, SDRAM) and External I/O devices. The **EBI** has chip select signals to select one ROM/FLASH bank, two SDRAM banks, and four External I/O banks with 21-bit address bus. It supports 8-bit, 16-bit, and 32-bit external data bus width for each bank.

The EBI has the following functions:

- SDRAM controller
- EBI control register
- ROM/FLASH interface
- External I/O interface

6.4.2 Functional Description

SDRAM Controller

The SDRAM controller module contains configuration registers, timing control registers, common control register and other logic to provide 8,16 or 32 bits SDRAM interface with a single 8,16 or 32 bits SDRAM device or two 8-bit devices wired to give a 16-bit data path or two 16-bit devices wired to give a 32-bit data path.

The SDRAM controller has the following features:

- Supports up to 2 external SDRAM devices
- Maximum size of each device is 128M bytes
- 8,16 or 32-bit data interface
- Programmable CAS Latency: 1,2 and 3
- Fixed Burst Length: 1
- Sequential burst type
- Write Burst Length mode is Burst
- Auto Refresh Mode and Self Refresh Mode
- Adjustable Refresh Rate
- Power up sequence

Publication Release Date: Jun. 18, 2010

6.4.2.2 SDRAM Components Supported

Table: SDRAM Components supported

Size	Туре	Banks	Row Addressing	Column Addressing
1 CM -:	2Mx8	2	RA0~RA10	CA0~CA8
16M bits	1Mx16	2	RA0~RA10	CA0~CA7
	8Mx8	4	RA0~RA11	CA0~CA8
64M bits	4Mx16	4	RA0~RA11	CA0~CA7
	2Mx32	4	RA0~RA10	CA0~CA7
	16Mx8	4	RA0~RA11	CA0~CA9
128M bits	8Mx16	4	RA0~RA11	CA0~CA8
	4Mx32	4	RA0~RA11	CA0~CA7
25CM 11	32Mx8	4	RA0~RA12	CA0~CA9
256M bits	16Mx16	4	RA0~RA12	CA0~CA8
E12M bite	64Mx8	4	RA0~RA12	CA0~CA9,CA11
512M bits	32Mx16	4	RA0~RA12	CA0~CA9

AHB Bus Address Mapping to SDRAM Bus

Note: * indicates the signal is not used; ** indicates the signal is fixed at logic 0 and is not used;

The internal address HADDR prefixes have been omitted on the following tables.

MA14 ~ MA0 are the Address pins of the EBI interface;

MA14 and MA13 are also the bank selected signals of SDRAM.

SDRAM Data Bus Width: 32-bit

														660				
Total	Туре	RxC	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	МАЗ	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	11	**	11*	22	21	20	19	18	17	16	15	14	13	12
			С	**	11	**	11*	AP	25*	10	9	8	7	6	5	4	3	2
16M	1Mx16	11x8	R	**	10	**	10*	11	21	20	19	18	17	16	15	14	13	12
			С	**	10	**	10*	AP	25*	10*	9	8	7	6	5	4	3	2
64M	8Mx8	12x9	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
			С	11	12	11*	23*	AP	25*	10	9	8	7	6	5	4	3	2
64M	4Mx16	12x8	R	11	10	11*	23	22	21	20	19	18	17	16	15	14	13	12
			С	11	10	11*	23*	AP	25*	24*	9	8	7	6	5	4	3	2
64M	2Mx32	11x8	R	11	10	11*	23*	22	21	20	19	18	17	16	15	14	13	12
			С	11	10	11*	23*	AP	25*	24*	9	8	7	6	5	4	3	2
128M*	16Mx8	12×10	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
			С	11	12	11*	23*	AP	25	10	9	8	7	6	5	4	3	2
128M	8Mx16	12x9	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
1500			С	11	12	11*	23*	AP	25*	10	9	8	7	6	5	4	3	2
128M	4Mx32	12x8	R	11	10	11*	23	22	21	20	19	18	17	16	15	14	13	12
	A		С	11	10	11*	23*	AP	25*	10*	9	8	7	6	5	4	3	2
256M*	32Mx8	13x10	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
	1 1	34	С	11	12	24*	23*	AP	26	10	9	8	7	6	5	4	3	2
256M*	16Mx16	13x9	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
	X ()	36	С	11	12	24*	23*	AP	26*	10	9	8	7	6	5	4	3	2
512M*	64Mx8	13x11	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
	16	331	С	11	12	24*	27	AP	26	10	9	8	7	6	5	4	3	2
512M*	32Mx16	13x10	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
		TO THE	С	11	12	24*	23*	AP	26	10	9	8	7	6	5	4	3	2

Publication Release Date: Jun. 18, 2010

SDRAM Data Bus Width: 16-bit

Total	Туре	RxC	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	10	**	10*	21	20	19	18	17	16	15	14	13	12	11
			С	**	10	**	10*	AP	24*	9	8	7	6	5	4	3	2	1
16M	1Mx16	11x8	R	**	9	**	9*	10	20	19	18	17	16	15	14	13	12	11
			С	**	9	**	9*	AP	24*	9*	8	7	6	5	4	3	2	1
64M	8Mx8	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
64M	4Mx16	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
64M	2Mx32	11x8	R	10	9	10*	22*	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
128M	16Mx8	12x10	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24	9	8	7	6	5	4	3	2	1
128M	8Mx16	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
128M	4Mx32	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	9*	8	7	6	5	4	3	2	1
256M*	32Mx8	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1
256M	16Mx16	13x9	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25*	9	8	7	6	5	4	3	2	1
512M	64Mx8	13x11	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	26	AP	25	9	8	7	6	5	4	3	2	1
512M	32Mx16	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1

Publication Release Date: Jun. 18, 2010

SDRAM Data Bus Width: 8-bit

Total	Туре	RxC	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	МАЗ	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	9	**	9*	20	19	18	17	16	15	14	13	12	11	10
			С	**	9	**	9*	AP	23*	8	7	6	5	4	3	2	1	0
16M	1Mx16	11x8	R	**	8	**	8*	9	19	18	17	16	15	14	13	12	11	10
			С	**	8	**	8*	AP	23*	8*	7	6	5	4	3	2	1	0
64M	8Mx8	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	1
64M	4Mx16	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
64M	2Mx32	11x8	R	9	8	9*	21*	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
128M	16Mx8	12x10	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23	8	7	6	5	4	3	2	1	0
128M	8Mx16	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	0
128M	4Mx32	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	8*	7	6	5	4	3	2	1	0
256M	32Mx8	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0
256M	16Mx16	13x9	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24*	8	7	6	5	4	3	2	1	0
512M	64Mx8	13x11	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	25	AP	24	8	7	6	5	4	3	2	1	0
512M	32Mx16	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
	71		С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0

SDRAM Power-Up Sequence

The default value of the mode register is not defined, therefore the mode register must be written after power up to operate the SDRAM. This chip supports the function of Power-Up Sequence, that is, the SDRAM Controller automatically executes the commands needed for Power-Up sequence and set the mode register of each bank to default value after system power on. The default value is:

- Burst Length = 1
- Burst Type = Sequential (fixed)
- CAS Latency = 2
- Write Burst Length = Burst (fixed)

The value of mode register can be changed after power up sequence by setting the value of corresponding bank's configuration register "LENGTH" and "LATENCY" bits and set the MRSET bit enable to execute the Mode Register Set command.

6.4.3 EBI Register Mapping

Register	Offset	R/W	Description	Reset Value
(EBI_BA=0	xB000_1000)			
EBICON	0xB000_1000	R/W	EBI control register	0x0001_0001
ROMCON	0xB000_1004	R/W	ROM/FLASH control register	0x0000_0FFX
SDCONFO	0xB000_1008	R/W	SDRAM bank 0 configuration register	0x0000_0800
SDCONF1	0xB000_100C	R/W	SDRAM bank 1 configuration register	0x0000_0800
SDTIMEO	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000
SDTIME1	0xB000_1014	R/W	SDRAM bank 1 timing control register	0x0000_0000
EXTOCON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000
EXT1CON	0xB000_101C	R/W	External I/O 1 control register	0x0000_0000
EXT2CON	0xB000_1020	R/W	External I/O 2 control register	0x0000_0000
CKSKEW	0xB000_102C	R/W	Clock skew control register	0xXXXX_0048

Publication Release Date: Jun. 18, 2010

6.4.4 EBI Register Details

EBI Control Register (EBICON)

Register	Address	R/W	Description	Reset Value
EBICON	0xB000_1000	R/W	EBI Control Register	0x0001_0001

31	30	29	28	27	26	25	24
		RESERVED			EXBE2	EXBE1	EXBE0
23	22	21	20	19	18	17	16
		RESERVED			REFEN	REFMOD	CLKEN
15	14	13	12	11	10	9	8
			REFR	RAT			S. V.
7	6	5	4	3	2	1	0
		REFRAT	WA	ITVT	LITTLE		

Bits	Description	ons
		EXBE2: External IO Bank 2 Byte Enable
[26]	EXBE2	0: nWBE[3:0] pin is byte write strobe signal
1.00		1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAI
XX.		EXBE1: External IO Bank 1 Byte Enable
[25]	EXBE1	0: nWBE[3:0] pin is byte write strobe signal
[23]	100	1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
100	~ XX	EXBEO: External IO Bank 0 Byte Enable
[24]	EXBEO	0: nWBE[3:0] pin is byte write strobe signal
[2 1]		1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
[23:19]	RESERVED	Default value is "0"
	0.74	Enable SDRAM refresh cycle for SDRAM bank0 & bank1
[18]	REFEN	This bit set will start the auto-refresh cycle to SDRAM. The refresh rate is according to REFRAT bits.

Publication Release Date: Jun. 18, 2010

		The refresh mode of SDRAM for SDRAM bank							
[17]	REFMOD	Defines the refresh mode type of external SDRAM bank							
[1,]		0 = Auto refresh mode							
		1 = Self refresh mode							
		Clock enable for SDRAM							
54.63	CLKEN	Enables the SDRAM clock enable (CKE) control signal							
[16]	CLKEIN	0 = Disable (power down mode)							
		1 = Enable (Default)							
		Refresh count value for SDRAM							
[15:3]	REFRAT	The refresh period is calculated as $period = \frac{value}{fMCLK}$							
		The SDRAM Controller automatically provides an auto refresh cycle for every refresh period programmed into the REFRAT bits when the REFEN bit of each bank is set.							
		Valid time of nWAIT signal							
		This bit recognizes the nEWAIT signal at the next "nth" MCLK rising edge after the nOE or nWBE active cycle. WAITVT bits determine the n.							
[2:1]	WAITVT	WAITVT [2:1] nth MCLK							
[2.1]		0 0 1							
		0 1 2							
		1 0 3							
1/4		1 1 4							
[0]	LITTLE	Little Endian mode							
[0]	A	This bit always set to a logic 1 (Read Only)							
V/V/ 1/1	33.5								

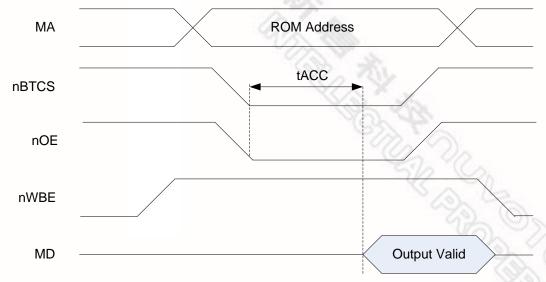
ROM/Flash Control Register (ROMCON)

Register	Address	R/W	Description	Reset Value
ROMCON	0xB000_1004	R/W	ROM/FLASH Control Register	0x0000_0FFX

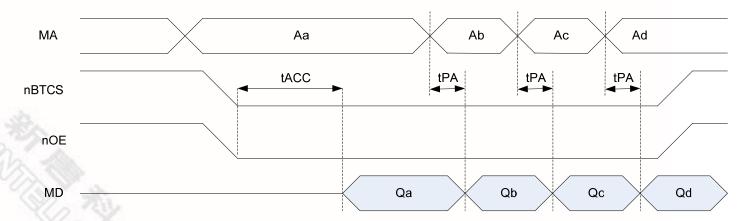
					2/201 64.5				
31	30	29	28	27	26	25	24		
			BASA	ADDR	· (%)	40			
23	22	21	20	19	18	17	16		
		BASADDR		SIZE					
15	14	13	12	11	10	9	8		
SIZE		RESERVED)		tF	PA S	7 0		
7	6	5	4	3	2	1	0		
	tA	СС		BTS	I ZE	PGN	IODE		

Bits	Descriptions	
		Base Address Pointer of ROM/Flash Bank
[31:19]	BASADDR	The start address is calculated as ROM/Flash bank base pointer << 18. The base address pointer together with the "SIZE" bits constitutes the whole address range of each bank.

Publication Release Date: Jun. 18, 2010


Bits	Descriptions										
		Size of	ROM/I	FLASH	Memor	у	S.				
		SIZE [18:15]						Byte)		
		0	0	()	0	13	256k	(
		0	0		1	0	337,"	512k	(
		0	1	()	0	9(1)	1M	0		
		0	1		1	0	5	2M	Sh		
		1	0	()	0		4M	16		
[18:15]	SIZE	1	0		1	0		8M	37 (2)7	
		1	1	()	0		16M	190		
		1	1		1	0		32M	1	11/16	
		0	0	()	1		64M		73	
		0	0		1	1		128M	1	1	
		0	1	()	1		256M	*	= 1	
			•	Others	3			Reserv	ed		
		*256M	-Byte s	etting is	s only fo	or 8-bit a	and 16-	bit widtl	h ROM		
		Page M	lode Ad	cess C	ycle Ti	me					
			tPA[11:8]		MCL K		tPA[11:8]		MCL K
de		0	0	0	0	1	1	0	0	0	10
		0	0	0	1	2	1	0	0	1	12
[11:8]	tPA	0	0	1	0	3	1	0	1	0	14
	000	0	0	1	1	4	1	0	1	1	16
SIL	733	0	1	0	0	5	1	1	0	0	18
16	275	0	1	0	1	6	1	1	0	1	20
	(G) 1/2	0	1	1	0	7	1	1	1	0	22
	20200	0	1	1	1	8	1	1	1	1	24

Publication Release Date: Jun. 18, 2010



Bits	Descriptions											
		Acces	s Cycl	e Time	-0	S / 1000						
			tAC	C[7:4]		MCLK tACC[7:4]				MCLK		
		0	0	0	0	3	1	0	0	0	10	
		0	0	0	1	3	3)1/	0	0	1	12	
[7.4]		0	0	1	0	3	1	0	1	0	14	
[7:4]	tACC	0	0	1	1	4	1	0	(1)	1	16	
		0	1	0	0	5	1	1/3	0	0	18	
		0	1	0	1	6	1	1 7	0	010	20	
		0	1	1	0	7	1	1	1	0	22	
		0	1	1	1	8	1	1	1	1	24	
		Boot	ROM/F	LASH [Data E	Bus Width				W	7,50	
[3:2]	BTSIZE	its sta				esigned for a boot ROM. BASADDR bits deterr ternal data bus width is determined by powe external ROM. Bus Width						
[3:2]			0		0		8-bit					
			0					16-				
			1		0			32-bit				
			1		1		RESERVED					
**		Page	Page Mode Configuration									
				DE [1:0]				Мо	de			
	9		0	0				Norma	I ROM			
[1:0]	PGMODE		0	1		4 word page						
	Sec. Co.		1	0			8 word page					
	S. 12.		1	1				16 wor	d page			
					68		Publica	tion Re	lease [n. 18, 20: Revision: <i>I</i>	

ROM/FLASH Read Operation Timing

ROM/FLASH Page Read Operation Timing

SDRAM Configuration Register (SDCONF0/1)

The configuration registers enable software to set a number of operating parameters for the SDRAM controller. There are two configuration registers SDCONF0 or SDCONF1 for SDRAM bank 0 or bank 1 respectively. Each bank can have a different configuration.

	Register	Address	R/W	Description	Reset Value
	SDCONF0	0xB000_1008	R/W	SDRAM Bank 0 Configuration Register	0x0000_0800
Г	SDCONF1	0xB000_100C	R/W	SDRAM Bank 1 Configuration Register	0x0000_0800

31	30	29	28	27	26	25	24
			BASA	DDR		(0)	
23	22	21	20	19	18	17	16
		BASADDR				RESERVED	12 (5)
15	14	13	12	11	10	9	8
MRSET	RESERVED	AUTOPR	LATE	NCY		RESERVED	
7	6	5	4	3	2	1	0
СОМРВК	DB\	WD	COL	UMN		SIZE	

Bits	Descriptions	
		Base Address Pointer of SDRAM Bank 0/1
[31:19]	BASADDR	The start address is calculated as SDRAM bank 0/1 base pointer << 18. The SDRAM base address pointer together with the "SIZE" bits constitutes the whole address range of each SDRAM bank.
[15]	MRSET	SDRAM Mode Register Set Command for SDRAM Bank 0/1
[13]	IVIRSET	This bit set will issue a mode register set command to SDRAM.
X	O X X	Auto Pre-charge Mode of SDRAM for SDRAM Bank 0/1
[12]	ALITODD	Enable the auto pre-charge function of external SDRAM bank 0/1
[13]	AUTOPR	0 = Auto pre-charge
		1 = No auto pre-charge

70

Publication Release Date: Jun. 18, 2010

ATENCY OMPBK	Defines the LATENC 0 0 1 1 Number of	0 1 0 1	sDRAM Bank 0/1 Ey of external SDRAM ban MCLK 1 2 3 REVERSED	k 0/1				
	0 0 1 1	0 1 0 1	1 2 3					
	0 1 1 Number o	1 0 1	2 3					
ОМРВК	1 1 Number o	0	3					
ОМРВК	1 Number o	1		Solla Part				
ОМРВК	Number o		REVERSED	000				
ОМРВК		of Compone						
	Number of Component Bank in SDRAM Bank 0/1 Indicates the number of component bank (2 or 4 banks) in external SDRAM bank 0/1. 0 = 2 banks							
	1 = 4 banks							
	Data Bus Width for SDRAM Bank 0/1 Indicates the external data bus width connect with SDRAM bank 0/1 If DBWD = 00, the assigned SDRAM access signal is not generated i.e. disable.							
DBWD	DBWD [6:5]		Bits					
	0	0	Bank disable					
	0	1	8-bit (byte)					
			<u> </u>					
OLUMN	Number of Indicates to COLUM 0 0 1	Number of Column Address bits in SDRAM Bank 0/1 Indicates the number of column address bits in external SDRAM bank 0/1. COLUMN [4:3] Bits 0 0 8 0 1 9 1 0 10						
C	DLUMN	Indicates t COLUM 0 0 1	1 1 Number of Column A Indicates the number of COLUMN [4:3] 0 0 0 1 1 0	Number of Column Address bits in SDRAM I Indicates the number of column address bits in COLUMN [4:3] Bits OLUMN 0 0 8 0 1 9				

Bits	Descriptions							
		Size of SDRAM Bank 0/1 Indicates the memory size of external SDRAM bank 0/1						
		SIZE [2:0]			Size of SDRAM (Byte)			
		0	0	0	Bank disable	2		
		0	0	1	2M	$\langle \hat{\gamma} \rangle_{\Lambda}$		
[2:0]	SIZE	0	1	0	4M	2 C2		
		0	1	1	8M	Sale		
		1	0	0	16M	20 O"		
		1	0	1	32M			
		1	1	0	64M	S. (1)		
		1	1	1	128M			

SDRAM Timing Control Register (SDTIMEO/1)

Register	Address	R/W	Description	Reset Value
SDTIME0	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000
SDTIME1	0xB000_1014	R/W	SDRAM bank 1 timing control register	0x0000_0000

					7773 7.00					
31	30	29	28	27	26	25	24			
			7/							
23	22	21	20	19	18	17	16			
			Rese	rved	70					
15	14	13	12	11	10	9	8			
		Reserved			tRCD					
7	6	5	4	3	2	1	0			
tR	DL			tRAS	5					

Bits	Descriptions										
		SDRAM	SDRAM Bank 0/1, /RAS to /CAS Delay								
		tRO	CD [10	:8]	MCLK						
		0	0	0	1						
de		0	0	1	2						
[10.0]	+DCD	0	1	0	3						
[10:8]	tRCD	0	1	1	4						
	**************************************	1	0	0	5						
		1	0	1	6						
1		1	1	0	7						
		1	1	1	8						
	2022	SDRAM	1 Bank	0/1, La	ast Data in to Pre-charge C	ommand					
	Sh	tR	DL [7:	6]	MCLK						
[7.6]	× ×	0	5	0	1						
[7:6]	tRDL	0	3)3	1	2						
		91	198	0	3						
		1	17/10/11	21	4						

73

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		SDRAN				
		t	RP [5:3	3]	MCLK	
		0	0 0 0		Y Comment	
	[5:3] tRP	0	0	1	2	
[5.2]		0	1	0	3	(1) ₀
[3.3]		0	1	1	4	
		1	0	0	5	(a) (b)
		1	0	1	6	25 0
		1	1	0	7	
		1	1	1	8	- 201 O
		SDRAN	/I Bank	0/1, R	Pow Active Time	10000
		tR	AS [2:	0]	MCLK	15
		0	0	0	1	
		0	0	1	2	
[2.0]	tRAS	0	1	0	3	
[2:0]	IRAS	0	1	1	4	
		1	0	0	5	
		1	0	1	6	
30		1	1	0	7	
S. C.		1	1	1	8	

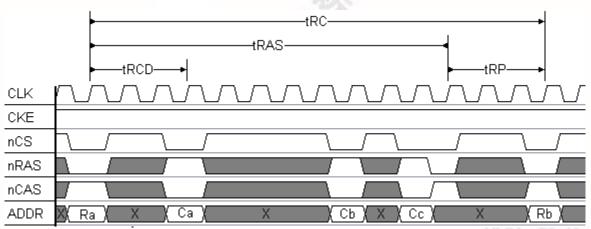


Fig. Access timing 1 of SDRAM

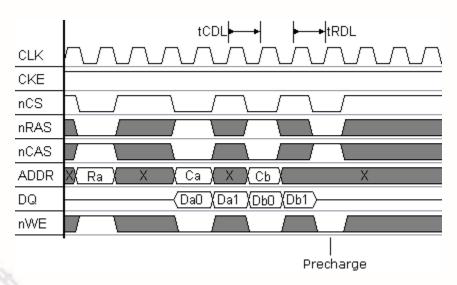


Fig. Access timing 2 of SDRAM

75

Publication Release Date: Jun. 18, 2010

External I/O Control Registers (EXTOCON – EXT3CON)

Register	Address	R/W	Description	Reset Value
EXT0CON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000
EXT1CON	0XB000_101C	R/W	External I/O 1 control register	0x0000_0000
EXT2CON	0XB000_1020	R/W	External I/O 2 control register	0x0000_0000

					-1V/ N-/N					
31	30	29	28	27	26	25	24			
			DDR		307 ($\mathcal{I}(\mathcal{C})$				
23	22	21	20	19	18	17	16			
		BASADDR			SIZE					
15	14	13	12	11	10	9	8			
ADRS		tA	СС		tCOH					
7	6	5	4	3	2	1	0			
	tACS			tCOS		DBWD				

Bits	Descriptions											
		Base A	Base Address Pointer of External I/O Bank 0~2									
[31:19]	BASADDR	pointer	ne start address of each external I/O bank is calculated as "BASADDR" base binter << 18. Each external I/O bank base address pointer together with the BIZE" bits constitutes the whole address range of each external I/O bank.									
12 -A	i.	The Siz	ze of th	ne Exte	rnal I/O Bank 0~	2						
	P	SIZ	E [18:	16]	Byte	1						
W.	700	0	0	0	256K	1						
1	Se 26	0	0	1	512K							
	3/12	0	1	0	1M							
[18:16]	SIZE	0	1	1	2M							
	5%	0,1	0	0	4M							
	12 3	(1)	0	1	8M							
	2	1(0) 1	0	16M							
		(2)1	1	1	32M	1						
			46)_								

76

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					- 1100 C						
[15]	ADRS	Address Bus Alignment for External I/O Bank 0~2 When ADRS is set, EBI bus is alignment to byte address format, and ignores DBWD [1:0] setting.										
		Access Cycles (nOE or nSWE active time) for External I/O Bank 0~2										
			tACC[[14:11]		MCLK	Co	tACC[14:11]		MCLK	
		0	0	0	0	Reversed	1	0	0	0	9	
[14:11]		0	0	0	1	1	1	0	0	1	11	
	tACC	0	0	1	0	2	1	0	1(0	13	
[14.11]	IACC	0	0	1	1	3	1	0	01	1	15	
		0	1	0	0	4	1	1	0	0	17	
		0	1	0	1	5	1	1	0	1	19	
		0	1	1	0	6	1	1	1	0	21	
		0	1	1	1	7	1	1	1	1	23	
		Chip Se	electio	n Hold	-On Tiı	me on nOE o	r nWBl	E for Ex	kterna	11/01	Bank 0~2	
		tCC)H [10	:8]		MCLK						
		0	0	0		0						
		0	0	1		1						
[40.0]		0	1	0		2						
[10:8]	tCOH	0	1	1		3						
		1	0	0		4						
2		1	0	1		5						
S 10	6	1	1	0		6						
820	201	1	1	1		7						

77

Publication Release Date: Jun. 18, 2010

Bits	Description	ıs											
		Addres	ss Set-	up Bef	ore nECS for Exter	nal I/O bank 0~2							
		tA	CS [7:	5]	MCLK	33							
		0	0	0	0	* .XS.							
		0	0	1	1	1 1/2							
[7.5]	+400	0	1	0	2	W_W_							
[7:5]	tACS	0	1	1	3	The Ch							
		1	0	0	4	COL LE							
		1	0	1	5	20 02							
		1	1	0	6	190 CA							
		1	1	1	7								
		When t	Chip Selection Set-up Time on nOE or nWBE for External I/O Bank 0~ When the bank is configured, the access to its bank stretches chip selection to before the nOE or new signal is activated.										
		tC	OS [4:	2]	MCLK								
		0	0	0	0								
54.63		0	0	1	1								
[4:2]	tCOS	0	1	0	2								
		0	1	1	3								
obs.		1	0	0	4								
1		1	0	1	5								
m -1		1	1	0	6								
	Dr. O.	1	1	1	7								
	733				a Bus Width for Ex	ternal I/O Bank 0~2							
1	10 - 10 m	DBW	'D [1:0) W	idth of Data Bus								
[1:0]	DBWD	0	0		Disable bus								
[1.0]	DBWD	0	1		8-bit								
	Sil	201	0		16-bit								
	000	0 CP	1		32-bit								

Publication Release Date: Jun. 18, 2010

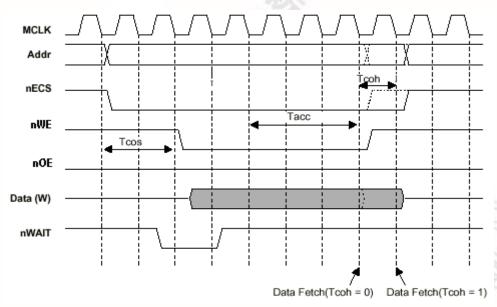


Fig. External I/O Write operation timing

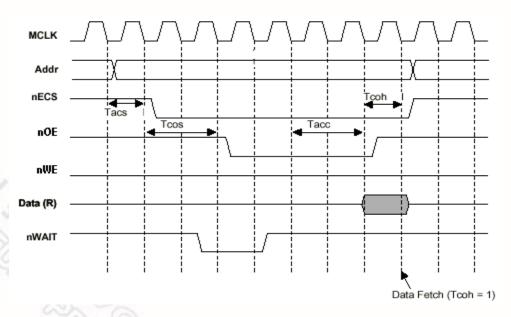


Fig. External I/O Read operation timing

79

Publication Release Date: Jun. 18, 2010

Clock Skew Control Register (CKSKEW)

Register	Address	R/W	Description	Reset Value
CKSKEW	0xB000_102C	R/W	Clock Skew Control Register	0xXXXX_0048

					17 7 17						
31	30	29	28	27	26	25	24				
RESERVED											
23	22	21	20	19	18	17	16				
RESERVED											
15	14	13	12	11	10	9	8				
			RESE	RVED		8	200				
7	6	5	4	3	2	1	0				
	DLH_CL	K_SKEW			MCLK	_O_D	COL.				

Bits	Descriptions											
		Data Latch Clock Skew Adjustment										
		DLF	I_CLK_	_SKEW	[7:4]	Gate Delay	DLH_CLK_SKEW[7:4]			7:4]	Gate Delay	
		0	0	0	0	P-0	1	0	0	0	N-0	
110071		0	0	0	1	P-1	1	0	0	1	N-1	
-X9K		0	0	1	0	P-2	1	0	1	0	N-2	
27		0	0	1	1	P-3	1	0	1	1	N-3	
[7:4]	DLH_CLK_SKEW	0	1	0	0	P-4	1	1	0	0	N-4	
() A	Alc:	0	1	0	1	P-5	1	1	0	1	N-5	
X(2)	. SY	0	1	1	0	P-6	1	1	1	0	N-6	
1	10 M	0	1	1	1	P-7	1	1	1	1	N-7	
				eans Da e edge;		ned Clock	shift "X	" gates	delays	by refe	er MCLKO	
	The Contraction of the Contracti			eans Da e edge		ned Clock	shift "X	" gates	delays	by refe	er MCLKO	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions											
		MCLK Output Delay Adjustment										
		MC	CLK_O	_D [3:0	0]	Gate Delay	М	CLK_O	_D [3:	0]	Gate Delay	
		0	0	0	0	P-0	01	0	0	0	N-0	
		0	0	0	1	P-1	1	0	0	1	N-1	
		0	0	1	0	P-2	12	0	21	0	N-2	
		0	0	1	1	P-3	1	0	1/	1	N-3	
[3:0]	MCLK_O_D	0	1	0	0	P-4	1	19	0	0	N-4	
		0	1	0	1	P-5	1	1	0	1	N-5	
		0	1	1	0	P-6	1	1	1	0	N-6	
		0	1	1	1	P-7	1	1	1	1	N-7	
		Note:								00	720	
		P-x m	eans M	CLKO s	hift "X	" gates del	ay by	refer H	CLK pos	sitive e	edge;	
		N-x m	eans M	CLKO s	hift "X	" gates del	ay by	refer H	CLK ne	gative	edge.	
		MCLK	is the c	output p	oin of I	MCLKO, wh	ich is a	an inter	rnal sig	nal on	chip.	

81

Publication Release Date: Jun. 18, 2010

6.5 PCI Bus Interface

This PCI Bus Interface Controller supports a bus translation between PCI interface and AHB Bus. The maximum PCI external masters are up to two sets. This controller also has a built-in internal PCI arbiter to decide which master can grant the PCI bus. This controller decodes PCI address space 2 G bytes $(0x0000_0000\ to\ 0x7FFF_FFFF$) and translates to AHB bus cycles, and decodes AHB address $(0xC000_0000\ to\ 0xDFFF_FFFF$) to PCI interface with Memory access cycles and $(0xE000_0000\ to\ 0xFFFE_FFFF)$ to PCI interface with IO access cycles

6.5.1 Address Mapping Space

Mapping to PCI Interface for CPU and GDMA

0xFFFE_FFFF	
I	I/O Space : 512 Mbytes - 64K
0xE000_0000	
0xDFFF_FFFF	
I	Memory Space : 512 Mbytes
0xC000_0000	

Mapping to AHB Interface for External PCI Masters

0x7FFF_FFFF	
Jan 18	Space : 2G bytes
0x0000_0000	

6.5.2 Supported PCI Command

C/BE [3:0]	Command	As a Master	As a Slave
0000	Interrupt Acknowledge	No	Ignored
0001	Special Cycle	No	Ignored
0010	I/O Read	Yes	No
0011	I/O Write	Yes	No

82

Publication Release Date: Jun. 18, 2010

C/BE [3:0]	Command	As a Master	As a Slave
0110	Memory Read	Yes	Yes
0111	Memory Write	Yes	Yes
1010	Configuration Read	Yes	No
1011	Configuration Write	Yes	No
1100	Memory Read Multiple	Yes	Yes
1101	Dual Address Cycle	No	Ignored
1110	Memory Read Line	Yes	Yes
1111	Memory Write and Invalidate	Yes	Yes

83

Publication Release Date: Jun. 18, 2010

6.5.3 PCI Control Registers Map

Register	Address	R/W	Description	Default Value
PCI_BA = 0xB	000_2000			
PCICTR	0xB000_2000	R/W	PCI Control Register	0x0000_0000
PCISTR	0xB000_2004	R/W	PCI Status Register	0x0000_0100
PCILATIMER	0xB000_2008	R/W	PCI Latency Timer Register	0x0000_0080
PCIINTEN	0xB000_2010	R/W	PCI Interrupt Enable Register	0x0000_0000
PCIINT	0xB000_2014	R	PCI Interrupt Flag Register	0x0000_0000
CFGADDR	0xB000_2020	R/W	Configuration Address Register	0x0000_0000
CFGDATA	0xB000_2024	R/W	Configuration Data Register	_
PCIARB	0xB000_204C	R/W	PCI Arbitration Register	0x0000_0000

84

Publication Release Date: Jun. 18, 2010

PCI Control Register (PCICTL)

Register	Address	R/W	Description	Default Value
PCICTR	0xB000_2000	R/W	PCI Control Register	0x0000_0000

	1777									
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	RTYCNT									
7	6	5	4	3	2	1	0			
Pr_BL Ar_BL			_BL	SERREN	PER	RST_	INTEN			

Bits	Descripti	Descriptions								
[15:8	RTYCNT	 Limit of PCI Retry Counter 1. 0: no limit on retry count 1: forbidden value (always clear retry counter) n (n>=2): retry clear signal will be asserted at the following (n-1)th transaction 								
[7:6]	Pr_BL	No. of Pre-fetch Read at External PCI Master Read Transaction • 00 : pre-fetch 4 words • 01 : pre-fetch 6 words • 10 : pre-fetch 8 words • 11 : pre-fetch 16 words								
[5:4]	Ar_BL	AHB Read-FIFO Read Threshold for performance adjusting								
[3]	SERRE N	PCI SERRn Enable • 0: disable PCISERRn driver • 1: enable PCISERRn driver Address parity errors are reported only if SERREN and PER are 1.								

85

Publication Release Date: Jun. 18, 2010

Bits	Descripti	ons
[2]	PER	Parity Error Response 0: PCI interface only sets the DPE bit in the PCI status register when an error is detected, but does not assert PCIPERRn and continues normal operation. 1: PCI interface will take normal action when a parity error is detected. This bit controls the device's response to parity errors.
[1]	RST_	PCIRSTn Signal The bit is directly connected to PCIRSTn output pin. Notes: 1. PCIRSTn is active (low) during power-on reset. 2. If PCIRSTn is asserted (writing 0) during transactions, data will be lost. 3. According to PCI spec. 2.2, initialization-time should be reserved to 2 ²⁵ PCI clocks, so S/W driver should begin to access on PCI after 2 ²⁵ PCI clocks.
[0]	INTEN	PCI Interrupt Enable Control to AIC 0: Disabled 1: Enabled

Publication Release Date: Jun. 18, 2010

PCI Status Register (PCISTR)

Register	Address	R/W	Description	Default Value
PCISTR	0xB000_2004	R/W	PCI Status Register	0x0000_0100

					1221					
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved	DPE	SSE	RMA	RTA	STA	MDPE	BUSY			

Bits	Descri	ptions
[9:8	DST	PCIDEVSELn Timing Read only Is always 2'b01 (medium) Indicates the slowest time that PCI Interface asserts PCIDEVSELn for any bus command except Configuration Read and Configuration Write
[6]	DPE	Detected Parity Error This bit is set whenever the parity error has been detected, even if parity error handling is disabled (as controlled by the bit PER in the register PCICTL) Writing 1 clears this bit
[5]	SSE	Signaled System Error This bit is set whenever PCISERRn is asserted. Writing 1 clears this bit
[4]	RMA	Received Master Abort This bit is set when an AHB-to-PCI transaction (except for Special Cycle) is terminated with Master-Abort (timeout or PCIDEVSELn no response). Writing 1 clears this bit

87

Publication Release Date: Jun. 18, 2010

	Descri	ptions
[3]	RTA	Received Target Abort This bit is set when an AHB-to-PCI transaction is terminated with Target-Abor (PCIDEVSELn de-asserted and PCISTOPn asserted). Writing 1 clears this bit
[2]	STA	Signaled Target Abort This bit is set when a PCI-to-AHB transaction is terminated with Target-Abort Writing 1 clears this bit
[1]	MDPE	Master Data Parity Error This bit is set when two conditions are met: 1. PCI Host Bridge asserts PCIPERRn itself (on a read) or observed PCIPERR asserted (on a write) 2. The Parity Error Response bit is set Writing 1 clears this bit
[0]	BUSY	PCI Bus Is Busy Read only The bit indicates that the PCI bus is busy on transactions, i.e., PCIFRAMEn or PCIIRDY is asserted.
[0]	BUSY	The bit indicates that the PCI bus is busy on transactions, i.e., PCIFRAMEn or PCIIRI

PCI Latency Timer Register (PCILATIMER)

Register	Address	R/W	Description	Default Value
PCILATIMER	0xB000_2008	R/W	PCI Latency Timer Register	0x0000_0080

					1221		
31	30	29	28	27	26	25	24
			Rese	erved	5%	* Con	
23	22	21	20	19	18	17	16
			Rese	erved		35 6)9
15	14	13	12	11	10	9	8
			Rese	erved			70
7	6	5	4	3	2	1	0
LATIMER						Reserved	5

Bits	Descriptio	Descriptions					
[7:3]	LATIMER	Latency Timer The actual Latency Timer = 8 × LATIMER Specifies the maximum PCI clocks that the PCI master can own the bus.					

89

Publication Release Date: Jun. 18, 2010

PCI Interrupt Enable Register (PCIINTEN)

Register	Address	R/W	Description	Default Value
PCIINTEN	0xB000_2010	R/W	PCI Interrupt Enable Register	0x0000_0000

					1.73.33.1			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved		35 6	7	
15	14	13	12	11	10	9	8	
			Rese	erved			10	
7	6	5	4	3	2	1	0	
Reserved			MAIE	TAIE	MPELE	PELE	SEIE	

Bits	Descrip	tions		
[4]	MAIE	Master Abort Interrupt	Enable	
[4]	IVIAIE	0: Disabled	1: Enabled	
[2]	TAIF	Target Abort Interrupt	Enable	
[3]	TAIE	0: Disabled	1: Enabled	
507	V2	Master Parity Error Int	errupt Enable	
[2]	MPEIE	0: Disabled	1: Enabled	
	111111111111111111111111111111111111111	Parity Error Interrupt I	Enable	
[1]	PEIE	0: Disabled	1: Enabled	
507	NOT.	System Error Interrupt	Enable	
[0]	SEIE	0: Disabled	1: Enabled	
			90	Publication Release Date: Jun. 18, 20 Revision: /

PCI Interrupt Flag Register (PCIINT)

Register	Address	R/W	Description	Default Value
PCIINT	0xB000_2014	R	PCI Interrupt Flag Register	0x0000_0000

					1-3-3-1			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved		35 6	7	
15	14	13	12	11	10	9	8	
			Rese	erved			10	
7	6	5	4	3	2	1	0	
Reserved			MAIF	TAIF	MPEIF	PEIF	SEIF	

Bits	Description	Descriptions					
[4]	MAIF	Master Abort Interrupt Flag 0: None 1: Triggered To clear MAIF do either of the followings: 1. Clear RMA bit in PCISTR register 2. Clear MAIE bit in PCIINTEN register					
[3]	TAIF	Target Abort Interrupt Flag 0: None 1: Triggered To clear TAIF do either of the followings: 1. Clear RTA and STA bits in PCISTR register 2. Clear TAIE bit in PCIINTEN register					
[2]	MPEIF	Master Parity Error Interrupt Flag 0: None 1: Triggered					

91

Publication Release Date: Jun. 18, 2010

Bits	Description	ns
		To clear MPEIF do either of the followings: 1. Clear MDPE bit in PCISTR register 2. Clear MPEIE bit in PCIINTEN register
[1]	PEIF	Parity Error Interrupt Flag 0: none 1: triggered To clear PEIF do either of the followings: 1. Clear DPE bit in PCISTR register 2. Clear PEIE bit in PCIINTEN register
[0]	SEIF	System Error Interrupt Flag 0: none 1: triggered To clear SEIF do either of the followings: 1. Clear SSE bit in PCISTR register 2. Clear SEIE bit in PCIINTEN register

Publication Release Date: Jun. 18, 2010 Revision: A3

Configuration Address Register (CFGADDR)

Register	Address	R/W	Description	Default Value
CFGADDR	0xB000_2020	R/W	Configuration Address Register	0x0000_0000

					10001 1		
31	30	29	28	27	26	25	24
			Rese	rved	5%	Y CON	
23	22	21	20	19	18	17	16
			Bus Num	ber (BN)		35 0	7
15	14	13	12	11	10	9	8
	Devi	ce Number	(DN)		Funct	ion Number	(FN)
7	6	5	4	3	2	1	0
	Register Number (RN)						В

Bits	Des	Descriptions									
[23:16]	BN	If BN	If BN is zero, type 0 configuration transactions are issued. If BN is non-zero, type 1 configuration transactions are issued								
A.	4	Device Number Field If BN = 0 (type 0 configuration transactions,) DN determines which AD pin generates an IDSEL signal. All available IDSEL pins are 21 pins, from PCIAD[11] to PCIAD[31] The device number (DN) from 10100 to 11111 indicates the same IDSEL, PCIAD [31], users should avoid multiple scan on PCIAD [31] when scanning all PCI devices.									
[15:11]	DN	TA	Device Numbe r	PCIAD Pin (Served as an IDSEL)	Device Numbe r	PCIAD Pin (Served as an IDSEL)					
		En l	00000	11	01011	22					
	00001 12 01100 23										
		00010 13 01101 24									
			00011	14	01110	25]				

93

Publication Release Date: Jun. 18, 2010

Bits	Des	criptions										
		00100	00100 15 01111 26									
		00101	16	10000	27							
		00110	17	10001	28							
		00111	18	10010	29							
		01000	19	10011	30							
		01001	20	(Others)	31							
		01010	21		93.73							
[10:8]	FN	Function Number	r Field			5)						
[7:2]	RN	Register Numbe	r Field		25							
[1:0]	SB	SB is used to g indicates the start • 00 : BE[3:0] • 01 : BE[3:0] • 10 : BE[3:0]	Starting Byte Selection SB is used to generate PCI BE[3:0]# signals on configuration commands, which indicates the starting byte in a 32-bit (DWORD) • 00: BE[3:0]# => xxx0, for 32-bit, 16-bit or 8-bit access at byte 0 • 01: BE[3:0]# => xx01, for 8-bit access at byte 1 • 10: BE[3:0]# => x011, for 16-bit or 8-bit access at byte 2									

Translation for Type 0 Configuration Transactions Address Phase

CFGADDR

31 2423 1615 1110 8 7 2 1 0 X BN = 0 DN FN RN X

PCI AD Bus

31	11 10	8 7	2 1	0
IDSEL (only one "1")	FN	R	N 0	0

94

Publication Release Date: Jun. 18, 2010

Translation for Type 1 Configuration Transactions Address Phase

CFGADDR

31	24	23	1615	11	10 8	7	2 1 0
	X	BN ≠ 0		DN	FN	RN	Х

PCI AD Bus

31	-	11	10 8	7 2	2 1	0
X	BN ≠ 0	DN	FN	RN	0	1

95

Publication Release Date: Jun. 18, 2010

Configuration Data Register (CFGDATA)

Register	Address	R/W	Description	Default Value
CFGDATA	0xB000_2024	R/W	Configuration Data Register	_

					1231				
31	30	29	28	27	26	25	24		
	CGDATA								
23	22	21	20	19	18	17	16		
			CGD	ATA	1.7	35 6)9		
15	14	13	12	11	10	9	8		
			CGD	ATA			76		
7	6	5	4	3	2	1	0		
			CGD	ATA			5		

Bits	Descriptions	s
[31:0	CFGDATA	Data of Configuration Transactions A read of this register will generate a PCI configuration read. →If no devices respond to the PCI configuration read, 0xFFFF_FFFF is read A write of this register will generate a PCI configuration write.

96

Publication Release Date: Jun. 18, 2010

PCI Arbitration Register (PCIARB)

Register	Address	R/W	Description	Default Value
PCIARB	0xB000_204C	R/W	PCI Arbitration Register	0x0000_0000

					1231		
31	30	29	28	27	26	25	24
			Rese	erved	5%	TO A	
23	22	21	20	19	18	17	16
			Rese	erved		25 6	0/2
15	14	13	12	11	10	9	8
			Rese	erved		(1)	40
7	6	5	4	3	2	1	0
		Rese	rved			AP	AM

Bits	Descr	Descriptions				
[1]	АР	Arbitration Priority 0: PCI Host (NUC960ADN) > master 0 > master 1 1: PCI Host (NUC960ADN) < master 0 < master 1 If AM = 0, AP is invalid and ignored.				
[0]	АМ	Arbitration Mode 0: round robin arbitration scheme 1: fixed arbitration scheme				

97

Publication Release Date: Jun. 18, 2010

6.6 Ethernet MAC Controller

This chip provides an Ethernet MAC Controller (EMC) for WAN/LAN application. This EMC has its DMA controller, transmit FIFO, and receive FIFO. The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal CAM function for Ethernet MAC address recognition, Transmit-FIFO, Receive-FIFO, TX/RX state machine controller and status controller. The EMC only supports RMII (Reduced MII) interface to connect with PHY operating on 50MHz REF CLK.

- Supports IEEE Std. 802.3 CSMA/CD protocol.
- Supports both half and full duplex for 10M/100M bps operation.
- Supports RMII interface.
- Supports MII Management function.
- Supports pause and remote pause function for flow control.
- Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes) reception.
- Supports 16 entries CAM function for Ethernet MAC address recognition.
- Supports internal loop back mode for diagnostic.
- Supports 256 bytes embedded transmit and receive FIFO.
- Supports DMA function.

EMC Descriptors

A link-list data structure named as descriptor is used to keep the control, status and data information of each frame. Through the descriptor, CPU and EMC exchange the information for frame reception and transmission. Two different descriptors are defined in NUC960ADN. One named as Rx descriptor for frame reception and the other names as Tx descriptor for frame transmission. Each Rx descriptor consists of four words. There is much information kept in the descriptors and details are described as below.

