1. Features

GaNSense™ Power FET

- · Loss-less current sensing
- Low 600 mΩ power FET
- · Zero reverse recovery charge
- · Low output charge
- · 800 V Transient Voltage Rating
- 700 V Continuous Voltage Rating

High Frequency QR Controller

- · Wide VDD range up to 77V
- · QR valley switching and CCM operating modes
- · High frequency operation up to 225kHz
- · High voltage start-up
- · Frequency hopping for low EMI
- X-cap discharge
- · OVP, UVP, OTP, CSSP, SSSP, LPS protection functions
- Ultra-low standby current consumption (<20mW)

Small, low-profile SMT QFN

- 5 x 6 mm footprint, 0.85 mm profile
- · Minimized package inductance
- Large cooling pad

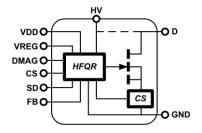
High Power Density

- > 1W/cc achievable power density
- · Small transformer size
- · Low component count

Product Reliability

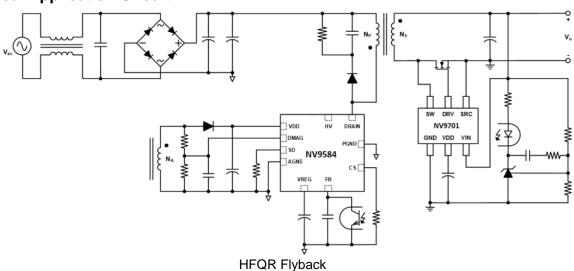
· 20-year limited product warranty (see Section 14 for details)


2. Topologies / Applications


- · High efficiency AC-DC power adapters
- · USB PD/QC battery charger
- · Mobile chargers, adapters, aux power

FUTRAL Company CarbonNeutral.com

GaNSense™ HFQR Controller


QFN 5x6 Super

Simplified schematic

3. Description

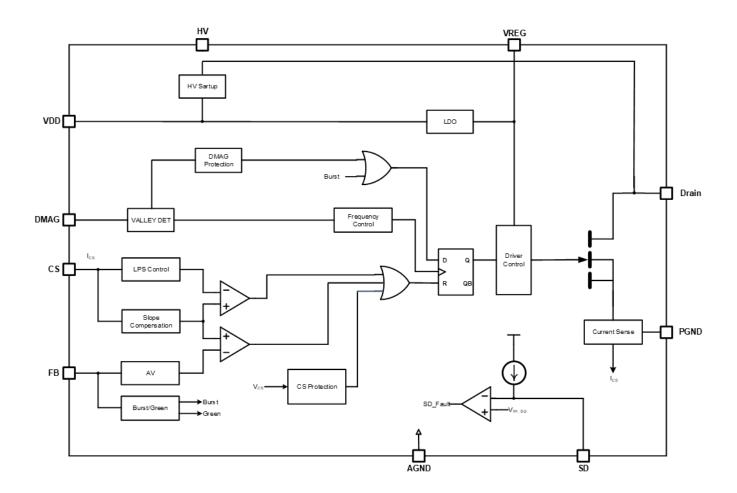
This GaNSense™ HFQR controller integrates a high performance eMode GaNSense Power FET together with an HFQR Flyback controller to achieve unprecedented highfrequency and high-efficiency operation for smallest size mobile charger and adapter solutions. The GaNSense Power FET includes loss-less current sensing, ultra-low gate charge, low output charge, and 700V continuous and 800V transient voltage ratings to provide excellent performance and robustness. The HFQR Flyback controller enables high frequency operation, wide VDD range, high-voltage start-up, and multi-mode operation. The HFQR Flyback controller also includes abnormal component short-circuit, over-temperature and LPS protection features to increase system robustness, while ultra-low standby current consumption increases light, tiny & no-load efficiency. Low-profile, low-inductance, and small footprint SMT QFN 5x6 packaging enables designers to achieve simple, quick and reliable solutions. Navitas' GaN IC technology enables high frequencies, high efficiencies and low EMI to achieve unprecedented power densities at a very attractive cost structure.

4. Typical Application Circuit

5. Table of Contents

1. Features	1
2. Topologies / Applications	1
3. Description	1
4. Typical Application Circuit	1
5. Table of Contents	2
6. Ordering Information	3
7. Internal Functional Block Diagram	4
8. Specifications	5
8.1. Absolute Maximum Ratings ⁽¹⁾	5
8.2. Recommended Operating Conditions ⁽⁵⁾	6
8.3. Electrical Specifications	7
Electrical Specifications (cont.)	8
Electrical Specifications (cont.)	9
Electrical Specifications (cont.)	10

Electrical Specifications (cont.)	11
8.4. Characteristic Graphs	12
Characteristic Graphs (cont.)	13
Characteristic Graphs (cont.)	14
Characteristic Graphs (Cont.)	15
Pin Configurations and Functions	16
· · · · · · · · · · · · · · · · · · ·	
10. Functional Description	
<u> </u>	17
10. Functional Description	17 25
10. Functional Description 11. Package Outline (Power QFN)	17 25 26
10. Functional Description 11. Package Outline (Power QFN) 12. Tape and Reel Dimensions	17 25 26 27


6. Ordering Information

Part Number	Maximum Frequency	R _{DS(ON)}	Operating Temperature Range	Package	Packing Method
NV9586F1P1	129kHz/100kHz	600mΩ	400C to .40E0C	QFN 5x6	5,000
NV9586F2P1	225kHz/164kHz	60011122	-40°C to +125°C	QFN 5X6	13" Tape & Reel

Preliminary Datasheet 3 Rev Feb. 24, 2023

7. Internal Functional Block Diagram

8. Specifications

Energy • Efficiency • Sustainability

8.1. Absolute Maximum Ratings(1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{DS(CONT)}	GaN Power FET Continuous Dr	ain-to-Source Voltage ⁽²⁾	-7	700	V
V _{DS(TRAN)}	GaN Power FET Transient Drai	n-to-Source Voltage ⁽³⁾	-	800	V
V _{Source}	Source Pin Input Voltage		-0.3	-	V
V _{VDD}	VDD DC Supply Voltage		-0.3	80	V
Vcs	CS Pin Input Voltage		-0.3	5.5	V
V _{FB}	FB Pin Input Voltage		-0.3	5.5	V
V _{DMAG}	DMAG Pin Input Voltage		-0.3	5.5	V
V _{SD}	SD Pin Input Voltage		-0.3	5.5	V
V _{REG}	VREG Pin Output Voltage		-0.3	7	V
I _D	GaN Power FET Continuous Drain Current (@ T _C = 100°C)		-	2	Α
I _D PULSE	GaN Power FET Pulsed Drain Current (10 µs @ T _J = 25°C)		-	4	Α
θја	Thermal Resistance (Junction-to-Ambient) QFN 5x6		-	77.8	°C/W
Өлс	Thermal Resistance (Junction-to	o-Case) QFN 5x6	-	4.5	°C/W
TJ	Operating Junction Temperature	е	-40	150	°C
T _{STG}	Storage Temperature Range		-40	150	°C
TL	Lead Temperature (Soldering) 10 Seconds		-	260	°C
		Human Body Mode, ANSI/ESDA/JEDEC JS-001-2017 Excluding HV Pin	-	2.0	kV
ESD	Electrostatic Discharge Capability	Human Body Mode, ANSI/ESDA/JEDEC JS-001-2017 Including HV Pin		1.0	kV
		Charge Device Mode, ANSI/ESDA/JEDEC JS-001-2018	-	2.0	kV