6.6.1.1 Rx Buffer Descriptor

3 3	2	1 1					
1 0	9	5 5	0				
0	Rx Status	Receive Byte Count					
	Receive Buffer Starting Address						
	Reserved						
	Next Rx Descriptor Starting Address						

Rx Descriptor Word 0

Publication Release Date: Jun. 18, 2010

31	30	29	28	27	26	25	24	
Ow	ner			Res	erved			
23	22	21	20	19	18	17	16	
Reserved	RP	ALIE	RXGD	PTLE	Reserved	CRCE	RXINTR	
15	14	13	12	11	10	9	8	
			RI	ВС	S/2	A		
7	6	5	4	3	2	1	0	
	RBC							

Descriptions	Descriptions					
	Ownership					
	The ownership field defines which one, the CPU or EMC, is the owner of each Rx descriptor. Only the owner has right to modify the Rx descriptor and the others can read the Rx descriptor only.					
	00: The owner is CPU					
	01: Undefined					
	10: The owner is EMC					
Owner	11: Undefined					
	If the O=2'b10 indicates the EMC RxDMA is the owner of Rx descriptor and the Rx descriptor is available for frame reception. After the frame reception completed, if the frame needed NAT translation, EMC RxDMA modify ownership field to 2'b11. Otherwise, the ownership field will be modified to 2'b00.					
	If the O=2'b00 indicates the CPU is the owner of Rx descriptor. After the CPU completes processing the frame, it modifies the ownership field to 2'b10 and releases the Rx descriptor to EMC RxDMA.					
. W.	Receive Status					
Rx Status	This field keeps the status for frame reception. All status bits are updated by EMC. In the receive status, bits 29 to 23 are undefined and reserved for the future.					
300	Runt Packet					
RP	The RP indicates the frame stored in the data buffer pointed by Rx descriptor is a short frame (frame length is less than 64 bytes). 1'b0: The frame is not a short frame. 1'b1: The frame is a short frame.					
	Owner Rx Status					

99

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[21]	ALIE	Alignment Error The ALIE indicates the frame stored in the data buffer pointed by Rx descriptor is not a multiple of byte. 1'b0: The frame is a multiple of byte. 1'b1: The frame is not a multiple of byte.
[20]	RXGD	Frame Reception Complete The RXGD indicates the frame reception has completed and stored in the data buffer pointed by Rx descriptor. 1'b0: The frame reception not complete yet. 1'b1: The frame reception completed.
[19]	PTLE	Packet Too Long The PTLE indicates the frame stored in the data buffer pointed by Rx descriptor is a long frame (frame length is greater than 1518 bytes). 1'b0: The frame is not a long frame. 1'b1: The frame is a long frame.
[17]	CRCE	CRC Error The CRCE indicates the frame stored in the data buffer pointed by Rx descriptor incurred CRC error. 1'b0: The frame doesn't incur CRC error. 1'b1: The frame incurred CRC error.
[16]	RXINTR	Receive Interrupt The RXINTR indicates the frame stored in the data buffer pointed by Rx descriptor caused an interrupt condition. 1'b0: The frame doesn't cause an interrupt. 1'b1: The frame caused an interrupt.
[15:0]	RBC	Receive Byte Count The RBC indicates the byte count of the frame stored in the data buffer pointed by Rx descriptor. The four bytes CRC field is also included in the receive byte count. But if the SPCRC of register MCMDR is enabled, the four bytes CRC field will be excluded from the receive byte count.

Publication Release Date: Jun. 18, 2010

Rx Descriptor Word 1

V/AV T AX									
31	30	29	28	27	26	25	24		
RXBSA									
23	22	21	20	19	18	17	16		
	RXBSA								
15	14	13	12	11	10	9	8		
RXBSA									
7	6	5	4	3	2	1	0		
RXBSA							0		

Bits	Descriptions	
[31:2]	RXBSA	Receive Buffer Starting Address The RXBSA indicates the starting address of the receive frame buffer. The RXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the receive frame buffer always located at word boundary.
[1:0]	во	Byte Offset The BO indicates the byte offset from RXBSA where the received frame begins to store. If the BO is 2'b01, the starting address where the received frame begins to store is RXBSA+2'b01, and so on.

Publication Release Date: Jun. 18, 2010

Rx Descriptor Word 2

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved									

The Rx descriptor word 2 keeps obsolete information for MAC translation. Therefore, these information bits are undefined and should be ignored.

Rx Descriptor Word 3

31	30	29	28	27	26	25	24		
	NRXDSA								
23	22	21	20	19	18	17	16		
			NRX	DSA					
15	14	13	12	11	10	9	8		
	NRXDSA								
7 6 5 4 3 2 1 0									
A.	NRXDSA								

Bits	Descriptions	Descriptions					
16	J. 742	Next Rx Descriptor Starting Address					
[31:0]	NRXDSA	The Rx descriptor is a link-list data structure. Consequently, NRXDSA is used to keep the starting address of the next Rx descriptor. The bits [1:0] will be ignored by EMC. So, all Rx descriptor must locate at word boundary memory address.					

Publication Release Date: Jun. 18, 2010

6.6.1.2 Tx Buffer Descriptor

3 3	1	1 (0) 26.		
1 0	6	5	3 2	1 0
О	Reserved			
	Transmit Buffer St	arting Address		во
	Tx Status	Transmit Byte	Count	
	Next Tx Descripto	or Starting Address		

Tx Descriptor Word 0

31	30	29	28	27	26	25	24		
Owner		Reserved							
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved					CRCApp	PadEn		

Bits	Descriptions	Descriptions				
[31]	Owner	Ownership The ownership field defines which one, the CPU or EMC, is the owner of each Tx descriptor. Only the owner has right to modify the Tx descriptor and the other can read the Tx descriptor only. O: The owner is CPU 1: The owner is EMC If the O=1'b1 indicates the EMC TxDMA is the owner of Tx descriptor and the Tx descriptor is available for frame transmission. After the frame transmission completed, EMC TxDMA modify ownership field to 1'b0 and return the ownership of Tx descriptor to CPU. If the O=1'b0 indicates the CPU is the owner of Tx descriptor. After the CPU prepares new frame to wait transmission, it modifies the ownership field to 1'b1 and releases the Tx descriptor to EMC TxDMA.				

103

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[2]	IntEn	Transmit Interrupt Enable The IntEn controls the interrupt trigger circuit after the frame transmission completed. If the IntEn is enabled, the EMC will trigger interrupt after frame transmission completed. Otherwise, the interrupt doesn't be triggered. 1'b0: Frame transmission interrupt is masked. 1'b1: Frame transmission interrupt is enabled.
[1]	CRCApp	CRC Append The CRCApp control the CRC append during frame transmission. If CRCApp is enabled, the 4-bytes CRC checksum will be appended to frame at the end of frame transmission. 1'b0: 4-bytes CRC appending is disabled. 1'b1: 4-bytes CRC appending is enabled.
[0]	PadEN	Padding Enable The PadEN control the PAD bits appending while the length of transmission frame is less than 60 bytes. If PadEN is enabled, EMC does the padding automatically. 1'b0: PAD bits appending is disabled. 1'b1: PAD bits appending is enabled.

Tx Descriptor Word 1

	000	TXE	BSA			В	0
7	6	5	4	3	2	1	0
00	200	,	TXI	BSA			
15	14	13	12	11	10	9	8
1907 3	70x		TXI	BSA			
23	22	21	20	19	18	17	16
A. W. Like			TXI	BSA			
31	30	29	28	27	26	25	24

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[31:2]	TXBSA	Transmit Buffer Starting Address The TXBSA indicates the starting address of the transmit frame buffer. The TXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the transmit frame buffer always located at word boundary.
[1:0]	во	Byte Offset The BO indicates the byte offset from TXBSA where the transmit frame begins to read. If the BO is 2'b01, the starting address where the transmit frame begins to read is TXBSA+2'b01, and so on.

Tx Descriptor Word 2

							201
31	30	29	28	27	26	25	24
	CCNT				SQE	PAU	TXHA
23	22	21	20	19	18	17	16
LC	TXABT	NCS	EXDEF	TXCP	Reserved	DEF	TXINTR
15	14	13	12	11	10	9	8
			TE	зс			
7	6	5	4	3	2	1	0
ТВС							

Bits	Descriptions	
[31:28]	CCNT	Collision Count The CCNT indicates the how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.
[26]	SQE	SQE Error The SQE indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode. 1'b0: No SQE error found at end of packet transmission. 1'b0: SQE error found at end of packet transmission.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	*4.0%,*
		Transmission Paused
[25]	PAU	The PAU indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out.
		1'b0: Next normal packet transmission process will go on.
		1'b1: Next normal packet transmission process will be paused.
		P Transmission Halted
[24]	ТХНА	The TXHA indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W.
		1'b0: Next normal packet transmission process will go on.
		1'b1: Next normal packet transmission process will be halted.
[23] LC		Late Collision
	LC	The LC indicates the collision occurred in the outside of 64 bytes collision window. This means after the 64 bytes of a frame has transmitted out to the network, the collision still occurred. The late collision check will only be done while EMC is operating on half-duplex mode.
		1'b0: No collision occurred in the outside of 64 bytes collision window.
		1'b1: Collision occurred in the outside of 64 bytes collision window.
		Transmission Abort
[22]	ТХАВТ	The TXABT indicates the packet incurred 16 consecutive collisions during transmission, and then the transmission process for this packet is aborted. The transmission abort is only available while EMC is operating on half-duplex mode.
	e de la companya de l	1'b0: Packet doesn't incur 16 consecutive collisions during transmission.
* \	- W.	1'b1: Packet incurred 16 consecutive collisions during transmission.
1	10° C	No Carrier Sense
[21]	NCS	The NCS indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode.
	8	1'b0: CRS signal actives correctly.
	49	1'b1: CRS signal doesn't active at the start of or during the packet transmission.

106

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Defer Exceed
[20]	EXDEF	The EXDEF indicates the frame waiting for transmission has deferred over 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. The deferral exceed check will only be done while bit NDEF of MCMDR is disabled, and EMC is operating on half-duplex mode.
		1'b0: Frame waiting for transmission has not deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).
		1'b1: Frame waiting for transmission has deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).
		Transmission Complete
[19]	ТХСР	The TXCP indicates the packet transmission has completed correctly.
		1'b0: The packet transmission doesn't complete.
		1'b1: The packet transmission has completed.
		Transmission Deferred
[17]	DEF	The DEF indicates the packet transmission has deferred once. The DEF is only available while EMC is operating on half-duplex mode.
		1'b0: Packet transmission doesn't defer.
		1'b1: Packet transmission has deferred once.
		Transmit Interrupt
[16]	TXINTR	The TXINTR indicates the packet transmission caused an interrupt condition.
***		1'b0: The packet transmission doesn't cause an interrupt.
		1'b1: The packet transmission caused an interrupt.
S. 10	P	Transmit Byte Count
[15:0]	ТВС	The TBC indicates the byte count of the frame stored in the data buffer pointed by Tx descriptor for transmission.

Tx Descriptor Word 3

100							
31	30	29	28	27	26	25	24
	100	6	NTX	DSA			
23	22	21	20	19	18	17	16
	NTXDSA						
15	14	13	12	11	10	9	8

107

Publication Release Date: Jun. 18, 2010

			NTX	DSA		
7 6 5 4 3 2 1 0						
			NTX	DSA	7KL	

Bits	Descriptions	
		Next Tx Descriptor Starting Address
[31:0]	NTXDSA	The Tx descriptor is a link-list data structure. Consequently, NTXDSA is used to keep the starting address of the next Tx descriptor. The bits [1:0] will be ignored by EMC. So, all Tx descriptor must locate at word boundary memory address.

108

Publication Release Date: Jun. 18, 2010

6.6.2 EMC Register Mapping

The EMC implements many registers and the registers are separated into three types, the control registers, and the status registers. The control registers are used by S/W to pass control information to EMC. The status registers are used to keep EMC operation status for S/W.

EMC Registers

Register	Address	R/W	Description	Reset Value
EMC_BA =	0xB000_3000			
Control Reg	gisters (44)			2)%
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000
CAMOM	0xB000_3008	R/W	CAM0 Most Significant Word Register	0x0000_0000
CAMOL	0xB000_300C	R/W	CAMO Least Significant Word Register	0x0000_0000
CAM1M	0xB000_3010	R/W	CAM1 Most Significant Word Register	0x0000_0000
CAM1L	0xB000_3014	R/W	CAM1 Least Significant Word Register	0x0000_0000
CAM2M	0xB000_3018	R/W	CAM2 Most Significant Word Register	0x0000_0000
CAM2L	0xB000_301C	R/W	CAM2 Least Significant Word Register	0x0000_0000
CAM3M	0xB000_3020	R/W	CAM3 Most Significant Word Register	0x0000_0000
CAM3L	0xB000_3024	R/W	CAM3 Least Significant Word Register	0x0000_0000
CAM4M	0xB000_3028	R/W	CAM4 Most Significant Word Register	0x0000_0000
CAM4L	0xB000_302C	R/W	CAM4 Least Significant Word Register	0x0000_0000
CAM5M	0xB000_3030	R/W	CAM5 Most Significant Word Register	0x0000_0000
CAM5L	0xB000_3034	R/W	CAM5 Least Significant Word Register	0x0000_0000
CAM6M	0xB000_3038	R/W	CAM6 Most Significant Word Register	0x0000_0000
CAM6L	0xB000_303C	R/W	CAM6 Least Significant Word Register	0x0000_0000
CAM7M	0xB000_3040	R/W	CAM7 Most Significant Word Register	0x0000_0000
CAM7L	0xB000_3044	R/W	CAM7 Least Significant Word Register	0x0000_0000
CAM8M	0xB000_3048	R/W	CAM8 Most Significant Word Register	0x0000_0000
CAM8L	0xB000_304C	R/W	CAM8 Least Significant Word Register	0x0000_0000
CAM9M	0xB000_3050	R/W	CAM9 Most Significant Word Register	0x0000_0000
CAM9L	0xB000_3054	R/W	CAM9 Least Significant Word Register	0x0000_0000
CAM10M	0xB000_3058	R/W	CAM10 Most Significant Word Register	0x0000_0000

109

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value	
CAM10L	0xB000_305C	R/W	CAM10 Least Significant Word Register	0x0000_0000	
CAM11M	0xB000_3060	R/W	CAM11 Most Significant Word Register	0x0000_0000	
CAM11L	0xB000_3064	R/W	CAM11 Least Significant Word Register	0x0000_0000	
CAM12M	0xB000_3068	R/W	CAM12 Most Significant Word Register	0x0000_0000	
CAM12L	0xB000_306C	R/W	CAM12 Least Significant Word Register	0x0000_0000	
CAM13M	0xB000_3070	R/W	CAM13 Most Significant Word Register	0x0000_0000	
CAM13L	0xB000_3074	R/W	CAM13 Least Significant Word Register	0x0000_0000	
CAM14M	0xB000_3078	R/W	CAM14 Most Significant Word Register	0x0000_0000	
CAM14L	0xB000_307C	R/W	CAM14 Least Significant Word Register	0x0000_0000	
CAM15M	0xB000_3080	R/W	CAM15 Most Significant Word Register	0x0000_0000	
CAM15L	0xB000_3084	R/W	CAM15 Least Significant Word Register	0x0000_0000	
TXDLSA	0xB000_3088	R/W	Transmit Descriptor Link List Start Address Register	0xFFFF_FFFC	
RXDLSA	0xB000_308C	R/W	Receive Descriptor Link List Start Address Reg.	0xFFFF_FFFC	
MCMDR	0xB000_3090	R/W	MAC Command Register	0x0000_0000	
MIID	0xB000_3094	R/W	MII Management Data Register	0x0000_0000	
MIIDA	0xB000_3098	R/W	MII Management Control and Address Register	0x0090_0000	
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101	
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined	
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined	
DMARFC	0xB000_30A8	R/W	Maximum Receive Frame Control Register	0x0000_0800	
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000	
Status Regi	isters (11)				
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000	
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000	
MPCNT	0xB000_30B8	R/W	Missed Packet Count Register	0x0000_7FFF	
MRPC	0xB000_30BC	R	MAC Receive Pause Count Register	0x0000_0000	
MRPCC	0xB000_30C0	R	MAC Receive Pause Current Count Register	Register 0x0000_0000	
MREPC	0xB000_30C4	R	MAC Remote Pause Count Register 0x0		
DMARFS	0xB000_30C8	R/W	W DMA Receive Frame Status Register 0x		
CTXDSA	0xB000_30CC	R	Current Transmit Descriptor Start Address Reg. 0x0		
CTXBSA	0xB000_30D0	R	Current Transmit Buffer Start Address Register	0x0000_0000	
CRXDSA	0xB000_30D4	R	Current Receive Descriptor Start Address Reg. 0x000		

110

Publication Release Date: Jun. 18, 2010 Revision: A3

Register	Address	R/W	Description	Reset Value	
CRXBSA	0xB000_30D8	R	Current Receive Buffer Start Address Register	0x0000_0000	

Publication Release Date: Jun. 18, 2010

6.6.3 **EMC Register Details**

CAM Command Register (CAMCMR)

The CAMCMR control the CAM comparison function, and unicast, multicast, and broadcast packet reception

Register	Address	R/W	Description	Reset Value
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000

					- 1//	1 11/11			
31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved						25		
7	6	5	4	3	2	1	0		
Reserved RMII		RMII	ECMP	CCAM	ABP	AMP	AUP		

Bits	Descrip	tions
[5]	RMII	Enable RMII Input Data Sampled by Negative Edge of REFCLK 1'b0: PHY_CRSDV and PHY_RXD[1:0] are sampled by the positive edge of REFCLK 1'b1: PHY_CRSDV and PHY_RxD[1:0] are sampled by the negative edge of REFCLK
[4]	ЕСМР	Enable CAM Compare The ECMP controls the enable of CAM comparison function for destination MAC address recognition. If S/W wants to receive a packet with specific destination MAC address, configures the MAC address into anyone of 16 CAM entries, then enables that CAM entry and set ECMP to 1. 1'b0: Disable CAM comparison function for destination MAC address recognition. 1'b1: Enable CAM comparison function for destination MAC address recognition.
		112 Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Descripti	Descriptions						
		Complement CAM Compare						
[3]	ССАМ	The CCAM controls the complement of the CAM comparison result. If the ECMP and CCAM are both enabled, the incoming packet with specific destination MAC address configured in CAM entry will be dropped. And the incoming packet with destination MAC address doesn't configured in any CAM entry will be received.						
		1'b0: The CAM comparison result doesn't be complemented.						
		1'b1: The CAM comparison result will be complemented.						
		Accept Broadcast Packet						
[2]	АВР	The ABP controls the broadcast packet reception. If ABP is enabled, EMC receives all incoming packet its destination MAC address is a broadcast address.						
		1'b0: EMC receives packet depends on the CAM comparison result.						
		1'b1: EMC receives all broadcast packets.						
	AMP	Accept Multicast Packet						
[1]		The AMP controls the multicast packet reception. If AMP is enabled, EMC receives all incoming packet its destination MAC address is a multicast address.						
		1'b0: EMC receives packet depends on the CAM comparison result.						
		1'b1: EMC receives all multicast packets.						
	AUP	Accept Unicast Packet						
[0]		The AUP controls the unicast packet reception. If AUP is enabled, EMC receives all incoming packet its destination MAC address is a unicast address.						
32.		1'b0: EMC receives packet depends on the CAM comparison result.						
3		1'b1: EMC receives all unicast packets.						

CAMCMR Setting and Comparison Result

The following table is the address recognition result in different CAMCMR configuration. The column Result shows the incoming packet type that can pass the address recognition in specific CAM configuration. The C, U, M and B represents the:

- C: It indicates the destination MAC address of incoming packet has been configured in CAM entry.
- *U*: It indicates the incoming packet is a unicast packet.
- M: It indicates the incoming packet is a multicast packet.
- B: It indicates the incoming packet is a broadcast packet.

	ECMP	CCAM	AUP	AMP	ABP	Result
Ì	0	0	0	0	0	No Packet

Publication Release Date: Jun. 18, 2010

ECMP	CCAM	AUP	AMP	ABP	Re	sult		
0	0	0	0	1	В			
0	0	0	1	0	М			
0	0	0	1	1	М	В		
0	0	1	0	0	С	U		
0	0	1	0	1	С	U	В	1
0	0	1	1	0	С	U	М	20
0	0	1	1	1	С	U	М	В
0	1	0	0	0	С	U	М	В
0	1	0	0	1	С	U	М	В
0	1	0	1	0	С	U	М	В
0	1	0	1	1	С	U	М	В
0	1	1	0	0	С	U	М	В
0	1	1	0	1	С	U	М	В
0	1	1	1	0	С	U	Μ	В
0	1	1	1	1	С	U	М	В
1	0	0	0	0	С			
1	0	0	0	1	С	В		
1	0	0	1	0	С	Μ		
1	0	0	1	1	С	Ν	В	
1	0	1	0	0	С	U		
1	0	1	0	1	С	U	В	
1	0	1	1	0	С	U	Μ	
1	0	1	1	1	С	U	М	В
1	1	0	0	0	U	М	В	
1	1	0	0	1	U	Μ	В	
1	1	0	1	0	U	М	В	
1	1	0	1	1	U	М	В	
1	1	1	0	0	С	U	М	В
1	1	1	0	1	С	U	Μ	В
1	1	1	1	0	С	U	М	В
1	1	1	1	1	С	U	М	В

Publication Release Date: Jun. 18, 2010

CAM Enable Register (CAMEN)

The CAMEN controls the validation of each CAM entry. Each CAM entry must be enabled first before it can participate in the destination MAC address recognition.

Register	Address	R/W	Description	Reset Value
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
CAM15EN	CAM14EN	CAM13EN	CAM12EN	CAM11EN	CAM10EN	CAM9EN	CAM8EN		
7	6	5	4	3	2	1	0		
CAM7EN	CAM6EN	CAM5EN	CAM4EN	CAM3EN	CAM2EN	CAM1EN	CAMOEN		

Bits	Descriptio	Descriptions					
		CAM Entry x Enable					
		The CAMxEN controls the validation of CAM entry x. The x can be 0 to 15.					
[x]	CAMxEN	The CAM entry 13, 14 and 15 are for PAUSE control frame transmission. If S/W wants to transmit a PAUSE control frame out to network, the enable bits of these three CAM entries all must be enabled first.					
2		1'b0: CAM entry x is disabled.					
	A.	1'b1: CAM entry x is enabled.					

Publication Release Date: Jun. 18, 2010

CAM Entry Registers (CAMxx)

In the EMC of NUC960ADN, there are 16 CAM entries. In these 16 CAM entries, 13 entries (entry $0\sim12$) are to keep destination MAC address for packet recognition, and the other 3 entries (entry $13\sim15$) are for PAUSE control frame transmission. Each CAM entry consists of 6 bytes. Consequently, 2 register ports are needed for each CAM entry.

For packet recognition, a register pair {CAMxM, CAMxL} represents a CAM entry and can keep a destination MAC address. The corresponding CAM enable bit CAMxEN of CAMEN register is also needed be enabled. The x can be the 0 to 12.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, enable the bit SDPZ of MCMDR register.

Register	Address	R/W	Description	Reset Value
CAMON	0xB000_3008		CAM0 Most Significant Word Register	0x0000_0000
CAM0L :	0xB000_300C :	R/W	CAM0 Least Significant Word Register	0x0000_0000 :
CAM15M CAM15L	0xB000_3080 0xB000_3084	,	: CAM15 Most Significant Word Register	0x0000_0000 0x0000_0000
	_		CAM15 Least Significant Word Register	

CAMxM

31	30	29	28	27	26	25	24			
	MAC Address Byte 5 (MSB)									
23	22	21	20	19	18	17	16			
12 X			MAC Addr	ess Byte 4						
15	14	13	12	11	10	9	8			
62	MAC Address Byte 3									
7	6	5	4	3	2	1	0			
	MAC Address Byte 2									

Publication Release Date: Jun. 18, 2010

Bits	Descriptio	Descriptions						
		CAMx Most Significant Word						
[31:0]	CAMxM	The CAMxM keeps the bit 47~16 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32'h0050_BA33 and CAM1L is 32'hBA44_0000.						

Publication Release Date: Jun. 18, 2010

CAMxL

31	30	29	28	27	26	25	24		
MAC Address Byte 1									
23	22	21	20	19	18	17	16		
MAC Address Byte 0 (LSB)									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved						30	0/		

Bits	Descriptio	Descriptions						
[31:0]	CAMxL	CAMx Least Significant Word The CAMxL keeps the bit 15~0 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32′h0050_BA33 and CAM1L is 32′hBA44_0000.						

CAM15M

113141										
31	30	29	28	27	26	25	24			
	Length/Type (MSB)									
23	22	21	20	19	18	17	16			
			Length	n/Туре						
15	14	13	12	11	10	9	8			
2 The	OP-Code (MSB)									
7	6	5	4	3	2	1	0			
100	120		OP-0	Code						

Bits	Descriptions	
[31:16]	Length/Type	Length/Type Field of PAUSE Control Frame In the PAUSE control frame, a length/type field is defined and will be 16'h8808.

Publication Release Date: Jun. 18, 2010

[15:0]	OP-Code	OP Code Field of PAUSE Control Frame					
		In the PAUSE control frame, an op code field is defined and will be 16'h0001.					

CAM15L

31	30	29	28	27	26	25	24		
Operand (MSB)									
23	22	21	20	19	18	17	16		
Operand									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved									

Bits	Descriptions	
[31:16]	Operand	Pause Parameter In the PAUSE control frame, an operand field is defined and controls how much time the destination Ethernet MAC Controller is paused. The unit of the operand is the slot time, the 512 bits time.

Publication Release Date: Jun. 18, 2010

Transmit Descriptor Link List Start Address Register (TXDLSA)

The Tx descriptor defined in EMC is a link-list data structure. The TXDLSA keeps the starting address of this link-list. In other words, the TXDLSA keeps the starting address of the $1^{\rm st}$ Tx descriptor. S/W must configure TXDLSA before enable bit TXON of MCMDR register.

Register	Address	R/W	Description	Reset Value
TXDLSA	0xB000_3088	R/W	Transmit Descriptor Link List Start Address Register	0xFFFF_FFFC

31	30	29	28	27	26	25	24		
TXDLSA									
23	22	21	20	19	18	17	16		
	TXDLSA								
15	14	13	12	11	10	9	8		
TXDLSA									
7	6	5	4	3	2	1	0		
	TXDLSA								

Bits [Descriptions	
[31:0]	TXDLSA	Transmit Descriptor Link-List Start Address The TXDLSA keeps the start address of transmit descriptor link-list. If the S/W enables the bit TXON of MCMDR register, the content of TXDLSA will be loaded into the current transmit descriptor start address register (CTXDSA). The TXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of TXDLSA. This means that each Tx descriptor always must locate at word boundary memory address.

Publication Release Date: Jun. 18, 2010

Receive Descriptor Link List Start Address Register (RXDLSA)

The Rx descriptor defined in EMC is a link-list data structure. The RXDLSA keeps the starting address of this link-list. In other words, the RXDLSA keeps the starting address of the $1^{\rm st}$ Rx descriptor. S/W must configure RXDLSA before enable bit RXON of MCMDR register.

Register	Address	R/W	Description	Reset Value
RXDLSA	0xB000_308C	R/W	Receive Descriptor Link List Start Address Register	0xFFFF_FFFC

					7.11			
31	30	29	28	27	26	25	24	
RXDLSA								
23	22	21	20	19	18	17	16	
			RXD	LSA		20	7 (0)	
15	14	13	12	11	10	9	8	
	RXDLSA							
7	6	5	4	3	2	1	0	
	RXDLSA							

Bits	Descriptions	
[31:0]	RTXDLSA	Receive Descriptor Link-List Start Address The RXDLSA keeps the start address of receive descriptor link-list. If the S/W enables the bit RXON of MCMDR register, the content of RXDLSA will be loaded into the current receive descriptor start address register (CRXDSA). The RXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of RXDLSA. This means that each Rx descriptor always must locate at word boundary memory address.

Publication Release Date: Jun. 18, 2010

MAC Command Register (MCMDR)

The MCMDR provides the control information for EMC. Some command settings affect both frame transmission and reception, such as bit FDUP, the full/half duplex mode selection, or bit OPMOD, the 100/10M bps mode selection. Some command settings control frame transmission and reception separately, likes bit TXON and RXON.

Register	Address	R/W	Description	Reset Value
MCMDR	0xB000_3090	R/W	MAC Command Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Rese	erved	LBK	OPMOD	EnMDC	FDUP	EnSQE	SDPZ	
15	14	13	12	11	10	9	8	
		Rese	erved			NDEF	TXON	
7	6	5	4	3	2	1	0	
Rese	erved	SPCRC	AEP	ACP	ARP	ALP	RXON	

Bits	Descriptions	
		Software Reset
[24]	SWR	The SWR implements a reset function to make the EMC return default state. The SWR is a self-clear bit. This means after the software reset finished, the SWR will be cleared automatically. Enable SWR can also reset all control and status registers, exclusive of these two bits EnRMII and OPMOD of MCMDR register.
	alt:	The EMC re-initial is needed after the software reset completed.
100	333	1'b0: Software reset completed.
1	80° C	1'b1: Enable software reset.
	C. C.	Internal Loop Back Select
[21]	LBK	The LBK enables the EMC operating on internal loop-back mode. If the LBK is enabled, the packet transmitted out will be loop-backed to Rx. If the EMC is operating on internal loop-back mode, it also means the EMC is operating on full-duplex mode and the value of FDUP of MCMDR register is ignored. Beside, the LBK doesn't be affected by SWR bit.
		1'b0: The EMC operates in normal mode.
		1'b1: The EMC operates in internal loop-back mode.

122

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[20]	OPMOD	Operation Mode Select The OPMOD defines the EMC is operating on 10M or 100M bps mode. The OPMOD doesn't be affected by SWR bit. 1'b0: The EMC operates on 10Mbps mode. 1'b1: The EMC operates on 100Mbps mode.
[19]	EnMDC	Enable MDC Clock Generation The EnMDC controls the MDC clock generation for MII Management Interface. If the EnMDC is set to 1, the MDC clock generation is enabled. Otherwise, the MDC clock generation is disabled. Consequently, if S/W wants to access the registers of external PHY through MII Management Interface, the EnMDC must be set to high. 1'b0: Disable MDC clock generation. 1'b1: Enable MDC clock generation.
[18]	FDUP	Full Duplex Mode Select The FDUP controls that EMC is operating on full or half duplex mode. 1'b0: The EMC operates on half duplex mode. 1'b1: The EMC operates on full duplex mode.
[17]	EnSQE	 Enable SQE Checking The EnSQE controls the enable of SQE checking. The SQE checking is only available while EMC is operating on 10M bps and half duplex mode. In other words, the EnSQE cannot affect EMC operation, if the EMC is operating on 100M bps or full duplex mode. 1'b0: Disable SQE checking while EMC is operating on 10Mbps and half duplex mode. 1'b1: Enable SQE checking while EMC is operating on 10Mbps and half duplex mode.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	**************************************
		Send PAUSE Frame
		The SDPZ controls the PAUSE control frame transmission.
		If S/W wants to send a PAUSE control frame out, the CAM entry 13, 14 and 15 must be configured first and the corresponding CAM enable bit of CAMEN register also must be set. Then, set SDPZ to 1 enables the PAUSE control frame transmission.
[16]	SDPZ	The SDPZ is a self-clear bit. This means after the PAUSE control frame transmission has completed, the SDPZ will be cleared automatically.
		It is recommended that only enables SPDZ while EMC is operating on full duplex mode.
		1'b0: The PAUSE control frame transmission has completed.
		1'b1: Enable EMC to transmit a PAUSE control frame out.
		No Defer
[9]	NDEF	The NDEF controls the enable of deferral exceed counter. If NDEF is set to high, the deferral exceed counter is disabled. The NDEF is only useful while EMC is operating on half duplex mode.
		1'b0: The deferral exceed counter is enabled.
		1'b1: The deferral exceed counter is disabled.
		Frame Transmission ON
de		The TXON controls the normal packet transmission of EMC. If the TXON is set to high, the EMC starts the packet transmission process, including the Tx descriptor fetching, packet transmission and Tx descriptor modification.
[8]	TXON	It is must to finish EMC initial sequence before enable TXON. Otherwise, the EMC operation is undefined.
	就	If the TXON is disabled during EMC is transmitting a packet out, the EMC stops the packet transmission process after the current packet transmission finished.
	OXX	1'b0: The EMC stops packet transmission process.
- 3	200	1'b1: The EMC starts packet transmission process.
	(6,00)	Strip CRC Checksum
[5]	SPCRC	The SPCRC controls if the length of incoming packet is calculated with 4 bytes CRC checksum. If the SPCRC is set to high, 4 bytes CRC checksum is excluded from length calculation of incoming packet.
	2	1'b0: The 4 bytes CRC checksum is included in packet length calculation.
		1'b1: The 4 bytes CRC checksum is excluded in packet length calculation.

124

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Accept CRC Error Packet
[4]	AEP	The AEP controls the EMC accepts or drops the CRC error packet. If the AEP is set to high, the incoming packet with CRC error will be received by EMC as a good packet.
		1'b0: The CRC error packet will be dropped by EMC.
		1'b1: The CRC error packet will be accepted by EMC.
		Accept Control Packet
[3]	АСР	The ACP controls the control frame reception. If the ACP is set to high, the EMC will accept the control frame. Otherwise, the control frame will be dropped. It is recommended that S/W only enable AEP while EMC is operating on full duplex mode.
		1'b0: The control frame will be dropped by EMC.
		1'b1: The control frame will be accepted by EMC.
	ARP	Accept Runt Packet
		The ARP controls the runt packet, which length is less than 64 bytes, reception. If the ARP is set to high, the EMC will accept the runt packet.
[2]		Otherwise, the runt packet will be dropped.
		1'b0: The runt packet will be dropped by EMC.
		1'b1: The runt packet will be accepted by EMC.
		Accept Long Packet
(1)	ALP	The ALP controls the long packet, which packet length is greater than 1518 bytes, reception. If the ALP is set to high, the EMC will accept the long packet.
	A	Otherwise, the long packet will be dropped.
(SI) 1	all's	1'b0: The long packet will be dropped by EMC.
10	32	1'b1: The long packet will be accepted by EMC.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Frame Reception ON
[0]	RXON	The RXON controls the normal packet reception of EMC. If the RXON is set to high, the EMC starts the packet reception process, including the Rx descriptor fetching, packet reception and Rx descriptor modification.
		It is must to finish EMC initial sequence before enable RXON. Otherwise, the EMC operation is undefined.
		If the RXON is disabled during EMC is receiving an incoming packet, the EMC stops the packet reception process after the current packet reception finished.
		1'b0: The EMC stops packet reception process.
		1'b1: The EMC starts packet reception process.

Publication Release Date: Jun. 18, 2010

MII Management Data Register (MIID)

The EMC provides MII management function to access the control and status registers of the external PHY. The MIID register is used to store the data that will be written into the registers of external PHY for write command or the data that is read from the registers of external PHY for read command.

Register	Address	R/W	Description	Reset Value
MIID	0xB000_3094	R/W	MII Management Data Register	0x0000_0000

31 30 29 28 27 26 25 24 Reserved 23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8 MIIData									
23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8	31	30	29	28	27	26	25	24	
Reserved 15 14 13 12 11 10 9 8	Reserved								
15 14 13 12 11 10 9 8	23	22	21	20	19	18	17	16	
	Reserved							7 (0)	
MIIData	15	14	13	12	11	10	9	8	
	MIIData								
7 6 5 4 3 2 1 0	7	6	5	4	3	2	1	0	
MIIData									

Bits	Descriptions	
[15:0]	MIIData	MII Management Data The MIIData is the 16 bits data that will be written into the registers of external PHY for MII Management write command or the data from the registers of external PHY for MII Management read command.

Publication Release Date: Jun. 18, 2010

MII Management Control and Address Register (MIIDA)

The EMC provides MII management function to access the control and status registers of the external PHY. The MIIDA register is used to keep the MII management command information, like the register address, external PHY address, MDC clocking rate, read/write etc.

Register	Address	R/W	Description	Reset Value
MIIDA	0xB000_3098	R/W	MII Management Control and Address Register	0x0090_0000

31	30	29	28	27	26	25	24	
			Rese	erved		490	à	
23	22	21	20	19	18	17	16	
MDCCR				MDCON	PreSP	BUSY	Write	
15	14	13	12	11	10	9	8	
	Reserved				PHYAD			
7	6	5	4	3	2	1	0	
	Reserved		PHYRAD					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions							
		MDC CI	MDC Clock Rating (Default Value: 4'h9)					
		The MD	The MDCCR controls the MDC clock rating for MII Management I/F.					
		MDC sh bus clo- are req	nall be 400ns (frec ck, the HCLK. Cor	802.3 clause 22.2.2.11, the minimum period for uency 2.5MHz). The MDC is divided from the AHE asequently, for different HCLKs the different ration appropriate MDC clock. The T_{HCLK} indicates the				
			MDCCR [23:20]	MDC Clock Period	MDC Clock Frequency			
			4′b0000	4 x T _{HCLK}	HCLK/4			
			4'b0001	6 x T _{HCLK}	HCLK/6			
			4'b0010	8 x T _{HCLK}	HCLK/8			
			4'b0011	12 x T _{HCLK}	HCLK/12			
[23:20]	MDCCR		4'b0100	16 x T _{HCLK}	HCLK/16			
			4'b0101	20 x T _{HCLK}	HCLK/20			
			4'b0110	24 x T _{HCLK}	HCLK/24			
			4'b0111	28 x T _{HCLK}	HCLK/28			
			4'b1000	30 x T _{HCLK}	HCLK/30			
			4'b1001	32 x T _{HCLK}	HCLK/32			
			4'b1010	36 x T _{HCLK}	HCLK/36			
200			4'b1011	40 x T _{HCLK}	HCLK/40			
100			4'b1100	44 x T _{HCLK}	HCLK/44			
2			4'b1101	48 x T _{HCLK}	HCLK/48			
	P		4'b1110	54 x T _{HCLK}	HCLK/54			
	流		4′b1111	60 x T _{HCLK}	HCLK/60			
W.	2. X	MDC CI	lock ON Always					
[19]	MDCON	The MDC controls the MDC clock generation. If the MDCON is set to high, the MDC clock actives always. Otherwise, the MDC will only active while S/W issues a MII management command.						
	S		he MDC clock will command.	only active while S/N	N issues a MII management			
	~~	1'b1: Th	he MDC clock activ	es always.				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[18]	PreSP	Preamble Suppress The PreSP controls the preamble field generation of MII management frame. If the PreSP is set to high, the preamble field generation of MII management frame is skipped. 1'b0: Preamble field generation of MII management frame is not skipped. 1'b1: Preamble field generation of MII management frame is skipped.
[17]	BUSY	Busy Bit The BUSY controls the enable of the MII management frame generation. If S/W wants to access registers of external PHY, it set BUSY to high and EMC generates the MII management frame to external PHY through MII Management I/F. The BUSY is a self-clear bit. This means the BUSY will be cleared automatically after the MII management command finished. 1'b0: The MII management has finished. 1'b1: Enable EMC to generate a MII management command to external PHY.
[16]	Write	Write Command The Write defines the MII management command is a read or write. 1'b0: The MII management command is a read command. 1'b1: The MII management command is a write command.
[12:8]	PHYAD	PHY Address The PHYAD keeps the address to differentiate which external PHY is the target of the MII management command.
[4:0]	PHYRAD	PHY Register Address The PHYRAD keeps the address to indicate which register of external PHY is the target of the MII management command.

MII Management Function Frame Format

In IEEE Std. 802.3 clause 22.2.4, the MII management function is defined. The MII management function is used for the purpose of controlling the PHY and gathering status from the PHY. The MII management frame format is shown as follow.

	Management frame fields							
	PRE	ST	ОР	PHYAD	REGAD	TA	DATA	IDLE
READ	11	01	10	AAAAA	RRRRR	ZO	DDDDDDDDDDDDDD	Z
WRITE	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z

130

Publication Release Date: Jun. 18, 2010

MII Management Function Configure Sequence

	Read		Write
1.	Set appropriate MDCCR.	1.	Write data to MIID register
2.	Set PHYAD and PHYRAD.	2.	Set appropriate MDCCR.
3.	Set Write to 1'b0	3.	Set PHYAD and PHYRAD.
4.	Set bit BUSY to 1'b1 to send a MII management frame out.		Set Write to 1'b1
			Set bit BUSY to 1'b1 to send a
5.	Wait BUSY to become 1'b0.		MII management frame out.
6.	Read data from MIID register.	6.	Wait BUSY to become 1'b0.
7.	Finish the read command.	7.	Finish the write command.

Publication Release Date: Jun. 18, 2010

FIFO Threshold Control Register (FFTCR)

The FFTCR defines the high and low threshold of internal FIFOs, including TxFIFO and RxFIFO. The threshold of internal FIFOs is related to EMC request generation and when the frame transmission starts. The FFTCR also defines the burst length of AHB bus cycle for system memory access.

Register	Address	R/W	Description	Reset Value
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101

17.17							
31	30	29	28	27	26	25	24
			Rese	erved		490 6	6
23	22	21	20	19	18	17	16
Reserved BLength					Rese	rved	7 0
15	14	13	12	11	10	9	8
		Rese	rved			TxT	HD
7	6	5	4	3	2	1	0
	RxT	HD					

Bits	Descriptions	
		DMA Burst Length
11001		The Blength defines the burst length of AHB bus cycle while EMC accesses system memory.
[21:20]	Blength	2'b00: 4 words
	J	2'b01: 8 words
	1	2'b10: 16 words
	.ik	2'b11: 16 words

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions						
		TxFIFO Low Threshold						
		Default Value: 2'b01						
[9:8]	ТхТНО	The TxTHD controls when TxDMA requests internal arbiter for data transfer between system memory and TxFIFO. The TxTHD defines not only the low threshold of TxFIFO, but also the high threshold. The high threshold is the twice of low threshold always. During the packet transmission, if the TxFIFO reaches the high threshold, the TxDMA stops generate request to transfer frame data from system memory to TxFIFO. If the frame data in TxFIFO is less than low threshold, TxDMA starts to transfer frame data from system memory to TxFIFO.						
		The TxTHD also defines when the TxMAC starts to transmit frame out to network. The TxMAC starts to transmit the frame out while the TxFIFO first time reaches the high threshold during the transmission of the frame. If the frame data length is less than TxFIFO high threshold, the TxMAC starts to transmit the frame out after the frame data are all inside the TxFIFO.						
		2'b00: Undefined.						
		2'b01: TxFIFO low threshold is 64B and high threshold is 128B.						
		2'b10: TxFIFO low threshold is 80B and high threshold is 160B.						
		2'b11: TxFIFO low threshold is 96B and high threshold is 192B.						
		RxFIFO High Threshold						
		Default Value: 2'b01						
[1:0]	RxTHD	The RxTHD controls when RxDMA requests internal arbiter for data transfer between RxFIFO and system memory. The RxTHD defines not only the high threshold of RxFIFO, but also the low threshold. The low threshold is the half of high threshold always. During the packet reception, if the RxFIFO reaches the high threshold, the RxDMA starts to transfer frame data from RxFIFO to system memory. If the frame data in RxFIFO is less than low threshold, RxDMA stops to transfer the frame data to system memory.						
	N. K.	2'b00: Depend on the burst length setting. If the burst length is 8 words, high threshold is 8 words, too.						
	(S) 1872	2'b01: RxFIFO high threshold is 64B and low threshold is 32B.						
	(0,00	2'b10: RxFIFO high threshold is 128B and low threshold is 64B.						
	500	2'b11: RxFIFO high threshold is 192B and low threshold is 96B.						

Publication Release Date: Jun. 18, 2010

Transmit Start Demand Register (TSDR)

If the Tx descriptor is not available for use of TxDMA after the TXON of MCMDR register is enabled, the FSM (Finite State Machine) of TxDMA enters the Halt state and the frame transmission is halted. After the S/W has prepared the new Tx descriptor for frame transmission, it must issue a write command to TSDR register to make TxDMA leave Halt state and contiguous frame transmission. The TSDR is a write only register and read from this register is undefined. The write to TSDR register has took effect only while TxDMA stayed at Halt state.

Register	Address	R/W	Description	Reset Value
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined

						7.791	17-11
31	30	29	28	27	26	25	24
	TSD						
23	22	21	20	19	18	17	16
			TS	SD			S. T.Co.
15	14	13	12	11	10	9	8
			TS	SD			
7	6	5	4	3	2	1	0
TSD							

Bits	Descriptions	
[31:0]	TSD	Transmit Start Demand

Publication Release Date: Jun. 18, 2010

Receive Start Demand Register (RSDR)

If the Rx descriptor is not available for use of RxDMA after the RXON of MCMDR register is enabled, the FSM (Finite State Machine) of RxDMA enters the Halt state and the frame reception is halted. After the S/W has prepared the new Rx descriptor for frame reception, it must issue a write command to RSDR register to make RxDMA leave Halt state and contiguous frame reception. The RSDR is a write only register and read from this register is undefined. The write to RSDR register has took effect only while RxDMA stayed at Halt state.

Register	Address	R/W	R/W Description	
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined

						7.791	17-11
31	30	29	28	27	26	25	24
RSD							7.0
23	22	21	20	19	18	17	16
			RS	SD			500
15	14	13	12	11	10	9	8
			RS	SD			
7	6	5	4	3	2	1	0
RSD							

Bits	Descriptions	
[31:0]	RSD	Receive Start Demand

Publication Release Date: Jun. 18, 2010

Maximum Receive Frame Control Register (DMARFC)

The DMARFC defines the maximum frame length for a received frame that can be stored in the system memory. It is recommend that only use this register while S/W wants to receive a frame which length is greater than 1518 bytes.

Register	Address	R/W	Description	Reset Value
DMARFC	0xB000_30A8	R/W	Maximum Receive Frame Control Register	0x0000_0800

					5 - 7 /		
31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved		703	9.0
15	14	13	12	11	10	9	8
			RX	MS			SOP.
7	6	5	4	3	2	1	0
RXMS							

Bits	Descriptions	
		Maximum Receive Frame Length
		Default Value: 16'h0800
[15:0]	RXMS	The RXMS defines the maximum frame length for received frame. If the frame length of received frame is greater than RXMS, and bit EnDFO of MIEN register is also enabled, the bit DFOI of MISTA register is set and the Rx interrupt is triggered.
	*	It is recommended that only use RXMS to qualify the length of received frame while S/W wants to receive a frame which length is greater than 1518 bytes.

Publication Release Date: Jun. 18, 2010

MAC Interrupt Enable Register (MIEN)

The MIEN controls the enable of EMC interrupt status to generate interrupt. Two interrupts, RXINTR for frame reception and TXINTR for frame transmission, are generated from EMC to CPU.

Register	Address	R/W	R/W Description	
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
EnTDU	EnLC	EnTXABT	EnNCS	EnEXDEF	EnTXCP	EnTXEMP	EnTXINTR
15	14	13	12	11	10	9	8
Reserved	EnCFR	Rese	erved	EnRxBErr	EnRDU	EnDEN	EnDFO
7	6	5	4	3	2	1	0
EnMMP	EnRP	EnALIE	EnRXGD	EnPTLE	EnRXOV	EnCRCE	EnRXINTR

Bits	Descriptions	
		Enable Transmit Bus Error Interrupt
[24]	EnTxBErr	The EnTxBErr controls the TxBErr interrupt generation. If TxBErr of MISTA register is set, and both EnTxBErr and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTxBErr or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TxBErr of MISTA register is set.
100 V		1'b0: TxBErr of MISTA register is masked from Tx interrupt generation.
	>	1'b1: TxBErr of MISTA register can participate in Tx interrupt generation.
(11)	A.	Enable Transmit Descriptor Unavailable Interrupt
[23]	EnTDU	The EnTDU controls the TDU interrupt generation. If TDU of MISTA register is set, and both EnTDU and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTDU or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TDU of MISTA register is set.
	90,4	1'b0: TDU of MISTA register is masked from Tx interrupt generation.
	38 ^	1'b1: TDU of MISTA register can participate in Tx interrupt generation.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
[22]	EnLC	Enable Late Collision Interrupt The EnLC controls the LC interrupt generation. If LC of MISTA register is set, and both EnLC and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnLC or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the LC of MISTA register is set. 1'b0: LC of MISTA register is masked from Tx interrupt generation. 1'b1: LC of MISTA register can participate in Tx interrupt generation.				
[21]	EnTXABT	Enable Transmit Abort Interrupt The EnTXABT controls the TXABT interrupt generation. If TXABT of MISTA register is set, and both EnTXABT and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXABT or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXABT of MISTA register is set. 1'b0: TXABT of MISTA register is masked from Tx interrupt generation. 1'b1: TXABT of MISTA register can participate in Tx interrupt generation.				
[20]	EnNCS	Enable No Carrier Sense Interrupt The EnNCS controls the NCS interrupt generation. If NCS of MISTA register is set, and both EnNCS and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnNCS or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the NCS of MISTA register is set. 1'b0: NCS of MISTA register is masked from Tx interrupt generation. 1'b1: NCS of MISTA register can participate in Tx interrupt generation.				
[19]	EnEXDEF	Enable Defer Exceed Interrupt The EnEXDEF controls the EXDEF interrupt generation. If EXDEF of MIST register is set, and both EnEXDEF and EnTXINTR are enabled, the EM generates the Tx interrupt to CPU. If EnEXDEF or EnTXINTR is disabled, in Tx interrupt is generated to CPU even the EXDEF of MISTA register is set. 1'b0: EXDEF of MISTA register is masked from Tx interrupt generation. 1'b1: EXDEF of MISTA register can participate in Tx interrupt generation.				
[18]	EnTXCP	Enable Transmit Completion Interrupt The EnTXCP controls the TXCP interrupt generation. If TXCP of MISTA register is set, and both EnTXCP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXCP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXCP of MISTA register is set. 1'b0: TXCP of MISTA register is masked from Tx interrupt generation. 1'b1: TXCP of MISTA register can participate in Tx interrupt generation.				

138

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
		Enable Transmit FIFO Underflow Interrupt					
[17]	EnTXEMP	The EnTXEMP controls the TXEMP interrupt generation. If TXEMP of MISTA register is set, and both EnTXEMP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXEMP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXEMP of MISTA register is set.					
		1'b0: TXEMP of MISTA register is masked from Tx interrupt generation.					
		1'b1: TXEMP of MISTA register can participate in Tx interrupt generation.					
		Enable Transmit Interrupt					
		The EnTXINTR controls the Tx interrupt generation.					
[16]	EnTXINTR	If EnTXINTR is enabled and TXINTR of MISTA register is high, EMC generates the Tx interrupt to CPU. If EnTXINTR is disabled, no Tx interrupt is generated to CPU even the status bits 17~24 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Tx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Tx interrupt from EMC, disables this bit.					
		1'b0: TXINTR of MISTA register is masked and Tx interrupt generation is disabled.					
		1'b1: TXINTR of MISTA register is unmasked and Tx interrupt generation is enabled.					
		Enable Control Frame Receive Interrupt					
[14]	EnCFR	The EnCFR controls the CFR interrupt generation. If CFR of MISTA register is set, and both EnCFR and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCFR or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CFR of MISTA register is set.					
7		1'b0: CFR of MISTA register is masked from Rx interrupt generation.					
		1'b1: CFR of MISTA register can participate in Rx interrupt generation.					
[11]	流	Enable Receive Bus Error Interrupt					
	EnRxBErr	The EnRxBErr controls the RxBerr interrupt generation. If RxBErr of MISTA register is set, and both EnRxBErr and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRxBErr or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RxBErr of MISTA register is set.					
		1'b0: RxBErr of MISTA register is masked from Rx interrupt generation. 1'b1: RxBErr of MISTA register can participate in Rx interrupt generation.					

139

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		Enable Receive Descriptor Unavailable Interrupt				
[10]	EnRDU	The EnRDU controls the RDU interrupt generation. If RDU of MISTA register is set, and both EnRDU and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRDU or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RDU of MISTA register is set.				
		1'b0: RDU of MISTA register is masked from Rx interrupt generation.				
		1'b1: RDU of MISTA register can participate in Rx interrupt generation.				
		Enable DMA Early Notification Interrupt				
[9]	EnDEN	The EnDEN controls the DENI interrupt generation. If DENI of MISTA register is set, and both EnDEN and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDEN or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DENI of MISTA register is set.				
		1'b0: DENI of MISTA register is masked from Rx interrupt generation.				
		1'b1: DENI of MISTA register can participate in Rx interrupt generation.				
		Enable Maximum Frame Length Interrupt				
[8]	EnDFO	The EnDFO controls the DFOI interrupt generation. If DFOI of MISTA register is set, and both EnDFO and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDFO or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DFOI of MISTA register is set.				
		1'b0: DFOI of MISTA register is masked from Rx interrupt generation.				
		1'b1: DFOI of MISTA register can participate in Rx interrupt generation.				
de		Enable More Missed Packet Interrupt				
[7]	EnMMP	The EnMMP controls the MMP interrupt generation. If MMP of MISTA register is set, and both EnMMP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnMMP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the MMP of MISTA register is set.				
185	701	1'b0: MMP of MISTA register is masked from Rx interrupt generation.				
×	the Land	1'b1: MMP of MISTA register can participate in Rx interrupt generation.				
[6]	C. L.	Enable Runt Packet Interrupt				
	EnRP	The EnRP controls the RP interrupt generation. If RP of MISTA register is set, and both EnRP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RP of MISTA register is set.				
	-	1'b0: RP of MISTA register is masked from Rx interrupt generation.				
		1'b1: RP of MISTA register can participate in Rx interrupt generation.				

140

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Description	scriptions					
[5]	EnALIE	Enable Alignment Error Interrupt The Enalie controls the Alie interrupt generation. If Alie of MISTA registe is set, and both Enalie and Entrintry are enabled, the EMC generates the Rx interrupt to CPU. If Enalie or Entrintry is disabled, no Rx interrupt is generated to CPU even the Alie of MISTA register is set. 1'b0: Alie of MISTA register is masked from Rx interrupt generation. 1'b1: Alie of MISTA register can participate in Rx interrupt generation.					
[4]	EnRXGD	Enable Receive Good Interrupt The EnRXGD controls the RXGD interrupt generation. If RXGD of MISTA register is set, and both EnRXGD and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXGD or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXGD of MISTA register is set. 1'b0: RXGD of MISTA register is masked from Rx interrupt generation. 1'b1: RXGD of MISTA register can participate in Rx interrupt generation.					
[3]	EnPTLE	Enable Packet Too Long Interrupt The EnPTLE controls the PTLE interrupt generation. If PTLE of MISTA register is set, and both EnPTLE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnPTLE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the PTLE of MISTA register is set. 1'b0: PTLE of MISTA register is masked from Rx interrupt generation. 1'b1: PTLE of MISTA register can participate in Rx interrupt generation.					
[2]	EnRXOV	Enable Receive FIFO Overflow Interrupt The EnRXOV controls the RXOV interrupt generation. If RXOV of MISTA register is set, and both EnRXOV and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXOV or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXOV of MISTA register is set. 1'b0: RXOV of MISTA register is masked from Rx interrupt generation. 1'b1: RXOV of MISTA register can participate in Rx interrupt generation.					
[1]	EnCRCE	Enable CRC Error Interrupt The EnCRCE controls the CRCE interrupt generation. If CRCE of MISTA register is set, and both EnCRCE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCRCE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CRCE of MISTA register is set. 1'b0: CRCE of MISTA register is masked from Rx interrupt generation. 1'b1: CRCE of MISTA register can participate in Rx interrupt generation.					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	EnRXINTR	Enable Receive Interrupt The EnRXINTR controls the Rx interrupt generation. If EnRXINTR is enabled and RXINTR of MISTA register is high, EMC generates the Rx interrupt to CPU. If EnRXINTR is disabled, no Rx interrupt is generated to CPU even the status bits 1~14 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Rx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Rx interrupt from EMC, disables this bit. 1'b0: RXINTR of MISTA register is masked and Rx interrupt generation is disabled. 1'b1: RXINTR of MISTA register is unmasked and Rx interrupt generation is enabled.

Publication Release Date: Jun. 18, 2010

MAC Interrupt Status Register (MISTA)

The MISTA keeps much EMC statuses, like frame transmission and reception status, internal FIFO status and also NATA processing status. The statuses kept in MISTA will trigger the reception or transmission interrupt. The MISTA is a write clear register and write 1 to corresponding bit clears the status and also clears the interrupt.

Register	Address	R/W	Description	Reset Value
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Reserved			200	TxBErr
23	22	21	20	19	18	17	16
TDU	LC	TXABT	NCS	EXDEF	TXCP	TXEMP	TXINTR
15	14	13	12	11	10	9	8
Reserved	CFR	Rese	erved	RxBErr	RDU	DENI	DFOI
7	6	5	4	3	2	1	0
MMP	RP	ALIE	RXGD	PTLE	RXOV	CRCE	RXINTR

	Transmit Bus Error Interrupt			
	Transmit Bas Error mitorrapt			
TxBErr	The TxBErr high indicates the memory controller replies ERROR response while EMC access system memory through TxDMA during packet transmission process. Reset EMC is recommended while TxBErr status is high.			
	If the TxBErr is high and EnTxBErr of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TxBErr status.			
	1'b0: No ERROR response is received.			
175 C	1'b1: ERROR response is received.			
	143 Publication Release Date: Jun. 18, 2010			
	TxBErr			

Bits	Descriptions	*0.0%, *
	TDU	Transmit Descriptor Unavailable Interrupt
[23]		The TDU high indicates that there is no available Tx descriptor for packet transmission and TxDMA will stay at Halt state. Once, the TxDMA enters the Halt state, S/W must issues a write command to TSDR register to make TxDMA leave Halt state while new Tx descriptor is available.
[If the TDU is high and EnTDU of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TDU status.
		1'b0: Tx descriptor is available.
		1'b1: Tx descriptor is unavailable.
		Late Collision Interrupt
[22]	LC	The LC high indicates the collision occurred in the outside of 64 bytes collision window. This means after the 64 bytes of a frame has transmitted out to the network, the collision still occurred. The late collision check will only be done while EMC is operating on half-duplex mode. If the LC is high and EnLC of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the LC status.
		1'b0: No collision occurred in the outside of 64 bytes collision window.
		1'b1: Collision occurred in the outside of 64 bytes collision window.
	ТХАВТ	Transmit Abort Interrupt
[21]		The TXABT high indicates the packet incurred 16 consecutive collisions during transmission, and then the transmission process for this packet is aborted. The transmission abort is only available while EMC is operating on half-duplex mode.
[21]		If the TXABT is high and EnTXABT of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXABT status.
		1'b0: Packet doesn't incur 16 consecutive collisions during transmission.
		1'b1: Packet incurred 16 consecutive collisions during transmission.
	NCS	No Carrier Sense Interrupt
[20]		The NCS high indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode. If the NCS is high and EnNCS of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the NCS status.
		1'b0: CRS signal actives correctly.
		1'b1: CRS signal doesn't active at the start of or during the packet transmission.

144

Publication Release Date: Jun. 18, 2010

Bits	Descriptions						
		Defer Exceed Interrupt					
		The EXDEF high indicates the frame waiting for transmission has deferred over 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. The deferral exceed check will only be done while bit NDEF of MCMDR is disabled, and EMC is operating on half-duplex mode.					
[19]	EXDEF	If the EXDEF is high and EnEXDEF of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the EXDEF status.					
		1'b0: Frame waiting for transmission has not deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).					
		1'b1: Frame waiting for transmission has deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).					
		Transmit Completion Interrupt					
		The TXCP indicates the packet transmission has completed correctly.					
[18]	ТХСР	If the TXCP is high and EnTXCP of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXCP status.					
		1'b0: The packet transmission doesn't complete.					
		1'b1: The packet transmission has completed.					
		Transmit FIFO Underflow Interrupt					
[17]	ТХЕМР	The TXEMP high indicates the TxFIFO underflow occurred during packet transmission. While the TxFIFO underflow occurred, the EMC will retransmit the packet automatically without S/W intervention. If the TxFIFO underflow occurred often, it is recommended that modify TxFIFO threshold control, the TxTHD of FFTCR register, to higher level.					
2		If the TXEMP is high and EnTXEMP of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXEMP status.					
	P	1'b0: No TxFIFO underflow occurred during packet transmission.					
(CO	700	1'b0: TxFIFO underflow occurred during packet transmission.					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions						
		Transmit Interrupt					
		The TXINTR indicates the Tx interrupt status.					
	TXINTR	If TXINTR high and its corresponding enable bit, EnTXINTR of MISTA register, is also high indicates the EMC generates Tx interrupt to CPU. If TXINTR is high but EnTXINTR of MISTA is disabled, no Tx interrupt is generated.					
[16]		The TXINTR is logic OR result of the bits 17~24 in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits 17~24 in MISTA register is high and its corresponding enable bit in MIEN register is also enabled, the TXINTR will be high. Because the TXINTR is a logic OR result, clears bits 17~24 of MISTA register makes TXINTR be cleared, too.					
		1'b0: No status of bits $17\sim24$ in MISTA is set or no enable of bits $17\sim24$ in MIEN is turned on.					
		1'b1: At least one status of bits 17~24 in MISTA is set and its corresponding enable bit is turned on.					
	CFR	Control Frame Receive Interrupt					
		The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode.					
[14]		If the CFR is high and EnCFR of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CFR status.					
		1'b0: The EMC doesn't receive the flow control frame.					
, also		1'b1: The EMC receives a flow control frame.					
100		Receive Bus Error Interrupt					
	RxBErr	The RxBErr high indicates the memory controller replies ERROR response while EMC access system memory through RxDMA during packet reception process. Reset EMC is recommended while RxBErr status is high.					
[11]		If the RxBErr is high and EnRxBErr of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RxBErr status.					
		1'b0: No ERROR response is received.					
		1'b1: ERROR response is received.					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	1000
		Receive Descriptor Unavailable Interrupt
[10]	RDU	The RDU high indicates that there is no available Rx descriptor for packet reception and RxDMA will stay at Halt state. Once, the RxDMA enters the Halt state, S/W must issues a write command to RSDR register to make RxDMA leave Halt state while new Rx descriptor is available.
[10]	N.D.G	If the RDU is high and EnRDU of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RDU status.
		1'b0: Rx descriptor is available.
		1'b1: Rx descriptor is unavailable.
		DMA Early Notification Interrupt
	DENI	The DENI high indicates the EMC has received the Length/Type field of the incoming packet.
[9]		If the DENI is high and EnDENI of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DENI status.
		1'b0: The Length/Type field of incoming packet has not received yet.
		1'b1: The Length/Type field of incoming packet has received.
	DFOI	Maximum Frame Length Interrupt
[8]		The DFOI high indicates the length of the incoming packet has exceeded the length limitation configured in DMARFC register and the incoming packet is dropped. If the DFOI is high and EnDFO of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DFOI status.
ASK.		1'b0: The length of the incoming packet doesn't exceed the length limitation configured in DMARFC.
2		1'b1: The length of the incoming packet has exceeded the length limitation configured in DMARFC.
	-sk-	More Missed Packet Interrupt
[7]	MMP	The MMP high indicates the MPCNT, Missed Packet Count, has overflow. If the MMP is high and EnMMP of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the MMP status.
	0,000	1'b0: The MPCNT has not rolled over yet.
	En 4	1'b1: The MPCNT has rolled over yet.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	700%			
		Runt Packet Interrupt			
		The RP high indicates the length of the incoming packet is less than 64 bytes, and the packet is dropped. If the ARP of MCMDR register is set, the short packet is regarded as a good packet and RP will not be set.			
[6]	RP	If the RP is high and EnRP of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RP status.			
		1'b0: The incoming frame is not a short frame or S/W wants to receive a short frame.			
		1'b1: The incoming frame is a short frame and dropped.			
		Alignment Error Interrupt			
[5]	ALIE	The ALIE high indicates the length of the incoming frame is not a multiple of byte. If the ALIE is high and EnALIE of MIEN register is enabled, the RxINT will be high. Write 1 to this bit clears the ALIE status.			
		1'b0: The frame length is a multiple of byte.			
		1'b1: The frame length is not a multiple of byte.			
	RXGD	Receive Good Interrupt			
		The RXGD high indicates the frame reception has completed.			
[4]		If the RXGD is high and EnRXGD of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RXGD status.			
		1'b0: The frame reception has not complete yet.			
1.0200		1'b1: The frame reception has completed.			
		Packet Too Long Interrupt			
	PTLE	The PTLE high indicates the length of the incoming packet is greater than 1518 bytes and the incoming packet is dropped. If the ALP of MCMDR register is set, the long packet will be regarded as a good packet and PTLE will not be set.			
[3]		If the PTLE is high and EnPTLE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the PTLE status.			
		1'b0: The incoming frame is not a long frame or S/W wants to receive a long frame.			
	5%	1'b1: The incoming frame is a long frame and dropped.			

148

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	74000			
		Receive FIFO Overflow Interrupt			
[2]	RXOV	The RXOV high indicates the RxFIFO overflow occurred during packet reception. While the RxFIFO overflow occurred, the EMC drops the current receiving packer. If the RxFIFO overflow occurred often, it is recommended that modify RxFIFO threshold control, the RxTHD of FFTCR register, to higher level.			
		If the RXOV is high and EnRXOV of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RXOV status.			
		1'b0: No RxFIFO overflow occurred during packet reception.			
		1'b0: RxFIFO overflow occurred during packet reception.			
		CRC Error Interrupt			
	CRCE	The CRCE high indicates the incoming packet incurred the CRC error and the packet is dropped. If the AEP of MCMDR register is set, the CRC error packet will be regarded as a good packet and CRCE will not be set.			
[1]		If the CRCE is high and EnCRCE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CRCE status.			
		1'b0: The frame doesn't incur CRC error.			
		1'b1: The frame incurred CRC error.			
		Receive Interrupt			
	RXINTR	The RXINTR indicates the Rx interrupt status.			
数		If RXINTR high and its corresponding enable bit, EnRXINTR of MISTA register, is also high indicates the EMC generates Rx interrupt to CPU. If RXINTR is high but EnRXINTR of MISTA is disabled, no Rx interrupt is generated.			
[0]		The RXINTR is logic OR result of the bits $1{\sim}14$ in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits $1{\sim}14$ in MISTA register is high and its corresponding enable bit in MIEN register is also enabled, the RXINTR will be high.			
		Because the RXINTR is a logic OR result, clears bits $1{\sim}14$ of MISTA register makes RXINTR be cleared, too.			
		1'b0: No status of bits $1\sim14$ in MISTA is set or no enable of bits $1\sim14$ in MIEN is turned on.			
		1'b1: At least one status of bits $1\sim14$ in MISTA is set and its corresponding enable bit is turned on.			

Publication Release Date: Jun. 18, 2010

MAC General Status Register (MGSTA)

The MGSTA also keeps the statuses of EMC. But the statuses in the MGSTA will not trigger any interrupt. The MGSTA is a write clear register and write 1 to corresponding bit clears the status.

Register	Address	R/W	Description	Reset Value
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000

					11///	10/-10		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved		(O)		
15	14	13	12	11	10	9	8	
	Reserved				SQE	PAU	DEF	
7	6	5	4	3	2	1	0	
CCNT				Reserved	RFFull	RXHA	CFR	

Bits	Descriptions				
		Transmission Halted			
		Default Value: 1'b0			
[11]	TXHA	The TXHA high indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W.			
		1'b0: Next normal packet transmission process will go on.			
m.		1'b1: Next normal packet transmission process will be halted.			
(1) D	SQE	Signal Quality Error			
100		Default Value: 1'b0			
[10]		The SQE high indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode.			
	56	1'b0: No SQE error found at end of packet transmission.			
	17 (1)	1'b0: SQE error found at end of packet transmission.			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Transmission Paused
		Default Value: 1'b0
[9]	PAU	The PAU high indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out.
		1'b0: Next normal packet transmission process will go on.
		1'b1: Next normal packet transmission process will be paused.
		Deferred Transmission
		Default Value: 1'b0
[8]	DEF	The DEF high indicates the packet transmission has deferred once. The DEF is only available while EMC is operating on half-duplex mode.
		1'b0: Packet transmission doesn't defer.
		1'b1: Packet transmission has deferred once.
		Collision Count
		Default Value: 4'h0
[7:4]	CCNT	The CCNT indicates the how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.
	RFFull	RxFIFO Full
		Default Value: 1'b0
[2]		The RFFull indicates the RxFIFO is full due to four 64-byte packets are kept in RxFIFO and the following incoming packet will be dropped.
2		1'b0: The RxFIFO is not full.
	6	1'b1: The RxFIFO is full and the following incoming packet will be dropped.
ASS.	200	Receive Halted
16	Sec 16.	Default Value: 1'b0
[1]	RXHA	The RXHA high indicates the next normal packet reception process will be halted because the bit RXON of MCMDR is disabled be S/W.
		1'b0: Next normal packet reception process will go on.
	36	1'b1: Next normal packet reception process will be halted.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	CFR	Control Frame Received Default Value: 1'b0 The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode. 1'b0: The EMC doesn't receive the flow control frame.
[0]	CFR	The CFR high indicates EMC receives a flow control frame. The CF available while EMC is operating on full duplex mode.

Publication Release Date: Jun. 18, 2010

Missed Packet Count Register (MPCNT)

The MPCNT keeps the number of packets that were dropped due to various types of receive errors. The MPCNT is a read clear register. In addition, S/W also can write an initial value to MPCNT and the missed packet counter will start counting from that initial value. If the missed packet counter is overflow, the MMP of MISTA will be set.

Register	Address	R/W	R/W Description	
MPCNT	0xB000_30B8	R/W	Missed Packet Count Register	0x0000_7FFF

76								
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			M	PC			6	
7	6	5	4	3	2	1	0	
MPC								

Bits	Descriptions	
[15:0]	MPC	Miss Packet Count Default Value: 16'h7FFF The MPC indicates the number of packets that were dropped due to various types of receive errors. The following type of receiving error makes missed packet counter increase:
	为人	 Incoming packet is incurred RxFIFO overflow. Incoming packet is dropped due to RXON is disabled. Incoming packet is incurred CRC error.
		153 Publication Release Date: Jun. 18, 2010 Revision: A3

MAC Receive Pause Count Register (MRPC)

The EMC of NUC960ADN supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored in the MRPC register. The MRPC register will keep the same while Tx of EMC is pausing due to the PAUSE control frame is received. The MRPC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MRPC	0xB000_30BC	R	MAC Receive Pause Count Register	0x0000_0000

					7. 7.		
31	30	29	28	27	26	25	24
			Rese	erved		200	0 Z
23	22	21	20	19	18	17	16
			Rese	erved		(
15	14	13	12	11	10	9	8
			MR	PC			5
7	6	5	4	3	2	1	0
			MR	PC			

Descriptions	
MRPC	MAC Receive Pause Count Default Value: 16'h0 The MRPC keeps the operand field of the PAUSE control frame. It indicates how many slot time (512 bit time) the Tx of EMC will be paused.

Publication Release Date: Jun. 18, 2010

MAC Receive Pause Current Count Register (MRPCC)

The EMC of NUC960ADN supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored into a down count timer. The MRPCC shows the current value of that down count timer for S/W to know how long the Tx of EMC will be paused. The MRPCC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MRPCC	0xB000_30C0	R	MAC Receive Pause Current Count Register	0x0000_0000

					76.4		
31	30	29	28	27	26	25	24
			Rese	erved		200	0 Z
23	22	21	20	19	18	17	16
			Rese	erved		(
15	14	13	12	11	10	9	8
			MRI	PCC			6
7	6	5	4	3	2	1	0
			MRI	PCC			

Bits	Descriptions	
110271		MAC Receive Pause Current Count Default Value: 16'h0
[15:0]	MRPCC	The MRPCC shows the current value of that down count timer. If a new PAUSE control frame is received before the timer count down to zero, the new operand of the PAUSE control frame will be stored into the down count timer and the timer starts count down from the new value.

Publication Release Date: Jun. 18, 2010

MAC Remote Pause Count Register (MREPC)

The EMC of NUC960ADN supports the PAUSE control frame transmission. After the PAUSE control frame is transmitted out completely, a timer starts to count down from the value of operand of the transmitted PAUSE control frame. The MREPC shows the current value of this down count timer. The MREPC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MREPC	0xB000_30C4	R	MAC Remote Pause Count Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved		200	0 Z
23	22	21	20	19	18	17	16
			Rese	erved		(
15	14	13	12	11	10	9	8
			MR	EPC			2
7	6	5	4	3	2	1	0
			MR	EPC			

Bits	Descriptions	
[15:0]	MREPC	MAC Remote Pause Count Default Value: 16'h0 The MREPC shows the current value of the down count timer that starts to count down from the value of operand of the transmitted PAUSE control frame.

Publication Release Date: Jun. 18, 2010

DMA Receive Frame Status Register (DMARFS)

The DMARFS is used to keep the Length/Type field of each incoming Ethernet packet. This register is writing clear and writes 1 to corresponding bit clears the bit.

Register	Address	R/W	Description	Reset Value
DMARFS	0xB000_30C8	R/W	DMA Receive Frame Status Register	0x0000_0000

31 30 29 28 27 26 25 24
Reserved
23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8
RXFLT
7 6 5 4 3 2 1 0
RXFLT

Bits	Descriptions							
			Receive Frame Length/Type Default Value: 16'h0					
[15:0]	RXFLT	the bit EnDEN of M packet has received	The RXFLT keeps the Length/Type field of each incoming Ethernet packet. the bit EnDEN of MIEN is enabled and the Length/Type field of incoming packet has received, the bit DENI of MISTA will be set and trigger interruped and, the content of Length/Type field will be stored in RXFLT.					
	M. i.i.		3-77-					

Current Transmit Descriptor Start Address Register (CTXDSA)

Register	Address	R/W	Description	Reset Value
CTXDSA	0xB000_30CC	R	Current Transmit Descriptor Start Address Register	0x0000_0000

					17-1-3 19				
31	30	29	28	27	26	25	24		
CTXDSA									
23	22	21	20	19	18	17	16		
			СТХ	DSA		(1) C			
15	14	13	12	11	10	9	8		
			СТХ	DSA		\(\text{\text{c}}\)	7,00		
7	6	5	4	3	2	1	0		
CTXDSA							200		

Bits	Descriptions	
[21:0]	CTYDSA	Current Transmit Descriptor Start Address Default Value: 32'h0
[31:0] CTXDSA	The CTXDSA keeps the start address of Tx descriptor that is used by TxDMA currently. The CTXDSA is read only and write to this register has no effect.	

Publication Release Date: Jun. 18, 2010

Current Transmit Buffer Start Address Register (CTXBSA)

Register	Address	R/W	Description	Reset Value
CTXBSA	0xB000_30D0	R	Current Transmit Buffer Start Address Register	0x0000_0000

					17-1 3 19				
31	30	29	28	27	26	25	24		
CTXBSA									
23	22	21	20	19	18	17	16		
			СТХ	BSA		20) C			
15	14	13	12	11	10	9	8		
CTXBSA									
7	6	5	4	3	2	1	0		
CTXBSA							JUS.		

Bits	Descriptions	Descriptions					
[31:0]	CTXBSA	Current Transmit Buffer Start Address Default Value: 32'h0 The CTXDSA keeps the start address of Tx frame buffer that is used by TxDMA currently. The CTXBSA is read only and write to this register has no effect.					

Publication Release Date: Jun. 18, 2010

Current Receive Descriptor Start Address Register (CRXDSA)

Register	Address	R/W	Description	Reset Value
CRXDSA	0xB000_30D4	R	Current Receive Descriptor Start Address Register	0x0000_0000

					17-1-1				
31	30	29	28	27	26	25	24		
CRXDSA									
23	22	21	20	19	18	17	16		
			CRX	DSA		(1) C	à		
15	14	13	12	11	10	9	8		
			CRX	DSA		\(\text{\text{c}}\)	7.0		
7	6	5	4	3	2	1	0		
CRXDSA							JUS.		

Bits	Descriptions	
[31:0]	CRXDSA	Current Receive Descriptor Start Address Default Value: 32'h0
[31:0] CRXDSA	The CRXDSA keeps the start address of Rx descriptor that is used by RxDMA currently. The CRXDSA is read only and write to this register has no effect.	

Publication Release Date: Jun. 18, 2010

Current Receive Buffer Start Address Register (CRXBSA)

Register	Address	R/W	Description	Reset Value
CRXBSA	0xB000_30D8	R	Current Receive Buffer Start Address Register	0x0000_0000

					19-1-2-29		
31	30	29	28	27	26	25	24
			CRX	BSA		`V)	
23	22	21	20	19	18	17	16
			CRX	BSA		(A)	
15	14	13	12	11	10	9	8
			CRX	BSA		Z.	7 9
7	6	5	4	3	2	1	0
			CRX	BSA			700

Bits	Descriptions	
[21.0]	CRXBSA	Current Receive Buffer Start Address Default Value: 32'h0
[31:0]		The CRXBSA keeps the start address of Rx frame buffer that is used by RxDMA currently. The CRXBSA is read only and write to this register has no effect.

Publication Release Date: Jun. 18, 2010

6.6.4 Operation Notes

MII Management Interface

The operation mode between EMC and external PHY must be identically. Consequently, S/W has to access control register of external PHY through MII management interface to get operation information of PHY. To issue MII management command to access external PHY, the MIID and MIIDA registers can be used. And, while using MII management interface, the EnMDC of MCMDR register must be set to high.

EMC Initial

If S/W wants to enable EMC for packet transmission and reception, the TXON and RXON of MCMDR register must be enabled. But, before enabling TXON and RXON, the following issues must be noted.

For packet transmission, the Tx descriptor link list and Tx frame buffer must be prepared and TXDLSA must be configured.

For incoming packet's destination MAC address recognition, the CAMCMR, CAMEN, CAMXM and CAMXL registers must be configured. For incoming packet's buffering, the Rx descriptor link list and Rx frame buffer must be prepared and RXDLSA register must be configured.

Besides, the interrupt status that S/W wants to know must be enabled through MIEN register.

Finally, the EMC operation mode control bits of MCMDR must be configured and TXON and RXON must be enabled.

MAC Interrupt Status Register (MISTA)

The MISTA register keeps the status of EMC operation. It is recommended that S/W must enable four interrupt statuses at least. They are TxBErr, RxBErr, TDU and RDU.

While EMC accesses memory, it reports the memory error through TxBErr or TxBErr status. If any of them actives, the reset EMC is recommended.

For packet transmission, a valid Tx descriptor is required, and for packet reception, a valid Rx one is. If EMC cannot find a valid Tx or Rx descriptor, it sets TDU or RDU to high respectively. After S/W releases a valid Tx or Rx descriptor to EMC, writing TSDR or RSDR register to enable packet transmission and reception again is needed.

Pause Control Frame Transmission

The EMC support the PAUSE control frame transmission for flow control while EMC is operating on full-duplex mode. The register CAM13M, CAM13L, CAM14M, CAM14L, CAM15M and CAM15L are designed for this purpose.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, set bit SDPZ of MCMDR register to high to enable PAUSE control frame transmission. After the PAUSE control frame transmission completed, the SDPZ will be cleared automatically.

Internal Loop-back

Publication Release Date: Jun. 18, 2010

If the LBK of MCMDR register is set, the EMC operates on internal loop-back mode. While EMC operates on internal loop-back mode, it also means EMC operates on full-duplex mode, and the value of FDUP of MCMDR register is ignored.

Publication Release Date: Jun. 18, 2010

6.7 GDMA Controller

6.7.1 Overview & Features

The chip has a two-channel general DMA controller with or without descriptor fetch operation, called the GDMA. The two-channel GDMA performs the following data transfers without the CPU intervention:

Memory-to-memory (memory to/from memory)

The on-chip GDMA can be started by the software. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increment source or destination address, decrement them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

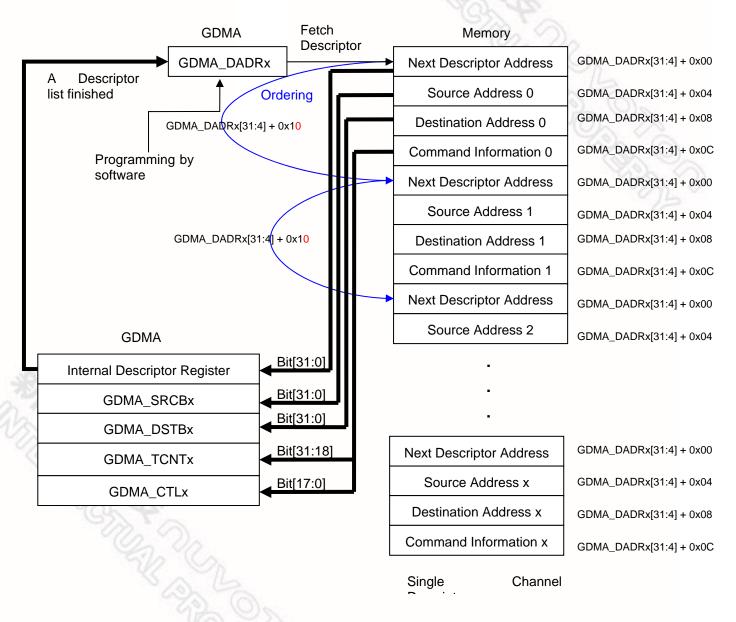
6.7.2 GDMA Non-Descriptor Functional Description

The GDMA directly transfers data between source and destination. The GDMA starts to transfer data after it receives service requests from software. When the entire data have been transferred completely, the GDMA becomes idle. Nevertheless, if another transfer is needed, then the GDMA must be programmed again.

6.7.3 GDMA Descriptor Functional Description

The descriptor-fetch function works when run-bit (bit-3) is set and non-dsptrmode-bit (bit-2) is cleared in Descriptor Register (GDMA_DADRx) and the GDMA_CTLx bit setting as following table. The Non-descriptor-fetch function works when software triggers the [softreq] bit (bit-16) and the [gdmaen] bit (bit-0) in GDMA_CTLx Register. If the [softreq] set to zero and the [GDMAMS] (bit2-3) set as 01 or 10 will start the I/O to memory function. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increase source or destination address, decrease them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

Operation Mode relevant to enable bit


Mode	Enable bit		
Non-Descriptor Mode with SW Enable	GDMA_CTLx : gdmaen[0] softreq[16] gdmams[3:2]		
Non-Descriptor Mode with I/O Enable	GDMA_CTLx : gdmaen[0] gdmams[3:2]		
Descriptor Mode with SW Enable	GDMA_DADRx : run[3] non-dsptrmode[2];		
2002	GDMA_CTLx in Descriptor List : gdmaen[0] gdmams[3:2]		
Descriptor Mode with I/O Enable	GDMA_DADRx : run[3] non-dsptrmode[2];		
Carl C	GDMA_CTLx in Descriptor List : gdmaen[0] gdmams[3:2]		

Publication Release Date: Jun. 18, 2010

6.7.3.1 Descriptor Fetch Function

The Illustration of Descriptor list fetches:

Publication Release Date: Jun. 18, 2010

Descriptor-based function (GDMA_DADRx [NON_DSPTRMODE] = 0) operate in the following condition:

Memory to Memory

- 1. Software can write a value 0x04 to current GDMA_DADRx register to reset the register and disable Descriptor based function first.
- 2. Then software can program the bits of [Descriptor Address], [RUN], [NON_DSPTRMODE] and [ORDEN] to the GDMA_DADRx register to enable Descriptor based function. (The Descriptor can only work when the [RUN] [3] is set and [NON_DSPTRMODE] [2] bit is cleared properly.)
- 3. After sets current GDMA_DADRx register, the GDMA will fetch four-word information from memory immediately which contains the next Descriptor address, Source Address, Destination Address and Command information. (Command information consists of control and counter registers)

NOTE: GDMA will read the descriptor list from memory such the diagram above and write back to GDMA internal register (next GDMA_DADRx), GDMA_SRCBx, GDMA_DSTBx, GDMA_CTLx and GDMA_TCNTx registers. The most important one of write back is command information, which will separate some bits of command information into control and counter registers respectively. The first fourteen bits of the MSB of the Command information in Descriptor list will be written back to GDMA_TCNTx register, and the others bits of the Command information will be written back to GDMA_CTLx register. The control register part of the Command information will update the GDMA_CTLx register during every descriptor fetch. The allocation of command information is described at GDMA Register Descriptions.

The Allocation of Command Information in Descriptor List:

31	30	29	28	27	26	25	24
, da	GDMA_TCNTx[13:6] ← Command Info[31:24]						
23	22	21	20	19	18	17	16
100	GDMA_TCNTx[5:0] ← Command Info			23:18]		BLOCK	SOFTREQ
15	14	13	12	11	10	9	8
RESE	RESERVED		S	RESERVED	D_INTS	RESE	RVED
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR	DADIR	GDM	AMS	BME	GDMAEN

- 4. GDMA will depend on the information to request a bus ownership and start the data transfer when GDMA has gotten a bus grant from the arbiter, otherwise, it will wait until get bus grant. The data transfer direction is dependent on the Control register.
- 5. The GDMA transfers data and releases bus at every burst transfer. The GDMA will stop transfer for current descriptor when the counter is decreased to zero. The current GDMA_DADRx will be updated by next GDMA_DADRx at end of each descriptor transfer.

Publication Release Date: Jun. 18, 2010

- 6. The GDMA is running consecutively unless the next GDMA_DADRx[RUN] bit is zero or interrupt status bit of GDMA_INTCS register is cleared. The CPU can recognize the completion of a GDMA descriptor fetch operation by polling the current GDMA_DADRx[NON_DSPTRMODE] bit or set the GDMA_CTLx[D_INTS] to receive a interrupt from GDMA.(Note: The recommendation is the [NON_DSPTRMODE] bit in list is set at the same time)
- 7. When an error occurs in the descriptor operation, GDMA will clear [RUN] bit and stop channel operation immediately. Software can reset the channel, and sets the current GDMA_DADRx [RUN] register to start again.

NOTE: GDMA can change mode with following description:

Descriptor-fetch of each channel can be stopped until the current transfer list done. Software can change Descriptor mode to Non-Descriptor mode by writing 0x04 to GDMA_DADRx register during the current descriptor transfer operating.

Non-Descriptor fetch can be stopped until current transfer count finished when software programs the GDMA_CTLx register with gdmaen bit cleared or softreq cleared.

NOTE: Once software programs the current GDMA_DADRx register, GDMA will fetch the descriptor list from memory and fill the data to next GDMA_DADRx, current GDMA_SRCBx, current GDMA_DSTBx, current GDMA_CTLx and current GDMA_TCNTx registers automatically. The fourth word in descriptor list includes the information for GDMA_CTLx and GDMA_TCNTx registers.

NOTE: The descriptor fetch function only occurs when current GDMA_DADRx [RUN] bit is set and GDMA_DADRx [NON_DSPTRMODE] is cleared. The current GDMA_DADRx will be updated by next GDMA_DADRx at every descriptor stops.

6.7.3.2 Ordering function in Descriptor fetch mode

This function determines the source of next descriptor address. If [ORDEN] is set, the GDMA controller fetches the next descriptor from current GDMA_DADRx [Descriptor Address] + 16 bytes.

If this bit is cleared, GDMA fetches the next descriptor from the current GDMA_DADRx [Descriptor Address].

GDMA_DADRx [ORDEN] is only relevant to descriptor-fetch function (GDMA_DADRx [NON_DSPTRMODE] = 0).

6.7.3.3 Channel Reset

The Channel reset is turned on when the bit-0 of GDMA_DADRx is set. This function will clear all status and stop the descriptor based function relative to individual channel. The GDMA_DADRx register value is 0x05h when reset bit is set.

Publication Release Date: Jun. 18, 2010

6.7.3.4 Non-Descriptor Fetch Function

The non-descriptor-fetch function will take place when current GDMA_DADRx [NON_DSPTRMODE] is set and the GDMA_DADRx register will have no any intention for the GDMA controller.

The default value of GDMA_DADRx is 0x04. Software can clear GDMA_DADRx with value 0x04 as well. In this mode, software should write a valid source address to the GDMA_SRCBx register, a destination address to the GDMA_DSTBx register, and a transfer count to the GDMA_TCNTx register. Next, the GDMA_CTLx of [gdmaen] and [softreq] bits must be set. A non-descriptor fetch is performed when bus granted. After transferring a number of bytes or words correspond with burst mode or not, the channel either waits for the next request or continues with the data transfer until the GDMA_CTCNTx reaches zero. When GDMA_CTCNTx reaches zero, the channel stops operation.

When an error occurs during the GDMA operation, the channel stops unless software clears the error condition and sets the GDMA_CTLx of [gdmaen] and [softreq] bits field to start again.

Publication Release Date: Jun. 18, 2010

6.7.4 GDMA Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W	Description	Reset Value
GDMA_BA = 0xB00	00_4000	-		
Channel 0				
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000
GDMA_SRCB0	0xB000_4004	R/W	Channel 0 Source Base Address Register	0x0000_0000
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000
GDMA_TCNTO	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNTO	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000
GDMA_DADRO	0xB000_401C	R/W	Channel 0 Descriptor Address Register	0x0000_0004
Channel 1				
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Descriptor Address Register	0x0000_0004
GDMA_INTBUFO	0xB000_4080	R	GDMA Internal Buffer Word 0	0x0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0x0000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0x0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0x0000_0000
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Chs)	0x0000_0000

169

Publication Release Date: Jun. 18, 2010

Channel 0/1 Control Register (GDMA_CTL0, GDMA_CTL1)

Register	Address	R/W	Description	Reset Value
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000

The control registers has two formats for descriptor fetch and non-descriptor fetch function respectively. The functionality of each control bit is described in following table.

1. Non-Descriptor fetches Mode

						7 55 5 11 15	
31	30	29	28	27	26	25	24
			ED .		90		
23	22	21	20	19	18	17	16
RESERVED	SABNDERR	DABNDERR	RESERVED	AUTOIEN	RESERVED	BLOCK	SOFTREQ
15	14	13	12	11	10	9	8
RESE	RESERVED		vs		RESE	RVED	~
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR	DADIR	GDN	IAMS	BME	GDMAEN

2. Descriptor fetches Mode

	31	30	29	28	27	26	25	24
	W. I			RESERV	ED			
	23	22	21	20	19	18	17	16
1	RESERVED	SABNDERR	DABNDERR		RESERVED		BLOCK	SOFTREQ
	15	14	13	12	11	10	9	8
1	RESERVED TW		TWS	3	RESERVED	D_INTS	RESE	RVED
	7	6	5	4	3	2	1	0
	SAFIX	DAFIX	SADIR	DADIR	GDM	AMS	BME	GDMAEN

NOTE:

- □ The [SABNDERR], [DABNDERR], [GDMAERR] can also be read at descriptor fetch mode.
- □ Regardless of GDMA operate in descriptor mode or non-descriptor mode, when transfer width is 16-bit (half word) and the address with decrement function enable for starting source address or destination address or both are used should set the least two bit of addresses is 0xF.

Publication Release Date: Jun. 18, 2010

Control Register of Non-Descriptor fetches Mode:

Bits	Descriptions	
[22]	SABNDERR	Source Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00 If TWS [13:12]=01, GDMA_SRCB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_SRCB is on the boundary alignment. 1 = the GDMA_SRCB not on the boundary alignment The SABNDERR register bits just can be read only.
[21]	DABNDERR	Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[19]	AUTOIEN	Auto initialization Enable 0 = Disables auto initialization 1 = Enables auto initialization, the GDMA_CSRCO/1, GDMA_CDSTO/1, and GDMA_CTCNTO/1 registers are updated by the GDMA_SRCO/1, GDMA_DSTO/1, and GDMA_TCNTO/1 registers automatically when transfer is complete. GDMA will start another transfer when SOFTREQ set again.
[17]	BLOCK	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer
[16]	SOFTREQ	Software Triggered GDMA Request Software can request the GDMA transfer service by setting this bit to 1. This bit is automatically cleared by hardware when the transfer is completed. This bit is available only while GDMAMS [3:2] register bits are set on software mode (memory to memory).

171

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[13:12]	TWS	Transfer Width Select 00 = One byte (8 bits) is transferred for every GDMA operation 01 = One half-word (16 bits) is transferred for every GDMA operation 10 = One word (32 bits) is transferred for every GDMA operation 11 = Reserved The GDMA_SCRB and GDMA_DSTB should be alignment under the TWS selection
[7]	SAFIX	Source Address Fixed 0 = Source address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.
[6]	DAFIX	Destination Address Fixed 0 = Destination address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.
[5]	DADIR	Source Address Direction 0 = Source address is incremented successively 1 = Source address is decremented successively
[4]	DADIR	Destination Address Direction 0 = Destination address is incremented successively 1 = Destination address is decremented successively
[3:2]	GDMAMS	GDMA Mode Select 00 = Software mode (memory-to-memory) 01 = Reserved 10 = Reserved 11 = Reserved

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Burst Mode Enable
		0 = Disables the 8-data burst mode
[1]	BME	1 = Enables the 8-data burst mode
[1]	DIVIL	If there are 8 words to be transferred, and BME [1]=1, the GDMA_TCNTx should be $0x01$;
		However, if BME [1] =0, the GDMA_TCNTx should be $0x08$.
	GDMAEN	GDMA Enable
		0 = Disables the GDMA operation
		1 = Enables the GDMA operation; this bit will be clear automatically when the transfer is complete on AUTOIEN [19] register bit is on Disable mode.
[0]		Note:
		When operate in Non-Descriptor mode, this bit determines the Memory-to Memory operation or not.
		When operate in Descriptor mode, this bit is determined in descriptor list.
		Note: Channel reset will clear this bit.