Note (1): Stress beyond those listed under absolute maximum ratings may cause permanent damage to the device

Note (2): VDS(CONT) rating is specified for GaN Power FET

Note (3): V_{DS(TRAN)} rating is specified for GaN Power FET and allows for surge ratings during non-repetitive events that are <100us (for example start-up, line interruption) and repetitive events that are <400ns (for example repetitive leakage inductance spikes).

Note (4): R_e measured on DUT mounted on 1 square inch 2 oz Cu (FR4 PCB)

Preliminary Datasheet 5 Rev Feb. 24, 2023

8.2. Recommended Operating Conditions⁽⁵⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Navitas does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Тур.	Max.	Unit
V _{Source}	Source Pin Voltage	-0.3		-	V
V_{VDD}	VDD Pin Supply Voltage	-0.3		75	V
V_{CS}	CS Pin Supply Voltage	-0.3		5	V
V_{FB}	FB Pin Supply Voltage			5	V
V_{DMAG}	DMAG Pin Supply Voltage	-0.3		5	V
V_{SD}	SD Pin Supply Voltage	-0.3		5	V
V_{REG}	VREG Pin Output Voltage	-0.3		7	V

Note (5): Functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied, exposure to absolute maximum rated conditions of extended periods may affect device reliability. All voltage values are with respect to the normal operation ambient temperature range is from -40°C to +125°C unless otherwise noted.

Preliminary Datasheet 6 Rev Feb. 24, 2023

8.3. Electrical Specifications

 V_{DD} (Typ.) = 12V, $T_A = -40$ °C to 125°C, and T_A (Typ.) = 25°C, unless otherwise specified.

Parameter		Test Conditions	Min.	Тур.	Max.	Unit	
	HV Startup Section						
l _{HV}	HV Startup Current Drawn from Drain Pin	V _{DRAIN} =120 V, V _{DD} =0 V	5		20	mA	
I _{HV_LC}	HV Startup Leakage Current Drawn from Drain Pin	V _{DRAIN} =700 V, V _{DD} =V _{DD_UVLO} +1V			3	μΑ	
		VDD Section					
V_{DD_ON}	V _{DD} Turn-On Threshold Voltage	V _{DD} Rising	12.0	13.5	15.0	V	
V _{DD_UVLO}	V _{DD} UVLO Threshold Voltage		6.2	6.5	6.8	V	
I _{DD_ST}	Startup Current			2	5	μA	
I _{DD_OP}	Operating Supply Current	No DRV Switching		0.65		mA	
IDD_DPGN	Operating Supply Current in Deep Green-Mode			300		μΑ	
t _{D_DPGN}	Debounce Time to Enter Deep Green Mode		380	480	580	μs	
V _{DD_OVP} (6)	V _{DD} Over-Voltage-Protection Threshold		77	78.5		V	
t _{D_UVLO} (6)	UVLO De-bounce Time			10		μs	
t _{D_VDD_OVP} (6)	V _{DD} Over-Voltage-Protection De-bounce Time			32		μs	
tvdd_lar	Long Auto-Restart Mode Time	Trim Option	2.08	2.64	3.20	S	

Preliminary Datasheet 7 Rev Feb. 24, 2023

 V_{DD} (Typ.) = 12V, $T_A = -40$ °C to 125°C, and T_A (Typ.) = 25°C, unless otherwise specified.

Parameter		Test Conditions	Min.	Тур.	Max.	Unit
		VREG Section				
V _{REG} (6)	VREG output voltage			6.4		V
V _{REG_5mA} (6)	VREG with 5mA Load Current	I _{OUT} = 5mA	5.85			V
		Oscillator Section				
fs bnk max ll	Maximum Blanking Frequency at Low Line Input	129kHz/100kHz		129		kHz
IS_BNK_MAX_LL	Voltage	225kHz/164kHz		225		kHz
fs bnk max hl	Maximum Blanking Frequency at High Line	129kHz/100kHz		100		kHz
IS_BNK_MAX_HL	Input Voltage	225kHz/164kHz		164		kHz
f _{S_TMO}	Minimum Time-Out PWM Frequency		23	25	27	kHz
ton max	Maximum PWM ON Time	129kHz/100kHz	16.0	17.7	19.4	μs
TON_IVIAX		225kHz/164kHz	9.5	10.5	11.5	μs
DMAX	Maximum Duty Cycle		72	75	78	%
m _{slp} ⁽⁶⁾	Slope Compensation			60		mv/µs
$\Delta V_{JIT}^{(6)}$	Current Sense Jitter Range	129kHz/100kHz		5.0		%
∆VJII (°)	Current Sense Sitter Kange	225kHz/164kHz		10.0		%
T _{JIT}	Frequency Jitter Period		2.22	2.56	2.90	ms
		Feedback Section				
V _{FB_OPEN}	FB Open Voltage			5.05		V
Z _{FB}	FB Pull Up Resistor		36	42	48	kΩ
A _{V_HV} ⁽⁶⁾	FB Voltage Attenuation Factor at High Output Voltage	129kHz/100kHz (V _{DMAG} > 1.75V)		0.225		V/V
A _{V_LV} (6)	FB Voltage Attenuation Factor at Low Output Voltage	129kHz/100kHz (V _{DMAG} < 1.6V)		0.200		V/V
A _V ⁽⁶⁾	FB Voltage Attenuation Factor	225kHz/164kHz		0.175		V/V
V _{FB_BST_ENT}	FB Threshold for Burst Mode Entry		0.50	0.55	0.60	V
V _{FB_BST_EXT}	FB Threshold for Burst Mode Exit		0.55	0.60	0.65	V

Rev Feb. 24, 2023 **Preliminary Datasheet** 8

 V_{DD} (Typ.) = 12V, $T_A = -40$ °C to 125°C, and T_A (Typ.) = 25°C, unless otherwise specified.

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	F	Feedback Section (Cont.)	•			
Vfb_bnk_str	Frequency Foldback Start Point	129kHz/100kHz		2.30		V
V _{FB_BNK_} STR_L	Frequency Foldback Start Point at Low Line Input Voltage	225kHz/164kHz		2.692		V
Vfb_bnk_str_h	Frequency Foldback Start Point at High Line Input Voltage	225kHz/164kHz		3.158		V
V _{FB_BNK_END_L}	Frequency Foldback End Point at Low Line Input	129kHz/100kHz		1.394		V
VI B_BINK_END_E	Voltage	225kHz/164kHz		1.154		V
Vfb_bnk_end_h	Frequency Foldback End Point at High Line Input	129kHz/100kHz		1.456		V
	Voltage Vcs_min Foldback High	225kHz/164kHz		1.151		V
VFB_CSMIN_H (6)	Threshold Voltage	225kHz/164kHz		1.500		V
Vfb_csmin_l (6)	V _{CS_MIN} Foldback Low Threshold Voltage	225kHz/164kHz		0.750		V
		DMAG Section	•			
I _{DMAG_BRI}	Current Threshold for		0.43	0.48	0.53	mA
	Brown-In Debounce Cycle for Brown-					
N _{BRI} ⁽⁶⁾	In			4		Cycle
Idmag_bro	Current Threshold for Brown-Out		0.31	0.36	0.41	mA
t _{D_BRO} (6)	Debounce Cycle for Brown- Out			16.5		ms
I _{DMAG_HL} (6)	Current Threshold for High Line			1.16		mA
N _{HL_ENT} (6)	Debounce Cycle for High Line Entry			4		Cycle
I _{DMAG_LL} (6)	Current Threshold for Low Line			1.04		mA
t _{D-LL_ENT} (6)	Debounce Cycle for Low Line Entry			16.5		ms
tdmag_bnk_l (6)	DMAG Sampling Blanking Time	(V _{FB} < 1.5V)		1.10		μs
t _{DMAG_BNK_M} (6)	DMAG Sampling Blanking Time	(V _{FB} > 1.6V)		1.65		μs
V _{DMAG_HV}	V _{DMAG} Threshold for High Output		1.35	1.45	1.55	V
VDMAG_LV_HYS (6)	V _{DMAG} Hysteresis Threshold for Low Output			0.15		V
V _{DMAG_UVP}	V _{DMAG} Under-Voltage- Protection Threshold		0.350	0.425	0.500	V
N _{DMAG_UVP} (6)	Debounce Cycle for V _{DMAG_UVP}			2		Cycle
tvdmag_uvp_bnk	V _{DMAG_UVP} Blanking Time during Start-up		25	32	36	ms
VDMAG_OVP	V _{DMAG} Over-Voltage- Protection Threshold		3.45	3.55	3.65	V
N _{DMAG_OVP} (6)	Debounce Cycle for V _{DMAG_OVP}			2		Cycle

Preliminary Datasheet 9 Rev Feb. 24, 2023

 V_{DD} (Typ.) = 12V, $T_A = -40$ °C to 125°C, and T_A (Typ.) = 25°C, unless otherwise specified.

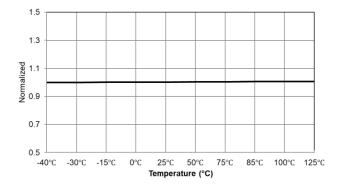
Pa	rameter	Test Conditions	Min.	Тур.	Max.	Unit
Current Sense Section						
Gaincs	Current Sense Ratio Idrain /Ics		3251	3300	3350	A/A
Vcs_lim	Maximum Current Sense Limit		0.620	0.650	0.680	V
Vcs_міn_н	Minimum Current Sense Limit at High Output Voltage		0.195	0.225	0.255	V
Vcs_min_L	Minimum Current Sense Limit at Low Output Voltage		0.145	0.175	0.205	V
Vcs_min_fb_str_ll_h ⁽⁶⁾	Feedback of Vcs_MIN Foldback Start Point at Low Line and High Output Voltage	225kHz/164kHz		0.425		V
Vcs_min_fb_str_ll_l ⁽⁶⁾	Feedback of V _{CS_MIN} Foldback Start Point at Low Line and Low Output Voltage	225kHz/164kHz		0.375		V
Vcs_min_fb_str_hl_h (6)	Feedback of V _{CS_MIN} Foldback Start Point at High Line and High Output Voltage	225kHz/164kHz		0.525		V
Vcs_min_fb_str_hl_l ⁽⁶⁾	Feedback of Vcs_MIN Foldback Start Point at High Line and Low Output Voltage	225kHz/164kHz		0.475		V
t _{LEB} ⁽⁶⁾	Leading Edge Blanking Time	T _A =25°C		295		ns
t _{PD} ⁽⁶⁾	Propagation Delay			50		ns
Vcssp	CS Threshold for CS Short Circuit Protection		0.12	0.15	0.18	V
td_cssp_min ⁽⁶⁾	Debounce Time for CSSP Trigger Minimum Period			2.2		μs
Vcs_sssp	CS Threshold for SSSP			1.0		V
Ncs_sssp (6)	Debounce Cycle for SSSP Protection Trigger			2		Cycle
t _{D_SSSP} (6)	Debounce Time for SSSP Protection Trigger	T _A =25°C		200		ns

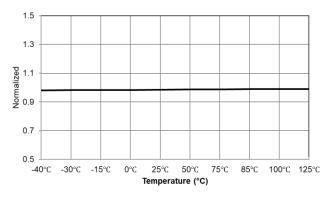
Preliminary Datasheet 10 Rev Feb. 24, 2023

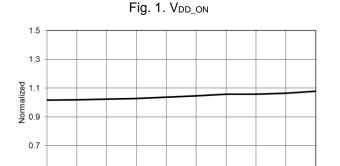
 V_{DD} (Typ.) = 12V, $T_A = -40$ °C to 125°C, and T_A (Typ.) = 25°C, unless otherwise specified.