Descriptor fetches mode of Control Register:

Bits	Descriptions	
also.		Source Address Boundary Alignment Error Flag
		If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00
-		If TWS [13:12]=01, GDMA_SRCB [0] should be 0
[22]	è	Except the SADIR function enabled.
[22]	SABNDERR	The address boundary alignment should be depended on TWS [13:12].
14/	XX	0 = the GDMA_SRCB is on the boundary alignment.
3	10° -20°	1 = the GDMA_SRCB not on the boundary alignment
	Children Control	The SABNDERR register bits just can be read only.

173

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[21]	DABNDERR	Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the DADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[17]	вьоск	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer
[13:12	TWS	Transfer Width Select 00 = One byte (8 bits) is transferred for every GDMA operation 01 = One half-word (16 bits) is transferred for every GDMA operation 10 = One word (32 bits) is transferred for every GDMA operation 11 = Reserved The GDMA_SCRB and GDMA_DSTB should be alignment under the TWS selection
[10]	D_INTS	Descriptor Fetch Mode Interrupt Select 0 = The interrupt will take place at every end of descriptor fetch transfer. 1 = The interrupt only take place at the last descriptor fetch transfer. NOTE: this bit is only available in descriptor mode and lists intention.
[7]	SAFIX	Source Address Fixed 0 = Source address is changed during the GDMA operation 1 = Do not change the source address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.
[6]	DAFIX	Destination Address Fixed 0 = Destination address is changed during the GDMA operation 1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.

174

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		Source Address Direction				
[5]	SADIR	0 = Source address is incremented successively				
		1 = Source address is decremented successively				
		Destination Address Direction				
[4]	DADIR	0 = Destination address is incremented successively				
		1 = Destination address is decremented successively				
		GDMA Mode Select				
		00 = Software mode (Memory-to-Memory)				
[3:2]	GDMAMS	01 = Reserved				
		10 = Reserved				
		11 = Reserved				
		Burst Mode Enable				
		0 = Disables the 8-data burst mode				
[1]	BME	1 = Enables the 8-data burst mode				
[-]		If there are 8 words to be transferred, and BME $[1] = 1$, the GDMA_TCNT should be 0x01; However, if BME $[1] = 0$, the GDMA_TCNT should be 0x08.				
		It has to set BME [1] = 0 for I/O device access.				
		GDMA Enable				
1962		0 = Disables the GDMA operation				
[0]	GDMAEN	1 = Enables the GDMA operation; this bit will be clear automatically when the transfer is complete on AUTOIEN [19] register bit is on Disable mode.				
[0]	GDIVIAEIV	When operate in Non-Descriptor mode, this bit determines the Memory-to-Memory operation or not.				
(A)	783	When operate in Descriptor mode, this bit is determined in descriptor list.				
1	25.00	Channel reset will clear this bit.				

Publication Release Date: Jun. 18, 2010

Channel 0/1 Source Base Address Register (GDMA_SRCB0, GDMA_SRCB1)

Register Address		R/W	Description	Reset Value
GDMA_SRCB0	0xB000_4004	R/W	Channel 0 Source Base Address Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000

					1/3/3				
31	30	29	28	27	26	25	24		
SRC_BASE_ADDR [31:24]									
23	22	21	20	19	18	17	16		
		SF	RC_BASE_A	DDR [23:1	6]	92	97		
15	14	13	12	11	10	9	8		
SRC_BASE_ADDR [15:8]									
7	6	5	4	3	2	1	0		
	SRC_BASE_ADDR [7:0]								

Bits	Descriptions						
[31:0]	SRC_BASE_ADDR	32-bit Source Base Address The GDMA channel starts reading its data from the source address as defined in this source base address register.					

Publication Release Date: Jun. 18, 2010

Channel 0/1 Destination Base Address Register (GDMA_DSTB0, GDMA_DSTB1)

Register	Address	R/W	Description	Reset Value
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000

					5-0-17					
31	30	29	28	27	26	25	24			
	DST_BASE_ADDR [31:24]									
23	22	21	20	19	18	17	16			
	DST_BASE_ADDR [23:16]									
15	14	13	12	11	10	9	8			
DST_BASE_ADDR [15:8]										
7	6	5	4	3	2	1	0			
	DST_BASE_ADDR [7:0]									

Bits	Descriptions	
[31:0]	DST_BASE_ADDR	32-bit Destination Base Address The GDMA channel starts writing its data to the destination address as defined in this destination base address register. During a block transfer, the GDMA determines successive destination addresses by adding to or subtracting from the destination base address.

Publication Release Date: Jun. 18, 2010

Channel 0/1 Transfer Count Register (GDMA_TCNT0, GDMA_TCNT1)

Register Address		R/W	Description	Reset Value	
GDMA_TCNT0	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000	
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000	

					7////	V-31			
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
			TFR_CN1	[23:16]		100			
15	14	13	12	11	10	9	8		
TFR_CNT [15:8]									
7	6	5	4	3	2	1	0		
TFR_CNT [7:0]									

Bits	Descriptions					
[23:0]	TFR_CNT	Transfer Count Non-Descriptor Mode:24-bit TFR_CNT [23:0] The TFR_CNT represents the required number of GDMA transfers. The maximum transfer count is 16M -1.				
		Descriptor Mode: 14-bit TFR_CNT [13:0] The TFR_CNT represents the required number of GDMA transfers. The maximum transfer count is 16K -1.				
		178 Publication Release Date: Jun. 18, 2010 Revision: A3				

Channel 0/1 Current Source Register (GDMA_CSRC0, GDMA_CSRC1)

Register	Address	R/W	Description	Reset Value
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
CURRENT_SRC_ADDR [31:24]									
23	22	21	20	19	18	17	16		
		CUR	RENT_SRC	_ADDR [23	:16]	70	20		
15	14	13	12	11	10	9	8		
	CURRENT_SRC_ADDR [15:8]								
7	6	5	4	3	2	1	0		
	CURRENT_SRC_ADDR [7:0]								

Bits	Descriptions			
		32-bit Current Source Address The CURRENT_SRC_ADDR indicates the source address where the		
[31:0]	CURRENT_SRC_ADDR	GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive source addresses by adding to or subtracting from the source base address. Depending on the settings you make to the control register, the current source address will remain the same or will be incremented or decremented.		

Publication Release Date: Jun. 18, 2010

Channel 0/1 Current Destination Register (GDMA_CDST0, GDMA_CDST1)

Register	ster Address R/W		Description	Reset Value
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Register	0x0000_0000

					74.11.00	Y / . J }	
31	30	29	28	27	26	25	24
CURRENT_DST_ADDR [31:24]							
23	22	21	20	19	18	17	16
CURRENT_DST_ADDR [23:16]							
15	14	13	12	11	10	9	8
CURRENT_DST_ADDR [15:8]							
7	6	5	4	3	2	1	0
CURRENT_DST_ADDR [7:0]					6		

Bits	Descriptions				
[31:0]	CURRENT_DST_ADDR	32-bit Current Destination Address The CURRENT_DST_ADDR indicates the destination address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive destination addresses by adding to or subtracting from the destination base address. Depending on the settings you make to the control register, the current			
		destination address will remain the same or will be incremented or decremented.			

Publication Release Date: Jun. 18, 2010

Channel 0/1 Current Transfer Count Register (GDMA_CTCNT0, GDMA_CTCNT1)

Register Address R/W		Description	Reset Value	
GDMA_CTCNT0	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	CURENT_TFR_CNT [23:16]								
15	14	13	12	11	10	9	8		
		CU	RRENT_TF	R_CNT [15	:8]		97		
7	6	5	4	3	2	1	0		
	CURRENT_TFR_CNT [7:0]								

Bits	Descriptions					
		Current Transfer Count				
[23:0]	CURRENT_TFR_CNT	The Current transfer count register indicates the number of transfer being performed.				
-X2K		Non-Descriptor Mode: 24-bit CURENT_TFR_CNT [23:0]				
27		Descriptor Mode : 14-bit CURENT_TFR_CNT [13:0]				

Publication Release Date: Jun. 18, 2010

Channel 0/1 Descriptor Register (GDMA_DADR0/1)

	Address	R/W	Description	Reset Value
GDMA_DADRO	0xB000_401C	R/W	Channel 0 Control Register	0x0000_0004
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Control Register	0x0000_0004

					75.77.75 77.3	1			
31	30	29	28	27	26	25	24		
Descriptor Address[31:24]									
23	22	21	20	19	18	17	16		
			Descrip	tor Addres	s[23:16]	(O) (
15	14	13	12	11	10	9	8		
	Descriptor Address[15:8]								
7	6	5	4	3	2	1	0		
Descriptor Address[7:4]				RUN	NON_DSPTRMODE	ORDEN	RESET		

Bits	Descriptions						
[21.4]	Descriptor	Descriptor Address					
[31:4]	Address	Contains address of next descriptor.					
		Run					
[3]	RUN	The RUN bit can be cleared during descriptor data transfer, and set RUN bit to starts the stopped channel under [Descriptor Address] and [Non-DSPTRMODE] bits are set properly. When RUN bit is cleared and the NON_DSPTRMODE bit is set that non-descriptor fetch occurs whether a valid descriptor address is written to register GDMA_DADRx or not. This bit will reset automatically when each descriptor transfer stopped or the bit in descriptor list is zero. The Descriptor interrupt is determined by bit-10 of the GDMA_CTLx Register.					
	100 574	0 = Stops the channel.					
		1 = Starts the channel.					
	A C	Note: must co-operate to [NON_DSPTRMODE] to start the channel with Descriptor fetch function.					
	(2) h	Non-Descriptor-Fetch					
[2] NON	NON_DSPTRMODE	When NON_DSPTRMODE is set, the channel is considered as a channel with no descriptors. In this mode, the GDMA does not initiate descriptor fetching and software can program the SCRBx, DSTBx, CTRx and TCNTx registers to transfer data until the TCNTx reaches zero. The GDMA_DADRx register is					

182

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		not used in non-descriptor mode. If NON_DSPTRMDOE is cleared under [RUN] and [Descriptor Address] are set properly, GDMA controller initiates descriptor-fetching. The descriptor fetch transfer stops when the counter for the current transfer reaches zero, [RUN] bit is cleared and [NON_DSPTRMODE] is set base on the bits of the descriptor list.
		0 = Descriptor-fetch transfer
		1 = NON-descriptor-fetch transfer
		Note: this bit = 1 will disable Descriptor function regardless of the RUN bit is 1 or not.
		Enable Ordering Execution for Descriptor List
	ORDEN	The GDMA_DADRx [ORDEN] determine which the next descriptor address will be fetched. If [ORDEN] is set, the GDMA controller fetches the next descriptor from Current GDMA_DADRx [Descriptor Address] + 16 bytes.
		If this bit is cleared, GDMA fetches the next descriptor address from the current GDMA_DADRx [Descriptor Address] register.
[1]		$GDMA_DADRx$ [ORDEN] is relevant only for descriptor-fetch function (GDMA_DADRx [NON_DSPTRMODE] = 0).
		$0=$ Disable descriptor ordering. Fetch the next descriptor from register GDMA_DDADRx [Descriptor Address].
		1 = Enable descriptor ordering.
		Reset Channel
[0]	RESET	0 = Disable channel reset.
2		1 = Enable channel status reset and disable descriptor based function.

Publication Release Date: Jun. 18, 2010

Channel 0/1 GDMA Internal Buffer Register (GDMA_INTBUF0/1)

Software can set the [17-16] bit of GDMA_INTCS to select channels and watch the value which has read from memory.

Register	Address	R/W	Description	Reset Value
GDMA_INTBUFO	0xB000_4080	R	GDMA Internal Buffer Word 0	0x0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0x0000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0x0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0x0000_0000

31	30	29	28	27	26	25	24		
DATA_BUFFER [31:24]									
23	22	21	20	19	18	17	16		
	DATA_BUFFER [23:16]								
15	14	13	12	11	10	9	8		
0	DATA_BUFFER [15:8]								
7	6	5	4	3	2	1	0		
lin.			DATA_BU	FER [7:0]					

Bits	Descriptions	
[31:0]	DATA_BUFFER	Internal Buffer Register Each channel has its own internal buffer from Word 0 to Word 7. The [17-16] bit of GDMA_INTCS will determine the values of channels mapping to GDMA_INTBUF0~7. NOTE: The GDMA_INTBUF0~7 are available when burst mode used, otherwise, only the GDMA_INTBUF0 available.

184

Publication Release Date: Jun. 18, 2010

Channel 0/1 GDMA Interrupt Control and Status Register (GDMA_INTCS)

Register	Address	R/W	Description	Reset Value
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Chs)	0x0000_0000

31	30	29	28	27	26	25	24	
	70 x							
23	22	21	20	19	18	17	16	
	RESERVED						BUF_RD_SEL	
15	14	13	12	11	10	9	8	
	RESERVED				TC1F	TERROF	TCOF	
7	6	5	4	3	2	1	0	
RESERVED			TERR1EN	TC1EN	TERROEN	TCOEN		

Bits	Descriptions	
[17:16]	BUF_RD_SEL	Internal Buffer Read Select 00 = Read Internal Buffer for Channel 0 01 = Read Internal Buffer for Channel 1 10 = RESERVED 11 = RESERVED
[11]	TERR1F	Channel 1 Transfer Error O = No error occurs 1 = Hardware sets this bit on a GDMA transfer failure This bit will be cleared when write logic 1. Transfer error will generate GDMA interrupt
[10]	TC1F	Channel 1 Terminal Count 0 = Channel does not expire 1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1. TC1 is the GDMA interrupt flag. TC1 or GDMATERR1 will generate interrupt

185

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	*4.0%.*
[9]	TERROF	Channel O Transfer Error O = No error occurs 1 = Hardware sets this bit on a GDMA transfer failure This bit will be cleared when write logic 1. Transfer error will generate GDMA interrupt
[8]	TCOF	Channel O Terminal Count 0 = Channel does not expire 1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1. TC0 is the GDMA interrupt flag. TC0 or GDMATERRO will generate interrupt
[3]	TEER1EN	Channel 1 Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[2]	TC1EN	Channel 1 Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt
[1]	TEEROEN	Channel O Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[0]	TCOEN	Channel O Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt

Publication Release Date: Jun. 18, 2010

6.8 USB Host Controller (USBH)

The **Universal Serial Bus (USB)** is a fast, bi-directional, isochronous, low-cost, dynamically attachable serial interface standard intended for USB devices. The USB is a 4-wire serial cable bus that supports serial data exchange between a Host Controller and a network of peripheral devices. The attached peripherals share USB bandwidth through a host-scheduled, token-based protocol. Peripherals may be attached, configured, used, and detached, while the host and other peripherals continue operation (i.e. hot plug and unplug is supported).

A major design goal of the USB standard was to allow flexible, plug-and-play networks of USB devices. In any USB network, there will be only one host, but there can be many devices and hubs.

The USB Host Controller includes the following features

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Integrated a port routing logic to route full/low speed device to OHCI controller.
- Built-in DMA for real-time data transfer.

6.8.1 Register Mapping

Register	Offset	R/W	Description	Reset Value				
Capability I	Capability Registers (USBH_BA = 0xB000_5000)							
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020				
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012				
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000				
Operationa	l Registers	Sec						
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000				
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1004				
UIENR	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000				
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000				

187

Publication Release Date: Jun. 18, 2010

Register	Offset	R/W	Description	Reset Value
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000
UASSTR	0xB000_503C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000
UPSCR1	0xB000_5068	R/W	USB Port 1 Status and Control Register	0x0000_2000
Miscellaneo	us Registers		S ~ L	
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060
USBPCR1	0xB000_50C8	R/W	USB PHY 1 Control Register	0x0000_0020
OHCI Regis	ters (USBO_BA	= 0xB0	000_7000)	(0) 1
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000
HcComSts	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_0000
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_0000
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_0000
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_0000
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_0000
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_0000
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2EDF
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_0000
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_0000
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_0000
HcLSTH	0xB000_7044	R/W	Host Controller Low Speed Threshold Register	0x0000_0628
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_0002
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_0000
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_0000
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_0000

188

Publication Release Date: Jun. 18, 2010

Register	Offset	R/W	Description	Reset Value		
HcRhPrt2	0xB000_7058	R/W	Host Controller Root Hub Port Status [2]	0x0000_0000		
OHCI USB (OHCI USB Configuration Register					
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_0000		

189

Publication Release Date: Jun. 18, 2010

6.8.2 Register Details

EHCI Version Number Register (EHCVNR)

Register	Address	R/W	Description	Reset Value
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020

31 30 29 28	27	26	25	24			
Version							
23 22 21 20	19	18	17	16			
Version	Version						
15 14 13 12	11	10	9	8			
Reserved	d			137 W			
7 6 5 4	3	2	1	0			
CR_Length							

Bits	Descriptions	
[31:16]	Version	Host Controller Interface Version Number This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host controller. The most significant byte of this register represents a major revision and the least significant byte is the minor revision.
[7:0]	CR_Length	Capability Registers Length This register is used as an offset to add to register base to find the beginning of the Operational Register Space.

Publication Release Date: Jun. 18, 2010

EHCI Structural Parameters Register (EHCSPR)

Register	Address	R/W	Description	Reset Value
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	erved		(A) C	
15	14	13	12	11	10	9	8
	N_	cc			N_F	PCC	7 6
7	6	5	4	3	2	1	0
	Reserved		PPC		N_PC	ORTS	100 L

Bits	Descriptions	
		Number of Companion Controller
[15:12]	N_CC	This field indicates the number of companion controllers associated with this USB 2.0 host controller.
		A zero in this field indicates there are no companion host controllers. Portownership hand-off is not supported. Only high-speed devices are supported on the host controller root ports.
		A value larger than zero in this field indicates there are companion USB 1.1 host controller(s). Port-ownership hand-offs are supported. High, Full- and Low-speed devices are supported on the host controller root ports.
	-32-	Number of Ports per Companion Controller
W.	7. 7. J.	This field indicates the number of ports supported per companion host controller. It is used to indicate the port routing configuration to system software.
[11:8]	N_PCC	For example, if N_PORTS has a value of 6 and N_CC has a value of 2 then N_PCC could have a value of 3. The convention is that the first N_PCC ports are assumed to be routed to companion controller 1, the next N_PCC ports to companion controller 2, etc. In the previous example, the N_PCC could have been 4, where the first 4 are routed to companion controller 1 and the last two are routed to companion controller 2.
		The number in this field must be consistent with N_PORTS and N_CC.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Port Power Control
[4]	PPC	This field indicates whether the host controller implementation includes port power control. A one in this bit indicates the ports have port power switches. A zero in this bit indicates the port do not have port power stitches. The value of this field affects the functionality of the <i>Port Power</i> field in each port status and control register.
		Number of Physical Downstream Ports
[3:0]	N_PORTS	This field specifies the number of physical downstream ports implemented on this host controller. The value of this field determines how many port registers are addressable in the Operational Register Space. Valid values are in the range of 1H to FH.
		A zero in this field is undefined.

Publication Release Date: Jun. 18, 2010

EHCI Capability Parameters Register (EHCCPR)

Register	Address	R/W	Description	Reset Value
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	erved		(A)	
15	14	13	12	11	10	9	8
			EE	CP.		90	20
7	6	5	4	3	2	1	0
ISO_SCH_TH				Reserved	ASPC	PFList	64B

Bits	Descriptions	
[15:8]	EECP	EHCI Extended Capabilities Pointer (EECP) 8'h0: No extended capabilities are implemented.
[7:4]	ISO_SCH_TH	Isochronous Scheduling Threshold
[2]	ASPC	Asynchronous Schedule Park Capability 1'b0: This EHCI host controller doesn't support park feature of high-speed queue heads in the Asynchronous Schedule.
[1]	PFList	Programmable Frame List Flag 1'b0: System software must use a frame list length of 1024 elements with this EHCI host controller.
[0]	64B	64-bit Addressing Capability 1'b0: Data structure using 32-bit address memory pointers.

USB Command Register (UCMDR)

Register	Address	R/W	Description	Reset Value
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000

					11/2/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			INT_T	H_CTL		() ()		
15	14	13	12	11	10	9	8	
			Rese	rved		Z.	70	
7	6	5	4	3	2	1	0	
Reserved	AsynADB	ASEN	PSEN	FLS	Size	HCRESET	RunStop	

Bits	Descriptions	
		Interrupt Threshold Control (R/W)
	INT_TH_CTL	This field is used by system software to select the maximum rate at which the host controller will issue interrupts. The only valid values are defined below. If software writes an invalid value to this register, the results are undefined. Value Maximum Interrupt Interval
150		00h Reserved
18		01h 1 micro-frame
2		02h 2 micro-frames
[23:16]		04h 4 micro-frames
(1) x		08h 8 micro-frames (default, equates to 1 ms)
150		10h 16 micro-frames (2 ms)
1		20h 32 micro-frames (4 ms)
		40h 64 micro-frames (8 ms)
	0, 0	Any other value in this register yields undefined results.
		Software modifications to this bit while HCHalted bit is equal to zero results in undefined behavior.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	5
		Interrupt on Async Advance Doorbell (R/W)
		This bit is used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.
[6]	AsynADB	When the host controller has evicted all appropriate cached schedule state, it sets the <i>Interrupt on Async Advance</i> status bit in the USBSTS register. If the <i>Interrupt on Async Advance Enable</i> bit in the USBINTR register is a one then the host controller will assert an interrupt at the next interrupt threshold.
		The host controller sets this bit to a zero after it has set the <i>Interrupt on Async Advance</i> status bit in the USBSTS register to a one.
		Software should not write a one to this bit when the asynchronous schedule is disabled. Doing so will yield undefined results.
		Asynchronous Schedule Enable (R/W)
[5]	ASEN	This bit controls whether the host controller skips processing the Asynchronous Schedule. Values mean:
		0b Do not process the Asynchronous Schedule
		1b Use the ASYNCLISTADDR register to access the Asynchro-nous Schedule
		Periodic Schedule Enable (R/W)
[4]	PSEN	This bit controls whether the host controller skips processing the Periodic Schedule. Values mean:
		0b Do not process the Periodic Schedule
SP4		1b Use the PERIODICLISTBASE register to access the Periodic Schedule
TOP		Frame List Size (R/W or RO)
[3:2]	FLSize	This field is R/W only if <i>Programmable Frame List Flag</i> in the HCCPARAMS registers is set to a one. This field specifies the size of the frame list. The size the frame list controls which bits in the Frame Index Register should be used for the Frame List Current index. Values mean:
[3.2]	LSIZE	00b 1024 elements (4096 bytes) Default value
	B. 12.	01b 512 elements (2048 bytes)
		10b 256 elements (1024 bytes) – for resource-constrained environment
	50	11b Reserved

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Host Controller Reset (HCRESET) (R/W)
	HCRESET	This control bit is used by software to reset the host controller. The effects of this on Root Hub registers are similar to a Chip Hardware Reset.
		When software writes a one to this bit, the Host Controller resets its internal pipelines, timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports.
[1]		All operational registers, including port registers and port state machines are set to their initial values. Port ownership reverts to the companion host controller(s), with the side effects. Software must reinitialize the host controller in order to return the host controller to an operational state.
		This bit is set to zero by the Host Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register.
		Software should not set this bit to a one when the HCHalted bit in the USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior.
		Run/Stop (R/W)
[0]	RunStop	1=Run. 0=Stop. When set to a 1, the Host Controller proceeds with execution of the schedule. The Host Controller continues execution as long as this bit is set to a 1. When this bit is set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears the Run bit. The HC Halted bit in the status register indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the host controller is in the Halted state (i.e. HCHalted in the USBSTS register is a one). Doing so will yield undefined results.

Publication Release Date: Jun. 18, 2010

USB Status Register (USTSR)

Register	Address	R/W	Description	Reset Value
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1000

					12-1 1 W			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
ASSTS	PSSTS	RECLA	HCHalted		Rese	rved	70	
7	6	5	4	3	2	1	0	
Rese	Reserved		HSERR	FLROVER	PortCHG	UERRINT	USBINT	

Bits	Descriptions	
[15]	ASSTS	Asynchronous Schedule Status (RO) The bit reports the current real status of the Asynchronous Schedule. If this bit is a zero then the status of them Asynchronous Schedule is disabled. If this bit is a one then the status of the Asynchronous Schedule is enabled. The Host Controller is not required to immediately disable or enable the Asynchronous Schedule when software transitions the Asynchronous Schedule Enable bit in the USBCMD register. When this bit and the Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is either r enabled (1) or disabled (0).
[14]	PSSTS	Periodic Schedule Status (RO) The bit reports the current real status of the Periodic Schedule. If this bit is a zero then the status of the Periodic Schedule is disabled. If this bit is a one then the status of the Periodic Schedule is enabled. The Host Controller is not required to <i>immediately</i> disable or enable the Periodic Schedule when software transitions the <i>Periodic Schedule Enable</i> bit in the USBCMD register. When this bit and the <i>Periodic Schedule Enable</i> bit are the same value, the Periodic Schedule is either enabled (1) or disabled (0).
[13]	RECLA	Reclamation (RO) This is a read-only status bit, which is used to detect an empty asynchronous schedule.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[12]	HCHalted	HCHalted (RO) This bit is a zero whenever the Run/Stop bit is a one. The Host Controller sets this bit to one after it has stopped executing as a result of the Run/Stop bit being set to 0, either by software or by the Host Controller hardware (e.g. internal error).
[5]	IntAsynA	Interrupt on Async Advance (R/WC) System software can force the host controller to issue an interrupt the next time the host controller advances the asynchronous schedule by writing a one to the Interrupt on Async Advance Doorbell bit in the USBCMD register. This status bit indicates the assertion of that interrupt source.
[4]	HSERR	Host System Error (R/WC) The Host Controller sets this bit to 1 when a serious error occurs during a host system access involving the Host Controller module.
[3]	FLROVER	Frame List Rollover (R/WC) The Host Controller sets this bit to a one when the Frame List Index rolls over from its maximum value to zero. The exact value at which the rollover occurs depends on the frame list size. For example, if the frame list size (as programmed in the Frame List Size field of the USBCMD register) is 1024, the Frame Index Register rolls over every time FRINDEX [13] toggles. Similarly, if the size is 512, the Host Controller sets this bit to a one every time FRINDEX [12] toggles.
[2]	PortCHG	Port Change Detect (R/WC) The Host Controller sets this bit to a one when any port for which the Port Owner bit is set to zero has a change bit transition from a zero to a one or a Force Port Resume bit transition from a zero to a one as a result of a J-K transition detected on a suspended port. This bit will also be set as a result of the Connect Status Change being set to a one after system software has relinquished ownership of a connected port by writing a one to a port's Port Owner bit. This bit is allowed to be maintained in the Auxiliary power well. Alternatively, it is also acceptable that on a D3 to D0 transition of the EHCI HC device, this bit is loaded with the OR of all of the PORTSC change bits (including: Force port resume, over-current change, enable/disable change and connect status change).
[1]	UERRINT	USB Error Interrupt (USBERRINT) (R/WC) The Host Controller sets this bit to 1 when completion of a USB transaction results in an error condition (e.g., error counter underflow). If the TD on which the error interrupt occurred also had its IOC bit set, both this bit and USBINT bit are set.

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Descriptions	
		USB Interrupt (USBINT) (R/WC)
[0]	USBINT	The Host Controller sets this bit to 1 on the completion of a USB transaction, which results in the retirement of a Transfer Descriptor that had its IOC bit set.
		The Host Controller also sets this bit to 1 when a short packet is detected (actual number of bytes received was less than the expected number of bytes).

Publication Release Date: Jun. 18, 2010

USB Interrupt Enable Register (UIENR)

Register	Address	R/W	Description	Reset Value
UIENR	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000

					17-1-16			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Rese	erved	AsynAEN	HSERREN	FLREN	PCHGEN	UERREN	USBIEN	

Bits	Descriptions	
		Interrupt on Async Advance Enable
[5]	AsynAEN	When this bit is a one, and the <i>Interrupt on Async Advance</i> bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the <i>Interrupt on Async Advance</i> bit.
de		Host System Error Enable
[4]	HSERREN	When this bit is a one, and the Host System Error Status bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Host System Error bit.
	ik	Frame List Rollover Enable
[3]	FLREN	When this bit is a one, and the Frame List Rollover bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Frame List Rollover bit.
	(0,0)	Port Change Interrupt Enable
[2]	PCHGEN	When this bit is a one, and the Port Change Detect bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Port Change Detect bit.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[1]	UERREN	USB Error Interrupt Enable When this bit is a one, and the USBERRINT bit in the USBSTS register is a one, the host t controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBERRINT bit.
[0]	USBIEN	USB Interrupt Enable When this bit is a one, and the USBINT bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBINT bit.

Publication Release Date: Jun. 18, 2010

USB Frame Index Register (UFINDR)

Register	Address	R/W	Description	Reset Value
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000

					WY KW			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reso	erved			Fram	el ND	60	70	
7	6	5	4	3	2	1	0	
			Fram	eIND			400	

Bits	Descriptions	
[13:0]	FrameIND	Frame Index The value in this register increment at the end of each time frame (e.g. micro-frame). Bits [N: 3] are used for the Frame List current index. This means that each location of the frame list is accessed 8 times (frames or micro-frames) before moving to the next index. The following illustrates values of N based on the value of the Frame List Size field in the USBCMD register.

Publication Release Date: Jun. 18, 2010

USB Periodic Frame List Base Address Register (UPFLBAR)

Register	Address	R/W	Description	Reset Value
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000

					17-7 4 14				
31	30	29	28	27	26	25	24		
BADDR									
23	22	21	20	19	18	17	16		
	BADDR								
15	14	13	12	11	10	9	8		
	ВАГ	DDR			Rese	rved	200		
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptions	
[31:12]	BADDR	Base Address (Low)
[31.12]	BADDR	These bits correspond to memory address signals [31:12], respectively.

203

Publication Release Date: Jun. 18, 2010

USB Current Asynchronous List Address Register (UCALAR)

Register	Address	R/W	Description	Reset Value
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000

					17-1-2 50		
31	30	29	28	27	26	25	24
			LI	PL		` 2)o	
23	22	21	20	19	18	17	16
LPL (2)							
15	14	13	12	11	10	9	8
LPL YOU'S							
7	6	5	4	3	2	1	0
LPL					Reserved		100

Bits	Descriptions	
[31:5]	LPL	Link Pointer Low (LPL) These bits correspond to memory address signals [31:5], respectively. This field may only reference a Queue Head (QH).

Publication Release Date: Jun. 18, 2010

USB Asynchronous Schedule Sleep Timer Register

Register	Address	R/W	Description	Reset Value
UASSTR	0xB000_53C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6

					17-1-5-16		
31	30	29	28	27	26	25	24
			Rese	erved	0	```\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Rese	erved			AST	MR	7 0
7	6	5	4	3	2	1	0
ASTMR						JUS .	

Bits	Descriptions	
		Asynchronous Schedule Sleep Timer
		This field defines the AsyncSchedSleepTime of EHCI spec.
[11:0]	ASSTMR	The asynchronous schedule sleep timer is used to control how often the host controller fetches asynchronous schedule list from system memory while the asynchronous schedule is empty.
*		The default value of this timer is 12'hBD6. Because this timer is implemented in UTMI clock (30MHz) domain, the default sleeping time will be about 100us.

Publication Release Date: Jun. 18, 2010

USB Configure Flag Register (UCFGR)

Register	Address	R/W	Description	Reset Value
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000

					11/2/11/11		
31	30	29	28	27	26	25	24
			Rese	rved		* V2	
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved						7 0	
7	6	5	4	3	2	1	0
Reserved						CF	

Bits	Descriptions	
		Configure Flag (CF)
[0]	CF	Host software sets this bit as the last action in its process of configuring the Host Controller. This bit controls the default port-routing control logic. Bit values and side-effects are listed below.
alte		Ob Port routing control logic default-routes each port to an implementation dependent classic host controller.
***		1b Port routing control logic default-routes all ports to this host controller.

Publication Release Date: Jun. 18, 2010

USB Port 0 Status and Control Register (UPSCR0)

Register	Address	R/W	Description	Reset Value
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000

31	30	29	28	27	26	25	24
			Rese	erved	(C)	~ Vo	
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Rese	erved	РО	PP	LSta	atus	Reserved	PRST
7	6	5	4	3	2	1	0
Suspend	FPResum	OCCHG	OCACT	PENCHG	PEN	CSCHG	CSTS

Bits	Descriptions	
		Port Owner (R/W)
		This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero.
[13]	PO	System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port.
SY 12	P	Port Power (PP)
[12]	PP	Host controller has port power control switches. This bit represents the Current setting of the switch $(0 = off, 1 = on)$. When power is not available on a port (i.e. PP equals a 0), the port is nonfunctional and will not report attaches, detaches, etc.
		When an over-current condition is detected on a powered port and <i>PPC</i> is a one, the <i>PP</i> bit in each affected port may be transitioned by the host controller from a 1 to 0 (removing power from the port).

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Line Status (RO)
		These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one.
		The encoding of the bits are:
[11:10]	LStatus	Bits[11:10] USB State Interpretation
		00b SE0 Not Low-speed device, perform EHCI reset
		10b J-state Not Low-speed device, perform EHCI reset
		01b K-state Low-speed device, release ownership of port
		11b Undefined Not Low-speed device, perform EHCI reset.
		This value of this field is undefined if Port Power is zero.
		Port Reset (R/W)
		1=Port is in Reset. 0=Port is not in Reset. Default = 0. When software writes a one to this bit (from a zero), the bus reset sequence as defined in the USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate the bus reset sequence. Software must keep this bit at a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: when software writes this bit to a one, it must also write a zero to the Port Enable bit.
[8]	PRST	Note that when software writes a zero to this bit there may be a delay before the bit status changes to a zero. The bit status will not read as a zero until after the reset has completed. If the port is in high-speed mode after reset is complete, the host controller will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller must terminate the reset and stabilize the state of the port within 2 milliseconds of software transitioning this bit from a one to a zero. For example: if the port detects that the attached device is high-speed during reset, then the host controller must have the port in the enabled state within 2ms of software writing this bit to a zero.
X		The HCHalted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HCHalted bit is a one.
	56	This field is zero if Port Power is zero.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions				
		Suspend (R/W)			
		1=Port in suspend state. $0=$ Port not in suspend state. Default = $0.$ Port Enabled Bit and Suspend bit of this register define the port states as follows:			
		Bits [Port Enabled, Suspend] Port State			
		0X Disable			
		10 Enable			
		11 Suspend			
[7]	Suspend	When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB.			
		A write of zero to this bit is ignored by the host controller. The host controller will unconditionally set this bit to a zero when:			
		Software sets the Force Port Resume bit to a zero (from a one).			
		Software sets the Port Reset bit to a one (from a zero).			
		If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.			
		This field is zero if Port Power is zero.			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Force Port Resume (R/W)
	FPResum	1= Resume detected/driven on port. 0=No resume (Kstate) detected/driven on port. Default = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspended (Suspend and Enabled bits are a one) and software transitions this bit to a one, then the effects on the bus are undefined.
[6]		Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit to a one, the host controller must not set the Port Change Detect bit.
		Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero.
		This field is zero if Port Power is zero.
[5]	оссн	Over-current Change (R/WC) Default = 0. 1=This bit gets set to a one when there is a change to Over-current Active. Software clears this bit by writing a one to this bit position.
3		Over-current Active (RO)
[4]	OCACT	Default = 0. 1=This port currently has an over current condition. 0=This port does not have an over-current condition. This bit will automatically transition from a one to a zero when the over current condition is removed.
	7 × ×	Port Enable/Disable Change (R/WC)
[3]	PENCHG	1=Port enabled/disabled status has changed. 0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it.
	~ (S)	This field is zero if Port Power is zero.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
	PEN	Port Enabled/Disabled (R/W)
		1=Enable. 0=Disable. Default = 0. Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high-speed device.
[2]		Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events.
		When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset.
		This field is zero if Port Power is zero.
	CSCHG	Connect Status Change (R/W)
[1]		1=Change in Current Connect Status. 0=No change. Default = 0. Indicates a change has occurred in the port's Current Connect Status. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be "setting" an already-set bit (i.e., the bit will remain set). Software sets this bit to 0 by writing a 1 to it.
		This field is zero if Port Power is zero.
1.00		Current Connect Status (RO)
[0]	сѕтѕ	1=Device is present on port. 0=No device is present. Default = 0. This value reflects the current state of the port, and may not correspond directly to the event that caused the Connect Status Change bit (Bit 1) to be set.
		This field is zero if Port Power is zero.

USB Port 1 Status and Control Register (UPSCR1)

Register	Address	R/W	Description	Reset Value
UPSCR1	0xB000_5068	R/W	USB Port 1 Status and Control Register	0x0000_2000

31	30	29	28	27	26	25	24
Reserved							
23	23 22 21 20 19 18 17 16						
	Reserved				Rese	rved	

211

Publication Release Date: Jun. 18, 2010

15	14	13	12	11	10	9	8
Reserved		РО	PP	LSta	atus	Reserved	PRST
7	6	5	4	3	2	1	0
Suspend	FPResum	OCCHG	OCACT	PENCHG	PEN	CSCHG	CSTS

Bits	Descriptions	
		Port Owner (R/W)
	РО	This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero.
[13]		System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port.
		Port Power (PP)
[12]	PP	Host controller has port power control switches. This bit represents the Current setting of the switch $(0 = off, 1 = on)$. When power is not available on a port (i.e. PP equals a 0), the port is nonfunctional and will not report attaches, detaches, etc.
110011		When an over-current condition is detected on a powered port and <i>PPC</i> is a one, the <i>PP</i> bit in each affected port may be transitioned by the host controller from a 1 to 0 (removing power from the port).
**		Line Status (RO)
	***	These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one.
	N 24	The encoding of the bits are:
[11:10]	LStatus	Bits[11:10] USB State Interpretation
	J. W.	00b SE0 Not Low-speed device, perform EHCI reset
	90.4	10b J-state Not Low-speed device, perform EHCI reset
	348 ~	01b K-state Low-speed device, release ownership of port
	(0)	11b Undefined Not Low-speed device, perform EHCI reset.
	9	This value of this field is undefined if Port Power is zero.

212

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Port Reset (R/W) 1=Port is in Reset. 0=Port is not in Reset. Default = 0. When software writes a one to this bit (from a zero), the bus reset sequence as defined in the USB
	PRST	Specification Revision 2.0 is started. Software writes a zero to this bit to terminate the bus reset sequence. Software must keep this bit at a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: when software writes this bit to a one, it must also write a zero to the Port Enable bit.
[8]		Note that when software writes a zero to this bit there may be a delay before the bit status changes to a zero. The bit status will not read as a zero until after the reset has completed. If the port is in high-speed mode after reset is complete, the host controller will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller must terminate the reset and stabilize the state of the port within 2 milliseconds of software transitioning this bit from a one to a zero. For example: if the port detects that the attached device is high-speed during reset, then the host controller must have the port in the enabled state within 2ms of software writing this bit to a zero.
		The HCHalted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HCHalted bit is a one.
		This field is zero if Port Power is zero.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Suspend (R/W)
		1=Port in suspend state. $0=$ Port not in suspend state. Default = $0.$ Port Enabled Bit and Suspend bit of this register define the port states as follows:
		Bits [Port Enabled, Suspend] Port State
		0X Disable
		10 Enable
		11 Suspend
[7]	Suspend	When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB.
		A write of zero to this bit is ignored by the host controller. The host controller will unconditionally set this bit to a zero when:
		Software sets the Force Port Resume bit to a zero (from a one).
		Software sets the Port Reset bit to a one (from a zero).
		If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.
		This field is zero if Port Power is zero.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Force Port Resume (R/W)
	FPResum	1= Resume detected/driven on port. 0=No resume (Kstate) detected/driven on port. Default = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspended (Suspend and Enabled bits are a one) and software transitions this bit to a one, then the effects on the bus are undefined.
[6]		Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit to a one, the host controller must not set the Port Change Detect bit.
		Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero.
		This field is zero if Port Power is zero.
[5]	оссн	Over-current Change (R/WC) Default = 0. 1=This bit gets set to a one when there is a change to Over-current Active. Software clears this bit by writing a one to this bit position.
3		Over-current Active (RO)
[4]	OCACT	Default = 0. 1=This port currently has an over current condition. 0=This port does not have an over-current condition. This bit will automatically transition from a one to a zero when the over current condition is removed.
	7 × ×	Port Enable/Disable Change (R/WC)
[3]	PENCHG	1=Port enabled/disabled status has changed. 0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it.
	~ (S)	This field is zero if Port Power is zero.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
	PEN	Port Enabled/Disabled (R/W)
		1=Enable. 0=Disable. Default = 0. Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high-speed device.
[2]		Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events.
		When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset.
		This field is zero if Port Power is zero.
	CSCHG	Connect Status Change (R/W)
[1]		1=Change in Current Connect Status. 0=No change. Default = 0. Indicates a change has occurred in the port's Current Connect Status. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be "setting" an already-set bit (i.e., the bit will remain set). Software sets this bit to 0 by writing a 1 to it.
		This field is zero if Port Power is zero.
1.00		Current Connect Status (RO)
[0]	сѕтѕ	1=Device is present on port. 0=No device is present. Default = 0. This value reflects the current state of the port, and may not correspond directly to the event that caused the Connect Status Change bit (Bit 1) to be set.
		This field is zero if Port Power is zero.

USB PHY 0 Control Register (USBPCR0)

Register	Address	R/W	Description	Reset Value
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							

216

Publication Release Date: Jun. 18, 2010

15	14	13	12	11	10	9	8
Reserved				ClkValid	Reserved		Suspend
7	6	5	4	3	2	1	0
CLK48	REFCLK	CLK_SEL		XO_ON	SIDDQ	Rese	erved

Bits	Descriptions				
		UTMI Clock Valid			
[11]	ClkValid	This bit is a flag to indicate if the UTMI clock from USB 2.0 PHY is ready. S/W program must prevent to write other control registers before this UTMI clock valid flag is active.			
		1'b0: UTMI clock is not valid			
		1'b1: UTMI clock is valid			
[10:9]	Reserved	Set 2'b00 to this filed			
		Suspend Assertion			
		This bit controls the suspend mode of USB PHY 0.			
		While PHY was suspended, all circuits of PHY were powered down and outputs are tri-stated.			
[8]	Suspend	This bit is 1'b0 in default. This means the USB PHY 0 is suspended in default. It is necessary to set this bit 1'b1 to make USB PHY 0 leave suspend mode before doing configuration of USB host.			
-1/2		1'b0: USB PHY 0 was suspended.			
		1'b1: USB PHY 0 was not suspended.			
	à.	Digital Logic Clock Select			
. (III)	26	This bit controls the input signal clk48m_sel of USB PHY 0.			
100	. SZ	This signal selects Power-Save mode.			
[7]	CLK48	1'b0: Non-Power-Save mode. The PLL and the phase interpolator are powered up. The digital logic uses a 480MHz clock. Non-Power-Save mode is valid in all modes and speeds of operation.			
	W.	1'b1: Power-Save mode. The PLL and the phase interpolator are powered down. The digital logic uses a 48MHz clock. Power-Save mode is valid for only FS-Only operation. The CLK_SEL should be set to 2'b10 (48MHz) when this bit is high. Power-Save mode is not supported with 12/24MHz reference clock inputs.			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[6]	REFCLK	Reference Clock Source Select This bit has to set to 1.
[5:4]	CKL_SEL	Reference Clock Frequency Select This field has to set to 2'b10;
[3]	XO_ON	Force XO Block on During a Suspend This bit controls the input signal xo_on of USB PHY 0. 1'b0: If all ports are suspended, the XO block is powered up, and the test_clk48m signal is available. 1'b1: This bit is inactive, and the XO block is powered down when all ports are suspended.
[2]	SIDDQ	IDDO Test Enable This bit controls the input signal siddq of USB PHY 0. This signal powers down all analog blocks. 1'b0: The analog blocks are in normal operation. 1'b1: The analog blocks are powered down.

218

Publication Release Date: Jun. 18, 2010

USB PHY 1 Control Register (USBPCR1)

Register	Address	R/W	Description	Reset Value
USBPCR1	0xB000_50C8	R/W	USB PHY 1 Control Register	0x0000_0020

					MAN ALM	VI.		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved				XO_SEL	Reserved		Suspend	
7	6	5	4	3	2	1	0	
CLK48	REFCLK	CLK_SEL		XO_ON	SIDDQ	Rese	rved	

Bits	Descriptions					
		Clock Select for XO Block				
[11]	XO_SEL	This bit defines the clock source of PHY1's XO block is from external clock or a crystal.				
		1'b0: The XO block uses a 48MHz external clock supplied from PHY 0				
		1'b1: The XO block uses the clock from a crystal				
[10:9]	Reserved	Set 2'b10 to this field				
2		Suspend Assertion				
	P	This bit controls the suspend mode of USB PHY 1.				
	卷	While PHY was suspended, all circuits of PHY were powered down and outputs are tri-stated.				
[8]	Suspend	This bit is 1'b0 in default. This means the USB PHY 1 is suspended in default. It is necessary to set this bit 1'b1 to make USB PHY 1 leave suspend mode before doing configuration of USB host.				
	90,0	1'b0: USB PHY 1 was suspended.				
	38	1'b1: USB PHY 1 was not suspended.				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	s — — — — — — — — — — — — — — — — — — —							
		Digital Logic Clock Select							
		This bit controls the input signal clk48m_sel of USB PHY 1.							
		This signal selects Power-Save mode.							
[7] CL	CLK48	1'b0: Non-Power-Save mode. The PLL and the phase interpolator are powered up. The digital logic uses a 480MHz clock. Non-Power-Save mode is valid in all modes and speeds of operation.							
		1'b1: Power-Save mode. The PLL and the phase interpolator are powered down. The digital logic uses a 48MHz clock. Power-Save mode is valid for only FS-Only operation. The CLK_SEL should be set to 2'b10 (48MHz) when this bit is high.							
[6]	REFCLK	Reference Clock Source Select This bit has to set to 0.							
[5:4]	CKL_SEL	Reference Clock Frequency Select This field has to set to 2'b10.							
		Force XO Block on During a Suspend							
		This bit controls the input signal xo_on of USB PHY 1.							
[3]	XO_ON	1'b0: If all ports are suspended, the XO block is powered up, and the							
[0]		test_clk48m signal is available.							
		1'b1: This bit is inactive, and the XO block is powered down when all ports are suspended.							
de		IDDQ Test Enable							
		This bit controls the input signal siddq of USB PHY 1.							
[2]	SIDDQ	This signal powers down all analog blocks.							
	3P 32-	1'b0: The analog blocks are in normal operation.							
(V)	135	1'b1: The analog blocks are powered down.							
		220 Publication Release Date: Jun. 18, 2010 Revision: A3							

Host Controller Revision Register (HcRev)

Register	Address	R/W	Description	Reset Value
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010

				-	7 7 14		
31	30	29	28	27	26	25	24
			Rese	rved	· (O)	100	
23	22	21	20	19	18	17	16
			Rese	rved		(A)	
15	14	13	12	11	10	9	8
			Rese	rved		V.	7 0
7	6	5	4	3	2	1	0
Rev						100 m	

Bits	Descriptions	
[7:0]	Rev	Revision Indicates the Open HCI Specification revision number implemented by the Hardware. Host Controller supports 1.0 specification. (X.Y = XYh)

Publication Release Date: Jun. 18, 2010

Host Controller Control Register (HcControl)

Register	Address	R/W	Description	Reset Value
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000

					17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
		Reserved			RWakeEn	RWake	IntRoute	
7	6	5	4	3	2	1	0	
HcFunc		BlkEn	CtrlEn	ISOEn	PeriEn	CtrlBl	kRatio	

Bits	Descriptions	
[10]	RWakeEn	Remote Wakeup Connected Enable If a remote wakeup signal is supported, this bit enables that operation. Since there is no remote wakeup signal supported, this bit is ignored.
[9]	RWake	Remote Wakeup Connected This bit indicated whether the HC supports a remote wakeup signal. This implementation does not support any such signal. The bit is hard-coded to '0.'
[8]	IntRoute	Interrupt Routing This bit is used for interrupt routing: 0: Interrupts routed to normal interrupt mechanism (INT). 1: Interrupts routed to SMI.
[7:6]	HcFunc	Host Controller Functional State This field sets the Host Controller state. The Controller may force a state change from UsbSuspend to UsbResume after detecting resume signaling from a downstream port. States are: 00: UsbReset 01: UsbResume 10: UsbOperational 11: UsbSuspend

222

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[5]	BlkEn	Bulk List Enable When set this bit enables processing of the Bulk list.
[4]	CtrlEn	Control List Enable When set this bit enables processing of the Control list.
[3]	ISOEn	Isochronous List Enable When clear, this bit disables the Isochronous List when the Periodic List is enabled (so Interrupt EDs may be serviced). While processing the Periodic List, the Host Controller will check this bit when it finds an isochronous ED.
[2]	PeriEn	Periodic List Enable When set, this bit enables processing of the Periodic (interrupt and isochronous) list. The Host Controller checks this bit prior to attempting any periodic transfers in a frame.
[1:0]	CtrlBlkRatio	Control Bulk Service Ratio Specifies the number of Control Endpoints serviced for every Bulk Endpoint. Encoding is N-1 where N is the number of Control Endpoints (i.e. '00' = 1 Control Endpoint; '11' = 3 Control Endpoints)

Publication Release Date: Jun. 18, 2010

Host Controller Command Status Register (HcComSts)

Register	Address	R/W	Description	Reset Value
HcComSt	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_0000
S			11.0	

					1221 8		
31	30	29	28	27	26	25	24
			Rese	erved	50	2 (5)	
23	22	21	20	19	18	17	16
		Rese	erved			SchO	verRun
15	14	13	12	11	10	9	8
			Rese	erved		- 3	11 O
7	6	5	4	3	2	1	0
Reserved			OCReq	BlkFill	CtrlFill	HCReset	

Bits	Descriptions	
[17:16]	SchOverRun	Schedule Overrun Count This field is increment every time the SchedulingOverrun bit in
		HcInterruptStatus is set. The count wraps from `11' to `00.'
		Ownership Chang Request
[3]	OCReq	When set by software, this bit sets the OwnershipChange field in <i>HcInterruptStatus</i> . The bit is cleared by software.
Di do		Bulk List Filled
[2] BIkFill		Set to indicate there is an active ED on the Bulk List. The bit may be set by either software or the Host Controller and cleared by the Host Controller each time it begins processing the head of the Bulk List.
X	10 M	Control List Filled
[1]	CtrlFill	Set to indicate there is an active ED on the Control List. It may be set by either software or the Host Controller and cleared by the Host Controller each time it begins processing the head of the Control List.
	10/00	Host Controller Reset
[0]	HCReset	This bit is set to initiate the software reset. This bit is cleared by the Host Controller, upon completed of the reset operation.

224

Publication Release Date: Jun. 18, 2010

Host Controller Interrupt Status Register (HcIntSts)

Register	Address	R/W	Description	Reset Value
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_0000

				- 1			
31	30	29	28	27	26	25	24
Reserved	ОС			Rese	rved	20	
23	22	21	20	19	18	17	16
			Rese	erved		() ()	31
15	14	13	12	11	10	9	8
			Rese	erved		60	100
7	6	5	4	3	2	1	0
Reserved	RHSC	FNOF	UnRecErr	Resume	SOF	WBDnHD	SchOR

Bits	Descriptions	
[30]	ос	Ownership Change This bit is set when the OwnershipChangeRequest bit of HcCommandStatus is set.
[6]	RHSC	Root Hub Status Change This bit is set when the content of <i>HcRhStatus</i> or the content of any <i>HcRhPortStatus</i> register has changed.
[5]	FNOF	Frame Number Overflow Set when bit 15 of FrameNumber changes value.
[4]	UnRecErr	Unrecoverable Error This event is not implemented and is hard-coded to '0.' Writes are ignored.
[3]	Resume	Resume Detected Set when Host Controller detects resume signaling on a downstream port.
[2]	SOF	Start Of Frame Set when the Frame Management block signals a 'Start of Frame' event.
[1]	WBDnHD	Write Back Done Head Set after the Host Controller has written HcDoneHead to HccaDoneHead.

Publication Release Date: Jun. 18, 2010

[0]	SchOR	Scheduling Overrun
[0]	Schok	Set when the List Processor determines a Schedule Overrun has occurred.

Host Controller Interrupt Enable Register (HcIntEn)

Register	Address	R/W	Description	Reset Value
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000

					1.5	- A	
31	30	29	28	27	26	25	24
IntEn	OCEn			Rese	rved	700	- X
23	22	21	20	19	18	17	16
			Rese	erved		1	5000
15	14	13	12	11	10	9	8
			Rese	erved			0
7	6	5	4	3	2	1	0
Reserved	RHSCEn	FNOFEn	URErrEn	ResuEn	SOFEn	WBDHEn	SchOREn

Bits	Description	s
		Master Interrupt Enable
[31]	IntEn	This bit is a global interrupt enable. A write of 1 allows interrupts to be enabled via the specific enable bits listed above.
2		Ownership Change Enable
[30]	OCEn	0: Ignore
	786	1: Enables interrupt generation due to Ownership Change.
- 1	O X X	Root Hub Status Change Enable
[6]	RHSCEn	0: Ignore
	4000	1: Enables interrupt generation due to Root Hub Status Change.
	Sh	Frame Number Overflow Enable
[5]	FNOFEn	0: Ignore
		1: Enables interrupt generation due to Frame Number Overflow.
[4]	URErrEn	Unrecoverable Error Enable
[4]	OREITEN	This event is not implemented. All writes to this bit are ignored.

226

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Resume Detected Enable
[3]	ResuEn	0: Ignore
		1: Enables interrupt generation due to Resume Detected.
		Start Of Frame Enable
[2]	SOFEn	0: Ignore
		1: Enables interrupt generation due to Start of Frame.
		Write Back Done Head Enable
[1]	WBDHEn	0: Ignore
		1: Enables interrupt generation due to Write-back Done Head.
		Scheduling Overrun Enable
[0]	SchOREn	0: Ignore
		1: Enables interrupt generation due to Scheduling Overrun.

Publication Release Date: Jun. 18, 2010

Host Controller Interrupt Disable Register (HcIntDis)

Register	Address	R/W	Description	Reset Value
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000

					17-1-1-19		
31	30	29	28	27	26	25	24
IntDis	OCDis			Rese	rved	100	
23	22	21	20	19	18	17	16
			Rese	erved		200	
15	14	13	12	11	10	9	8
			Rese	erved		20	60 1
7	6	5	4	3	2	1	0
Reserved	RHSCDis	FNOFDis	URErrDis	ResuDis	SOFDis	WBDHDis	SchORDis

Bits	Descriptions	
[31]	IntDis	Master Interrupt Disable Global interrupt disable. A write of '1' disables all interrupts.
[30]	OCDis	Ownership Change Disable 0: Ignore 1: Disables interrupt generation due to Ownership Change.
[6]	RHSCDis	Root Hub Status Change Disable 0: Ignore 1: Disables interrupt generation due to Root Hub Status Change.
[5]	FNOFDis	Frame Number Overflow Disable 0: Ignore 1: Disables interrupt generation due to Frame Number Overflow.
[4]	URErrDis	Unrecoverable Error Disable This event is not implemented. All writes to this bit are ignored.
[3]	ResuDis	Resume Detected Disable 0: Ignore 1: Disables interrupt generation due to Resume Detected.

228

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[2]	SOFDis	Start Of Frame Disable 0: Ignore 1: Disables interrupt generation due to Start of Frame.
[1]	WBDHDis	Write Back Done Head Disable 0: Ignore 1: Disables interrupt generation due to Write-back Done Head.
[0]	SchORDis	Scheduling Overrun Disable 0: Ignore 1: Disables interrupt generation due to Scheduling Overrun.

Publication Release Date: Jun. 18, 2010

Host Controller Communication Area Register (HcHCCA)

Register	Address	R/W	Description	Reset Value
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000

31	30	29	28	27	26	25	24		
	HCCA								
23	22	21	20	19	18	17	16		
	HCCA								
15	14	13	12	11	10	9	8		
			НС	CA		- K	70		
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptions	
[31:7]	НССА	Host Controller Communication Area Pointer to HCCA base address.

230

Publication Release Date: Jun. 18, 2010

Host Controller Period Current ED Register (HcPerCED)

Register	Address	R/W	Description	Reset Value
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
	PeriCED								
23	22	21	20	19	18	17	16		
PeriCED						200	0 V		
15	14	13	12	11	10	9	8		
			Peri	CED		5			
7	6	5	4	3	2	1	0		
PeriCED					Rese	erved	3		

Bits	Descriptions	Descriptions					
[21.4]	DOED	Periodic Current ED					
[31:4]	PeriCED	Pointer to the current Periodic List ED.					

Publication Release Date: Jun. 18, 2010

Host Controller Control Head ED Register (HcCtrHED)

Register	Address	R/W	Description	Reset Value
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000

					Val Val				
31	30	29	28	27	26	25	24		
CtrIHED									
23	22	21	20	19	18	17	16		
	CtrlHED								
15	14	13	12	11	10	9	8		
			Ctrl	HED		6	20		
7	6	5	4	3	2	1	0		
CtrlHED				Rese	erved	0000			

Bits	Descriptions	
[31:4]	CtrlHED	Control Head ED
		Pointer to the Control List Head ED.

Publication Release Date: Jun. 18, 2010

Host Controller Control Current ED Register (HcCtrCED)

Register	Address	R/W	Description	Reset Value
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CtrlCED								
23	22	21	20	19	18	17	16		
CtrlCE						200	67 J		
15	14	13	12	11	10	9	8		
			Ctrl	CED		5			
7	6	5	4	3	2	1	0		
CtrlCED					Rese	rved	2		

Bits	Descriptions	
[21,4]	CtrlCED	Control Current Head ED
[31:4]		Pointer to the current Control List Head ED.

233

Publication Release Date: Jun. 18, 2010

Host Controller Bulk Head ED Register (HcBlkHED)

Register	Address	R/W	Description	Reset Value
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_0000

					Val Val				
31	30	29	28	27	26	25	24		
BIKHED									
23	22	21	20	19	18	17	16		
	BIKHED								
15	14	13	12	11	10	9	8		
			Blk	HED		Z.	6		
7	6	5	4	3	2	1	0		
BIKHED				Rese	rved	07/10			

Bits	Descriptions	
[31:4]	BIKHED	Bulk Head ED
		Pointer to the Bulk List Head ED.

Publication Release Date: Jun. 18, 2010

Host Controller Bulk Current Head ED Register (HcBlkCED)

Register	Address	R/W	Description	Reset Value
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
BIKCED									
23	22	21	20	19	18	17	16		
BIKCED						200	67 J		
15	14	13	12	11	10	9	8		
			Blk	CED		8			
7	6	5	4	3	2	1	0		
BIKCED					Rese	rved	2		

Bits	Descriptions	
[31:4]	BIKCED	Bulk Current Head ED
		Pointer to the current Bulk List Head ED.

Publication Release Date: Jun. 18, 2010

Host Controller Done Head Register (HcDoneH)

Register	Address	R/W	Description	Reset Value
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_0000

					17-1-1-19					
31	30	29	28	27	26	25	24			
	DoneH									
23	22	21	20	19	18	17	16			
	DoneH									
15	14	13	12	11	10	9	8			
	Do					Z.	200			
7	6	5	4	3	2	1	0			
	DoneH				Rese	rved	000			

Bits	Descriptions	Descriptions			
[31:4]	DoneH	Done Head			
		Pointer to the current Done List Head ED.			

236

Publication Release Date: Jun. 18, 2010

Host Controller Frame Interval Register (HcFmIntv)

Register	Address	R/W	Description	Reset Value
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2EDF

					N. J.		
31	30	29	28	27	26	25	24
FmIntvT				FSDPktCnt	t Os	200	
23	22	21	20	19	18	17	16
			FSDP	ktCnt		() ()	
15	14	13	12	11	10	9	8
Rese	rved			FmIn	iterval	20	200
7	6	5	4	3	2	1	0
		•	FmIn	terval	•	•	0877

Bits	Descriptions	
[31]	FmIntvT	Frame Interval Toggle This bit is toggled by HCD when it loads a new value into FrameInterval.
[30: 16]	FSDPktCnt	FS Largest Data Packet This field specifies a value that is loaded into the Largest Data Packet Counter at the beginning of each frame.
[13:0]	FmInterval	Frame Interval This field specifies the length of a frame as (bit times - 1). For 12,000 bit times in a frame, a value of 11,999 is stored here.

237

Publication Release Date: Jun. 18, 2010

Host Controller Frame Remaining Register (HcFmRem)

Register	Address	R/W	Description	Reset Value
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_0000

					N N N		
31	30	29	28	27	26	25	24
FmRemT				Reserved		200	
23	22	21	20	19	18	17	16
			Rese	erved		(1) (F)	
15	14	13	12	11	10	9	8
Rese	erved			FmRe	emain	60	70
7	6	5	4	3	2	1	0
	FmRemain						000

Bits	Descriptions	
[31]	FmRemT	Frame Remaining Toggle Loaded with FrameIntervalToggle when FrameRemaining is loaded.
[13:0]	FmRemain	Frame Remaining When the Host Controller is in the USBOPERATIONAL state, this 14-bit field decrements each 12 MHz clock period. When the count reaches 0, (end of frame) the counter reloads with FrameInterval. In addition, the counter loads when the Host Controller transitions into USBOPERATIONAL.

Publication Release Date: Jun. 18, 2010

Host Controller Frame Number Register (HcFNum)

Register	Address	R/W	Description	Reset Value
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_0000

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Fml	Num		90	70	
7	6	5	4	3	2	1	0	
FmNum						000		

Bits	Descriptions	
[15:0]	FmNum	Frame Number This 16-bit incrementing counter field is incremented coincident with the loading of FrameRemaining. The count rolls over from 'FFFFh' to '0h.'

Publication Release Date: Jun. 18, 2010

Host Controller Periodic Start Register (HcPerSt)

Register	Address	R/W	Description	Reset Value
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
			Rese	erved		(D) (
15	14	13	12	11	10	9	8		
Reserved PeriStart						20	70		
7	6	5	4	3	2	1	0		
PeriStart							000		

Bits	Descriptions	
[13:0]	PeriStart	Periodic Start This field contains a value used by the List Processor to determine where in a frame the Periodic List processing must begin.

240

Publication Release Date: Jun. 18, 2010

Host Controller Root Hub Descriptor A Register (HcRhDeA)

Register	Address	R/W	Description	Reset Value
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_0002

					The second				
31	30	29	28	27	26	25	24		
PwrGDT									
23	22	21	20	19	18	17	16		
			Rese	erved		(1) (F)			
15	14	13	12	11	10	9	8		
Reserved			NOCP	ОСРМ	DevType	NPS	PSM		
7	6	5	4	3	2	1	0		
DPortNum									

Bits	Descriptions						
[31:24]	PwrGDT	Power On to Power Good Time This field value is represented as the number of 2 ms intervals, which ensuring that the power switching is effective within 2 ms. Only bits [25:24] are implemented as R/W. The remaining bits are read only as '0'. It is not expected that these bits be written to anything other than 1h, but limited adjustment is provided. This field should be written to support system implementation. This field should always be written to a non-zero value.					
[12]	NOCP	No Over Current Protection This bit should be written to support the external system port over-current implementation. 0 = Over-current status is reported 1 = Over-current status is not reported					
[11]	ОСРМ	Over Current Protection Mode This bit should be written 0 and is only valid when NoOverCurrentProtection is cleared. 0 = Global Over-Current 1 = Individual Over-Current					
[10]	DevType	Device Type					

241

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		No Power Switching
[9]	NPS	This bit should be written to support the external system port power switching implementation.
		0 = Ports are power switched.
		1 = Ports are always powered on.
		Power Switching Mode
[8]	PSM	This bit is only valid when NoPowerSwitching is cleared. This bit should be written '0'.
		0 = Global Switching
		1 = Individual Switching
[7:0]	DPortNum	Number Downstream Ports

Publication Release Date: Jun. 18, 2010

Host Controller Root Hub Descriptor B Register (HcRhDeB)

Register	Address	R/W	Description	Reset Value
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_0000

					7 7 7				
31	30	29	28	27	26	25	24		
PPCM									
23	22	21	20	19	18	17	16		
	PPCM								
15	14	13	12	11	10	9	8		
DevRemove									
7	6	5	4	3	2	1	0		
DevRemove							07/10		

Bits	Descriptions							
		Port Power Control Mask						
北人	PPCM	Global-power switching. This field is only valid if NoPowerSwitching is cleared and PowerSwitchingMode is set (individual port switching). When set, the port only responds to individual port power switching commands (Set/ClearPortPower). When cleared, the port only responds to global power switching commands (Set/ClearGlobalPower). $0 = \text{Device} \text{not} \text{removable}$ $1 = \text{Global-power mask}$						
[31:16]		Port Bit relationship - Unimplemented ports are reserved, read/write '0'.						
		0 : Reserved						
		1 : Port 1						
		2 : Port 2						
1	100							
	S. C.	15 : Port 15						

Publication Release Date: Jun. 18, 2010

Bits	Descriptions							
		Device Removable						
		0 1 = Device r	= removable	Device	not	removable		
[15:0]	DevRemove	Port 0		Bit :		relationship Reserved		
		1	:		Port	1		
		2	:		Port	2		
		 15 : Port 15						
		Unimplemen	ted ports are	reserved, read/w	rite '0'.			

Host Controller Root Hub Status Register (HcRhSts)

Register	Address	R/W	Description	Reset Value
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_0000

					7-1-7-175		
31	30	29	28	27	26	25	24
RWECIr				Reserved		20	
23	22	21	20	19	18	17	16
		Rese	erved			OCIC	LPSC
15	14	13	12	11	10	9	8
DRWEn				Reserved		60	0
7	6	5	4	3	2	1	0
	Reserved						LPS

Bits	Descriptions	
[31]	RWECIr	Clear Remote Wakeup Enable Writing a '1' to this bit clears DeviceRemoteWakeupEnable. Writing a '1' has no effect.
[17]	ocic	Over Current Indicator Change This bit is set when OverCurrentIndicator changes. Writing a '1' clears this bit. Writing a '0' has no effect.
[16]	LPSC	(Read) LocalPowerStatusChange Not supported. Always read '0'. (Write) SetGlobalPower Write a '1' issues a SetGlobalPower command to the ports. Writing a '0' has no effect.
[15]	DRWEn	(Read) DeviceRemoteWakeupEnable This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = disabled 1 = enabled (Write) SetRemoteWakeupEnable Writing a '1' sets DeviceRemoteWakeupEnable. Writing a '0' has no effect.

245

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Over Current Indicator
[1]	ос	This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared.
		0 = No over-current condition
		1 = Over-current condition
		(Read) LocalPowerStatus
	LPS	Not Supported. Always read '0'.
[0]		(Write) ClearGlobalPower
		Writing a '1' issues a ClearGlobalPower command to the ports. Writing a '0' has no effect.

Publication Release Date: Jun. 18, 2010

Host Controller Root Hub Port Status (HcRhPrt [1: 2])

Register	Address	R/W	Description	Reset Value
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_0000
HcRhPrt2	0xB000_7058	R/W	Host Controller Root Hub Port Status [2]	0x0000_0000

					-///		
31	30	29	28	27	26	25	24
			Rese	erved	Sill	S	
23	22	21	20	19	18	17	16
	Reserved		PRSC	POCIC	PSSC	PESC	CSC
15	14	13	12	11	10	9	8
		Rese	erved			LSDev	PPS
7	6	5	4	3	2	1	0
	Reserved		PR	POC	PS	PE	СС

Bits	Descriptions	
[20]	PRSC	Port Reset Status Change This bit indicates that the port reset signal has completed. 0 = Port reset is not complete. 1 = Port reset is complete.
[19]	POCIC	Port Over Current Indicator Change This bit is set when OverCurrentIndicator changes. Writing a '1' clears this bit. Writing a '0' has no effect.
[18]	PSSC	Port Suspend Status Change This bit indicates the completion of the selective resume sequence for the port. 0 = Port is not resumed. 1 = Port resume is complete.
[17]	PESC	Port Enable Status Change This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus). 0 = Port has not been disabled. 1 = PortEnableStatus has been cleared.

247

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		Connect Status Change				
		This bit indicates connect or disconnect event has been detected. Writing a '1' clears this bit. Writing a '0' has no effect.				
[16]	CSC	0 = No connect/disconnect event.				
		1 = Hardware detection of connect/disconnect event.				
		Note: If DeviceRemoveable is set, this bit resets to '1'.				
		(Read) LowSpeedDeviceAttached				
		This bit defines the speed (and bud idle) of the attached device. It is only valid when CurrentConnectStatus is set.				
[9]	LSDev	0 = Full Speed device				
		1 = Low Speed device				
		(Write) ClearPortPower				
		Writing a '1' clears PortPowerStatus. Writing a '0' has no effect				
		(Read) PortPowerStatus				
		This bit reflects the power state of the port regardless of the power switching mode.				
503		0 = Port power is off.				
[8]	PPS	1 = Port power is on.				
		Note: If NoPowerSwitching is set, this bit is always read as '1'.				
1963		(Write) SetPortPower				
A. S.		Writing a '1' sets PortPowerStatus . Writing a '0' has no effect.				
2		(Read) PortResetStatus				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P	0 = Port reset signal is not active.				
[4]	PR	1 = Port reset signal is active.				
1	2 × 2	(Write) SetPortReset				
1	12° 6	Writing a '1' sets PortResetStatus . Writing a '0' has no effect.				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		(Read) PortOverCurrentIndicator				
		This bit reflects the state of the OVRCUR pin dedicated to this port. This field is only valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set.				
[3]	POC	0 = No over-current condition				
		1 = Over-current condition				
		(Write) ClearPortSuspend				
		Writing a '1' initiates the selective resume sequence for the port. Writing a '0' has no effect.				
		(Read) PortSuspendStatus				
	PS	0 = Port is not suspended				
[2]		1 = Port is selectively suspended				
		(Write) SetPortSuspend				
		Writing a '1' sets PortSuspendStatus . Writing a '0' has no effect.				
		(Read) PortEnableStatus				
		0 = Port disabled.				
[1]	PE	1 = Port enabled.				
		(Write) SetPortEnable				
		Writing a '1' sets PortEnableStatus . Writing a '0' has no effect.				
also .		(Read) CurrentConnectStatus				
100		0 = No device connected.				
[0]	СС	1 = Device connected.				
[0]		NOTE: If DeviceRemoveable is set (not removable) this bit is always '1'.				
	76	(Write) ClearPortEnable				
	X . X	Writing '1' a clears PortEnableStatus . Writing a '0' has no effect.				

Publication Release Date: Jun. 18, 2010

USB Operational Mode Enable Register (OpModEn)

Register	Address	R/W	Description	Reset Value
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_0000

				17	VI VINI		
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	erved		(1) (F)	1
15	14	13	12	11	10	9	8
Reserved							SIEPDis
7	6	5	4	3	2	1	0
Reserved				OCALow	Reserved	ABORT	DBR16

Bits	Descriptions				
		SIE Pipeline Disable			
[8]	SIEPDis	When set, waits for all USB bus activity to complete prior to returning completion status to the List Processor. This is a failsafe mechanism to avoid potential problems with the clk_dr transition between 1.5 MHz and 12 MHz.			
		Over Current Active Low			
[2]	OCALow	This bit controls the polarity of over current flag from external power IC.			
[3]		0: Over current flag is high active			
12 de		1: Over current flag is low active			
	Alle.	AHB Bus ERROR Response			
[1]	ABORT	This bit indicates there is an ERROR response received in AHB bus.			
[1]		0: No ERROR response received			
	CY 4	1: ERROR response received			
	(C)	Data Buffer Region 16			
[0]	DBR16	When set, the size of the data buffer region is 16 bytes. Otherwise, the size is 32 bytes.			

Publication Release Date: Jun. 18, 2010

6.9 USB 2.0 Device Controller

The NUC960ADN USB Device Controller is compliant to the USB Specification version 2.0. It also supports the software control for device remote-wakeup and 6 configurable endpoints in addition to Control Endpoint. Each of these endpoints can be Isochronous, Bulk or Interrupt and they can be either of IN or OUT direction with maximum packet size up to 1024 bytes. Three different modes of operation (Auto validation mode, manual validation mode and Fly mode) are supported for IN-endpoint.

6.9.1 USB Device Register Group Summary

Register Groups	Description
Main Control Registers	These set of registers control the global enable of interrupts and maintain the status of the interrupts
USB Control Registers	These set of registers control the USB related events to/from the USB host and hold the status of the USB events.
Control Endpoint Registers	These set of registers direct the control endpoint in handling the USB requests from the host and hold the status information of the transactions.
Non control Endpoint Registers	These set of registers configure, control and exhibit the status of the non-control endpoints' operation
DMA Registers	These registers are responsible for the DMA related operations

6.9.2 USB Device Control Registers Map

Register	egister Address		Description	Reset Value			
USBD_BA = 0xB000_6000							
IRQ_STAT	0xB000_6000	R	Interrupt Register	0x0000_0000			
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001			
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status register	0x0000_0000			
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable register	0x0000_0040			
USB_OPER	0xB000_6018	R/W	USB operational register	0x0000_0002			

Publication Release Date: Jun. 18, 2010

Register	Address	R/W C	Description	eset Value
USB_FRAME_CNT	0xB000_601C	R	USB frame count register	0x0000_0000
USB_ADDR	0xB000_6020	R/W	USB address register	0x0000_0000
CEP_DATA_BUF	0xB000_6028	R/W	Control-ep Data Buffer	0x0000_0000
CEP_CTRL_STAT	0xB000_602C	R/W	Control-ep Control and Status	0x0000_0000
CEP_IRQ_ENB	0xB000_6030	R/W	Control-ep Interrupt Enable	0x0000_0000
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000
IN_TRNSFR_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000
OUT_TRNSFR_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000
CEP_CNT	0xB000_6040	R	Control-ep data count	0x0000_0000
SETUP1_0	0xB000_6044	R	Setupbyte1 & byte0	0x0000_0000
SETUP3_2	0xB000_6048	R	Setupbyte3 & byte2	0x0000_0000
SETUP5_4	0xB000_604C	R	Setupbyte5 & byte4	0x0000_0000
SETUP7_6	0xB000_6050	R	Setupbyte7 & byte6	0x0000_0000
CEP_START_ADDR	0xB000_6054	R/W	Control EP's RAM start address	0x0000_0000
CEP_END_ADDR	0xB000_6058	R/W	Control EP's RAM end address	0x0000_0000
DMA_CTRL_STS	0xB000_605C	R/W	DMA control and status register	0x0000_0000
DMA_CNT	0xB000_6060	R/W	DMA count register	0x0000_0000
EPA_DATA_BUF	0xB000_6064	R/W	Endpoint A data register	0x0000_0000
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt status register	0x0000_0002
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt enable register	0x0000_0000
EPA_DATA_CNT	0xB000_6070	R	Data count available in endpoint A buffer	0x0000_0000
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A response register set/clear	0x0000_0000
EPA_MPS	0xB000_6078	R/W	Endpoint A maximum packet size register	0x0000_0000
EPA_CNT	0xB000_607C	R/W	Endpoint A transfer count register	0x0000_0000
EPA_CFG	0xB000_6080	R/W	Endpoint A configuration register	0x0000_0012
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM start address	0x0000_0000
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM end address	0x0000_0000
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B data register	0x0000_0000
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt status register	0x0000_0002
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt enable register	0x0000_0000

252

Publication Release Date: Jun. 18, 2010 Revision: A3

Register	Address	R/W E	Description	Reset Value
EPB_DATA_CNT	0xB000_6098	R	Data count available in endpoint B buffer	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	Endpoint B response register set/clear	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B maximum packet size register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B transfer count register	0x0000_0000
EPB_CFG	0xB000_60A8	R/W	Endpoint B configuration register	0x0000_0022
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM start address	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM end address	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C data register	0x0000_0000
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt status register	0x0000_0002
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt enable register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Data count available in endpoint C buffer	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C response register set/clear	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C maximum packet size register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C transfer count register	0x0000_0000
EPC_CFG	0xB000_60D0	R/W	Endpoint C configuration register	0x0000_0032
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM start address	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM end address	0x0000_0000
EPD_DATA_BUF	0xB000_60DC	R/W	Endpoint D data register	0x0000_0000
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt status register	0x0000_0002
EPD_IRQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt enable register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Data count available in endpoint D buffer	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W	Endpoint D response register set/clear	0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D maximum packet size register	0x0000_0000
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D transfer count register	0x0000_0000
EPD_CFG	0xB000_60F8	R/W	Endpoint D configuration register	0x0000_0042
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM start address	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM end address	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E data register	0x0000_0000
EPE_IRQ_STAT	0xB000_6108	R/W	Endpoint E Interrupt status register	0x0000_0002
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt enable register	0x0000_0000

Publication Release Date: Jun. 18, 2010 Revision: A3

Register	Address	R/W C	Description	Reset Value
EPE_DATA_CNT	0xB000_6110	R	Data count available in endpoint E buffer	0x0000_0000
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E response register set/clear	0x0000_0000
EPE_MPS	0xB000_6118	R/W	Endpoint E maximum packet size register	0x0000_0000
EPE_TRF_CNT	USBD_BA +0x11C	R/W	Endpoint E transfer count register	0x0000_0000
EPE_CFG	0xB000_6120	R/W	Endpoint E configuration register	0x0000_0052
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM start address	0x0000_0000
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM end address	0x0000_0000
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F data register	0x0000_0000
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt status register	0x0000_0002
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt enable register	0x0000_0000
EPF_DATA_CNT	0xB000_6138	R	Data count available in endpoint F buffer	0x0000_0000
EPF_RSP_SC	0xB000_613C	R/W	Endpoint F response register set/clear	0x0000_0000
EPF_MPS	0xB000_6140	R/W	Endpoint F maximum packet size register	0x0000_0000
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F transfer count register	0x0000_0000
EPF_CFG	0xB000_6148	R/W	Endpoint F configuration register	0x0000_0062
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM start address	0x0000_0000
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM end address	0x0000_0000
USB_DMA_ADDR	0xB000_6700	R/W	USB_DMA address register	0x0000_0000
USB_PHY_CTL	0xB000_6704	R/W	USB PHY control register	0x0000_0060

Publication Release Date: Jun. 18, 2010

6.9.3 USB Device Control Registers

Interrupt Register (IRQ)

Register	Address	R/W	Description	Default Value
IRQ	0xB000_6000	R	Interrupt Register	0x0000_0000

				71					
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2						0		
EPF_INT	EPE_INT	EPD_INT	EPC_INT	EPB_INT	EPA_INT	CEP_INT	USB_INT		

Bits	Description	is and the second second second second second second second second second second second second second second se
[7]	EPF_INT	This bit conveys the interrupt for Endpoints F. When set, the corresponding Endpoint F's interrupt status register should be read to determine the cause of the interrupt.
[6]	EPE_INT	This bit conveys the interrupt for Endpoints E. When set, the corresponding Endpoint E's interrupt status register should be read to determine the cause of the interrupt.
[5]	EPD_INT	This bit conveys the interrupt for Endpoints D. When set, the corresponding Endpoint D's interrupt status register should be read to determine the cause of the interrupt.
[4]	EPC_INT	This bit conveys the interrupt for Endpoints C. When set, the corresponding Endpoint C's interrupt status register should be read to determine the cause of the interrupt.
[3]	EPB_INT	This bit conveys the interrupt for Endpoints B. When set, the corresponding Endpoint B's interrupt status register should be read to determine the cause of the interrupt.

255

Publication Release Date: Jun. 18, 2010

Bits	Description	s
[2]	EPA_INT	This bit conveys the interrupt for Endpoints A. When set, the corresponding Endpoint A's interrupt status register should be read to determine the cause of the interrupt.
[1]	CEP_INT	Control Endpoint Interrupt. This bit conveys the interrupt status for control endpoint. When set, Control-ep's interrupt status register should be read to determine the cause of the interrupt.
[0]	USB_INT	USB Interrupt. This bit conveys the interrupt status for USB specific events endpoint. When set, USB interrupt status register should be read to determine the cause of the interrupt.

Publication Release Date: Jun. 18, 2010

Interrupt Enable Low Register (IRQ_ENB_L)

Register	Address	R/W	Description	Default Value
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
EPF_IE	EPE_IE	EPD_IE	EPC_IE	EPB_IE	EPA_IE	CEP_IE	USB_IE	

Bits	Descriptions	s
[7]	EPF_IE	Interrupt Enable for Endpoint F. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint F
[6]	EPE_IE	Interrupt Enable for Endpoint E. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint E
[5]	EPD_IE	Interrupt Enable for Endpoint D. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint D
[4]	EPC_IE	Interrupt Enable for Endpoint C. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint C
[3]	EPB_IE	Interrupt Enable for Endpoint B. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint B
[2]	EPA_IE	Interrupt Enable for Endpoint A. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint A.

257

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
[1]	CEP_IE	Control Endpoint Interrupt Enable. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the control endpoint.					
[0]	USB_IE	USB Interrupt Enable. When set, this bit enables a local interrupt to be generated when a USB event occurs on the bus.					

Publication Release Date: Jun. 18, 2010

USB Interrupt Status Register (USB_IRQ_STAT)

Register Address R		R/W	Description	Default Value
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved	TCLKOK_IS	DMACOM_IS	HISPD_IS	SUS_IS	RUM_IS	RST_IS	SOF_IS		

Bits	Descriptions	
[6]	TCLKOK_IS	Usable Clock Interrupt. This bit is set when usable clock is available from the transceiver. Writing `1" clears this bit.
[5]	DMACOM_IS	DMA Completion Interrupt. This bit is set when the DMA transfer is over. Writing '1" clears this bit.
[4]	HISPD_IS	High Speed Settle. This bit is set when the valid high-speed reset protocol is over and the device has settled is high-speed. Writing `1" clears this bit.
[3]	sus_is	Suspend Request. This bit is set as default and it has to be cleared by writing '1' before the USB reset. This bit is also set when a USB Suspend request is detected from the host. Writing '1' clears this bit.
[2]	RUM_IS	Resume. When set, this bit indicates that a device resume has occurred. Writing a `1' clears this bit.

259

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[1]	RST_IS	Reset Status. When set, this bit indicates that either the USB root port reset is end. Writing a '1' clears this bit.
[0]	SOF_IS	SOF. This bit indicates when a start-of-frame packet has been received. Writing a '1' clears this bit.

Publication Release Date: Jun. 18, 2010

USB Interrupt Enable Register (USB_IRQ_ENB)

Register	Address	R/W	Description	Default Value
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable Register	0x0000_0040

					-/10			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved							2/2	
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved	TCLKOK_IE	DMACOM_IE	HISPD_IE	SUS_IE	RUM_IE	RST_IE	SOF_IE	

Bits	Descriptions	
[6]	TCLKOK_IE	Usable Clock Interrupt. This bit enables the usable clock interrupt.
[5]	DMACOM_IE	DMA Completion Interrupt. This bit enables the DMA completion interrupt
[4]	HISPD_IE	High Speed Settle. This bit enables the high-speed settle interrupt.
[3]	SUS_IE	Suspend Request. This bit enables the Suspend interrupt.
[2]	RUM_IE	Resume. This bit enables the Resume interrupt.
[1]	RST_IE	Reset Status. This bit enables the USB-Reset interrupt.
[0]	SOF_IE	SOF Interrupt. This bit enables the SOF interrupt.

261

Publication Release Date: Jun. 18, 2010

USB Operational Register (USB_OPER)

Register	Address	R/W	Description	Default Value
USB_OPER	0xB000_6018	R/W	USB Operational Register	0x0000_0002

					-/ / / /	/ 2	
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
				22	2)2		
15	14	13	12	11	10	9	8
			erved			700	
7	6	5	4	3	2	1	0
Reserved				CUR_SPD	SET_HISPD	GEN_RUM	

Bits	Descriptions	
[2]	CUR_SPD	USB Current Speed. When set, this bit indicates that the DEVICE CONTROLLER has settled in High Speed and a zero indicates that the device has settled in Full Speed
[1]	SET_HISPD	USB High Speed. When set to one, this bit indicates the DEVICE CONTROLLER to initiate a chirp-sequence during reset protocol, if it set to zero, it indicates the DEVICE CONTROLLER to suppress the chirp-sequence during reset protocol, thereby allowing the DEVICE CONTROLLER to settle in full-speed, even though it is connected to a USB2.0 Host.
[0]	GEN_RUM	Generate Resume. Writing a 1 to this bit causes a Resume sequence to be initiated to the host if device remote wakeup is enabled. This bit is self-clearing.

262

Publication Release Date: Jun. 18, 2010

USB Frame Count Register (USB_FRAME_CNT)

Register	Address	R/W	Description	Default Value
USB_FRAME_CNT	0xB000_601C	R	USB Frame Count Register	0x0000_0000

					- / AA - /			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
				33	5/2			
15	14	13	12	11	10	9	8	
Rese	erved			E_CNT		17 6		
7	6	5	4	3	2	1	0	
FRAME_CNT				N	/IFRAME_CI	NT C		

Bits	Descriptions	
[13:3]	FRAME_CNT	FRAME COUNTER. This field contains the frame count from the most recent start-of-frame packet.
[2:0]	MFRAME_CNT	MICRO FRAME COUNTER. This field contains the micro-frame number for the frame number in the frame counter field.

263

Publication Release Date: Jun. 18, 2010

USB Address Register (USB_ADDR)

Register	Address	R/W	Description	Default Value
USB_ADDR	0xB000_6020	R/W	USB Address Register	0x0000_0000

					-/10		
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved						3)2/	
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved		ADDR					

Bits	Descriptions			
[6:0]	ADDR	This field contains the current USB address of the device. This field is cleared when a root port reset is detected.		

264

Publication Release Date: Jun. 18, 2010

Control-ep Data Buffer (CEP_DATA_BUF)

Register	Address	R/W	Description	Default Value
CEP_DATA_BUF	0xB000_6028	RW	Control-ep Data Buffer	0x0000_0000

					17///	10// 2		
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
	DATA_BUF							
7	6	5	4	3	2	1	0	
	DATA_BUF							

Bits		Descriptions			
[15:0	0]	DATA_BUF	Control-ep Data Buffer. Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).		

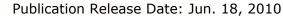
265

Publication Release Date: Jun. 18, 2010

Control-ep Control and Status (CEP_CTRL_STAT)

Register	Address	R/W	Description	Default Value
CEP_CTRL_STAT	0xB000_602C	RW	Control-ep Control and Status	0x0000_0000

					-/ / / /		
31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						20
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved				FLUSH	ZEROLEN	STLALL	NAK_CLEAR


Bits	Descriptions	
[3]	FLUSH	CEP-FLUSH Bit. Writing 1 to this bit cause the packet buffer and its corresponding CEP_AVL_CNT register to be cleared. This bit is self-cleaning.
[2]	ZEROLEN	ZEROLEN Bit. This bit is valid for auto validation mode only. When this bit is set, DEVICE CONTROLLER can send a zero length packet to the host during Data stage to an IN token. This bit gets cleared once the zero length data packet is sent. So, the local CPU need not write again to clear this bit.
[1]	STLALL	STALL. This bit is a read/write bit. When this stall bit is set, the control endpoint sends a stall handshake in response to any in or out token thereafter. This is typically used for response to invalid/unsupported requests. When this bit is being set the NAK clear bit has to be cleared at the same time since the NAK clear bit has highest priority than STALL. It is automatically cleared on receipt of a next setup-token. So, the local CPU need not write again to clear this bit. NOTE: ONLY when CPU write data [1:0] is 2'b10 or 2'b00, this bit can be updated.

266

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	NAK_CLEAR	NAK_CLEAR. This is a read/write bit. This bit plays a crucial role in any control transfer. It bit is set to one by the DEVICE CONTROLLER, whenever a setup token is received. The local CPU can take its own time to finish off any house-keeping work based on the request and then clear this bit. Unless the bit is being cleared by the local CPU by writing zero, the DEVICE CONTROLLER will be responding with NAKs for the subsequent status phase. This mechanism holds the host from moving to the next request, until the local CPU is also ready to process the next request. NOTE: ONLY when CPU write data [1:0] is 2'b10 or 2'b00, this bit can be updated.

Control Endpoint Interrupt Enable (CEP_IRQ_ENABLE)

Register	Address	R/W	Description	Default Value
CEP_IRQ_ENABLE	0xB000_6030	R/W	Control Endpoint Interrupt Enable	0x0000_0000

					0//m V	31	
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved	l	EMPTY_IE	FULL_IE	STACOM_IE	ERR_IE	STALL_IE
7	6	5	4	3	2	1	0
NAK_IE	DATA_RxED_IE	DATA_TxED_IE	PING_IE	IN_TK_IE	OUT_TK_IE	SETUP_PK_IE	SETUP_TK_IE

Bits	Descriptions	escriptions						
[12]	EMPTY_IE	Buffer Empty Interrupt. This bit enables the buffer empty interrupt.						
[11]	FULL_IE	Buffer Full Interrupt. This bit enables the buffer full interrupt.						
[10]	STACOM_IE	Status Completion Interrupt. This bit enables the Status Completion interrupt.						
[9]	ERR_IE	USB Error Interrupt. This bit enables the USB Error interrupt.						
[8]	STALL_IE	STALL Sent Interrupt. This bit enables the STALL sent interrupt						
[7]	NAK_IE	NAK Sent Interrupt. This bit enables the NAK sent interrupt.						
[6]	DATA_RxED_IE	Data Packet Received Interrupt. This bit enables the data received interrupt.						

268

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions						
[5]	DATA_TxED_IE	Data Packet Transmitted Interrupt. This bit enables the data packet transmitted interrupt.						
[4]	PING_IE	Ping Token Interrupt. This bit enables the ping token interrupt.						
[3]	IN_TK_IE	In Token Interrupt. This bit enables the in token interrupt						
[2]	OUT_TK_IE	Out Token Interrupt. This bit enables the out token interrupt.						
[1]	SETUP_PK_IE	Setup Packet Interrupt. This bit enables the setup packet interrupt.						
[0]	SETUP_TK_IE	Setup Token Interrupt Enable. This bit enables the setup token interrupt.						

Publication Release Date: Jun. 18, 2010

Control-Endpoint Interrupt Status (CEP_IRQ_STAT)

Register	Address	R/W	Description	Default Value
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000

					-/12			
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved			EMPTY_IS	FULL_IS	STACOM_IS	ERR_IS	STALL_IS	
7	6	5	4	3	2	1	0	
NAK_IS	DATA_RxED_IS	DATA_TxED_IS	PING_IS	IN_TK_IS	OUT_TK_IS	SETUP_PK_IS	SETUP_TK_IS	

Bits	Descriptions	
[12]	EMPTY_IS	Buffer Empty Interrupt. (Read Only) This bit is set when the control-ednpt buffer is empty.
[11]	FULL_IS	Buffer Full Interrupt. (Write "1" Clear) This bit is set when the control-endpt buffer is full.
[10]	STACOM_IS	Status Completion Interrupt. (Write "1" Clear) This bit is set when the status stage of a USB transaction has completed successfully.
[9]	ERR_IS	USB Error Interrupt. (Write "1" Clear) This bit is set when an error had occurred during the transaction.
[8]	STALL_IS	STALL Sent Interrupt. (Write "1" Clear) This bit is set when a stall-token is sent in response to an in/out token
[7]	NAK_IS	NAK Sent Interrupt. (Write "1" Clear) This bit is set when a nak-token is sent in response to an in/out token

270

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[6]	DATA_RxED_IS	Data Packet Received Interrupt. (Write "1" Clear) This bit is set when a data packet is successfully received from the host for an out token and an ack is sent to the host.
[5]	DATA_TxED_IS	Data Packet Transmitted Interrupt. (Write "1" Clear) This bit is set when a data packet is successfully transmitted to the host in response to an in-token and an ack-token is received for the same.
[4]	PING_IS	Ping Token Interrupt. (Write "1" Clear) This bit is set when the controlendpt receives a ping token from the host.
[3]	IN_TK_IS	In Token Interrupt. (Write "1" Clear) This bit is set when the controlendpt receives an in token from the host.
[2]	OUT_TK_IS	Out Token Interrupt. (Write "1" Clear) This bit is set when the control-endpoint receives an out token from the host.
[1]	SETUP_PK_IS	Setup Packet Interrupt. (Write "1" Clear) This bit is set when a setup packet has been received from the host. This bit must be cleared (by writing a 1) before the next setup packet can be received. If the bit is not cleared, then the successive setup packets will be overwritten in the setup packet buffer.
[0]	SETUP_TK_IS	Setup Token Interrupt. (Write "1" Clear) This bit indicates when a setup token is received. Writing a 1 clears this status bit

Publication Release Date: Jun. 18, 2010

In-transfer data count (IN_TRF_CNT)

Register	Address	R/W	Description	Default Value
IN_TRF_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000

					-///				
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved							5/2		
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2						0		
	IN_TRF_CNT								

Bits	Descriptions	
[7:0]	IN_TRF_CNT	In-transfer data count. There is no mode selection for the control endpoint (but it operates like manual mode). The local-CPU has to fill the control-endpoint buffer with the data to be sent for an in-token and to write the count of bytes in this register. When zero is written into this field, a zero length packet is sent to the host. When the count written in the register is more than the MPS, the data sent will be of only MPS.