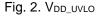
	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
	Over-Temperature Protection Section						
T _{OTP} ⁽⁶⁾	Over-Temperature- Protection Threshold			140		°C	
ΔT _{OTP} ⁽⁶⁾	Over-Temperature- Protection Hysteresis			20		°C	
		Shut-Down Section					
V _{TH_SD}	Threshold Voltage for Shut-Down Trigger		0.95	1.00	1.05	V	
V _{TH_SD_STR}	Threshold Voltage for Shut-Down Trigger at Start-up		1.05	1.10	1.15	V	
I _{SD}	SD Pin Source Current		47.5	50	52.5	μΑ	
t _{D_SD}	Debounce Time for Shut- Down Trigger		280	400	520	μs	
	G	aN Power FET Section					
Typical conditions: \	V _{DS} = 400V, F _{SW} = 1MHz, T _{AMB}	= 25°C, I _D = 1 A, unless otherwis	se specified				
IDSS	Drain-Source Leakage Current	V _{DS} = 700V, PWM off		0.2	25	μA	
R _{DS(ON)}	Drain-Source Resistance	PWM on, $I_D = 1.5 A$		600		mΩ	
V _{SD}	Source-Drain Reverse Voltage	V _{PWM} = 0 V, I _{SD} = 1.5 A		3.5	5	V	
Qoss	Output Charge			4.2		nC	
Q _{RR}	Reverse Recovery Charge			0		nC	
Coss	Output Capacitance	V _{DS} = 400 V, V _{PWM} = 0 V		4.7		pF	
C _{O(er)} ⁽⁷⁾	Effective Output Capacitance, Energy Related	V _{DS} = 400 V, V _{PWM} = 0 V		6.9		pF	
C _{O(tr)} ⁽⁷⁾	Effective Output Capacitance, Time Related	V _{DS} = 400 V, V _{PWM} = 0 V		10.6		pF	

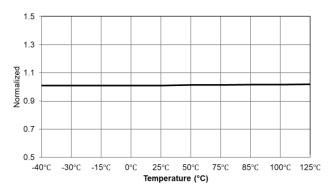
Note (6): Guaranteed by design


Note (7): $C_{O(er)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 400 V


Note (7): $C_{O(tr)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 400 V


Preliminary Datasheet 11 Rev Feb. 24, 2023


8.4. Characteristic Graphs


(T_C = -40 to 125 °C unless otherwise specified)

Temperature (°C)

-40°C -30°C -15°C

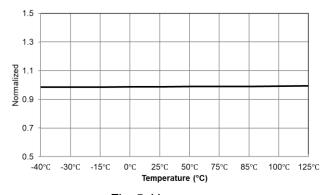


Fig. 4. fs_TMO

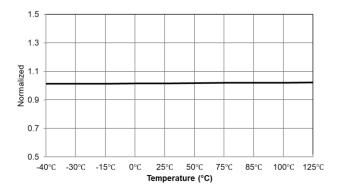


Fig. 5. VFB_BST_ENT

Fig. 6. VFB_BST_EXT

Characteristic Graphs (cont.)

(T_C = -40 to 125 °C unless otherwise specified)

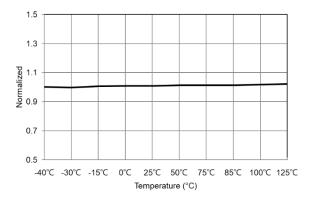


Fig. 7. IDMAG_BRI

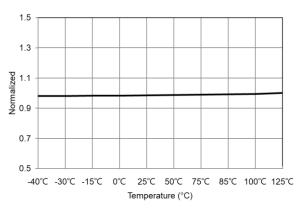


Fig. 9. V_{DMAG_UVP}

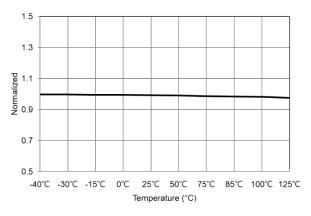


Fig. 11. V_{CS_LIM_H}

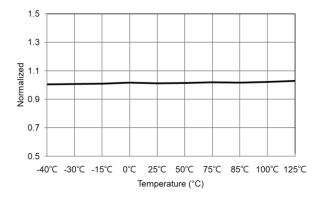


Fig. 8. IDMAG_BRO

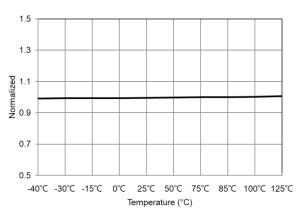


Fig. 10. V_{DMAG_OVP}

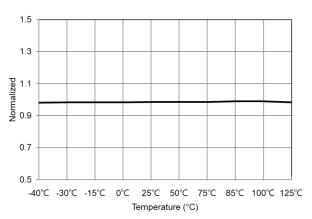


Fig. 12. V_{TH_SD}

Characteristic Graphs (cont.)

(GaN Power FET, T_C = 25 °C unless otherwise specified)

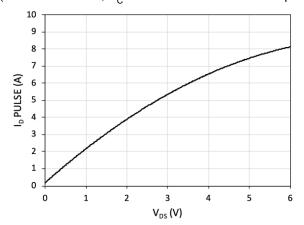


Fig. 13. Pulsed Drain current (I_D PULSE) vs. drain-to-source voltage (V_{DS}) at T = 25 °C

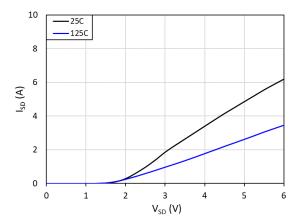


Fig.15. Source-to-drain reverse conduction voltage

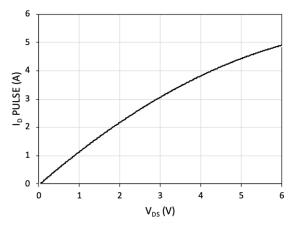


Fig. 14. Pulsed Drain current (I_D PULSE) vs. drain-to-source voltage (V_{DS}) at T = 125 °C

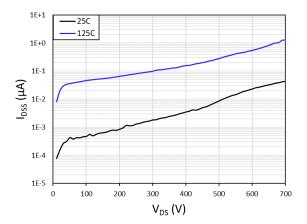


Fig.16. Drain-to-source leakage current ($I_{\rm DSS}$) vs. drain-to-source voltage (V_{DS})

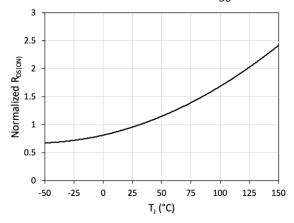


Fig.17. Normalized on-resistance (${\rm R}_{\rm DS(ON)}$) vs. junction temperature (T_i)

Characteristic Graphs (Cont.)