Publication Release Date: Jun. 18, 2010

Out-transfer data count (OUT_TRF_CNT)

Register	Address	R/W	Description	Default Value
OUT_TRF_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000

					7/44				
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	92	5/2							
15	14	13	12	11	10	9	8		
	OUT_TRF_CNT								
7	6	5	4	3	2	1	0		
	OUT_TRF_CNT								

Bits		Descriptions	
[15:0	0]	OUT_TRF_CNT	Out-Transfer Data Count. The DEVICE CONTROLLER maintains the count of the data received in case of an out transfer, during the control transfer.

273

Publication Release Date: Jun. 18, 2010

Control- Endpoint data count (CEP_CNT)

Register	Address	R/W	Description	Default Value
CEP_CNT	0xB000_6040	R	Control-ep data count	0x0000_0000

		119-71 4 194								
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
CEP_CNT										
7	6	5	4	3	2	1	0			
	CEP_CNT									

Bits	Descriptions	
[15:0] CE	CEP_CNT	Control-ep Data Count.
	020.11	The DEVICE CONTROLLER maintains the count of the data of control-ep.

Publication Release Date: Jun. 18, 2010 Revision: A3

Setup1 & Setup0 bytes (SETUP1_0)

Register Address R/W		Description	Default Value	
SETUP1_0	0xB000_6044	R	Setup1 & Setup0 bytes	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
SETUP1										
7	6	5	4	3	2	1	0			
SETUPO							024			

Bits	Descriptions
------	--------------

Publication Release Date: Jun. 18, 2010

Bits	Descriptions							
		Setup Byte 1[15:8]. This register provides byte 1 of the last setup packet receive a Standard Device Request, the following bRequest information is returned.						
		Code	Descriptions					
		0x00	Get Status					
		0x01	Clear Feature					
		0x02	Reserved					
		0x03	Set Feature					
[15:8]	SETUP1	0x04	Reserved					
[13.0]	321011	0x05	Set Address					
		0x06	Get Descriptor					
		0x07	Set Descriptor					
		0x08	Get Configuration					
		0x09	Set Configuration					
		0x0A	Get Interface					
		0x0B	Set Interface					
		0x0C	Synch Frame					

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Descriptions					
		This reg a Stan informa	ndard Device tion is returned	Strate State		
		Bits	Description	(1777 - 777A		
		[7]	Direction	0 = host to device; 1 = device to host		
		[6.5]				
[7:0]	SETUP0	[6:5]	Туре	0 = Standard,		
[,,,,]				1 = Class,		
				2 = Vendor,		
		 		3 = Reserved		
		[4:0]	Recipient	0 = Device,		
				1 = Interface,		
				2 = Endpoint,		
				3 = Other,		
				4-31 Reserved		

Publication Release Date: Jun. 18, 2010 Revision: A3

277

Setup3 & Setup2 bytes (SETUP3_2)

Register Address		R/W	Description	Default Value	
SETUP3_2	0xB000_6048	R	Setup3 & Setup2 bytes	0x0000_0000	

					10//	7.7.7%			
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
SETUP3									
7	6	5	4	3	2	1	0		
	SETUP2								

Bits	Descriptions	
[15:8]	SETUP3	Setup Byte 3 [15:8]. This register provides byte 3 of the last setup packet received. For a Standard Device Request, the most significant byte of the wValue field is returned.
[7:0]	SETUP2	Setup Byte 2 [7:0]. This register provides byte 2 of the last setup packet received. For a Standard Device Request, the least significant byte of the wValue field is returned.

278

Publication Release Date: Jun. 18, 2010

Setup5 & Setup4 bytes (SETUP5_4)

Register	gister Address R/W		Description	Default Value	
SETUP5_4	0xB000_604C	R	Setup5 & Setup4 bytes	0x0000_0000	

					10//	7.7.0			
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
SETUP5									
7	6	5	4	3	2	1	0		
	SETUP4								

Bits	Descriptions	
[15:8]	SETUP5	Setup Byte 5[15:8]. This register provides byte 5 of the last setup packet received. For a Standard Device Request, the most significant byte of the wIndex field is returned.
[7:0]	SETUP4	Setup Byte 4[7:0]. This register provides byte 4 of the last setup packet received. For a Standard Device Request, the least significant byte of the wIndex is returned.

279

Publication Release Date: Jun. 18, 2010

Setup7 & Setup6 bytes (SETUP7_6)

Register	Address	R/W	Description	Default Value	
SETUP7_6	0xB000_6050	R	Setup7 & Setup6 bytes	0x0000_0000	

					10//	7.7.0			
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
SETUP7									
7	6	5	4	3	2	1	0		
	SETUP6								

Bits	Descriptions	
[15:8]	SETUP7	Setup Byte 7[15:8]. This register provides byte 7 of the last setup packet received. For a Standard Device Request, the most significant byte of the wLength field is returned.
[7:0]	SETUP6	Setup Byte 6[7:0]. This register provides byte 6 of the last setup packet received. For a Standard Device Request, the least significant byte of the wLength field is returned.

280

Publication Release Date: Jun. 18, 2010

Control Endpoint RAM Start Address Register (CEP_START_ADDR)

Register	Address	R/W	Description	Default Value
CEP_START_ADDR	0xB000_6054	R/W	Control EP RAM Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Reserved			CEP	_START_AI	DDR			
7	6	5	4	3	2	1	0			
	CEP_START_ADDR									

Bits	Descriptions	
[10:0]	CEP_START_ADDR	This is the start-address of the RAM space allocated for the control-endpoint

281

Publication Release Date: Jun. 18, 2010

Control Endpoint RAM End Address Register (CEP_END_ADDR)

Register Address		R/W	Description	Default Value	
CEP_END_ADDR	0xB000_6058	R/W	Control EP RAM End Address Register	0x0000_0000	

					10//- 1	C. J. J. V.				
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Reserved			CE	P_END_AD	DR			
7	6	5	4	3	2	1	0			
	CEP_END_ADDR									

Bits	Descriptions	
[10:0]	CEP_END_ADDR	This is the end-address of the RAM space allocated for the control-endpoint

282

Publication Release Date: Jun. 18, 2010

DMA Control Status Register (DMA_CTRL_STS)

Register	Address	R/W	Description	Default Value
DMA_CTRL_STS	0xB000_605C	R/W	DMA Control Status Register	0x0000_0000

					33///	111111				
31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	3 2 1					
RST_DMA	SCAT_GA_EN	DMA_EN	DMA_RD	DMA_ADDR						

Bits	Descriptions	
[7]	RST_DMA	Reset DMA state machine.
[6]	SCAT_GA_EN	Scatter gather function enable
[5]	DMA_EN	DMA Enable Bit
[4]	DMA_RD	DMA Operation Bit. If '1', the operation is a DMA read and if '0' the operation is a DMA write.
[3:0]	DMA_ADDR	DMA ep_addr Bits

When enable scatter gather DMA function, SCAT_GA_EN needs to be set high and DMA_CNT set to 8 bytes. Then DMA will enable to fetch the descriptor which describes the real memory address and length. The descriptor will be a

8-byte format, like the following:

[31]	[30]	[29:0]
		MEM_ADDR[31:0]

Publication Release Date: Jun. 18, 2010

EOT RD Reserved count[19:0]	
-----------------------------	--

MEM_ADDR: It specifies the memory address (AHB address).

EOT: end of transfer. When this bit sets to high, it means this is the last descriptor.

RD: "1" means read from memory into buffer. "0" means read from buffer into memory.

Publication Release Date: Jun. 18, 2010

DMA Count Register (DMA_CNT)

Register	Address	R/W	Description	Default Value
DMA_CNT	0xB000_6060	R/W	DMA Count Register	0x0000_0000

						1.5%	
31	30	29	28	27	26	25	24
			Reserv	ed	10/0	16	
23	22	21	20	19	18	17	16
	Re	eserved		DMA_CNT			
15	14	13	12	11	10	9	8
			DMA_C	NT		1	27(2)
7	6	5	4	3	2	1	0
	DMA_CNT						

Bits	Descriptions	
[19:0]	DMA_CNT	The transfer count of the DMA operation to be performed is written to this register.

Publication Release Date: Jun. 18, 2010

Endpoint A~F Data Register (EPA_DATA_BUF~ EPF_DATA_BUF)

Register	Address	R/W	Description	Default Value
EPA_DATA_BUF	0xB000_6064	R/W Endpoint A Data Register		0x0000_0000
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B Data Register	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C Data Register	0x0000_0000
EPD_DATA_BU F	0xB000_60DC	R/W	Endpoint D Data Register	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E Data Register	0x0000_0000
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	EP_DATA_BUF							
7	6	5	4	3	2	1	0	
-		EP_DATA_BUF						

Bits	Descriptions	
[15:0]	EP_DATA_BUF	Endpoint A~F Data Register. Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).

286

Publication Release Date: Jun. 18, 2010

Endpoint A~F Interrupt Status Register (EPA_IRQ_STAT~ EPF_IRQ_STAT)

Register	Address	R/W	Description	Default Value
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt Status Register	0x0000_0002
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt Status Register	0x0000_0002
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt Status Register	0x0000_0002
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt Status Register	0x0000_0002
EPE_IRQ_STAT	0xB000_6104	R/W	Endpoint E Interrupt Status Register	0x0000_0002
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt Status Register	0x0000_0002

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved		O_SHORT_PKT_IS	ERR_IS	NYET_IS	STALL_IS	NAK_IS
7	6	5	4	3	2	1	0
PING_IS	IN_TK_IS	OUT_TK_IS	DATA_RxED_IS	DATA_TxED_IS	SHORT_PKT_IS	EMPTY_IS	FULL_IS

Bits	Descriptions	Descriptions				
[12]	O_SHORT_PKT_IS	Bulk Out Short Packet Received (Writing a '1' clears this bit.) Received bulk out short packet (including zero length packet)				
[11]	ERR_IS	ERR Sent. (Writing a `1' clears this bit.) This bit is set when there occurs any error in the transaction.				
[10]	NYET_IS	NYET Sent. (Writing a '1' clears this bit.) This bit is set when the space available in the RAM is not sufficient to accommodate the next on coming data packet.				

287

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[9]	STALL_IS	USB STALL Sent. (Writing a '1' clears this bit.) The last USB packet could not be accepted or provided because the endpoint was stalled, and was acknowledged with a STALL.
[8]	NAK_IS	USB NAK Sent. (Writing a '1' clears this bit.) The last USB IN packet could not be provided, and was acknowledged with a NAK.
[7]	PING_IS	PING Token Interrupt. (Writing a '1' clears this bit.) This bit is set when a Data IN token has been received from the host.
[6]	IN_TK_IS	Data IN Token Interrupt. (Writing a '1' clears this bit.) This bit is set when a Data IN token has been received from the host.
[5]	OUT_TK_IS	Data OUT Token Interrupt. (Writing a '1' clears this bit.) This bit is set when a Data OUT token has been received from the host. This bit also set by PING tokens (in high-speed only).
[4]	DATA_RxED_IS	Data Packet Received Interrupt. (Writing a '1' clears this bit.) This bit is set when a data packet is received from the host by the endpoint.
[3]	DATA_TxED_IS	Data Packet Transmitted Interrupt. (Writing a '1' clears this bit.) This bit is set when a data packet is transmitted from the endpoint to the host.
[2]	SHORT_PKT_IS	Short Packet Transferred Interrupt. (Writing a '1' clears this bit.) This bit is set when the length of the last packet was less than the Maximum Packet Size (EP_MPS).
[1]	EMPTY_IS	Buffer Empty. (READ ONLY) For an IN endpoint, a buffer is available to the local side for writing up to FIFO full of bytes. This bit is set when the endpoint buffer is empty. For an OUT endpoint, the currently selected buffer has a count of 0, or no buffer is available on the local side (nothing to read).

288

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	FULL_IS	Buffer Full. (READ ONLY) This bit is set when the endpoint packet buffer is full. For an IN endpoint, the currently selected buffer is full, or no buffer is available to the local side for writing (no space to write). For an OUT endpoint, there is a buffer available on the local side, and there are FIFO full of bytes available to be read (entire packet is available for reading).

Publication Release Date: Jun. 18, 2010

Endpoint A~F Interrupt Enable Register (EPA_IRQ_ENB~ EPF_IRQ_ENB)

Register	Address R/W		Description	Default Value
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt Enable Register	0x0000_0000
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt Enable Register	0x0000_0000
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt Enable Register	0x0000_0000
EPD_IRQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt Enable Register	0x0000_0000
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt Enable Register	0x0000_0000
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			R	eserved			
23	22	21	20	19	18	17	16
			R	eserved			
15	14	13	12	11	10	9	8
	Reserved		O_SHORT_PKT_IE	ERR_IE	NYET_IE	STALL_IE	NAK_IE
7	6	5	4	3	2	1	0
PING_IE	IN_TK_IE	OUT_TK_IE	DATA_RxED_IE	DATA_TxED_IE	SHORT_PKT_IE	EMPTY_IE	FULL_IE

Bits	Descriptions	
[12]	O_SHORT_PKT_IE	Bulk Out Short Packet Interrupt Enable When set, this bit enables a local interrupt to be set whenever bulk out short packet occurs on the bus for this endpoint.
[11]	ERR_IE	ERR interrupt Enable. When set, this bit enables a local interrupt to be set whenever ERR condition occurs on the bus for this endpoint.
[10]	NYET_IE	NYET Interrupt Enable. When set, this bit enables a local interrupt to be set whenever NYET condition occurs on the bus for this endpoint.

290

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
[9]	STALL_IE	USB STALL Sent Interrupt Enable. When set, this bit enables a local interrupt to be set when a stall token is sent to the host.				
[8]	NAK_IE	USB NAK Sent Interrupt Enable. When set, this bit enables a local interrupt to be set when a nak token is sent to the host.				
[7]	PING_IE	PING Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a ping token has been received from the host.				
[6]	IN_TK_IE	Data IN Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data IN token has been received from the host.				
[5]	OUT_TK_IE	Data OUT Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data OUT token has been received from the host.				
[4]	DATA_RxED_IE	Data Packet Received Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been transmitted to the host.				
[3]	DATA_TxED_IE	Data Packet Transmitted Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been received from the host.				
[2]	SHORT_PKT_IE	Short Packet Transferred Interrupt Enable. When set, this bit enables a local interrupt to be set when a short data packet has been transferred to/from the host.				
[1]	EMPTY_IE	Buffer Empty Interrupt. When set, this bit enables a local interrupt to be set when a buffer empty condition is detected on the bus.				
[0]	FULL_IE	Buffer Full Interrupt. When set, this bit enables a local interrupt to be set when a buffer full condition is detected on the bus.				

291

Publication Release Date: Jun. 18, 2010

Endpoint A~F Data Available count register (EPA_DATA_CNT~ EPF_DATA_CNT)

Register	Address	R/W	Description	Default Value
EPA_DATA_CNT	0xB000_6070	R	Endpoint A Data Available count register	0x0000_0000
EPB_DATA_CNT	0xB000_6098	R	Endpoint B Data Available count register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Endpoint C Data Available count register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Endpoint D Data Available count register	0x0000_0000
EPE_DATA_CNT	0xB000_6110	R	Endpoint E Data Available count register	0x0000_0000
EPF_DATA_CNT	0xB000_6133	R	Endpoint F Data Available count register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved				DMA_LOOP	ı		
23	22	21	20	19	18	17	16
			DMA_	LOOP			
15	14	13	12	11	10	9	8
× ×			DATA	_CNT			
7	6	5	4	3	2	1	0
-	DATA_CNT						

Bits	Descriptions	
[30:16]	DMA_LOOP	This register is the remaining DMA loop to complete. Each loop means 32-byte transfer.
[15:0]	DATA_CNT	For an OUT / IN endpoint, this register returns the number of valid bytes in the endpoint packet buffer.

292

Publication Release Date: Jun. 18, 2010

Endpoint A~F Response Set/Clear Register (EPA_RSP_SC~ EPF_RSP_SC)

Register	Address	R/W	Description	Default Value
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A Response Set/Clear Register	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	Endpoint B Response Set/Clear Register	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C Response Set/Clear Register	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W	Endpoint D Response Set/Clear Register	0x0000_0000
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E Response Set/Clear Register	0x0000_0000
EPF_RSP_SC	0xB000_613C	R/W	Endpoint F Response Set/Clear Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
DIS_BUF	PK_END	ZEROLEN	HALT	TOGGLE	МО	DE	BUF_FLUSH

Bits	Descriptions		
[7]	DIS_BUF	Disable Buffer This bit is used to disable buffer (set buffer size to 1) when received a bulk out short packet.	
[6]	PK_END	Packet End. This bit is applicable only in case of Auto-Validate Method. This bit is set to validate any remaining data in the buffer which is not equal to the MPS of the endpoint, and happens to be the last transfer.	

293

Publication Release Date: Jun. 18, 2010

Bits	Descriptions				
[5]	ZEROLEN	Zerolen In. This bit is used to send a zero-length packet n response to an intoken. When this bit is set, a zero packet is sent to the host on reception of an in-token.			
[4]	HALT	Endpoint Halt. This bit is used to send a stall handshake as response to the token from the host. When an Endpoint Set Feature (ep_halt) is detected by the local CPU, it must write a '1' to this bit.			
[3]	TOGGLE	Endpoint Toggle. This bit is used to clear the endpoint data toggle bit. Reading this bit returns the current state of the endpoint data toggle bit. The local CPU may use this bit, to initialize the end-point's toggle incase of reception of a Set Interface request or a Clear Feature (ep_halt) request from the host. Only when toggle bit is "1", this bit can be written into the inversed write data bit [3].			
[2:1]	MODE	Mode. These two bits decide the mode of operation of the in-endpoint. MODE[2:1] Mode Description 2'b00 Auto-Validate Mode 2'b01 Manual-Validate Mode 2'b10 Fly Mode 2'b11 Reserved. These bits are not valid for an out-endpoint. The auto validate mode will be activated when the reserved mode is selected. (These modes are explained detailed in later sections)			
[0]	BUF_FLUSH	Buffer Flush. Writing a 1 to this bit causes the packet buffer to be flushed and the corresponding EP_AVAIL register to be cleared. This bit is self-clearing. This bit should always be written after a configuration event.			

Publication Release Date: Jun. 18, 2010

Endpoint A~F Maximum Packet Size Register (EPA_MPS~ EPF_MPS)

Register	Address	R/W	Description	Default Value
EPA_MPS	0xB000_6078	R/W	Endpoint A Maximum Packet Size Register	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B Maximum Packet Size Register	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C Maximum Packet Size Register	0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D Maximum Packet Size Register	0x0000_0000
EPE_MPS	0xB000_6118	R/W	Endpoint E Maximum Packet Size Register	0x0000_0000
EPF_MPS	0xB000_6140	R/W	Endpoint F Maximum Packet Size Register	0x0000_0000

31	30	29	28	27	26	25	24					
Reserved												
23	22	21	20	19	18	17	16					
Reserved												
15	14	13	12	11	10	9	8					
		Reserved				EP_MPS						
7	6	5	4	3	2	1	0					
			EP_	MPS								

Bits	Description	Descriptions								
[10:0]	EP_MPS	MPS Endpoint Maximum Packet Size. This field determines the Endpoint Maximum Packet Size.								
		, /):								

Endpoint A~F Transfer Count Register (EPA_TRF_CNT~ EPF_TRF_CNT)

Register	Address	R/W	Description	Default Value
EPA_TRF_CNT	0xB000_607C	R/W	Endpoint A Transfer Count Register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B Transfer Count Register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C Transfer Count Register	0x0000_0000
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D Transfer Count Register	0x0000_0000
EPE_TRF_CNT	0xB000_611C	R/W	Endpoint E Transfer Count Register	0x0000_0000
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24					
Reserved												
23	22	21	20	19	18	17	16					
	Reserved											
15	14	13	12	11	10	9	8					
					E	P_TRF_CN	Т					
7	6	5	4	3	2	1	0					
C			EP_TR	RF_CNT								

Bits	Descriptions						
[10:0]	EP_TRF_CNT	For IN endpoints, this field determines the total number of sent to the host in case of manual validation method. For OUT endpoints, this field has no effect					
			296	Publication Release Date: Jun. 18, 2010 Revision: A3			

Endpoint A~F Configuration Register (EPA_CFG~ EPF_CFG)

Register	Address	R/W	Description	Default Value
EPA_CFG	0xB000_6080	R/W	Endpoint A Configuration Register	0x0000_0012
EPB_CFG	0xB000_60A8	R/W	Endpoint B Configuration Register	0x0000_0022
EPC_CFG	0xB000_60D0	R/W	Endpoint C Configuration Register	0x0000_0032
EPD_CFG	0xB000_60F8	R/W	Endpoint D Configuration Register	0x0000_0042
EPE_CFG	0xB000_6120	R/W	Endpoint E Configuration Register	0x0000_0052
EPF_CFG	0xB000_6148	R/W	Endpoint F Configuration Register	0x0000_0062

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
		Rese	erved			EP_N	MULT				
7	6	5	4	3	2	1	0				
	EP_l	NUM		EP_DIR	EP_	TYPE	EP_VALID				

Bits	Descriptions	Descriptions									
	7 Y	MULT Field. This field ind micro frame.	icates number of transactions to be carried out in	n one single							
-	500	[9:8]	Description								
[9:8]	EP_MULT	0x00	One transaction								
	4	0x01	Reserved								
	490	0x10	Reserved								
	400	0x11	Invalid								

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Descriptions	6						
[7:4]	EP_NUM	-	Endpoint Number. This field selects the number of the endpoint. Valid numbers 1 to 15.					
[3]	EP_DIR	EP_DIR = 0 - 0 to Device) Note	Endpoint Direction. EP_DIR = 0 - OUT EP (Host OUT to Device) EP_DIR = 1- IN EP (Host IN o Device) Note that a maximum of one OUT and IN endpoint is allowed or each endpoint number.					
		Control type.	ts the type of this endpoint. Endp	point 0 is forced to a				
[2:1]	EP_TYPE	[2:1]	Description					
[2.1]		0x00	Reserved					
		0x01	Bulk	25				
		0x10	Interrupt	20				
		0x11	Isochronous					
[0]	EP_VALID	1	d. s bit enables this endpoint. This ich is always enabled.	bit has no effect on				

Publication Release Date: Jun. 18, 2010

Endpoint A~F RAM Start Address Register (EPA_START_ADDR~ EPF_START_ADDR)

Register	Address	R/W	Description	Default Value	
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM Start Address Register	0x0000_0000	
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM Start Address Register	0x0000_0000	
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM Start Address Register	0x0000_0000	
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM Start Address Register	0x0000_0000	
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM Start Address Register	0x0000_0000	
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM Start Address Register	0x0000_0000	

31	30	29	28	27	26	25	24										
Reserved																	
23	22	21	20	19	18	17	16										
	Reserved																
15	14	13	12	11	10	9	8										
w 20					EP_	_START_AD	DR										
7	6	5	4	3	2	1	0										
-			EP_STAI	RT_ADDR			EP_START_ADDR										

Bits	Descriptions	
[10:0]	EP_START_ADDR	This is the start-address of the RAM space allocated for the endpoint A~F.

299

Publication Release Date: Jun. 18, 2010

Endpoint A~F RAM End Address Register (EPA_END_ADDR~ EPF_END_ADDR)

Register	Address	R/W	Description	Default Value
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM End Address Register	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM End Address Register	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM End Address Register	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM End Address Register	0x0000_0000
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM End Address Register	0x0000_0000
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM End Address Register	0x0000_0000

31	30	29	28	27	26	25	24
			Reser	ved			
23	22	21	20	19	18	17	16
			Reser	ved			
15	14	13	12	11	10	9	8
		Reserved			EF	P_END_ADE	OR .
7	6	5	4	3	2	1	0
2	EP_END_ADDR						

Bits	Descriptions			
[10:0]	EP_END_ADDR	This is the e A~F.	nd-address	of the RAM space allocated for the endpoint
			300	Publication Release Date: Jun. 18, 2010
			300	Revision: A3

AHB Address Register (USB_DMA_ADDR)

Register	Address	R/W	Description	Default Value
USB_DMA_ADDR	0xB000_6700	R/W	USB address register	0x0000_0000

31	30	29	28	27	26	25	24
			USB_DMA_	_ADDR	5%	Sh	
23	22	21	20	19	18	17	16
			USB_DMA_	_ADDR	2	12 0	
15	14	13	12	11	10	9	8
			USB_DMA_	_ADDR		(11)	(0)
7	6	5	4	3	2	1	0
			USB_DMA	_ADDR		- 10	9

Bits	Descriptions	
[31:0]	USB_DMA_ADDR	It specifies the address from which the DMA has to read / write. The address must WORD (32-bit) aligned.

Publication Release Date: Jun. 18, 2010

USB PHY Control (USB_PHY_CTL)

Register	Address	R/W	Description	Default Value
USB_PHY_CTL	0xB000_6704	R/W	USB PHY control register	0x0000_0260

						1	
31	30	29	28	27	26	25	24
			Re	eserved	-	Sh Sh	
23	22	21	20	19	18	17	16
			Re	eserved		25 6	2
15	14	13	12	11	10	9	8
		Rese	erved			Phy_suspend	Reserved
7	6	5	4	3	2	1	0
			R	eserved			6

Bits	Descriptions	
[9]	Phy_suspend	Set this bit low will cause USB PHY suspended.

302

Publication Release Date: Jun. 18, 2010

6.10UART Controller

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data characters received from the peripheral such as parallel-to-serial conversion on data characters received from the CPU. There are three UART blocks and accessory logic in this chip.

6.10.1 UART Feature Description

6.10.1.1 UARTO

UARTO is a general UART block without Modem I/O signals.

UARTO		25,7 (0)
Clock Source	External Crystal	12 JEST (2)
UART Type	General UART	, SP ,
FIFO Number	16-byte receiving FIFO and 16 byte transmitting FIFO	9
Modem Function	None	
Accessory Function	None	
I/O pin	TXD0, RXD0	

6.10.1.2 UART1

UART1 is a high speed UART, the FIFO has 64-byte for receiving and 64-byte for transmitting. The clock source is programmable in chip clock generator.

UART1	
Clock Source	External Crystal or internal PLL (Programmable)
UART Type	High speed UART
FIFO Number	64-byte receiving FIFO and 64 byte transmitting FIFO
Modem Function	None
Accessory Function	None
I/O pin	TXD1, RXD1

303

6.10.1.3 UART2

UART2 is a general UART with IrDA SIR.

	5	
UART2		(D) 1

Publication Release Date: Jun. 18, 2010

Clock Source	External Crystal				
UART Type	General UART				
FIFO Number	5-byte receiving FIFO and 16 byte transmitting FIFO				
Modem Function	none				
Accessory Function	IrDA SIR				
I/O pin	TXD2, RXD2				

Publication Release Date: Jun. 18, 2010

6.10.2 UART Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	/W Description Condition		Reset Value
UARTO : UA	ART_BA = 0xB800_	_0000	6977		
RBR	0XB800_0000	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0XB800_0000	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0XB800_0004	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0XB800_0000	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0XB800_0004	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0XB800_0008	R	Interrupt Identification Register	- O	0x8181_8181
FCR	0XB800_0008	W	FIFO Control Register		Undefined
LCR	0XB800_000C	R/W	Line Control Register		0x0000_0000
MCR	0XB800_0010	R/W	Modem Control Register	(optional)	0x0000.0000
LSR	0XB800_0014	R	Line Status Register		0x6060_6060
MSR	0XB800_0018	R	MODEM Status Register	(optional)	0x0000.0000
TOR	0XB800_001C	R/W	Time Out Register		0x0000_0000
UART1 : UA	$ART_BA = 0xB800_$	_0100			
RBR	0XB800_0100	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0XB800_0100	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0XB800_0104	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0XB800_0100	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0XB800_0104	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0XB800_0108	R	Interrupt Identification Register		0x8181_8181
FCR	0XB800_0108	W	FIFO Control Register		Undefined
LCR	0XB800_010C	R/W	Line Control Register		0x0000_0000
MCR	0XB800_0110	R/W	Modem Control Register	(optional)	0x0000.0000
LSR	0XB800_0114	R	Line Status Register		0x6060_6060
MSR	0XB800_0118	R	MODEM Status Register	(optional)	0x0000.0000
TOR	0XB800_011C	R/W	Time Out Register		0x0000_0000

305

Publication Release Date: Jun. 18, 2010

UART2 : UA	ART_BA = 0xB800_	0200			
RBR	0XB800_0200	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0XB800_0200	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0XB800_0204	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0XB800_0200	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0XB800_0204	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0XB800_0208	R	Interrupt Identification Register	SALL	0x8181_8181
FCR	0XB800_0208	W	FIFO Control Register	20 (Undefined
LCR	0XB800_020C	R/W	Line Control Register	(O)	0x0000_0000
MCR	0XB800_0210	R/W	Modem Control Register	(optional)	0x0000.0000
LSR	0XB800_0214	R	Line Status Register	1	0x6060_6060
MSR	0XB800_0218	R	MODEM Status Register	(optional)	0x0000.0000
TOR	0XB800_021C	R/W	Time Out Register		0x0000_0000
IRCR	0xB800_0220	R/W	IrDA Control Register		0x0000_0040

Publication Release Date: Jun. 18, 2010

Receive Buffer Register (RBR)

Register	Offset	R/W	Description	Reset Value
RBR	0XB800_0x00	R	Receive Buffer Register (DLAB = 0)	Undefined

7	6	5	4	3	2	1	0
			eived Data	10%	0) (=		

Bits		Descriptions						
[7:0]	8-bit Received Data	By reading this register, the UART will return an 8-bit data received from SIN pin (LSB first).						

Transmit Holding Register (THR)

Register	offset	R/W	Description	Reset Value
THR	0XB800_0x00	W	Transmit Holding Register (DLAB = 0)	Undefined

	7	6	5	4	3	2	1	0		
2	8-bit Transmitted Data									

Bits		Descriptions									
[7:0]	8-bit Transmitte d Data	By writing to this register, the UART will send out an 8-bit data through the SOUT pin (LSB first).									

Publication Release Date: Jun. 18, 2010

Interrupt Enable Register (IER)

Register	offset	R/W	Description	Reset Value
IER	0XB800_0x04	R/W	Interrupt Enable Register (DLAB = 0)	0×0000.0000

7	6	5	4	3	2	1	0
	RESERVED				RLSIE	THREIE	RDAIE

Bits		Descriptions
[3]	MSIE	MODEM Status Interrupt (Irpt_MOS) Enable 0 = Mask off Irpt_MOS 1 = Enable Irpt_MOS
[2]	RLSIE	Receive Line Status Interrupt (Irpt_RLS) Enable 0 = Mask off Irpt_RLS 1 = Enable Irpt_RLS
[1]	THREIE	Transmit Holding Register Empty Interrupt (Irpt_THRE) Enable 0 = Mask off Irpt_THRE 1 = Enable Irpt_THRE
[0]	RDAIE	Receive Data Available Interrupt (Irpt_RDA) Enable and Time-out Interrupt (Irpt_TOUT) Enable 0 = Mask off Irpt_RDA and Irpt_TOUT 1 = Enable Irpt_RDA and Irpt_TOUT
		308 Publication Release Date: Jun. 18, 2010 Revision: A3

Divider Latch (Low Byte) Register (DLL)

Register	Offset	R/W	Description	Reset Value
DLL	0XB800_0x00	R/W	Divisor Latch Register (LS) (DLAB = 1)	0x0000_0000

7	6	5	4	3	2	1	0	
Baud Rate Divider (Low Byte)								

Bits	Descriptions					
[7:0]	Baud Rate Divisor (Low Byte)	The low byte of the baud rate divider	Sold Sold Sold Sold Sold Sold Sold Sold			

309

Publication Release Date: Jun. 18, 2010

Divisor Latch (High Byte) Register (DLM)

Register	Offset	R/W	Description	Reset Value
DLM	0XB800_0x04	R/W	Divisor Latch Register (MS) (DLAB = 1)	0x0000_0000

7	6	5	4	3	2	1	0	
Baud Rate Divider (High Byte)								

Bits		Descriptions	
[7:0]	Baud Rate Divisor (High Byte)	The high byte of the baud rate divider	Soll O

310

This 16-bit divider {DLM, DLL} is used to determine the baud rate as follows

Baud Rate = Crystal Clock / {16 * [Divisor + 2]}

Note: This definition is different from 16550

Publication Release Date: Jun. 18, 2010

Interrupt Identification Register (IIR)

Register	Offset	R/W	Description	Reset Value
IIR	0XB800_0x08	R	Interrupt Identification Register	0x8181_8181

7	6	5	4	3	2	1	0
FMES	RFTLS		DMS		IID	0 4	NIP

Bits	Description	ns
		FIFO Mode Enable Status
[7] FM	FMES	This bit indicates whether the FIFO mode is enabled or not. Since the FIFO mode is always enabled, this bit always shows the logical 1 when CPU is reading this register.
		Rx FIFO Threshold Level Status
[6:5]	[6:5] RFTLS	These bits show the current setting of receiver FIFO threshold level (RTHO). The meaning of RTHO is defined in the following FCR description.
		DMA Mode Select
[4]	DMS	The DMA function is not implemented in this version. When reading IIR, the DMS is always returned 0.
[3:1]	IID	Interrupt Identification
[5.1]	110	The IID together with NIP indicates the current interrupt request from UART.
[0]	NIP	No Interrupt Pending
[0]	NIP	There is no pending interrupt.

Publication Release Date: Jun. 18, 2010

Interrupt Control Functions

IIR [3:0]	Priority	Interrupt Type	Interrupt Source	Interrupt Reset control
1		None	None	- STA
0110	Highest	Receiver Line Status (Irpt_RLS) Overrun error, parity error, framing error, or break interrupt		Reading the LSR
0100	Second	Received Data Available (Irpt_RDA)	Receiver FIFO drops below the threshold level	
1100	Second	Receiver FIFO Time- out (Irpt_TOUT)	Receiver FIFO is non- empty and no activities are occurred in the receiver FIFO during the TOR defined time duration	Reading the RBR
0010	Third	Transmitter Holing Register Empty (Irpt_THRE)	Transmitter holding register empty	Reading the IIR (if source of interrupt is Irpt_THRE) or writing into the THR
0000	Fourth	MODEM Status (Irpt_MOS)	The CTS bits are changing state.	Reading the MSR (optional)

Note: These definitions of bit 7, bit 6, bit 5, and bit 4 are different from the 16550.

312

Publication Release Date: Jun. 18, 2010

FIFO Control Register (FCR)

Register	Offset	R/W	Description	Reset Value
FCR	0XB800_0x08	W	FIFO Control Register	Undefined

7	6	5	4	3	2	1	0
	RF	ITL		DMS	TFR	RFR	FME

Bits	Descrip	tions	tions									
		Rx FIFO I	Rx FIFO Interrupt (Irpt_RDA) Trigger Level									
			RFITL [7:4]	Trigger Level		RFITL[7:4]	Trigger Level					
		UARTO	00xx 01 bytes	0000	01 bytes							
		UART2	01xx	04 bytes		0001	04 bytes					
[7:4]	RFITL	·	10xx	08 bytes	UART1	0010	08 bytes					
			11xx	14 bytes		0011	14 bytes					
						0100	30 bytes					
						0101	46 bytes					
ر فاند					others	62 bytes						
[3]	DMS	DMA Mode The DMA f		nplemented in tl	nis version.							
[2]	TFR	becomes e	s bit will genera empty (Tx point)) after sucl		FIFO. The Tx FII it is returned to					
		Rx FIFO R	Reset									
[1]	RFR	becomes e	etting this bit will generate an OSC cycle reset pulse to reset Rx FIFO. The Rx FIFO ecomes empty (Rx pointer is reset to 0) after such reset. This bit is returned to 0 utomatically after the reset pulse is generated.									
[0]	FME	FIFO Mod Because U		operating in th	e FIFO mod	de, writing this	s bit has no effe	ect				

313

Publication Release Date: Jun. 18, 2010

Bits	Descrip	Descriptions									
		while reading always gets logical one. This bit must be 1 when other FCR bits are written to; otherwise, they will not be programmed.									

Publication Release Date: Jun. 18, 2010

Line Control Register (LCR)

Register	offset	R/W	Description	Reset Value
LCR	0XB800_0x0C	R/W	Line Control Register	0x0000_0000

7	6	5	4	3	2	1	0
DLAB	ВСВ	SPE	EPE	PBE	NSB	WLS	

Bits		Descriptions				
		Divider Latch Access Bit				
[7]	DLAB	0 = It is used to access RBR, THR or IER.				
		1 = It is used to access Divisor Latch Registers {DLL, DLM}.				
		Break Control Bit				
[6]	ВСВ	When this bit is set to logic 1, the serial data output (SOUT) is forced to the Spacing State (logic 0). This bit acts only on SOUT and has no effect on the transmitter logic.				
		Stick Parity Enable				
		0 = Disable stick parity				
[5]	SPE	1 = Parity bit is transmitted and checked as a logic 1 if bit 4 is 0 (odd parity), or as a logic 0 if bit 4 is 1 (even parity). This bit has effect only when bit 3 (parity bit enable) is set.				
1	JP .	Even Parity Enable				
F 4 3	EPE	0 = Odd number of logic 1's are transmitted or checked in the data word and parity bits.				
[4]	EPE	1 = Even number of logic 1's are transmitted or checked in the data word and parity bits.				
	0	This bit has effect only when bit 3 (parity bit enable) is set.				
		315 Publication Release Date: Jun. 18, 2010 Revision: A3				

		Parity Bit Enab	le							
[3]	PBE	0 = Parity bit transfer.	0 = Parity bit is not generated (transmit data) or checked (receive data) during transfer.							
			1 = Parity bit is generated or checked between the "last data word bit" and "stop bit" of the serial data.							
		Number of "ST	Number of "STOP bit"							
		0= One " STO	bit" is generated in the	transmitted data						
[2]	NSB	1= One and a half "STOP bit" is generated in the transmitted data when 5-length is selected;								
		Two "STOP bit" i	Two "STOP bit" is generated when 6-, 7- and 8-bit word length is selected.							
		Word Length S	Word Length Select							
				-572 A						
		WLS[1:0]	Character length							
[1:0]	WLS	00	5 bits							
		01	6 bits							
		10	7 bits							
		11	8 bits							

Publication Release Date: Jun. 18, 2010

Modem Control Register (MCR)

Register	offset	R/W	Description	Reset Value
MCR	0XB800_0x10	R/W	Modem Control Register (Optional)	0x0000_0000

7	6	5	4	3	2	1	0
	Reserved				Rese	rved	

Bits		Descriptions								
[4]	LBME	Loop-back Mode Enable 0 = Disable 1 = When the loop-back mode is enabled, the following signals are connected internally: SOUT connected to SIN and SOUT pin fixed at logic 1 RTS# connected to CTS# and RTS# pin fixed at logic 1 DTR# connected to DSR# and DTR# pin fixed at logic 1								

317

Publication Release Date: Jun. 18, 2010

Line Status Control Register (LSR)

Register	Offset	R/W	Description	Reset Value
LSR	0XB800_0x14	R	Line Status Register	0x6060_6060

7	6	5	4	3	2	1	0
ERR_Rx	TE	THRE	BH	FEI	PEI	OEI	RFDR

Bits	Descripti	ons
		Rx FIFO Error
F = 7.1	EDD D	0 = Rx FIFO works normally
[7]	ERR_Rx	1 = There is at least one parity error (PE), framing error (FE), or break indication (BI) in the FIFO. ERR_Rx is cleared when CPU reads the LSR and if there are no subsequent errors in the Rx FIFO.
		Transmitter Empty
[6]	TE	0 = Either Transmitter Holding Register (THR - Tx FIFO) or Transmitter Shift Register (TSR) are not empty.
		1 = Both THR and TSR are empty.
	THRE	Transmitter Holding Register Empty
JÅE.		0 = THR is not empty.
[5]		1 = THR is empty.
		THRE is set when the last data word of Tx FIFO is transferred to Transmitter Shift Register (TSR). The CPU resets this bit when the THR (or Tx FIFO) is loaded. This bit also causes the UART to issue an interrupt (Irpt_THRE) to the CPU when IER [1] =1.
	00/1	Break Interrupt Indicator
[4]	ВП	This bit is set to a logic 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and is reset whenever the CPU reads the contents of the LSR.
		Framing Error Indicator
[3]	FEI	This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic

Publication Release Date: Jun. 18, 2010

Bits	Description	ons
		0), and is reset whenever the CPU reads the contents of the LSR.
		Parity Error Indicator
[2]	PEI	This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU reads the contents of the LSR.
[1]	OEI	Overrun Error Indicator
		An overrun error will occur only after the Rx FIFO is full and the next character has been completely received in the shift register. The character in the shift register is overwritten, but it is not transferred to the Rx FIFO. OE is indicated to the CPU as soon as it happens and is reset whenever the CPU reads the contents of the LSR.
		Rx FIFO Data Ready
[0]	RFDR	0 = Rx FIFO is empty
		1 = Rx FIFO contains at least 1 received data word.

LSR [4:2] (BII, FEI, PEI) are revealed to the CPU when its associated character is at the top of the Rx FIFO. These three error indicators are reset whenever the CPU reads the contents of the LSR.

LSR [4:1] (BII, FEI, PEI, OEI) are the error conditions that produce a "receiver line status interrupt" (Irpt_RLS) when IER [2] =1. Reading LSR clears Irpt_RLS. Writing LSR is a null operation (not suggested).

Publication Release Date: Jun. 18, 2010

Modem Status Register (MSR)

Register	offset	R/W	Description	Reset Value
MSR	0XB800_0x18	R	MODEM Status Register (Optional)	0x0000_0000

7	6	5	4	3	2	1	0
Reserved		DSR#	CTS#	Reserved	500	(Co.	

Bits	Descripti	Descriptions					
[5]	DSR#	Complement version of data set ready (DSR#) input (This bit is selected by IP)					
[4]	CTS#	Complement version of clear to send (CTS#) input (This bit is selected by IP)	ST.				

320

Publication Release Date: Jun. 18, 2010

Time-Out Register (TOR)

Register	offset	R/W	Description	Reset Value
TOR	0XB800_0x1C	R/W	Time Out Register	0x0000_0000

7	6	5	4	3	2	1	0
TOIE				TOIC	12	07 (5	

Bits		Descriptions					
[7]	TOIE	Time Out Interrupt Enable The feature of receiver time out interrupt is enabled only when TOR [7] = IER [0] = 1.					
[6:0]	тоіс	Time Out Interrupt Comparator The time out counter resets and starts counting (the counting clock = baud rate) whenever the Rx FIFO receives a new data word. Once the content of time out counter (TOUT_CNT) is equal to that of time out interrupt comparator (TOIC), a receiver time out interrupt (Irpt_TOUT) is generated if TOR [7] = IER [0] = 1. A new incoming data word or Rx FIFO empty clears Irpt_TOUT.					

Publication Release Date: Jun. 18, 2010

IrDA Control Register (IRCR)

Register	Offset	R/W	Description	Reset Value
IRCR	0xB800_0220	R/W	IrDA Control Register for UART2	0x0000_0040

7	6	5	4	3	2	1	0
Reserved	INV_Rx	INV_Tx		Reserved	570	Tx_SELECT	IrDA_EN

Bits		Descriptions						
[6]	INV_Rx	INV_Rx 1: Inverse Rx input signal 0: No inversion						
[5]	INV_Tx	INV_Tx 1: Inverse Tx output signal 0: No inversion						
[1]	Tx_SELECT	Tx_SELECT 1: Enable IrDA transmitter 0: Enable IrDA receiver						
[0]	IrDA_EN	1: Enable IrDA block 0: Disable IrDA block						

Publication Release Date: Jun. 18, 2010

6.11 TIMER Controller

6.11.1 General Timer Controller

The timer module includes five channels, TIMER0~TIMER4, they can easily be implemented as counting scheme. The timer can perform functions like frequency measurement, event counting, interval measurement, pulse generation, delay timing, and so on. The timer possesses features such as adjustable resolution, programmable counting period, and detailed information. The timer can generate an interrupt signal upon timeout, or provide the current value of count during operation.

The general TIMER Controller includes the following features

- Five channels with a 24-bit down counter and an interrupt request each
- Independent clock source for each channel
- Maximum uninterrupted time = (1 / 15 MHz) * (255) * (2^24 1), if TCLK = 15 MHz

6.11.2 Watchdog Timer

The purpose of watchdog timer is to perform a system restart after the software running into a problem. This prevents system from hanging for an indefinite period of time. It is a free running timer with programmable time-out intervals. When the specified time internal expires, a system reset can be generated. If the watchdog timer reset function is enabled and the watchdog timer is not being reset before timing out, then the watchdog reset is activated after 1024 WDT clocks. Setting **WTE** in the register **WTCR** enables the watchdog timer.

The WTR should be set before making use of watchdog timer. This ensures that the watchdog timer restarts from a know state. The watchdog timer will start counting and time-out after a specified period of time. The time-out interval is selected by two bits, WTIS [1:0]. The WTR is self-clearing, i.e., after setting it, the hardware will automatically reset it. When timeout occurs, Watchdog Timer interrupt flag is set. Watchdog Timer waits for an additional 1024 WDT clock cycles before issuing a reset signal, if the WTRE is set. The WTRF will be set and the reset signal will last for 15 WDT clock cycles long. When used as a simple timer, the interrupt and reset functions are disabled. Watchdog Timer will set the WTIF each time a timeout occurs. The WTIF can be polled to check the status, and software can restart the timer by setting the WTR.