(GaN Power FET, T_C = 25 °C unless otherwise specified)

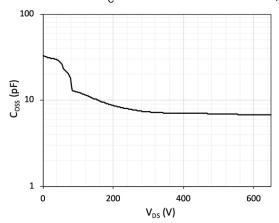


Fig.18. Output capacitance ($C_{\rm OSS}$) vs. drain-to-source voltage (V_{DS})

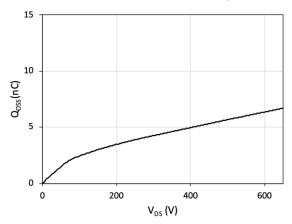


Fig.20. Charge stored in output capacitance (Q_{OSS}) vs. drain-to-source voltage (V_{DS})

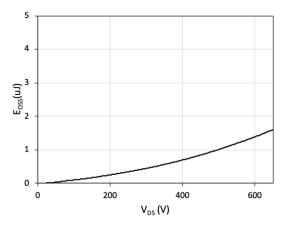


Fig.19. Energy stored in output capacitance (E_{OSS}) vs. drain-to-source voltage ($V_{\rm DS}$)

9. Pin Configurations and Functions

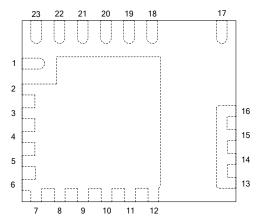


Fig. 21. Pin Configuration (Top View)

Pin No.	Name	Description
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, PAD	GND	Ground. Source of Power FET and IC supply ground. Metal pad on bottom of package.
1	CS	Current Sense. This pin detects the integrated GaN sense FET current cycle by cycle when connected to a current-sense resistor. There is a current ratio between Idrain and Ics
13, 14, 15, 16	Drain	Drain of GaN Power FET. This pin is also connected internally to the high-voltage startup circuit for NV9580/82/84/86 devices.
17	HV	High Voltage Startup . This pin is the input for high voltage startup for NV9581/83 devices. This pin is open for NV9580/82/84/86 devices (see Drain pin description).
18	VREG	LDO Output. Typically, this pin is connected to an external capacitor
19	VDD	Power Supply . IC operation current and GaN FET driving current are supplied through this pin. Typically, this pin is connected to external V_{DD} capacitor. The device starts to operate when V_{DD} exceeds 13.5V.
20	FB	Feedback. Input for the internal PWM comparator.
21	SD	Shut Down. Typically, this pin is connected to a NTC thermistor. The device enters the fault mode if the voltage on this pin is pulled below the fault thresholds.
22	AGND	Analog GND
23	DMAG	Demagnetization Sense . This pin is used to detect resonant valleys for QR switching. It also detects the output voltage information, as well as the input voltage information for Brown-in & Brown-out protection.

16 **Preliminary Datasheet** Rev Feb. 24, 2023

10. Functional Description

The following functional description contains additional information regarding the IC operating modes and pin functionality.

Basic Operation

NV958x family ICs are offline PWM Flyback regulator which operates in quasi-resonant (QR) mode to reduce switching losses and EMI (electromagnetic interference). It regulates the output based on the load condition through opto-coupler feedback circuitry.

The QR resonant frequency is determined by the transformer magnetizing inductance (L_m) and the primary side GaN FET effective output capacitance ($C_{oss-eff}$).

$$C_{oss-eff} = C_{oss-GaNFET} + C_{parasitic} + C_{transformer}$$
 (Equation 1)

$$t_{resonance} = 2\pi \sqrt{L_m \times C_{oss-eff}}$$
 (Equation 2)

For the heavy load condition (e.g. $50\%\sim100\%$ of full load), the blanking time for the valley detection is fixed such that the switching time is between $1/f_{S_BNK_MAX_LL(HL)}$ and $1/f_{S_BNK_MAX_LL(HL)} + t_{resonance}$ as shown in Figure 22. The primary side peak current is modulated by the feedback voltage. For the medium load condition (e.g. $25\%\sim50\%$ of full load), the blanking time is modulated as a function of load current such that the upper limit of the blanking frequency varies from $f_{S_BNK_MAX_LL(HL)}$ as load decreases. The blanking frequency reduction stop point is f_{S_TMO} . For the light load condition (e.g. $5\%\sim25\%$), the blanking time is fixed such that the switching time is between $1/f_{S_TMO}$ and $1/f_{S_TMO} + t_{resonance}$ and the primary side peak current is modulated by the function of V_{CS_MIN} modulation, as shown in Figure 22.

NV958x family ICs also have ability to operate in CCM. When the device enters CCM, the maximum blanking frequency is limited at f_{S BNK MAX CCM}.

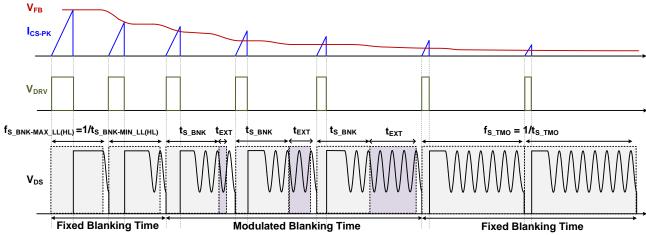
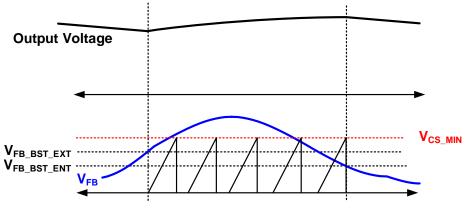
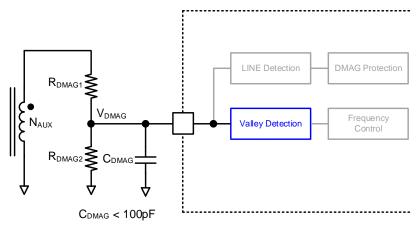



Figure 22 Frequency Fold-Back Operation

Preliminary Datasheet 17 Rev Feb. 24, 2023

Burst Mode

As shown in Figure 23, when feedback voltage V_{FB} drops below V_{FB_BST_ENT} at light load, the PWM output shuts off and the output voltage drops at a rate depending on the load current level. Thereafter, feedback voltage V_{FB} rises. Once V_{FB} exceeds V_{FB_BST_EXT}, NV958x family products resume switching and the switch peak currents is limited by V_{CS_MIN}. If more power is delivered to the load than required, V_{FB} voltage will decrease. Once V_{FB} voltage is pulled below V_{FB_BST_ENT}, switching stops again. In this manner, the burst mode operation alternately enables and disables switching of the GaN FET to regulate the output and in the meanwhile reduce the switching losses.


Figure 23 Burst Mode Operation

Deep Green Mode

NV958x family ICs enter the deep green mode if V_{FB} voltage stays below $V_{FB_BST_ENT}$ for more than t_{D_DPGN} (480 μ s). In the deep green mode, the IC operating current is reduced to I_{DD_DPGN} (300 μ A) to minimize power consumption. IC resumes switching with normal operating current I_{DD_OP} once V_{FB} voltage rises above $V_{FB_BST_EXT}$.