Publication Release Date: Jun. 18, 2010

6.11.3 Timer Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W/C	Description	Reset Value
TMR_BA =	0xB800_1000		Ch A.	
TCSR0	0xB800_1000	R/W	Timer Control and Status Register 0	0x0000_0005
TCSR1	0xB800_1004	R/W	Timer Control and Status Register 1	0x0000_0005
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_0000
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_0000
TDRO	0xB800_1010	R	Timer Data Register 0	0x0000_0000
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_0000
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000
WTCR	0xB800_101C	R/W	Watchdog Timer Control Register	0x0000_0400
TCSR2	0xB800_1020	R/W	Timer Control and Status Register 2	0x0000_0005
TCSR3	0xB800_1024	R/W	Timer Control and Status Register 3	0x0000_0005
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_0000
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_0000
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_0000
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_0000
TCSR4	0xB800_1040	R/W	Timer Control and Status Register 4	0x0000_0005
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_0000
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_0000

Publication Release Date: Jun. 18, 2010

Timer Control and Status Register 0~4 (TCR0~TCR4)

	2	F	175/17.6% TANISS.	
Register	Address	R/W/C	Description	Reset Value
TCSR0	0xB800_1000	R/W	Timer Control and Status Register 0	0x0000_0005
TCSR1	0xB800_1004	R/W	Timer Control and Status Register 1	0x0000_0005
TCSR2	0xB800_1020	R/W	Timer Control and Status Register 2	0x0000_0005
TCSR3	0xB800_1024	R/W	Timer Control and Status Register 3	0x0000_0005
TCSR4	0xB800_1040	R/W	Timer Control and Status Register 4	0x0000_0005

7.61 1/3/										
31	30	29	28	27	26	25	24			
RESERVED	CE	IE	MODE		CRST	CACT	RESERVED			
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
	RESERVED									
7	6	5	4	3	2	1	0			
	PRESCALE									

Bits		Descriptions						
[30]	CE	0 = Stops counting	Counter Enable 0 = Stops counting 1 = Starts counting					
[29]	A LE	0 = Disables time 1 = Enables time	Interrupt Enable 0 = Disables timer interrupt 1 = Enables timer interrupt. If timer interrupt is enabled, the timer asserts its interrupt signal when the associated counter decrements to zero.					
		Timer Operating Mode						
	MODE	MODE [28:27]	Timer Operating Mode					
[28:27]		00	The timer is operating in the one-shot mode. The associated interrupt signal is generated once (if IE is enabled) and CE is automatically cleared then.					
		01	The timer is operating in the periodic mode. The associated interrupt signal is generated periodically (if IE					

325

Publication Release Date: Jun. 18, 2010

Bits		Descriptions			
			is enabled).		
		10	The timer is operating in the toggle mode. The associated interrupt signal is changing back and forth (if IE is enabled) with 50% duty cycle.		
		11	Reserved for further use		
[26]	CRST	0 = No effect.	eset the TIMER counter, and also force CEN to 0 . Is pre-scale counter, internal 24-bit counter and CEN.		
[25]	САСТ	Timer is in Acti This bit indicates 0 = Timer is not 1 = Timer is in a	the counter status of timer. active.		
[7:0]	PRESCALE	Clock Pre-scale Divide Count Clock input is divided by PRESCALE + 1 before it is fed to the counter (here PRESCALE is considered as a decimal number). If PRESCALE = 0, then there is no scaling.			

Publication Release Date: Jun. 18, 2010

Timer Initial Count Register 0~4 (TICR0~TICR4)

Register	Address	R/W/C	Description	Reset Value
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_00FF
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_00FF
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_00FF
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_00FF
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_00FF

31	30	29	28	27	26	25	24		
RESERVED									
23	22	21	20	19	18	17	16		
	TIC[23:16]								
15	14	13	12	11	10	9	8		
			TICE	15:8]					
7	6	5	4	3	2	1	0		
	TIC[7:0]								

Bits		Descriptions				
, the		Timer Initial Count				
2		This is a 24-bit value representing the initial count. Timer will reload this value whenever the counter is decremented to zero.				
[23:0]	TIC	NOTE:				
[23.0]	110	(1) Never write 0x0 in TIC, or the core will run into unknown state.				
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		(2) No matter CEN is 0 or 1, whenever software write a new value into this register, Timer will restart counting using this new value and abort previous count.				

327

Publication Release Date: Jun. 18, 2010

Timer Data Register 0~4 (TDR0~TDR4)

T-			- A - COMM	
Register	Address	R/W/C	Description	Reset Value
TDR0	0xB800_1010	R	Timer Data Register 0	0x0000_00FF
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_00FF
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_00FF
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_00FF
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_00FF

						7.53.1			
31	30	29	28	27	26	25	24		
RESERVED									
23	22	21	20	19	18	17	16		
	TDR[23:16]								
15	14	13	12	11	10	9	8		
			TDR[15:8]					
7	6	5	4	3	2	1	0		
	TDR[7:0]								

Bits	Descriptions							
[23:0]	TDR	Timer Data Register The current count is registered in this 24-bit value. NOTE: Software can read a correct current value on this register only when CEN = 0, or the value represents here could not be a correct one.						
		328 Publication Release Date: Jun. 18, 201 Revision: A						

Timer Interrupt Status Register (TISR)

Register	Address	R/W/C	Description	Reset Value
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
RESERVED									
23	22	21	20	19	18	17	16		
RESERVED									
15	14	13	12	11	10	9	8		
RESERVED									
7	6	5	4	3	2	1	0		
	RESERVED			TIF3	TIF2	TIF1	TIFO		

Bits		Descriptions
		Timer Interrupt Flag 4
[4]	TIF4	0 = It indicates that the timer 4 does not count down to zero yet. Software can reset this bit after the timer interrupt 4 had occurred.
		1 = It indicates that the counter of timer 4 is decremented to zero;
de		NOTE : This bit is read only, but can be cleared by writing 1 to this bit.
1		Timer Interrupt Flag 3
[3]	TIF3	0 = It indicates that the timer 3 does not count down to zero yet. Software can reset this bit after the timer interrupt 3 had occurred.
	AL.	1 = It indicates that the counter of timer 3 is decremented to zero;
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
	3/1/2	Timer Interrupt Flag 2
[2]	TIF2	0 = It indicates that the timer 2 does not count down to zero yet. Software can reset this bit after the timer interrupt 2 had occurred.
	8	1 = It indicates that the counter of timer 2 is decremented to zero;
	49	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.

Publication Release Date: Jun. 18, 2010

	Timer Interrupt Flag 1
TIF1	0 = It indicates that the timer 1 does not count down to zero yet. Software can reset this bit after the timer interrupt 1 had occurred.
	1 = It indicates that the counter of timer 1 is decremented to zero;
	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
	Timer Interrupt Flag 0
TIFO	0 = It indicates that the timer 0 does not count down to zero yet. Software can reset this bit after the timer interrupt 0 had occurred.
	1 = It indicates that the counter of timer 0 is decremented to zero;
	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
	TIF1

Publication Release Date: Jun. 18, 2010

Watchdog Timer Control Register (WTCR)

Register	Address	R/W/C	Description	Reset Value
WTCR	0xB800_101C	R/W	Watchdog Timer Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
RESERVED									
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
RESERVED					WTCLK	RESER	/ED		
7	6	5	4	3	2	1	0		
WTE	WTIE	WTIS		WTIF	WTRF	WTRE	WTR		

Bits		Descriptions							
		Watchdog Timer Clock							
		This bit is used for deciding whether the Watchdog timer clock input is divided by 256 or not. Clock source of Watchdog timer is Crystal input.							
[10]	WTCLK	0 = Using original clock input							
		1 = The clock input will be divided by 256							
悉		NOTE: When WTTME = 1, set this bit has no effect on WDT clock (using original clock input).							
12 3	la.	Watchdog Timer Enable							
[7]	WTE	0 = Disable the watchdog timer							
	733	1 = Enable the watchdog timer							
3	18 C	Watchdog Timer Interrupt Enable							
[6]	WTIE	0 = Disable the watchdog timer interrupt							
	97	1 = Enable the watchdog timer interrupt							
	3	Watchdog Timer Interval Select							
[5:4]	WTIS	These two bits select the interval for the watchdog timer. No matter which interval is chosen, the reset time-out is always occurred 1024 clocks later than the interrupt time-out.							

331

Publication Release Date: Jun. 18, 2010

Bits		Descriptions							
		WTIS	Interrupt Timeout	Reset Timeout	Real Time Interval (CLK=15MHz/256)				
		00	2 ¹⁴ clocks	2 ¹⁴ + 1024 clocks	0.28 sec.				
		01	2 ¹⁶ clocks	2 ¹⁶ + 1024 clocks	1.12 sec.				
		10	2 ¹⁸ clocks	2 ¹⁸ + 1024 clocks	4.47 sec.				
		11	2 ²⁰ clocks	2 ²⁰ + 1024 clocks	17.9 sec.				
[3]	Watchdog Timer Interrupt Flag If the watchdog interrupt is enabled, then the hardware will set this indicate that the watchdog interrupt has occurred. If the watchdog internot enabled, then this bit indicates that a time-out period has elapsed. 0 = Watchdog timer interrupt does not occur 1 = Watchdog timer interrupt occurs NOTE: This bit is read only, but can be cleared by writing 1 to this bit.								
[2]	WTRF	When the was flag can be responsible timer has no matched	Watchdog Timer Reset Flag When the watchdog timer initiates a reset, the hardware will set this bit. This flag can be read by software to determine the source of reset. Software is responsible to clear it up manually. If WTRE is disabled, then the watchdog timer has no effect on this bit. 0 = Watchdog timer reset does not occur 1 = Watchdog timer reset occurs						
[1]	WTRE	Setting this 0 = Disable 1 = Enable	Watchdog Timer Reset Enable Setting this bit will enable the watchdog timer reset function. 0 = Disable watchdog timer reset function 1 = Enable watchdog timer reset function NOTE: This bit is read only, but can be cleared by writing 1 to this bit.						
[0]	WTR	Watchdog Timer Reset This bit brings the watchdog timer into a known state. It helps reset the watchdog timer before a time-out situation occurring. Failing to set WTR before time-out will initiates an interrupt if WTIE is set. If WTRE is set, a watchdog timer reset will be generated 512 clocks after time-out. This bit is self-clearing. 0 = No operation 1 = Reset the contents of the watchdog timer							

332

Publication Release Date: Jun. 18, 2010 Revision: A3

6.12 Advanced Interrupt Controller

An interrupt temporarily changes the sequence of program execution to react to a particular event such as power failure, watchdog timer timeout, transmit/receive request from Ethernet MAC Controller, and so on. The CPU processor provides two modes of interrupt, the Fast Interrupt (FIQ) mode for critical session and the Interrupt (IRQ) mode for general purpose. The IRQ request is occurred when the nIRQ input is asserted. Similarly, the FIQ request is occurred when the nFIQ input is asserted. The FIQ has privilege over the IRQ and can preempt an ongoing IRQ. It is possible to ignore the FIQ and the IRQ by setting the F and I bits in the current program status register (CPSR).

The Advanced Interrupt Controller (AIC) is capable of processing the interrupt requests up to 32 different sources. Currently, 30 interrupt sources are defined. Each interrupt source is uniquely assigned to an interrupt channel. For example, the watchdog timer interrupt is assigned to channel 1. The AIC implements a proprietary eight-level priority scheme that categories the available 30 interrupt sources into eight priority levels. Interrupt sources within the priority level 0 is the highest priority and the priority level 7 is the lowest. In order to make this scheme work properly, a certain priority level must be specified to each interrupt source during power-on initialization; otherwise, the system shall behave unexpectedly. Within each priority level, interrupt source that is positioned in a lower channel has a higher priority. Interrupt source that is active, enabled, and positioned in the lowest channel with priority level 0 is promoted to the FIQ. Interrupt sources within the priority levels other than 0 are routed to the IRQ. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is performed automatically by the AIC.

Though interrupt sources originated from the chip itself are intrinsically high-level sensitive, the AIC can be configured as either low-level sensitive, high-level sensitive, negative-edge triggered, or positive-edge triggered to each interrupt source.

The advanced interrupt controller includes the following features:

- External interrupts can be programmed as either edge-triggered or level-sensitive
- External interrupts can be programmed as either low-active or high-active
- Flags to reflect the status of each interrupt source
- Individual mask for each interrupt source
- Proprietary 8-level interrupt scheme to employ the priority scheme.
- Priority methodology is adopted to allow for interrupt daisy-chaining
- Automatically masking out the lower priority interrupt during interrupt nesting
- Automatically clearing the interrupt flag when the external interrupt source is programmed to be edgetriggered

Publication Release Date: Jun. 18, 2010

6.12.1 Interrupt Sources

Priority	Name	Mode	Source
1 (Highest)	WDT_INT	Positive Level	Watch Dog Timer Interrupt
2	nIRQ_Group0	Positive Level	External Interrupt Group 0
3	nIRQ_Group1	Positive Level	External Interrupt Group 1
4	Reserved	Reserved	Reserved
5	Reserved	Reserved	Reserved
6	Reserved	Reserved	Reserved
7	UART_INTO	Positive Level	UART Interrupt0
8	UART_INT1	Positive Level	UART Interrupt1
9	UART_INT2	Positive Level	UART Interrupt2
10	Reserved	Reserved	Reserved
11	Reserved	Reserved	Reserved
12	T_INTO	Positive Level	Timer Interrupt 0
13	T_INT1	Positive Level	Timer Interrupt 1
14	T_INT_Group	Positive Level	Timer Interrupt Group
15	USBH_INT_Group	Positive Level	USB Host Interrupt Group
16	EMCTx_INT	Positive Level	EMC Tx Interrupt
17	EMCRx_INT	Positive Level	EMC Rx Interrupt
18	GDMA_INT_Group	Positive Level	GDMA Interrupt Group
19	Reserved	Reserved	Reserved
20	Reserved	Reserved	Reserved
21	USBD_INT	Positive Level	USB Device Interrupt
22	Reserved	Reserved	Reserved
23	Reserved	Reserved	Reserved
24	PCI _INT	Positive Level	PCI Controller Interrupt
25	Reserved	Reserved	Reserved
26	I2C_INT_Group	Positive Level	I2C Interrupt Group
27	USI_INT	Positive Level	USI Interrupt
28	Reserved	Reserved	Reserved
29	Reserved	Reserved	Reserved
30	Reserved	Reserved	Reserved

334

Publication Release Date: Jun. 18, 2010

Priority	Name	Mode	Source
31	Reserved	Reserved	Reserved

Interrupt Group	Interrupt Sources
External Interrupt Group 0	External Pins : nIRQ[2:0]
External Interrupt Group 1	ICE Signals : COMMRX,COMMTX
Timer Interrupt Group	TIMER2, TIMER3, and TIMER4
USB Host Interrupt Group	OHCI and EHCI USB Host Controller
GDMA Interrupt Group	GDMA0 and GDMA1
I2C Interrupt Group	I2C Line 0 and I2C Line 1

Publication Release Date: Jun. 18, 2010

AIC Registers Map 6.12.2

Register	Address	R/W	Description	Reset Value
AIC_SCR1	0xB800_2004	R/W	Source Control Register 1	0x0000_0047
AIC_SCR2	0xB800_2008	R/W	Source Control Register 2	0x0000_0047
AIC_SCR3	0xB800_200C	R/W	Source Control Register 3	0x0000_0047
AIC_SCR7	0xB800_201C	R/W	Source Control Register 7	0x0000_0047
AIC_SCR8	0xB800_2020	R/W	Source Control Register 8	0x0000_0047
AIC_SCR9	0xB800_2024	R/W	Source Control Register 9	0x0000_0047
AIC_SCR12	0xB800_2030	R/W	Source Control Register 12	0x0000_0047
AIC_SCR13	0xB800_2034	R/W	Source Control Register 13	0x0000_0047
AIC_SCR14	0xB800_2038	R/W	Source Control Register 14	0x0000_0047
AIC_SCR15	0xB800_203C	R/W	Source Control Register 15	0x0000_0047
AIC_SCR16	0xB800_2040	R/W	Source Control Register 16	0x0000_0047
AIC_SCR17	0xB800_2044	R/W	Source Control Register 17	0x0000_0047
AIC_SCR18	0xB800_2048	R/W	Source Control Register 18	0x0000_0047
AIC_SCR21	0xB800_2054	R/W	Source Control Register 21	0x0000_0047
AIC_SCR24	0xB800_2060	R/W	Source Control Register 24	0x0000_0047
AIC_SCR26	0xB800_2068	R/W	Source Control Register 26	0x0000_0047
AIC_SCR27	0xB800_206C	R/W	Source Control Register 27	0x0000_0047
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000
AIC_GSCR	0xB800_208C	W/R	Interrupt Group Status Clear Register	0x0000_0000
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	Undefined
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	Undefined

336

Publication Release Date: Jun. 18, 2010 Revision: A3

Register	Address	R/W	Description	Reset Value
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	Undefined

Publication Release Date: Jun. 18, 2010

AIC Source Control Registers (AIC_SCR1 ~ AIC_SCR27)

Register	Address	R/W	Description	Reset Value
AIC_SCR1	0xB800_2004	R/W	Source Control Register 1	0x0000_0047
AIC_SCR2	0xB800_2008	R/W	Source Control Register 2	0x0000_0047
• • •	• • •	• • •		• • •
AIC_SCR26	0xB800_2068	R/W	Source Control Register 26	0x0000_0047
AIC_SCR27	0xB800_206C	R/W	Source Control Register 27	0x0000_0047

						7 6 7 1 1			
31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
SRC	RCTYPE RESERVED			PRIORITY					

Bits	Descriptions								
dis		Interrup	Interrupt Source Type						
	to the se	Whether an interrupt source is considered active or not by the AIC is subje to the settings of this field. Interrupt sources should be configured as lev sensitive during normal operation unless in the testing situation.							
[7:6]	SRCTYPE	SRCTY	PE [7:6]	Interrupt Source Type					
[7.0]	SKOTTE	0	0	Low-level Sensitive					
	160 180	0	1	High-level Sensitive					
	CS T	1	0	Negative-edge Triggered					
	90.20	1	1	Positive-edge Triggered					
	8/	Priority I	Level						
[2:0]	Every interrupt source must be assigned a priority level durin Among them, priority level 0 has the highest priority and priority lowest. Interrupt sources with priority level 0 are promoted to FI sources with priority level other than 0 belong to IRQ. For interpretation of the same priority level, which located in the lower channel								

338

Publication Release Date: Jun. 18, 2010

Bits	Descriptions
	higher priority.

Publication Release Date: Jun. 18, 2010

External Interrupt Control Register (AIC_IRQSC)

Register	Address	R/W	Description	Reset Value
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000

					2////				
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
			Res	erved		500	(0)		
7	6	5	4	3	2	1	0		
Rese	Reserved nIRQ2		nIRQ1		nIRQ0				

Bits				Descriptions
		Externa	l Interrupt	Source Type
		n	IRQx	Interrupt Source Type
[15:0]	nlRQ <i>x</i>	0	0	Low-level Sensitive
obs		0	1	High-level Sensitive
		1	0	Negative-edge Triggered
man de		1	1	Positive-edge Triggered

340

Publication Release Date: Jun. 18, 2010

Interrupt Group Enable Control Register (AIC_GEN)

Register	Address	R/W	Description	Reset Value
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000

		11 11 11					
1	30	29	28	27	26	25	24
	Reserved			120		Reserved	
23	22	21	20	19	18	17	16
соммтх	COMMRX	GD	MA	Reserved		1	
15	14	13	12	11	10	9	8
	Reserved					US	ВН
7	6	5	4	3	2	1	0
Reserved						nIRQ[2:0]	ON STON

Bits		Descriptions
[27:26]	12C	I2C Controller Interrupt Group Bit[27] is for I2C Line 1, Bit[26] is for Line 0 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit
[23]	СОММТХ	ICE Communications Channel Transmit Interrupt 1: COMMTX Interrupt Enable 0: COMMTX Interrupt Disable
[22]	COMMRX	ICE Communications Channel Receive Interrupt 1: COMMRX Interrupt Enable 0: COMMRX Interrupt Disable
[21:20]	GDMA	GDMA Controller Interrupt Group Bit[21]: Reserved Bit[20] is for GDMA Channel 0 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit

341

Publication Release Date: Jun. 18, 2010

Bits	Descriptions						
[18:16]	TIMER	TIMER Controller Interrupt Group Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit					
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[9] is for EHCI Host Controller 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit					
[2:0]	nIRQ[2:0]	External Interrupt Group 0 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit					

342

Publication Release Date: Jun. 18, 2010

Interrupt Group Active Status Register (AIC_GASR)

Register	Address	R/W	Description	Reset Value
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000

				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11 112		
31	30	29	28	27	26	25	24
Reserved			120		Reserved		
23	22	21	20	19	18	17	16
COMMTX	COMMRX	GD	MA	Reserved	TIMER		
15	14	13	12	11	10	9	8
		Rese	rved			US	ВН
7	6	5	4	3	2	1	0
Reserved						nIRQ[2:0]	COL O

Bits		Descriptions
[27:26]	12C	I2C Controller Interrupt Group Bit[27] is for I2C Line 1, Bit[26] is for Line 0
[23]	соммтх	ICE Communications channel transmit Interrupt This bit denotes that the comms channel transmit buffer is empty.
[22]	COMMRX	ICE Communications channel Receive Interrupt This bit denotes that the comms channel receive buffer contains valid data waiting to be read.
[21:20]	GDMA	GDMA Controller Interrupt Group Bit[21] is for GDMA Channel 1, Bit[20] is for GDMA Channel 0
[18:16]	TIMER	TIMER Controller Interrupt Group Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[9] is for EHCI Host Controller
[2:0]	nIRQ[2:0]	External Interrupt Group 0

343

Publication Release Date: Jun. 18, 2010

Interrupt Group Status Clear Register (AIC_GSCR)

Register	Address	R/W	Description	Reset Value
AIC_GSCR	0xB800_208C	R/W	Interrupt Group Status Clear Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved							(0)	
7	6	5	4	3	2	1	0	
Reserved				nIRQ[2:0]	10 JE			

Bits		Descriptions				
[3:0]	nIRQ[2:0]	External Interrupt Group 0 Write 1: Clear the relative status bit, and this bit is auto clear to 0 Write 0: No action				

344

Publication Release Date: Jun. 18, 2010

AIC Interrupt Raw Status Register (AIC_IRSR)

Register	Address	R/W	Description	Reset Value
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000

				1			
31	30	29	28	27	26	25	24
IRS31	IRS30	IRS29	IRS28	IRS27	IRS26	IRS25	IRS24
23	22	21	20	19	18	17	16
IRS23	IRS22	IRS21	IRS20	IRS19	IRS18	IRS17	IRS16
15	14	13	12	11	10	9	8
IRS15	IRS14	IRS13	IRS12	IRS11	IRS10	IRS9	IRS8
7	6	5	4	3	2	1	0
IRS7	IRS6	IRS5	IRS4	IRS3	IRS2	IRS1	RESERVED

Bits		Descriptions				
[31:1]	IRS <i>x</i>	Interrupt Status Indicate the intrinsic status of the corresponding interrupt source 0 = Interrupt channel is in the voltage level 0 1 = Interrupt channel is in the voltage level 1				

This register records the intrinsic state within each interrupt channel.

Publication Release Date: Jun. 18, 2010

AIC Interrupt Active Status Register (AIC_IASR)

This register indicates the status of each interrupt channel in consideration of the interrupt source type as defined in the corresponding Source Control Register, but regardless of its mask setting.

Register	Address	R/W	Description	Reset Value
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IAS31	IAS30	IAS29	IAS28	IAS27	IAS26	IAS25	IAS24
23	22	21	20	19	18	17	16
IAS23	IAS22	IAS21	IAS20	IAS19	IAS18	IAS17	IAS16
15	14	13	12	11	10	9	8
IAS15	IAS14	IAS13	IAS12	IAS11	IAS10	IAS9	IAS8
7	6	5	4	3	2	1	0
IAS7	IAS6	IAS5	IAS4	IAS3	IAS2	IAS1	RESERVED

Bits		Descriptions				
[31:1]	IASx	Interrupt Active Status Indicate the status of the corresponding interrupt source 0 = Corresponding interrupt channel is inactive 1 = Corresponding interrupt channel is active				

Publication Release Date: Jun. 18, 2010

AIC Interrupt Status Register (AIC_ISR)

This register identifies those interrupt channels whose are both active and enabled.

Register	Address	R/W	Description	Reset Value
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IS31	IS30	IS29	IS28	IS27	IS26	IS25	IS24
23	22	21	20	19	18	17	16
IS23	IS22	IS21	IS20	IS19	IS18	IS17	IS16
15	14	13	12	11	10	9	8
IS15	IS14	IS13	IS12	IS11	IS10	IS9	IS8
7	6	5	4	3	2	1	0
IS7	IS6	IS5	IS4	IS3	IS2	IS1	RESERVED

Bits		Descriptions								
		Interrupt Status								
, de		Indicates the status of corresponding interrupt channel								
100		0 = Two possibilities:								
[31:1]	IS <i>x</i>	 The corresponding interrupt channel is inactive no matter whether it is enabled or disabled; 								
C. W.	All:	(2) It is active but not enabled								
W.	2 4.2	1 = Corresponding interrupt channel is both active and enabled (can assert an interrupt)								
		347 Publication Release Date: Jun. 18, 2010 Revision: A3								

AIC IRQ Priority Encoding Register (AIC_IPER)

When the AIC generates the interrupt, **VECTOR** represents the interrupt channel number that is active, enabled, and has the highest priority. If the representing interrupt channel possesses a priority level 0, then the interrupt asserted is FIQ; otherwise, it is IRQ. The value of **VECTOR** is copied to the register AIC_ISNR thereafter by the AIC. This register was restored a value 0 after it was read by the interrupt handler. This register can help indexing into a branch table to quickly jump to the corresponding interrupt service routine.

Register	Address	R/W	Description	Reset Value
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
RESERVED			0	0			

Bits		Descriptions						
[6:2]	VECTOR	<pre>Interrupt Vector 0 = no interrupt occurs 1 ~ 31 = representing the interrupt channel that is active, enabled, and having the highest priority</pre>						

Publication Release Date: Jun. 18, 2010

AIC Interrupt Source Number Register (AIC_ISNR)

The purpose of this register is to record the interrupt channel number that is active, enabled, and has the highest priority.

Register	Address	R/W	Description	Reset Value
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000

					11000	4 4 4 7	
31	30	29	28	27	26	25	24
0	0	0	0	0	0	006	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	IRQID				

Bits		Descriptions			
[4:0]	IRQID	IRQ Identification Stands for the interrupt channel number			

Publication Release Date: Jun. 18, 2010

AIC Interrupt Mask Register (AIC_IMR)

Register	Address	R/W	Description	Reset Value
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000

31	30	29	28	27	26	25	24
IM31	IM30	IM29	IM28	IM27	IM26	IM25	IM24
23	22	21	20	19	18	17	16
IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
15	14	13	12	11	10	9	8
IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8
7	6	5	4	3	2	1	0
IM7	IM6	IM5	IM4	IM3	IM2	IM1	RESERVED

Bits	Descriptions				
[31:1]	IM <i>x</i>	Interrupt Mask This bit determines whether the corresponding interrupt channel is enabled or disabled. Every interrupt channel can be active no matter whether it is enabled or disabled. If an interrupt channel is enabled, it does not definitely mean it is active. Every interrupt channel can be authorized by the AIC only when it is both active and enabled. 0 = Corresponding interrupt channel is disabled 1 = Corresponding interrupt channel is enabled			

•

Publication Release Date: Jun. 18, 2010

AIC Output Interrupt Status Register (AIC_OISR)

The AIC classifies the interrupt into FIQ and IRQ. This register indicates whether the asserted interrupt is FIQ or IRQ. If both IRQ and FIQ are equal to 0, it means there is no interrupt occurred.

Register	Address	R/W	Description	Reset Value
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
	RESERVED						FIQ		

Bits		Descriptions					
[1]	IRQ	Interrupt Request 0 = nIRQ line is inactive. 1 = nIRQ line is active.					
[0]	FIQ	Fast Interrupt Request 0 = nFIQ line is inactive. 1 = nFIQ line is active					

Publication Release Date: Jun. 18, 2010

AIC Mask Enable Command Register (AIC_MECR)

Register	Address	R/W	Description	Reset Value
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	Undefined

				1			
31	30	29	28	27	26	25	24
MEC31	MEC30	MEC29	MEC28	MEC27	MEC26	MEC25	MEC24
23	22	21	20	19	18	17	16
MEC23	MEC22	MEC21	MEC20	MEC19	MEC18	MEC17	MEC16
15	14	13	12	11	10	9	8
MEC15	MEC14	MEC13	MEC12	MEC11	MEC10	MEC9	MEC8
7	6	5	4	3	2	1	0
MEC7	MEC6	MEC5	MEC4	MEC3	MEC2	MEC1	RESERVED

Bits		Descriptions
[31:1]	MEC <i>x</i>	Mask Enable Command 0 = No effect 1 = Enables the corresponding interrupt channel MEC4,5,6,10,11,19,20,22,23,25,28,29,30 and 31 have to set to 0 for the reserved interrupt sources.

:

Publication Release Date: Jun. 18, 2010

AIC Mask Disable Command Register (AIC_MDCR)

Register	Address	R/W	Description	Reset Value
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	Undefined

				1			
31	30	29	28	27	26	25	24
MDC31	MDC30	MDC29	MDC28	MDC27	MDC26	MDC25	MDC24
23	22	21	20	19	18	17	16
MDC23	MDC22	MDC21	MDC20	MDC19	MDC18	MDC17	MDC16
15	14	13	12	11	10	9	8
MDC15	MDC14	MDC13	MDC12	MDC11	MDC10	MDC9	MDC8
7	6	5	4	3	2	1	0
MDC7	MDC6	MDC5	MDC4	MDC3	MDC2	MDC1	RESERVED

Bits		Descriptions					
[31:1]	MDC <i>x</i>	Mask Disable Command 0 = No effect 1 = Disables the corresponding interrupt channel					

353

Publication Release Date: Jun. 18, 2010

AIC End of Service Command Register (AIC_EOSCR)

This register is used by the interrupt service routine to indicate that it is completely served. Thus, the interrupt handler can write any value to this register to indicate the end of its interrupt service.

Register	Address	R/W	Description	Reset Value
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	Undefined

31	30	29	28	27	26	25	24
					(2)	(A) (L)	
23	22	21	20	19	18	17	16
						100	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
15	14	13	12	11	10	9	8
							102h 1
7	6	5	4	3	2	1	0

Publication Release Date: Jun. 18, 2010

6.13 General-Purpose Input/Output (GPIO)

6.13.1 Overview

The General-Purpose Input/Output (**GPIO**) module possesses 51 pins, and serves as multiple function purposes. Each port can be easily configured by software to meet various system configurations and design requirements. Software must define which function of each pin is used before starting the main program. If a pin is not used for multiplexed functions, the pin can be configured as I/O ports.

355

These 51 IO pins are divided into 7 groups according to its peripheral interface definition.

PortC: 15-pin input/output port

PortD: 9-pin input/output port

PortE: 9-pin input/output port

PortF: 10-pin input/output port

PortG: 4-pin input/output port

PortH: 3-pin input/output port

• PortI: 1-pin input/output port

Publication Release Date: Jun. 18, 2010

GPIO Multiplexed Functions Table 6.13.2

GPIO Group	Shared Interface
GPIOC (15 pins)	PCI Interface
GPIOC[0]	PCIFRAMEn
GPIOC[1]	PCITRDYn
GPIOC[2]	PCIIRDYn
GPIOC[3]	PCICBE[2]
GPIOC[4]	PCIAD[16]
GPIOC[5]	PCIAD[17]
GPIOC[6]	PCIAD[18]
GPIOC[7]	PCIAD[19]
GPIOC[8]	PCIAD[20]
GPIOC[9]	PCIAD[21]
GPIOC[10]	PCIAD[22]
GPIOC[11]	PCIAD[23]
GPIOC[12]	PCICBE[3]
GPIOC[13]	PCIAD[24]
GPIOC[14]	PCIAD[25]
GPIOD (9 pins)	PCI Interface
GPIOD[0]	PCIAD[26]
GPIOD[1]	PCIAD[27]
GPIOD[2]	PCIAD[28]
GPIOD[3]	PCIAD[29]
GPIOD[4]	PCIAD[30]
GPIOD[5]	PCIAD[31]
GPIOD[6]	PCIREQn[0]
GPIOD[7]	PCIGNTn[0]
GPIOD[8]	PCIREQn[1]
(Carly)	
GPIOE (9 pins)	UART, PCI Interface
GPIOE[0]	TXDO
GPIOE[1]	RXD0
GPIOE[2]	TXD1

356

Publication Release Date: Jun. 18, 2010

GPIO Group	Shared Interface
GPIOE[3]	RXD1
GPIOE[6]	TXD2(IrDA)
GPIOE[7]	RXD2(IrDA)
GPIOE[10]	PCIGNTn[1]
GPIOE[11]	PCIRSTn
GPIOE[13]	PCICLK
	20 Or
GPIOF (10 pins)	RMII Interface
GPIOF[0]	PHY_MDC
GPIOF [1]	PHY_MDIO
GPIOF [3:2]	PHY_TXD [1:0]
GPIOF [4]	PHY_TXEN
GPIOF [5]	PHY_REFCLK
GPIOF [7:6]	PHY_RXD [1:0]
GPIOF [8]	PHY_CRSDV
GPIOF [9]	PHY_RXERR
GPIOG (4 pins)	I2C / USI,
	Interface
GPIOG[0]	SCLO /
	SFRM
GPIOG[1]	SDA0 /
	SSPTXD
GPIOG[2]	SCL1 /
	SCLK
GPIOG[3]	SDA1 /
	SSPRXD
150	
GPIOH (3 pins)	nIRQ Interface
GPIOH[2:0]	nIRQ[2:0]
W On	
GPIOI (1 pins)	-
GPIOI [16]	nWDOG / GPIOI [16]
- (0)	

357

Publication Release Date: Jun. 18, 2010 Revision: A3

GPIO Control Registers Map 6.13.3

Register	Address	R/W	Description	Reset Value				
GPIO_BA = 0xB800	_3000							
GPIOC_DIR	0xB800_3004	R/W	GPIO portC direction control register	0x0000_0000				
GPIOC_DATAOUT	0xB800_3008	R/W	GPIO portC data output register	0x0000_0000				
GPIOC_DATAIN	0xB800_300C	R	GPIO portC data input register	Undefined				
GPIOD_DIR	0xB800_3014	R/W	GPIO portD direction control register	0x0000_0000				
GPIOD_DATAOUT	0xB800_3018	R/W	GPIO portD data output register	0x0000_0000				
GPIOD_DATAIN	0xB800_301C	R	GPIO portD data input register	Undefined				
GPIOE_DIR	0xB800_3024	R/W	GPIO portE direction control register	0x0000_0000				
GPIOE_DATAOUT	0xB800_3028	R/W	GPIO portE data output register	0x0000_0000				
GPIOE_DATAIN	0xB800_302C	R	GPIO portE data input register	0x0000_0000				
GPIOF_DIR	0xB800_3034	R/W	GPIO portF direction control register	0x0000_0000				
GPIOF_DATAOUT	0xB800_3038	R/W	GPIO portF data output register	0x0000_0000				
GPIOF_DATAIN	0xB800_303C	R	GPIO portF data input register	Undefined				
GPIOG_DIR	0xB800_3044	R/W	GPIO portG direction control register	0x0000_0000				
GPIOG_DATAOUT	0xB800_3048	R/W	GPIO portG data output register	0x0000_0000				
GPIOG_DATAIN	0xB800_304C	R	GPIO portG data input register	Undefined				
GPIOH_DBNCE	0xB800_3050	R/W	GPIO portH input de-bounce control reg.	0x0000_0000				
GPIOH_DIR	0xB800_3054	R/W	GPIO portH direction control register	0x0000_0000				
GPIOH_DATAOUT	0xB800_3058	R/W	GPIO portH data output register	0x0000_0000				
GPIOH_DATAIN	0xB800_305C	R	GPIO portH data input register	Undefined				
GPIOI_DIR	0xB800_3064	R/W	GPIO portI direction control register	0x0000_0000				
GPIOI_DATAOUT	0xB800_3068	R/W	GPIO portI data output register	0x0000_0000				
GPIOI_DATAIN	0xB800_306C	R	GPIO portI data input register	Undefined				
358 Publication Release Date: Jun. 18, 2010 Revision: A3								

GPIO PortC Direction Control Register (GPIOC_DIR)

Register	Address	R/W	Description	Reset Value
GPIOC_DIR	0xB800_3004	R/W	GPIO portC in/out direction control register	0x0000_0000

					1000	ST 7 3	
31	30	29	28	27	26	25	24
			RESE	RVED	20	0,45	
23	22	21	20	19	18	17	16
			RESE	RVED		40x	
15	14	13	12	11	10	9	8
RESERVED				OUTEN		-0	27
7	6	5	4	3	2	1	0
	OUTEN						

Bits	Descriptions				
[14:0]	OUTEN	GPIO PortC Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode			

Publication Release Date: Jun. 18, 2010

GPIO PortC Data Output Register (GPIOC_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOC_DATAOUT	0xB800_3008	R/W	GPIO portC data output register	0x0000_0000

					7-1-1-1-1		
31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
RESERVED				DATAOUT		20,	(6)
7	6	5	4	3	2	1	0
			DATA	TUOA		U.	1

Bits	Descriptions					
[14:0]	DATAOU	GPIO PortC Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.				

Publication Release Date: Jun. 18, 2010

GPIO PortC Data Input Register (GPIOC_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOC_DATAIN	0xB800_300C	R	GPIO portC data input register	0xxxxx_xxxx

31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
RESERVED	DATAIN						
7	6	5	4	3	2	1	0
	DATAIN						

Bits	Descriptions			
[14:0]	DATAIN	GPIO PortC Data Input Value The DATAIN indicates the status of each GPIO portC pin regardless of its operation mode.		

Publication Release Date: Jun. 18, 2010

GPIO PortD Direction Control Register (GPIOD_DIR)

Register	Address	R/W	Description	Reset Value
GPIOD_DIR	0xB800_3014	R/W	GPIO portD in/out direction control register	0x0000_0000

							<u> </u>
31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
RESERVED						OUTEN	
7	6	5	4	3	2	1	0
			OU	ΓΕΝ		1	200

Bits	Descriptio	ns
		GPIO PortD Output Enable Control
[8:0]	OUTEN	Each GPIO pin can be enabled individually by setting the corresponding control bit.
		0 = Input Mode
		1 = Output Mode

Publication Release Date: Jun. 18, 2010

GPIO PortD Data Output Register (GPIOD_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOD_DATAOUT	0xB800_3018	R/W	GPIO portD data output register	0x0000_0000

31	30	29	28	27	26	25	24
			RESE	RVED		00	
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						DATAOUT
7	6	5	4	3	2	1	0
			DATA	TUOA			27

В	Bits	Description	ns
3]	3:0]	DATAOU	GPIO PortD Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.

Publication Release Date: Jun. 18, 2010

GPIO PortD Data Input Register (GPIOD_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOD_DATAIN	0xB800_301C	R	GPIO portD data input register	0xxxxx_xxxx

					7 - 7 - 1 - 1		
31	30	29	28	27	26	25	24
			RESE	RVED		00	
23	22	21	20	19	18	17	16
			RESE	RVED	0	200	
15	14	13	12	11	10	9	8
			RESERVED			20	DATAIN
7	6	5	4	3	2	1	0
			DAT	AIN		(070

Bits	Descriptions			
[8:0]	DATAIN	GPIO PortD Data Input Value The DATAIN indicates the status of each GPIO portD pin regardless of its operation mode.		

Publication Release Date: Jun. 18, 2010

GPIO PortE Direction Control Register (GPIOE_DIR)

Register	Address	R/W	Description	Reset Value
GPIOE_DIR	0xB800_3024	R/W	GPIO portE in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
			RESE	RVED	~ 6	200	
15	14	13	12	11	10	9	8
RESE	RVED		OUTEN				(6)
7	6	5	4	3	2	1	0
			OU.	TEN		· ·	1920

Bits	Descriptio	Descriptions						
[13:0]	OUTEN	GPIO PortE Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode OUTEN [5:4] is reserved.						

Publication Release Date: Jun. 18, 2010

GPIO PortE Data Output Register (GPIOE_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOE_DATAOUT	0xB800_3028	R/W	GPIO portE data output register	0x0000_0000

					7-17-17-17		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
RESERVED DATAOUT					(6)		
7	6	5	4	3	2	1	0
	DATAOUT						

Bits	Description	Descriptions					
[13:0]	DATAOU	GPIO PortE Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.					
		DATAOUT[5:4] is reserved					

Publication Release Date: Jun. 18, 2010

GPIO PortE Data Input Register (GPIOE_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOE_DATAIN	0xB800_302C	R	GPIO portE data input register	0xxxxx_xxxx

31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
			RESE	RVED	0	27 6	
15	14	13	12	11	10	9	8
RESE	RVED		DATAIN				(6)
7	6	5	4	3	2	1	0
	•		DAT	AIN		U,	17/2

Bits	Descriptio	Descriptions					
[13:0]	DATAIN	GPIO PortE Data Input Value The DATAIN indicates the status of each GPIO portE pin regardless of its operation mode. DATAIN [5:4] is reserved.					

367

Publication Release Date: Jun. 18, 2010

GPIO PortF Direction Control Register (GPIOF_DIR)

Register	Address	R/W	Description	Reset Value
GPIOF_DIR	0xB800_3034	R/W	GPIO portF in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24
			RESE	RVED		00	
23	22	21	20	19	18	17	16
			RESE	RVED	0	37 6	
15	14	13	12	11	10	9	8
RESERVED						OU.	TEN
7	6	5	4	3	2	1	0
			OU	ΓΕΝ		V.	1

Bits	Descriptio	Descriptions					
[9:0]	OUTEN	GPIO PortF Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode					

Publication Release Date: Jun. 18, 2010

GPIO PortF Data Output Register (GPIOF_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOF_DATAOUT	0xB800_3038	R/W	GPIO portF data output register	0x0000_0000

31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
			RESE	RVED	0	2	
15	14	13	12	11	10	9	8
		RESE	RVED			DATA	TUOA
7	6	5	4	3	2	1	0
			DATA	TUOA		O.	1

ı	Bits	Descriptions					
[9:0]	DATAOU	GPIO PortF Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.				

Publication Release Date: Jun. 18, 2010

GPIO PortF Data Input Register (GPIOF_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOF_DATAIN	0xB800_303C	R	GPIO portF data input register	0xxxxx_xxxx

31	30	29	28	27	26	25	24
			RESE	RVED		00	
23	22	21	20	19	18	17	16
			RESE	RVED	0	37 6	
15	14	13	12	11	10	9	8
		RESE	RVED			DAT	AIN
7	6	5	4	3	2	1	0
			DAT	AIN		V _c	17/2

Bits	Descriptions					
[9:0]	DATAIN	GPIO PortF Data Input Value The DATAIN indicates the status of each GPIO portF pin regardless of its operation mode.				

Publication Release Date: Jun. 18, 2010

GPIO PortG Direction Control Register (GPIOG_DIR)

Register	Address	R/W	Description	Reset Value
GPIOG_DIR	0xB800_3044	R/W	GPIO portG in/out direction control register	0x0000_0000

					7 7 17		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
			RESE	RVED		20	0
7	6	5	4	3	2	1	0
RESERVED				OUTEN			

Bits	Descriptio	Descriptions						
[3:0]	OUTEN	GPIO PortG Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode						

Publication Release Date: Jun. 18, 2010

GPIO PortG Data Output Register (GPIOG_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOG_DATAOUT	0xB800_3048	R/W	GPIO portG data output register	0x0000_0000

					7 7 19			
31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
			RESE	RVED		20,	(a)	
7	6	5	4	3	2	1	0	
	RESE	RVED		DATAOUT				

Bits	Descriptions					
[3:0]	DATAOU	GPIO PortG Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.				

Publication Release Date: Jun. 18, 2010

GPIO PortG Data Input Register (GPIOG_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOG_DATAIN	0xB800_304C	R	GPIO portG data input register	0xxxxx_xxxx

30	29	28	27	26	25	24
		RESE	RVED		20	
22	21	20	19	18	17	16
RESERVED					2	
14	13	12	11	10	9	8
RESE					20%	(6)
6	5	4	3	2	1	0
RESERVED			DATAIN			1
	22 14 6	22 21 14 13 6 5	RESE 22 21 20 RESE 14 13 12 RESE 6 5 4	RESERVED 22 21 20 19 RESERVED 14 13 12 11 RESERVED 6 5 4 3	RESERVED 22 21 20 19 18 RESERVED 14 13 12 11 10 RESERVED 6 5 4 3 2	RESERVED 22 21 20 19 18 17 RESERVED 14 13 12 11 10 9 RESERVED 6 5 4 3 2 1

Bits	Descriptions				
[3:0]	DATAIN	GPIO PortG Data Input Value The DATAIN indicates the status of each GPIO portG pin regardless of its operation mode.			

Publication Release Date: Jun. 18, 2010

GPIO PortH De-bounce Enable Control Register (GPIOH_DBNCE)

Register	Address	R/W	Description	Reset Value
GPIOH_DBNCE	0xB800_3050	R/W	GPIO PortH de-bounce control register	0xxxxx_xxxx

					12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
			0	10 Can			
15	14	13	12	11	10	9	8
	RESERVED					DBCLKSEL	(6)
7	6	5	4	3	2	1	0
	RESERVED					DBEN1	DBENO

Bits	Description	Descriptions							
[10:8]	DBCLKSE	De-bounce Clock Selection These 3 bits are used to select the clock rate for de-bouncer circuit. The relationship between the system clock HCLK and the de-bounce clock TCLK_BUN is as follows: TCLK_BUN = HCLK / 2 ^{DBCLKSEL}							
[2]	DBEN2	De-bounce Circuit Enable for GPIOH2 (nIRQ2) Input 1 = Enable De-bounce 0 = Disable De-bounce							
[1]	DBEN1	De-bounce Circuit Enable for GPIOH1 (nIRQ1) Input 1 = Enable De-bounce 0 = Disable De-bounce							
[0]	DBENO	De-bounce Circuit Enable for GPIOHO (nIRQ0) Input 1 = Enable De-bounce 0 = Disable De-bounce							

374

Publication Release Date: Jun. 18, 2010

GPIO PortH Direction Control Register (GPIOH_DIR)

Register	Address	R/W	Description	Reset Value
GPIOH_DIR	0xB800_3054	R/W	GPIO portH in/out direction control register	0x0000_0000

				- 1	7-17-17-1		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
RESERVED						20%	(6)
7	6	5	4	3	2	1	0
RESERVED					OUTEN	1	

Bits	Descriptio	ns
[2:0]	OUTEN	GPIO PortH Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode

Publication Release Date: Jun. 18, 2010

GPIO PortH Data Output Register (GPIOH_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOH_DATAOUT	0xB800_3058	R/W	GPIO portH data output register	0x0000_0000

31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
				20%	(6)		
7	6	5	4	3	2	1	0
RESERVED					DATAOUT	1	

Bits	Description	ns
[2:0]	DATAOU	GPIO PortH Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.

Publication Release Date: Jun. 18, 2010

GPIO PortH Data Input Register (GPIOH_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOH_DATAIN	0xB800_305C	R	GPIO portH data input register	0xxxxx_xxxx

31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
RESERVED						SOV.	(6)
7	6	5	4	3	2	1	0
RESERVED					DATAIN	17	

Bits	Descriptions			
[2:0]	DATAIN	GPIO PortH Data Input Value The DATAIN indicates the status of each GPIO portH pin regardless of its operation mode.		