Valley Detection

NV958x family valley detection is achieved by monitoring V_{DMAG} voltage, which is the divided auxiliary winding voltage by R_{DMAG1} and R_{DMAG2} as shown in Figure 24. One ceramic capacitor (C_{DMAG}) less than 10 pF is recommended to filter out the noise if PCB noise coupling is observed.

Figure 24 Valley Detection Circuit

Preliminary Datasheet 18 Rev Feb. 24, 2023

Inherent Frequency Jitter

In flyback application, the DC ripple (Δ VDC) of bulk capacitor at the low line application is larger than at the high line application as shown in Figure 25. This large DC ripple will result in switching frequency variation for a valley switched converter. The frequency variation scatters EMI noise over the nearby frequency band, allowing compliance with EMI requirement easily. Therefore, the EMI performance at the low line application is easy to comply with EMI limitation naturally. However, at the high line application, the DC ripple is relatively small and consequently the EMI performance may suffer. To maintain good EMI performance across over the universal input, a frequency jitter is implemented in the NV958x family products.

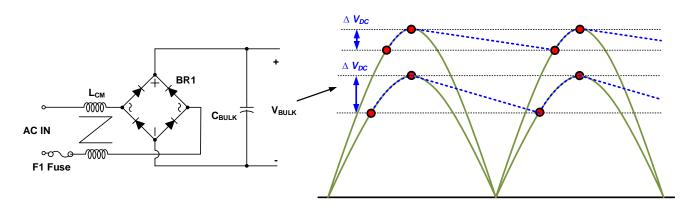
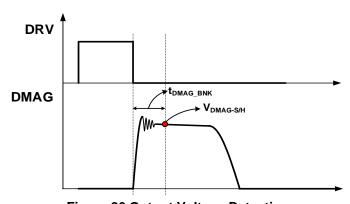



Figure 25 Inherent Frequency Jitter

Output Voltage Detection

Figure 26 shows the DMAG voltage (V_{DMAG-S/H}) is sampled at the end of t_{DMAG_BNK} to avoid sampling error. The DMAG voltage should be set based on the transformer turn ratio, the voltage divider resistors R_{DMAG2} & R_{DMAG1} and the specified IC parameter DMAG sampling normalization ratio, Ratio_{DMAG} (0.16).

$$Ratio_{DMAG} = \frac{V_{DMAG-S/H}}{V_O} = \frac{N_A}{N_S} \times \frac{R_{DMAG2}}{R_{DMAG1} + R_{DMAG2}} = 0.16$$
 (Equation 3)

Figure 26 Output Voltage Detection

Preliminary Datasheet 19 Rev Feb. 24, 2023

Line Voltage Detection

As illustrated in Figure 27, NV958x family products indirectly sense the line voltage through DMAG pin during GaN FET turn-on period. During the GaN FET conduction time, the line voltage detector clamps DMAG pin voltage at 0V. The auxiliary winding voltage, V_{AUX} , is proportional to the input bulk capacitor voltage, V_{BLK} . So current I_{DMAG} flowing out of DMAG pin is expressed as:

$$I_{DMAG} = \frac{V_{BLK}}{R_{DMAG1}} \times \frac{N_A}{N_P}$$
 (Equation 4)

IDMAG current, reflecting the line voltage information, is used for the brown-in and brown-out protection.

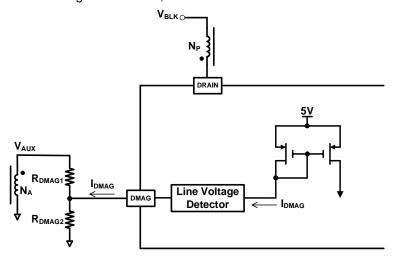


Figure 27 Line Voltage Detection Circuit

LPS Function

The NV958x family products incorporate built-in circuits to limit output power and limit output current in the event of the protocol IC becoming malfunction.

HV Start-up

During startup, the internal HV startup circuit is enabled and the input voltage supplies the current, I_{HV} , to charge hold-up capacitor C_{VDD} . When V_{DD} voltage reaches V_{DD_ON} , the HV startup circuit is disabled. The IC starts PWM switching and senses DMAG signal to check the brown-in condition. If the brown-in is not detected, the IC enters the auto-restart mode. For NV9580/82/84/86 devices, the HV startup circuit is connected to the Drain pin and the HV pin is open. For NV9581/83 devices, the HV startup circuit is connected to the HV pin.

Protection Description

NV958x family products protection functions include VDD over-voltage protection (VDD-OVP), Brown-out protection, DMAG over-voltage protection (DMAG-OVP), DMAG under-voltage protection (DMAG-UVP), IC internal over-temperature protection (OTP), IC external thermal shut-down (SD). The brown-out protection is implemented with auto-restart mode. The VDD-OVP, DMAG-OVP and external SD protection can be configured with auto-restart or latch mode. The DMAG-UVP can be configured with auto-restart or long auto-restart mode. The trim option information is provided on page 3.

When the long auto-restart mode protection is triggered, the integrated GaN FET is turned off for a time period of t_{VDD_LAR} (2.64s). After t_{VDD_LAR}, if VDD rises above V_{DD_ON}, NV958x family products resume normal operation as shown in Figure 28.

Preliminary Datasheet 20 Rev Feb. 24, 2023

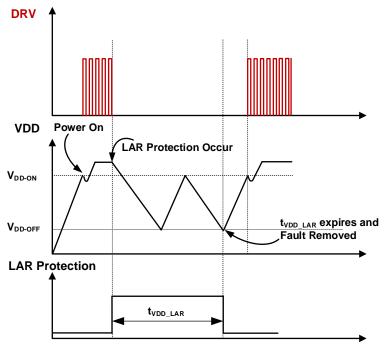


Figure 28 Auto-Restart Long AR Mode

VDD-OVP

VDD-OVP prevents IC damage from over voltage stress when abnormal system conditions occur. When VDD voltage exceeds V_{DD_OVP} (78.5V) for the debounce time t_{D_VDD_OVP}, the VDD-OVP protection is triggered, the device enters the auto-restart mode or latch mode.

Brown-in & Brown-out

The sensed line voltage information is used for the brown-in and brown-out protection. During GaN FET conduction time, when the current, IDMAG, flowing out of DMAG pin is higher than 0.48mA for 4 debounce cycles, the brown-in is enabled. The input bulk capacitor voltage level to enable the brown-in is given as

$$V_{\text{BLK_Brownin}} = 0.48 \text{mA} \times \frac{R_{\text{DMAG1}}}{N_{\text{A}}/N_{\text{P}}}$$
 (Equation 5)

When IDMAG is lower than 0.36mA for longer than 16.5ms, the brown-out is triggered. The input bulk capacitor voltage level to trigger the brown-out protection is given as

$$V_{\text{BLK_Brownout}} = 0.36\text{mA} \times \frac{R_{\text{DMAG1}}}{N_{\text{A}}/N_{\text{P}}}$$
 (Equation 6)

IC Internal OTP

The internal temperature-sensing circuit disables the PWM output if the junction temperature exceeds 140°C (Totp), and the IC enters protection mode.

DMAG-OVP

DMAG-OVP prevents IC damage caused by the output over voltage. Figure 29 shows the internal circuit of DMAG-OVP. When abnormal system conditions occur and cause DMAG voltage to exceed VDMAG_OVP (3.55V) for more than 4 consecutive switching cycles (N_{DMAG OVP}), PWM pulses are disabled and the IC enters the auto-restart mode or the latch mode. Usually, DMAG over voltage protection is caused by an open circuit of the secondary side feedback network or a fault condition of the DMAG voltage divider resistors.

Preliminary Datasheet 21 Rev Feb. 24, 2023 For DMAG voltage divider design, R_{DMAG1} is obtained from Equation 5, and R_{DMAG2} is determined by Equation 3. The output over voltage protection level, V_{O_OVP} , can be determined by Equation 7.

$$V_{O_{_OVP}} = \frac{N_S}{N_A} \times (1 + \frac{R_{DMAG1}}{R_{DMAG2}}) \times V_{DMAG_OVP}$$
 (Equation 7)

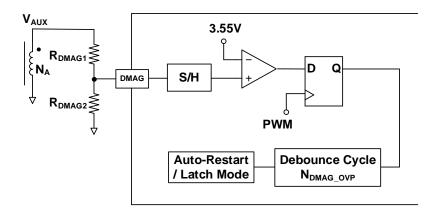


Figure 29 DMAG Over Voltage Protection Circuit

DMAG-UVP

In the event with shorted output, the output voltage will drop and the primary peak current will increase. To prevent operation for a long time under this condition, NV958x family products incorporate the under voltage protection through DMAG pin (DMAG-UVP). Figure 30 shows the internal circuit for DMAG-UVP. By sampling the auxiliary winding voltage on DMAG pin at the end of the secondary-side rectifier conduction time, the output voltage is indirectly sensed. When DMAG voltage is less than V_{DMAG_UVP} (0.425V) and longer than de-bounce cycles N_{DMAG_UVP}, DMAG UVP is triggered and the IC enters the auto-restart mode or the long auto-restart mode.

.The output under voltage protection level, Vo_uvP, can be determined by Equation 8.

$$V_{O_UVP} = \frac{N_S}{N_A} \times (1 + \frac{R_{DMAG1}}{R_{DMAG2}}) \times V_{DMAG_UVP}$$
 (Equation 8)

To avoid DMAG-UVP triggering during the startup sequence, startup blanking time tvDMAG_UVP_BNK (32ms) is incorporated for system power on.

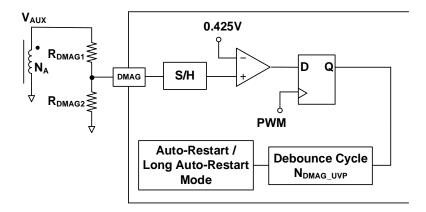


Figure 30 DMAG Under Voltage Protection Circuit

Preliminary Datasheet 22 Rev Feb. 24, 2023

External Thermal Shut-down

During the startup, when VDD voltage reaches V_{DD_ON} , the shut-down trigger level is set at $V_{TH_SD_STR}$ (1.1V). After startup, the trigger level is changed to V_{TH_SD} (1.0V). By pulling down SD pin voltage below threshold voltage V_{TH_SD} (1.0V), the shut-down can be triggered externally and the IC will enter the auto-restart or the latch mode as shown in Figure 31. There is an internal constant current source I_{SD} (50µA) that is connected to SD pin. So an external OTP function can be implemented by connecting a NTC thermistor between SD pin and ground. The resistance of the NTC thermistor becomes smaller as the ambient temperature increases, therefore the voltage at SD pin will decrease. When the voltage is below the threshold voltage, V_{TH_SD} (1.0V), for debounce time of I_{D_SD} (400µs), the OTP protection is triggered. A capacitor may also be placed in parallel with the NTC thermistor to further improve the noise immunity.

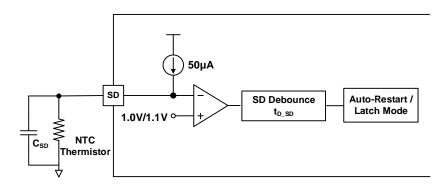


Figure 31 External OTP by SD Pin

Cycle by Cycle Current Limit

Under certain operation condition, such as the startup or the overload condition, the feedback control loop can be saturated and is unable to control the primary peak current. To limit the current under such conditions, NV958x family products incorporate the cycle by cycle current limit protection which forces the GaN switch turn off when CS pin voltage reaches the current limit threshold, Vcs_LIM.

Current Sense Short Protection (CSSP)

NV958x family has CSSP function. When abnormal system conditions occur, In case after debounce time CS pin voltage is still lower than 0.15V ,GaN switch turn on time will be limited to limit output power.

Secondary Side Short Protection (SSSP)

When the secondary-side rectifier is damaged, the primary-side switch current will increase dramatically within the leading-edge blanking time. To limit the switch current during such conditions, NV958x family products incorporate SSSP function which forces the GaN Switch to turn off when CS pin voltage reaches 1.0V. After 2 switching cycle, the IC will enter the auto-restart mode.

Preliminary Datasheet 23 Rev Feb. 24, 2023

GaN Power FET Drain-to-Source Voltage Considerations

The GaN Power FET has been designed and tested to provide significant design margin to handle transient and continuous voltage conditions that are commonly seen in single-ended topologies, such as quasi-resonant (QR) flyback applications. The different voltage levels and recommended margins in a typical QR flyback can be analyzed using Figure 32. When the device is switched off, the energy stored in the transformer leakage inductance will cause V_{DS} to overshoot to the level of V_{SPIKE}. The clamp circuit should be designed to control the magnitude of V_{SPIKE}. It is recommended to apply an 80% derating from V_{DS(TRAN)} rating (800V) to 700 V max for repetitive V_{DS} spikes under the worst case steady-state operating conditions. After dissipation of the leakage energy, the device V_{DS} will settle to the level of the bus voltage plus the reflected output voltage which is defined in Figure 32 as V_{PLATEAU}. It is recommended to design the system such that V_{PLATEAU} follows a typical derating of 80% (560V) from V_{DS(CONT)} (700V). Finally, V_{DS(TRAN)} (800V) rating is also provided for events that occur on a non-repetitive basis, such as line surge, lightning strikes, start-up, over-current, short-circuit, load transient, and output voltage transition. 800V V_{DS(TRAN)} ensures excellent device robustness and no-derating is needed for these non-repetitive events, assuming the surge duration is < 100 μs. For half-bridge based topologies, such as LLC, V_{DS} voltage is clamped to the bus voltage. V_{DS} should be designed such that it meets the V_{PLATEAU} derating guideline (560V).