377

Publication Release Date: Jun. 18, 2010

GPIO PortI Direction Control Register (GPIOI_DIR)

Register	Address	R/W	Description	Reset Value
GPIOI_DIR	0xB800_3064	R/W	GPIO portI in/out direction control register	0x0000_0000

					7-1-1-1-1		
31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						
7	6	5	4	3	2	1	0
			RESE	RVED		0	7

Bits	Descriptio	ns
[16]	OUTEN	GPIO PortI Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit.
		0 = Input Mode 1 = Output Mode

Publication Release Date: Jun. 18, 2010

GPIO PortI Data Output Register (GPIOI_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOI_DATAOUT	0xB800_3068	R/W	GPIO portI data output register	0x0000_0000

				. //			
31	30	29	28	27	26	25	24
			RESE	RVED		20	
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						
7	6	5	4	3	2	1	0
			RESE	RVED		O.	1

Bits	Descriptions				
[16]	DATAOU	GPIO PortI Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.			

Publication Release Date: Jun. 18, 2010

GPIO PortI Data Input Register (GPIOI_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOI_DATAIN	0xB800_306C	R	GPIO portI data input register	0xxxxx_xxxx

31	30	00						
		29	28	27	26	25	24	
RESERVED								
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	RESERVED							
7	6	5	4	3	2	1	0	
	RESERVED						AL O	

Bits	Descriptions			
[16]	DATAIN	GPIO PortI Data Input Value The DATAIN indicates the status of each GPIO portI pin regardless of its operation mode.		

Publication Release Date: Jun. 18, 2010

6.14 I²C Synchronous Serial Interface Controller

 I^2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Serial, 8-bit oriented bi-directional data transfers can be up to 100 Kb/s in Standard-mode, 400 Kb/s in the Fast-mode, or 3.4 Mb/s in the High-speed mode. Only 100kbps and 400kbps modes are supported directly in this chip.

Data transfer is synchronized to SCL signal between a Master and a Slave with byte-by-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP).

The I²C Master Core includes the following features:

Compatible with I²C standard, support master mode

Multi Master Operation.

Clock stretching and wait state generation.

Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer

381

Software programmable acknowledge bit.

Arbitration lost interrupt, with automatic transfer cancellation.

Start/Stop/Repeated Start/Acknowledge generation.

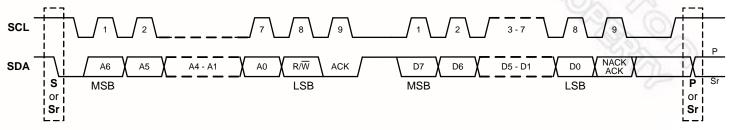
Start/Stop/Repeated Start detection.

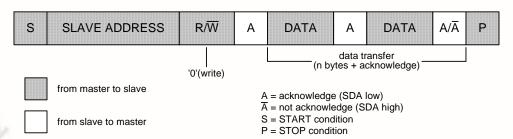
Bus busy detection.

Supports 7 bit addressing mode.

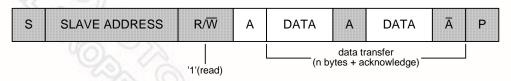
Fully static synchronous design with one clock domain.

Software mode I²C.


Publication Release Date: Jun. 18, 2010


I²C Protocol 6.14.1

Normally, a standard communication consists of four parts:


- 1) START or Repeated START signal generation
- 2) Slave address transfer
- 3) Data transfer
- 4) STOP signal generation

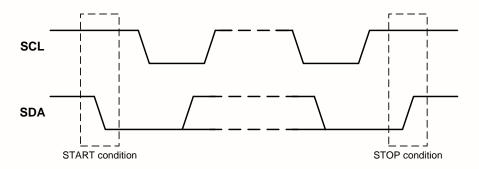
Data transfer on the I²C-bus

A master-transmitter addressing a slave receiver with a 7-bit address The transfer direction is not changed

A master reads a slave immediately after the first byte (address) 382

Publication Release Date: Jun. 18, 2010

START or Repeated START signal

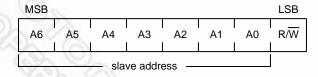

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the **S-bit**, is defined as a **HIGH to LOW** transition on the SDA line while SCL is **HIGH**. The START signal denotes the beginning of a new data transfer.

A Repeated START (Sr) is a START signal without first generating a STOP signal. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

The I^2C core generates a START signal when the START bit in the Command Register (CMDR) is set and the READ or WRITE bits are also set. Depending on the current status of the SCL line, a START or Repeated START is generated.

STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the **P-bit**, is defined as a **LOW to HIGH** transition on the SDA line while SCL is **HIGH**.



START and STOP conditions

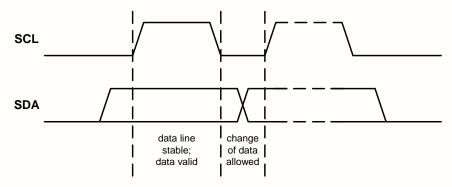
Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

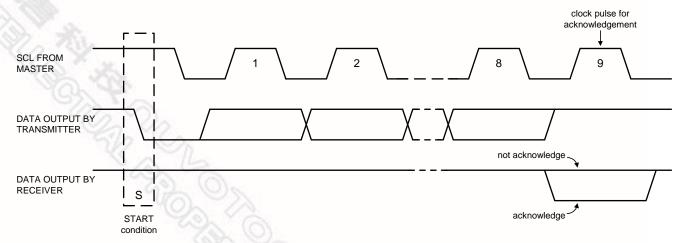
The core treats a Slave Address Transfer as any other write action. Store the slave device's address in the Transmit Register (TxR) and set the WRITE bit. The core will then transfer the slave address on the bus.

383

Publication Release Date: Jun. 18, 2010


The first byte after the START procedure

Data Transfer


Once successful slave addressing has been achieved, the data transfer can proceed on a byte-by-byte basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a **Not Acknowledge (NACK)**, the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does **Not Acknowledge (NACK)** the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

To write data to a slave, store the data to be transmitted in the Transmit Register (TxR) and set the WRITE bit. To read data from a slave, set the READ bit. During a transfer the core set the I2C_TIP flag, indicating that a **Transfer is in Progress**. When the transfer is done the I2C_TIP flag is cleared, the IF flag set if enabled, then an interrupt generated. The Receive Register (RxR) contains valid data after the IF flag has been set. The software may issue a new write or read command when the I2C_TIP flag is cleared.

Bit transfer on the I²C-bus

384

Publication Release Date: Jun. 18, 2010

Acknowledge on the I²C-bus

Publication Release Date: Jun. 18, 2010

6.14.2 I2C Serial Interface Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W/C	Description Reset Val	
12C Port0 : 12	$C_BA = 0xB800$	0_6000	100 450	
I2C Port1 : I2	$C_BA = 0xB800$	0_6100	Ch. P.	
CSR	0xB800_6x00	R/W	Control and Status Register	0x0000_0000
DIVIDER	0xB800_6x04	R/W	Clock Pre-scale Register 0x0000_	
CMDR	0xB800_6x08	R/W	Command Register 0x0000_0	
SWR	0xB800_6x0C	R/W	Software Mode Control Register	0x0000_003F
RxR	0xB800_6x10	R	Data Receive Register 0x0000_00	
TxR	0xB800_6x14	R/W	Data Transmit Register 0x0000_000	

NOTE: The reset value of SWR is 0x3F only when SCR, SDR and SER are connected to pull high resistor.

Publication Release Date: Jun. 18, 2010

Control and Status Register (CSR)

Register	Offset	R/W/C	Description	Reset Value
CSR	0xB800_6x00	R/W	Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
			R	eserved	63	200	
15	14	13	12	11	10	9	8
	Rese	erved		I2C_RxACK	I2C_BUSY	I2C_AL	I2C_TIP
7	6	5	4	3	2	1	0
Rese	erved	Tx_I	NUM	Reserved	IF	IE V	I2C_EN

Bits	Descriptions	
[11]	I2C_RxACK	Received Acknowledge From Slave (Read only) This flag represents acknowledge from the addressed slave. 0 = Acknowledge received (ACK). 1 = Not acknowledge received (NACK).
[10]	I2C_BUSY	I ² C Bus Busy (Read only) 0 = After STOP signal detected. 1 = After START signal detected.
[9]	12C_AL	Arbitration Lost (Read only) This bit is set when the I ² C core lost arbitration. Arbitration is lost when: A STOP signal is detected, but no requested. The master drives SDA high, but SDA is low.
[8]	I2C_TIP	Transfer In Progress (Read only) 0 = Transfer complete. 1 = Transferring data. NOTE: When a transfer is in progress, you will not allow writing to any

387

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		register of the I ² C master core except SWR.

Publication Release Date: Jun. 18, 2010

	Transmit Byte Counts						
[5:4] Tx_NUM	These two bits represent how many bytes are remained to transmit. When a byte has been transmitted, the Tx_NUM will decrease 1 until all bytes are transmitted ($Tx_NUM = 0x0$) or NACK received from slave. Then the interrupt signal will assert if IE was set.						
	0x0 = Only one byte is left for transmission.						
	0x1 = Two bytes are left to for transmission.						
	0x2 = Three bytes are left for transmission.						
	0x3 = Four bytes are left for transmission.						
	Interrupt Flag						
	The Interrupt Flag is set when:						
	Transfer has been completed.						
IF	Transfer has not been completed, but slave responded NACK (in multi-byte transmit mode).						
	Arbitration is lost.						
	NOTE: This bit is read only, but can be cleared by writing 1 to this bit.						
	Interrupt Enable						
IE	$0 = $ Disable I^2C Interrupt.						
	$1 = $ Enable I^2C Interrupt.						
	I ² C Core Enable						
I 2C_EN	$0 = $ Disable I^2C core, serial bus outputs are controlled by SDW/SCW.						
龙	$1 = $ Enable I^2C core, serial bus outputs are controlled by I^2C core.						
	389 Publication Release Date: Jun. 18, 2010						
	IF						

Pre-scale Register (DIVIDER)

Register	Offset	R/W/C	Description	Reset Value
DIVIDER	0xB800_6x04	R/W	Clock Pre-scale Register	0x0000_0000

					2//3/1 16/1/3/		
31	30	29	28	27	26	25	24
			Rese	erved	0	40	
23	22	21	20	19	18	17	16
			Rese	erved		490 6	3
15	14	13	12	11	10	9	8
			DIVIDE	R[15:8]		20	7 0
7	6	5	4	3	2	1	0
			DIVID	R[7:0]			2750

Bits	Descriptions	
[15:0]	DIVIDER	Clock Pre-scale Register It is used to pre-scale the SCL clock line. Due to the structure of the I^2C interface, the core uses a 5*SCL clock internally. The pre-scale register must be programmed to this 5*SCL frequency (minus 1). Change the value of the pre-scale register only when the "I2C_EN" bit is cleared. Example: pclk = 32MHz, desired SCL = 100KHz $prescale = \frac{32\ MHz}{5*100\ KHz} - 1 = 63\ (dec\) = 3F\ (hex\)$

390

Publication Release Date: Jun. 18, 2010

Command Register (CMDR)

Register	Offset	R/W/C	Description	Reset Value
CMDR	0xB800_6x08	R/W	Command Register	0x0000_0000

					2/2/1 6.1 %		
31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	rved		490 (37
15	14	13	12	11	10	9	8
	Reserved					7.0	
7	6	5	4	3	2	1	0
	Reserved		START	STOP	READ	WRITE	ACK

NOTE: Software can write this register only when I2C_EN = 1.

Bits	Descriptions	
[4]	START	Generate Start Condition Generate (repeated) start condition on I ² C bus.
[3]	STOP	Generate Stop Condition Generate stop condition on I ² C bus.
[2]	READ	Read Data From Slave Retrieve data from slave.
[1]	WRITE	Write Data To Slave Transmit data to slave.
[0]	ACK	Send Acknowledge To Slave When I^2C behaves as a receiver, sent ACK (ACK = $`0'$) or NACK (ACK = $`1'$) to slave.

NOTE: The START, STOP, READ and WRITE bits are cleared automatically while transfer finished. READ and WRITE cannot be set concurrently.

Publication Release Date: Jun. 18, 2010

Software Mode Register (SWR)

Register	Offset	R/W/C	Description	Reset Value
SWR	0xB800_6x0C	R/W	Software Mode Control Register	0x0000_003F

31	30	29	28	27	26	25	24
			Rese	rved	9	40	
23	22	21	20	19	18	17	16
			Rese	rved		490 (37-
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	rved	SER	SDR	SCR	SEW	SDW	scw

NOTE: This register is used as software mode of I2C. Software can read/write this register no matter I2C_EN is 0 or 1. But SCL and SDA are controlled by software only when I2C_EN = 0.

Bits	Descriptions	
[5]	SER	Serial Interface SDO Status (Read only) 0 = SDO is Low. 1 = SDO is High.
[4]	SDR	Serial Interface SDA Status (Read only) 0 = SDA is Low. 1 = SDA is High.
[3]	SCR	Serial Interface SCK Status (Read only) $0 = SCL \text{ is Low.}$ $1 = SCL \text{ is High.}$
[2]	SEW	Serial Interface SDO Output Control 0 = SDO pin is driven Low. 1 = SDO pin is tri-state.
[1]	SDW	Serial Interface SDA Output Control 0 = SDA pin is driven Low. 1 = SDA pin is tri-state.
[0]	scw	Serial Interface SCK Output Control 0 = SCL pin is driven Low.

392

Publication Release Date: Jun. 18, 2010

1 = SCL pin is tri-state.
1 – See pin is thi state.

Data Receive Register (RxR)

Register	Offset	R/W/C	Description	Reset Value
RxR	0xB800_6x10	R	Data Receive Register	0x0000_0000

					5.00		
31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						7.0
15	14	13	12	11	10	9	8
	Reserved						, 50P
7	6	5	4	3	2	1	0
	Rx[7:0]						

Bits	Descriptions	
[7:0]	Rx	$\begin{tabular}{lll} \textbf{Data Receive Register} \\ \hline \textbf{The last byte received via I^2C bus will put on this register. The I^2C core only used 8-bit receive buffer.} \\ \end{tabular}$

Publication Release Date: Jun. 18, 2010

Data Transmit Register (TxR)

Register	Offset	R/W/C	Description	Reset Value
TxR	0xB800_6x14	R/W	Data Transmit Register	0x0000_0000

31	30	29	28	27	26	25	24
			Tx[3	1:24]	9	40	
23	22	21	20	19	18	17	16
	Tx[23:16]						
15	14	13	12	11	10	9	8
			Tx[1	15:8]		20	7 (0)
7	6	5	4	3	2	1	0
			Tx[7:0]			200

Bits	Descriptions						
		Data Transmit Register					
100000		The I^2C core used 32-bit transmit buffer and provide multi-byte transmit function. Set CSR [Tx_NUM] to a value that you want to transmit. I^2C core will always issue a transfer from the highest byte first. For example, if CSR [Tx_NUM] = 0x3, Tx [31:24] will be transmitted first, then Tx [23:16], and so on.					
[31:0]	Тх	In case of a data transfer, all bits will be treated as data.					
	Ali.	In case of a slave address transfer, the first 7 bits will be treated as 7-bit address and the LSB represent the R/W bit. In this case,					
		LSB = 1, reading from slave					
	O X M	LSB = 0, writing to slave					
		394 Publication Release Date: Jun. 18, 2010 Revision: A3					

6.15Universal Serial Interface Controller (USI)

The USI is a synchronous serial interface performs a serial-to-parallel conversion on data characters received from the peripheral, and a parallel-to-serial conversion on data characters received from CPU. This interface can drive up to 2 external peripherals and is seen as the master. It can generate an interrupt signal when data transfer is finished and can be cleared by writing 1 to the interrupt flag. The active level of device/slave select signal can be chosen to low active or high active, which depends on the peripheral it's connected. Writing a divisor into DIVIDER register can program the frequency of serial clock output. This master core contains four 32-bit transmit/receive buffers, and can provide burst mode operation. The maximum bits can be transmitted/received is 32 bits, and can transmit/receive data up to four times successive.

The USI (MICROWIRE/SPI) Master Core includes the following features:

Support MICROWIRE/SPI master mode

Full duplex synchronous serial data transfer

Variable length of transfer word up to 32 bits

Provide burst mode operation, transmit/receive can be executed up to four times in one transfer

395

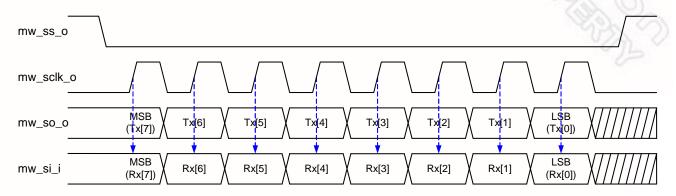
MSB or LSB first data transfer

Rx and Tx on both rising or falling edge of serial clock independently

2 slave/device select lines

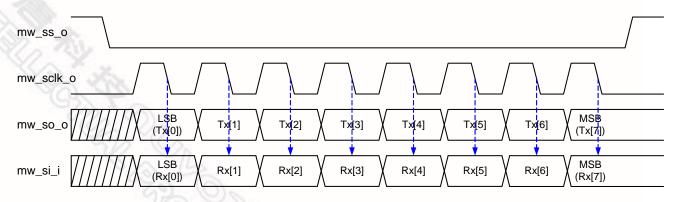
Publication Release Date: Jun. 18, 2010

6.15.1 USI Timing Diagram


The timing diagram of USI is shown as following.

Pin descriptions:

mw_sclk_o: USI serial clock output pin.mw int o: USI interrupt signal output.


mw_ss_o: USI slave/device select signal output.

mw_so_o: USI serial data output pin (to slave device). mw_si_i: USI serial data input pin (from slave device).

CNTRL[LSB]=0, CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08, CNTRL[Tx_NEG]=1, CNTRL[Rx_NEG]=0, SSR[SS_LVL]=0

USI Timing

CNTRL[LSB]=1, CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08, CNTRL[Tx_NEG]=0, CNTRL[Rx_NEG]=1, SSR[SS_LVL]=0

Alternate Phase SCLK Clock Timing

Publication Release Date: Jun. 18, 2010

6.15.2 USI Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description Reset Value		
USI_BA = 0x	B800_6200		100 450		
CNTRL	0xB800_6200	R/W	Control and Status Register	0x0000_0004	
DIVIDER	0xB800_6204	R/W	Clock Divider Register	0x0000_0000	
SSR	0xB800_6208	R/W	Slave Select Register	0x0000_0000	
Rx0	0xB800_6210	R	Data Receive Register 0	0x0000_0000	
Rx1	0xB800_6214	R	Data Receive Register 1	0x0000_0000	
Rx2	0xB800_6218	R	Data Receive Register 2	0x0000_0000	
Rx3	0xB800_621C	R	Data Receive Register 3	0x0000_0000	
Tx0	0xB800_6210	W	Data Transmit Register 0	0x0000_0000	
Tx1	0xB800_6214	W	Data Transmit Register 1	0x0000_0000	
Tx2	0xB800_6218	W	Data Transmit Register 2	0x0000_0000	
Tx3	0xB800_621C	W	Data Transmit Register 3	0x0000_0000	

NOTE 1: When software programs CNTRL, the GO_BUSY bit should be written last.

Publication Release Date: Jun. 18, 2010

Control and Status Register (CNTRL)

Register	Offset	R/W	Description	Reset Value
CNTRL	0xB800_6200	R/W	Control and Status Register	0x0000_0004

31	30	29	28	27	26	25	24
CLK_POL				Reserved	9	40	
23	22	21	20	19	18	17	16
		Rese	rved			SOLE CO	IF.
15	14	13	12	11	10	9	8
	SLI	EEP		Reserved	LSB	Tx_	NUM
7	6	5	4	3	2	1	0
	-	Tx_BIT_LEN		Tx_NEG	Rx_NEG	GO_BUSY	

Bits	Descriptions	
		Clock Polarity
[31]	CLK_POL	0 = Normal polarity.
		1 = Reverse polarity.
		Interrupt Enable
[17]	IE	0 = Disable USI Interrupt.
		1 = Enable USI Interrupt.
	- CA.	Interrupt Flag
	20	0 = It indicates that the transfer dose not finish yet.
[16]	- T	1 = It indicates that the transfer is done. The interrupt flag is set if it was enable.
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
	SIL	Suspend Interval
[15:12]	SLEEP	These four bits provide the configuration of suspend interval between two successive transmit/receive in a transfer. The default value is 0x0. When CNTRL [Tx_NUM] = 00, setting this field has no effect on transfer. The desired interval is obtained according to the following equation (from the last falling edge of current sclk to the first rising edge of next sclk):

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
	-	(CNTRL[SLEEP] + 2)*period of SCLK
		SLEEP = 0x0 2 SCLK clock cycle
		SLEEP = 0x1 3 SCLK clock cycle
		SLEEP = 0xe 16 SCLK clock cycle
		SLEEP = 0xf 17 SCLK clock cycle
		Send LSB First
[10]	LSB	$0 = \text{The } \mathbf{MSB}$ is transmitted/received first (which bit in TxX/RxX register that is depends on the Tx_BIT_LEN field in the CNTRL register).
		1 = The LSB is sent first on the line (bit TxX [0]), and the first bit received from the line will be put in the LSB position in the Rx register (bit RxX [0]).
		Transmit/Receive Numbers
	Tx_NUM	This field specifies how many transmit/receive numbers should be executed in one transfer.
[9:8]		00 = Only one transmit/receive will be executed in one transfer.
		01 = Two successive transmit/receive will be executed in one transfer.
		10 = Three successive transmit/receive will be executed in one transfer.
de		11 = Four successive transmit/receive will be executed in one transfer.
		Transmit Bit Length
	4	This field specifies how many bits are transmitted in one transmit/receive. Up to 32 bits can be transmitted.
	783	Tx_BIT_LEN = 0x01 1 bit
[7:3]	Tx_BIT_LEN	Tx_BIT_LEN = 0x02 2 bits
	C. T.	
		$Tx_BIT_LEN = 0x1f 31 bits$
		$Tx_BIT_LEN = 0x00 \dots 32 \text{ bits}$
	49	Transmit On Negative Edge
[2]	Tx_NEG	0 = The mw_so_o signal is changed on the rising edge of mw_sclk_o.
		1 = The mw_so_o signal is changed on the falling edge of mw_sclk_o.

399

Publication Release Date: Jun. 18, 2010 Revision: A3

Bits	Descriptions	
		Receive On Negative Edge
[1]	Rx_NEG	0 = The mw_si_i signal is latched on the rising edge of mw_sclk_o.
		1 = The mw_si_i signal is latched on the falling edge of mw_sclk_o.
		Go and Busy Status
		0 = Writing 0 to this bit has no effect.
[0]	GO_BUSY	1= Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after transfer finished.
		NOTE : All registers should be set before writing 1 to the GO_BUSY bit in the CNTRL register. When a transfer is in progress, writing to any register of the USI master core has no effect.

Publication Release Date: Jun. 18, 2010

Divider Register (DIVIDER)

Register	Offset	R/W	Description	Reset Value
DIVIDER	0xB800_6204	R/W	Clock Divider Register	0x0000_0000

					2/2/11 64 50		
31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved		490	3
15	14	13	12	11	10	9	8
			DIVIDE	R[15:8]		20	7.0
7	6	5	4	3	2	1	0
	DIVIDER[7:0]						

Bits	Descriptions	
[15:0]	DIVIDER	Clock Divider Register The value in this field is the frequency divider of the system clock pclk to generate the serial clock on the output mw_sclk_o. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{pclk}}{(DIVIDER+1)*2}$ NOTE: Suggest DIVIDER should be at least 1.

401

Publication Release Date: Jun. 18, 2010

Slave Select Register (SSR)

Register	Offset	R/W	Description	Reset Value
SSR	0xB800_6208	R/W	Slave Select Register	0x0000_0000

					V/A1 615			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved		20)	7 (0)	
7	6	5	4	3	2	1	0	
Reserved				ASS	SS_LVL	SSR	[1:0]	

Bits	Descriptions	
		Automatic Slave Select
	ASS	0 = If this bit is cleared, slave select signals are asserted and de-asserted by setting and clearing related bits in SSR register.
[3]		1 = If this bit is set, mw_ss_o signals are generated automatically. It means that device/slave select signal, which is set in SSR register is asserted by the USI controller when transmit/receive is started by setting CNTRL [GO_BUSY], and is de-asserted after every transmit/receive is finished.
12 - 10		Slave Select Active Level
[2]	SS_LVL	It defines the active level of device/slave select signal (mw_ss_o).
		0 = The mw_ss_o slave select signal is active Low . 1 = The mw_ss_o slave select signal is active High .
	10 ST.	Slave Select Register
	SSR	If SSR[ASS] bit is cleared, writing 1 to any bit location of this field sets the proper mw_ss_o line to an active state and writing 0 sets the line back to inactive state.
[1:0]		If SSR[ASS] bit is set, writing 1 to any bit location of this field will select appropriate mw_ss_o line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. (The active level of mw_ss_o is specified in SSR [SS_LVL]).
		NOTE: This interface can only drive one device/slave at a given time.

402

Publication Release Date: Jun. 18, 2010

Therefore, the slave select of the selected device must be set to its active level
before starting any read or write transfer.

Data Receive Register 0 (Rx0)

Data Receive Register 1 (Rx1)

Data Receive Register 2 (Rx2)

Data Receive Register 3 (Rx3)

Register	Offset	R/W	Description	Reset Value
Rx0	0xB800_6210	R	Data Receive Register 0	0x0000_0000
Rx1	0xB800_6214	R	Data Receive Register 1	0x0000_0000
Rx2	0xB800_6218	R	Data Receive Register 2	0x0000_0000
Rx3	0xB800_621C	R	Data Receive Register 3	0x0000_0000

31	30	29	28	27	26	25	24			
	Rx[31:24]									
23	22	21	20	19	18	17	16			
			Rx[2	3:16]						
15	14	13	12	11	10	9	8			
			Rx[1	15:8]						
7	6	5	4	3	2	1	0			
A.			Rx[7:0]						

Bits	Descriptions	
	(C. M)	Data Receive Register
[31:0]	Rx	The Data Receive Registers hold the value of received data of the last executed transfer. Valid bits depend on the transmit bit length field in the CNTRL register. For example, if CNTRL [Tx_BIT_LEN] is set to 0x08 and CNTRL [Tx_NUM] is set to 0x0, bit Rx0 [7:0] holds the received data.
		NOTE: The Data Receive Registers are read only registers. A Write to these registers will actually modify the Data Transmit Registers because those

403

Publication Release Date: Jun. 18, 2010

	registers share the same FFs.

Publication Release Date: Jun. 18, 2010

Data Transmit Register 0 (Tx0)

Data Transmit Register 1 (Tx1)

Data Transmit Register 2 (Tx2)

Data Transmit Register 3 (Tx3)

			7.791 7.00	
Register	Offset	R/W	Description	Reset Value
Tx0	0xB800_6210	W	Data Transmit Register 0	0x0000_0000
Tx1	0xB800_6214	W	Data Transmit Register 1	0x0000_0000
Tx2	0xB800_6218	W	Data Transmit Register 2	0x0000_0000
Tx3	0xB800_621C	W	Data Transmit Register 3	0x0000_0000

							VIAN V		
31	30	29	28	27	26	25	24		
	Tx[31:24]								
23	22	21	20	19	18	17	16		
			Tx[2	3:16]					
15	14	13	12	11	10	9	8		
			Tx[1	5:8]					
7	6	5	4	3	2	1	0		
	Tx[7:0]								

Bits	Descriptions	
	100	Data Transmit Register
[31:0]	Tx	The Data Transmit Registers hold the data to be transmitted in the next transfer. Valid bits depend on the transmit bit length field in the CNTRL register. For example, if CNTRL [Tx_BIT_LEN] is set to 0x08 and the CNTRL [Tx_NUM] is set to 0x0, the bit Tx0 [7:0] will be transmitted in next transfer. If CNTRL [Tx_BIT_LEN] is set to 0x00 and CNTRL [Tx_NUM] is set to 0x3, the core will perform four 32-bit transmit/receive successive using the same setting (the order is Tx0 [31:0], Tx1 [31:0], Tx2 [31:0], Tx3 [31:0]).
		NOTE : The RxX and TxX registers share the same flip-flops, which mean that what is received from the input data line in one transfer will be transmitted on the output data line in the next transfer if no write access to the TxX register is executed between the transfers.

405

Publication Release Date: Jun. 18, 2010

7. ELECTRICAL SPECIFICATIONS

7.1 Absolute Maximum Ratings

Ambient temperature	-20 °C ~ 70 °C
Storage temperature	-50 °C ~ 125°C
Voltage on any pin	-0.5V ~ 6V
Power supply voltage (Core logic)	-0.5V ~ 2.5V
Power supply voltage (IO Buffer)	-0.5V ~ 4.6V
Injection current (latch-up testing)	100mA
Crystal Frequency	4MHz ~ 30MHz

Publication Release Date: Jun. 18, 2010

7.2 DC Specifications

7.2.1 Digital DC Characteristics

(Normal test conditions: VDD33 = 3.3V+/-10%, VDD18/PLLVDD18 = 1.8V+/-10%, USBVDDC0/USBVDDC1/USBVDDT0/USBVDDT1= 3.3V+/-5%, TA = -20 °C ~ 70 °C unless otherwise specified)

Symbol	Parameter	Condition	Min	TYP	Max	Unit
VDD33	Power Supply	8	2.97	12-	3.63	V
VDD18/ PLLVDD18	Power Supply		1.62	9	1.98	V
USBVDDC0/ USBVDDC1/ USBVDDT0/ USBVDDT1	Power Supply		3.13		3.46	V
V_{IL}	Input Low Voltage		-0.3	\	0.8	V
v_{IH}	Input High Voltage		2.0	1	5.5	V
VT+	Schmitt Trigger positive-going threshold		1.5	-	1.62	V
VT-	Schmitt trigger negative-going threshold		1.14	-	1.27	V
V _{OL}	Output Low Voltage	Depend on driving	-	-	0.4	V
V _{OH}	Output High Voltage	Depend on driving	2.4	-	-	V
I _{IH}	Input High Current	$V_{IN} = 2.4 \text{ V}$	-1	-	1	uA
I _{IL}	Input Low Current	$V_{IN} = 0.4 V$	-1	-	1	uA
I _{OH}	Output High Current	EBI, GPIOC, GPIOD	-	35	-	mA
I_{OL}	Output Low Current	EBI, GPIOC, GPIOD	-	26	-	mA
I _{OH}	Output High Current	The other port	-	25	-	mA
I_{OL}	Output Low Current	The other port	-	17	-	mA
I _{OC}	Operation Current	Note 1	-	340	-	mA
\mathbf{I}_{SC}	Standby Current	Note 2	-	110	-	uA

Note1:

This operation current is measured on VDD18 @ 1.8V, and all of IP clocks are enable with CPU clock/system clock @ 200 MHz / 100 MHz.

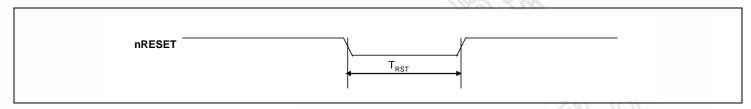
Note2:

The standby current is measured on VDD18 @1.8V, and all of IP clocks are disable with power-down mode, all of GPIO pins are set to input with internal pull high/low or output drive without internal pull high/low.

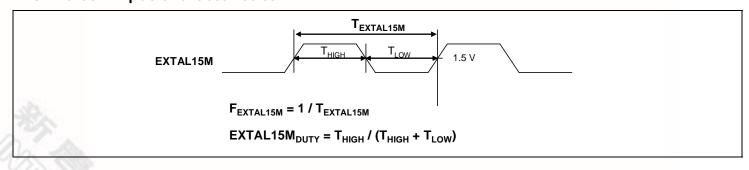
Publication Release Date: Jun. 18, 2010

7.2.2 USB Low-/Full-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	Min	TYP	Max
V _{IH}	Pad input high voltage	V - VV	2.0V		
$V_{_{ m IL}}$	Pad input low voltage	1/10 . 74	V		0.8V
$V_{_{ m DI}}$	Differential input sensitivity	PADP-PADM	0.2V		
V _{CM}	Common mode voltage range	include V _{DI} range	0.8V		2.5V
V _{SE}	Single-ended receiver threshold	0	0.8V		2.0V
V _{OL}	Pad output low voltage	7	0V		0.3V
V _{OH}	Pad output high voltage		2.8V	2	3.6V
V _{CRS}	Differential output signal cross-point voltage		1.3V	(0)	2.0V
R _{PU}	Internal pull-up resistor	Bus idle	900Ω		1575Ω
		Receiving	1425Ω	(0)	3090Ω
$R_{\scriptscriptstyle{ extstyle PD}}$	Internal pull-down resistor		14.25ΚΩ	16.27	24.80ΚΩ
Z_{DRV}	Driver output resistance	Steady state drive		10Ω	0
$C_{_{ m IN}}$	Transceiver pad capacitance	Pad to ground		6	20pF


7.2.3 USB High-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	Min	TYP	Max
V _{HSDI}	High-speed differential input signal level	PADP-PADM	150mV		
V _{HSSQ}	High-speed SQ detection threshold	PADP-PADM	100mV		150mV
V _{HSCM}	High-speed common mode voltage range		-50mV		500mV
V _{HSOH}	High-speed data signaling high		360mV		440mV
V _{HSOL}	High-speed data signaling low		-10mV		10mV
V_{CHIRPJ}	Chirp J level		700mV		1100mV
V _{CHIRPK}	Chirp K level		-900mV		-500mV
Z _{HSDRV}	High-speed driver output resistance	45Ω±10%	40.5Ω		49.5Ω
	Pate: Jun. Rev	18, 2010 vision: A3			

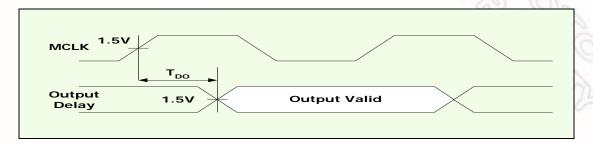

AC Specifications 7.3

7.3.1 RESET AC Characteristics

Symbol	Parameter	MIN	MAX	Unit
T _{RST}	Reset Pulse Width after Power stable	1.0	- 18 B	ms

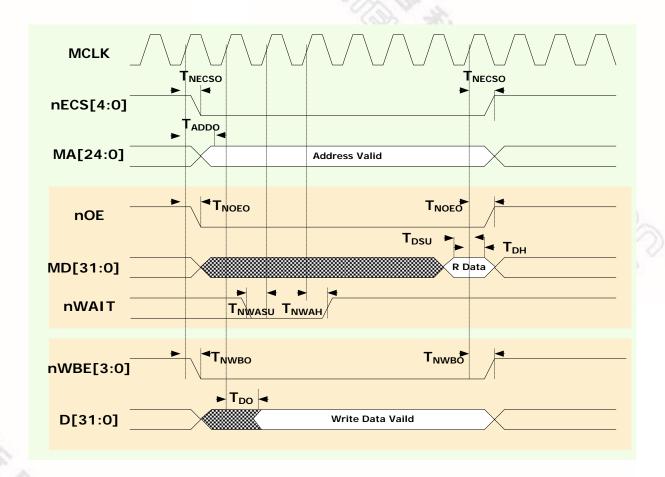
7.3.2 Clock Input Characteristics

Symbol	Parameter	Min TYP M		Max	Unit
F _{EXTAL15M}	Clock Input Frequency	-	15.0	-	MHz
EXTAL15M _{DUTY}	Clock Input Duty Cycle	45	50	55	%
V _{IL} (EXTAL15M)	EXTAL15M Input Low Voltage	0	-	0.8	V
V _{IH} (EXTAL15M)	EXTAL15M Input High Voltage	2.0	-	VDD33 + 0.3	V


409

Publication Release Date: Jun. 18, 2010

7.3.3 EBI/SDRAM Interface AC Characteristics


Symbol	Parameter	MIN	MAX	Unit
F _{MCLK}	SDRAM Clock Output Frequency	-	100	MHz
T _{DSU}	MD[31:0]] Input Setup Time	2	-	ns
T _{DH}	MD[31:0] Input Hold Time	2	-	ns
T _{osu}	SDRAM Output Signal Valid Delay Time	2*	7*	ns

^{*} The above T_{OSU} is based on the EBI CKSKEW register default setting on 0x48 and F_{MCLK} at 100MHz

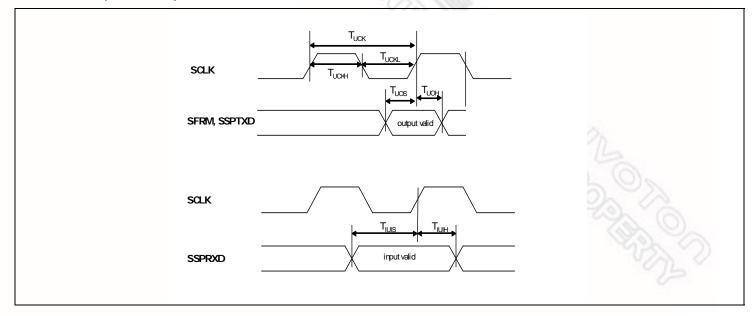
Publication Release Date: Jun. 18, 2010

7.3.4 EBI / (ROM/SRAM/External I/O) AC Characteristics

Symbol	Parameter	MIN	MAX	Unit
T _{ADDO}	Address Output Delay Time	2*	7*	ns
T _{NCSO}	ROM/SRAM/Flash or External I/O Chip Select Delay Time	2*	7*	ns
T _{NOEO}	ROM/SRAM or External I/O Bank Output Enable Delay	2*	7*	ns
T _{NWBO}	ROM/SRAM or External I/O Bank Write Byte Enable Delay	2*	7*	ns
T _{DH}	Read Data Hold Time	5		ns
T _{DSU}	Read Data Setup Time	1		ns
T _{DO}	Write Data Output Delay Time (SRAM or External I/O)	2*	7*	ns
T _{NWASU}	External Wait Setup Time	3		ns
T _{NWAH}	External Wait Hold Time	1		ns

411

Publication Release Date: Jun. 18, 2010



* The above data are based on the EBI CKSKEW register default setting on 0x48 and \mathbf{F}_{MCLK} at 100MH

Publication Release Date: Jun. 18, 2010

7.3.5 USI (SPI/MW) Interface AC Characteristics

Symbol	Parameter	MIN	MAX	Unit
T _{CLKH}	Clock Output High Time	14.6	-	ns
T _{CLKL}	Clock Output Low Time	15.8	-	ns
T _{CLK}	Clock Cycle Time	30.4	-	ns
T _{UOS}	SFRM, SSPTXD Output Setup Time	15	-	ns
T _{UOH}	SFRM, SSPTXD Output Hold Time	13	-	ns
T _{UIS}	SSPRXD Input Setup Time	10	-	ns
T _{UIH}	SSPRXD Input Hold Time	10	-	ns

413

Publication Release Date: Jun. 18, 2010

7.3.6 USB Transceiver AC Characteristics

USB Transceiver: Low-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	MIN	TYP	MAX
$ au_{LR}$	Low-speed driver rise time	C _L =50pF	75ns		300ns
T _{LF}	Low-speed driver fall time	C _L =50pF	75ns	A:	300ns
\mathcal{T}_{LRFM}	Low-speed rise/fall time matching	$T_{LRFM} = T_{LR} / T_{LF}$	80%	76	125%

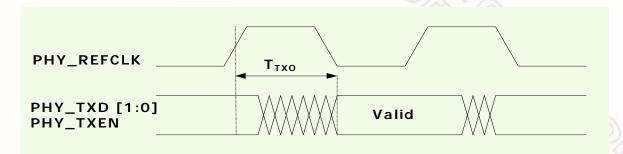
USB Transceiver: Full-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	MIN	TYP	MAX
T _{FR}	Full-speed driver rise time	C _L =50pF	4ns	10	20ns
T _{FF}	Full-speed driver fall time	C _L =50pF	75ns		20ns
T _{FRFM}	Full-speed rise/fall time matching	$T_{FRFM} = T_{FR} / T_{FF}$	90%		111.11

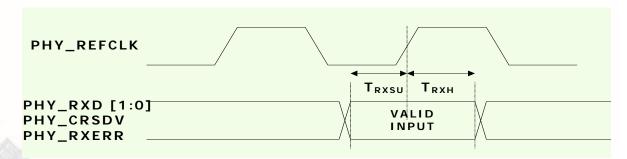
USB Transceiver: High-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	MIN	TYP	MAX
$ au_{HSR}$	High-speed driver rise time	$Z_{HSDRV} = 45\Omega$	500ps		900ps
T _{HSF}	High-speed driver fall time	$Z_{HSDRV} = 45\Omega$	500ps		900ps
	High-speed driver waveform requirement		Eye diagram of template 1** Eye diagram of template 4 ^{††}		
W.	High-speed receiver waveform requirement				
		Data source end	Eye diagra	am of tem	plate 1
	High-speed jitter requirement	Receiver end	Eye diagra	am of tem	plate 4

^{**} Check "Universal Serial Bus Specification Revision 2.0" page 133.


Publication Release Date: Jun. 18, 2010

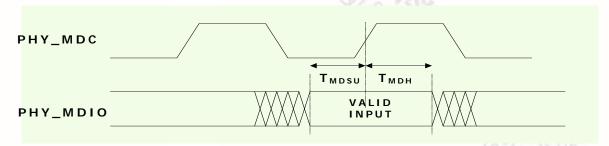
⁺⁺ Check "Universal Serial Bus Specification Revision 2.0" page 136.



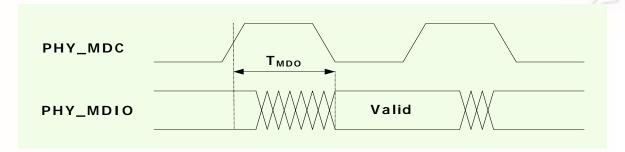
7.3.7 EMC RMII AC Characteristics

The signal timing characteristics conforms to the guidelines specified in IEEE Std. 802.3.

Transmit Signal Timing Relationships at RMII



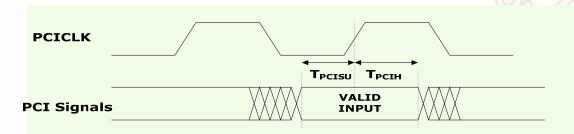
Receive Signal Timing Relationships at RMII


Symbol	Parameter	MIN	MAX	Unit
T _{TxO}	Transmit Output Delay Time	7	14	ns
T _{RxSU}	Receive Setup Time	4		ns
T _{RxH}	Receive Hold Time	2		ns

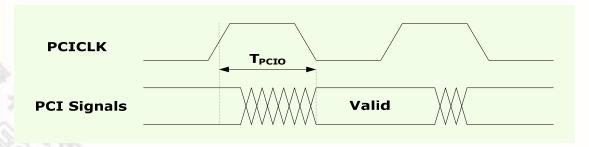
Publication Release Date: Jun. 18, 2010

PHY_MDIO Read from PHY Timing

PHY_MDIO Write to PHY Timing


Symbol	Parameter	MIN	MAX	Unit
T _{MDO}	PHY_MDIO Output Delay Time	0	15	ns
T _{MDSU}	PHY_MDIO Setup Time	5		ns
T _{MDH}	PHY_MDIO Hold Time	5		ns

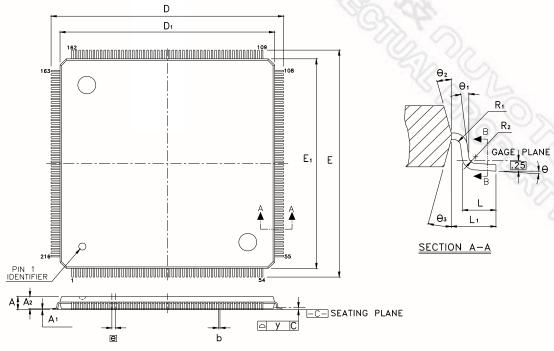
Publication Release Date: Jun. 18, 2010



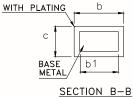
7.3.8 PCI Interface AC Characteristics

Symbol	Parameter	MIN	MAX	Unit
T _{PCIO}	PCICLK to PCI Signals Output Delay Time	3	8	ns
T _{PCISU}	PCI Signals Input Setup Time to PCICLK	3		ns
T _{PCIH}	PCI Signals Input Hold Time to PCICLK	i i Sh		ns

PCI Input Timing


PCI Interface Output Timing

Publication Release Date: Jun. 18, 2010 Revision: A3


8. PACKAGE SPECIFICATIONS

NUC960ADN LQFP216L (24X24X1.4 mm, footprint 2.0mm)

Controlling Dimension :Millimeters

Symbol	Dime	nsion ir	n mm	I	Dimer	sion in	inch
Symbol	Min	Nom	Max][Min	Nom	Max
Α	_		1.60][0.063
A ₁	0.05	_	0.15	11	0.002	_	0.006
A2	1.35	1.40	1.45	11	0.053	0.055	0.057
b	0.13	0.18	0.23	11	0.005	0.007	0.009
b ₁	0.13	0.16	0.19		0.005	0.006	0.007
С	0.09	0.14	0.20][0.004	0.006	0.008
D	25.85	26.00	26.15][1.018	1.024	1.030
D ₁	23.90	24.00	24.10][0.941	0.945	0.949
E	25.85	26.00	26.15][1.018	1.024	1.030
E ₁	23.90	24.00	24.10][0.941	0.945	0.949
е	0.40 BSC			$\ $	0.	.0157 E	3SC
(L)	0.45	0.60	0.75		0.018	0.024	0.030
L ₁ ()	1	.00 RE	F		0.	039 RE	F
R ₁	0.08	_	_		0.003		_
R ₂	0.08	_	_		0.003		
θ	0,	3.5°	7°	$\ $	0.	3.5°	7°
θ1	0°	-			0*	_	
θ ₂	11*	12°	13*		1 1°	12°	1 <i>3</i> °
Өз	11°	12°	13°		1 1°	12°	1.3°
У	0	.08	1/3		0.	00314	

Publication Release Date: Jun. 18, 2010

9. REVISION HISTORY

REVISION	DATE	COMMENTS
Α	2008/07/09	First Release
		1. Update Chapter 2
		Add text "Pb free"
A1	2008/10/06	2. Correct Typo: Spelling and grammar check
		3. Update Chapter 8
		Package Specifications
		Rename nWE to nSWE
A2	2009/04/13	2. Change Part Number from W90N960CDG to NUC960ADN
А3	2010/06/18	1. Add IOH, IOL current value

419

Publication Release Date: Jun. 18, 2010

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

420

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Publication Release Date: Jun. 18, 2010