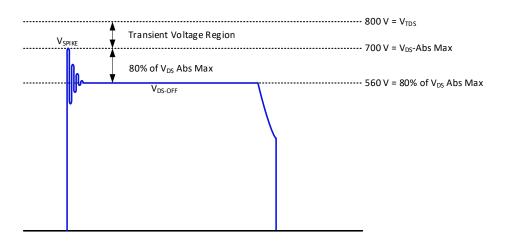
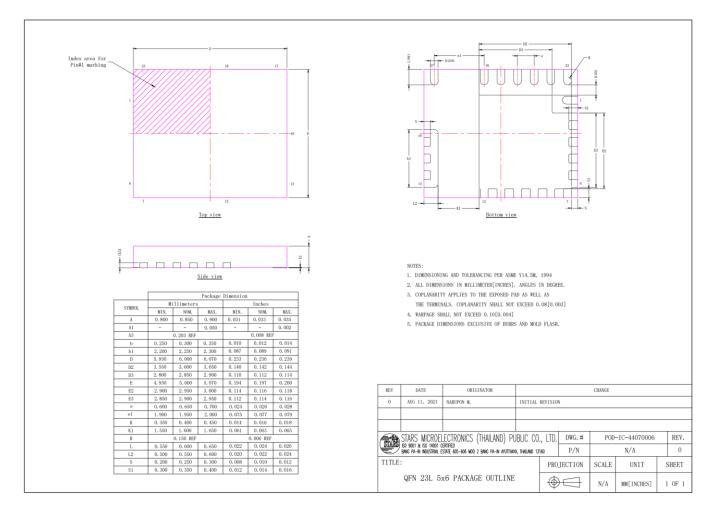
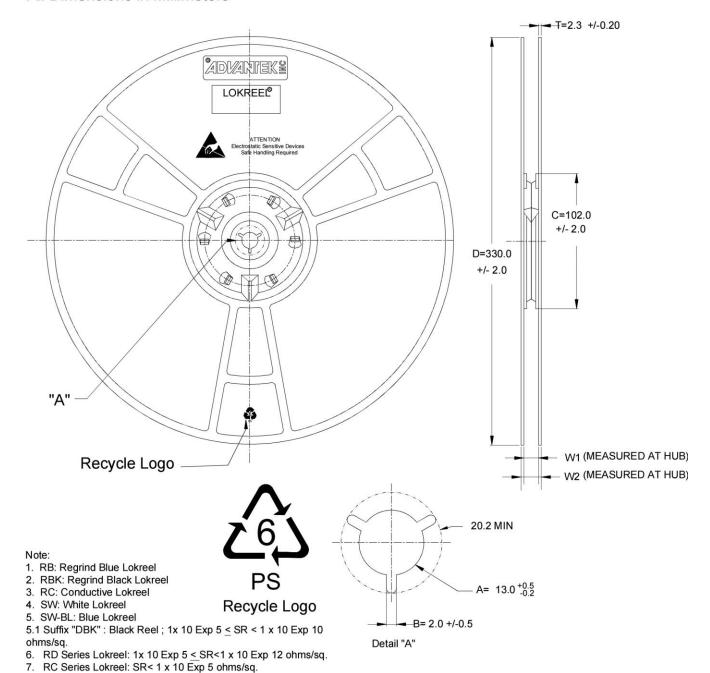


Figure 32 QR flyback drain-to-source voltage stress diagram


X-cap Discharge Function

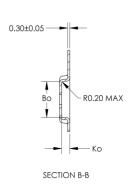
For the NV9580/82/84/86 devices the HV start-up circuit is connected internally to the Drain pin. So the X-cap discharge function is not enabled for NV9580/82/84/86 devices. The X-cap discharge function is enabled for the NV9581/83 devices.

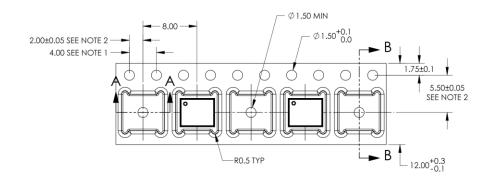
Preliminary Datasheet 24 Rev Feb. 24, 2023



11. Package Outline (Power QFN)

12. Tape and Reel Dimensions


-All Dimensions in Millimeters-



Nominal Hub Width	W1	W2 MAX
12mm	12.8mm +1.6 / -0.4	1.84mm

Preliminary Datasheet 26 Rev Feb. 24, 2023

13. Tape and Reel Dimensions (Cont.)

	DIM	±
Αo	6.30	0.1
Во	5.30	0.1
Ко	1.20	0.1

NOTES:

1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2

2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE.

3. AO AND BO ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Preliminary Datasheet 27 Rev Feb. 24, 2023

14. 20-Year Limited Product Warranty

The 20-year limited warranty applies to all packaged Navitas GaNFast Power ICs and GaNSense HFQR Controllers in mass production, subject to the terms and conditions Navitas' express limited product warranty, available https://navitassemi.com/terms-conditions. The warranted specifications include only the MIN and MAX values only listed in Absolute Maximum Ratings and Electrical Characteristics sections of this datasheet. Typical (TYP) values or other specifications are not warranted.

15. Revision History

Date	Status	Notes
Feb. 24, 2023	PRELIMINARY	First publication

Additional Information

DISCLAIMER Navitas Semiconductor (Navitas) reserves the right to modify the products and/or specifications described herein at any time and at Navitas' sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied. This document is presented only as a guide and does not convey any license under intellectual property rights of Navitas or any third parties. Navitas' products are not intended for use in applications involving extreme environmental conditions or in life support systems. Terms and Conditions. Navitas Semiconductor, Navitas, GaNFast, GaNSense and associated logos are registered trademarks of Navitas.

Copyright ©2023 Navitas Semiconductor. All rights reserved

Contact info@navitassemi.com

Preliminary Datasheet 28 Rev Feb. 24, 2023