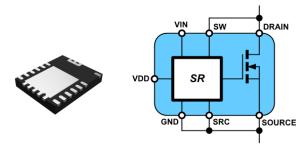


Features


High Frequency SR Controller

- Integrated 12mΩ/100V MOSFET
- Compatibility of continuous conduction mode (CCM), quasi-resonant (QR) and discontinuous conduction mode (DCM) at low side applications.
- Wide input voltage ranges up to 26.5V
- · Optimized SR gate turn-off threshold control
- Proprietary CCM SR turn-off control algorithm
- Minimized SR turn-on/off propagation delay
- SR MOSFET gate passive clamp
- Low power saving mode
- · Highly efficient QFN 5x6 package

Topologies / Applications

- USB PD quick chargers for smart phones, feature phones and tablet PCs
- · Power adaptor for portable device
- Flyback power supply with fixed or variable output voltage

Flyback Sync Rect Controller & FET

QFN 5x6 Package

Simplified Schematic

Description

NV9750 is a secondary-side synchronous rectifier (SR) controller with integrated 100V Silicon MOSFET for isolated flyback converters. By implementing proprietary turn-off control algorithm, NV9750 can reliably support discontinuous conduction mode (DCM), quasi-resonant (QR) and continuous conduction mode (CCM) operation, which will help to design robust flyback converters. Small footprint QFN 5x6 package enables designers to achieve simple, quick and reliable solutions. Navitas' controller IC technologies enable high frequencies, high efficiencies and low EMI to achieve unprecedented power densities at a very attractive cost structure.

Simplified Application Diagram

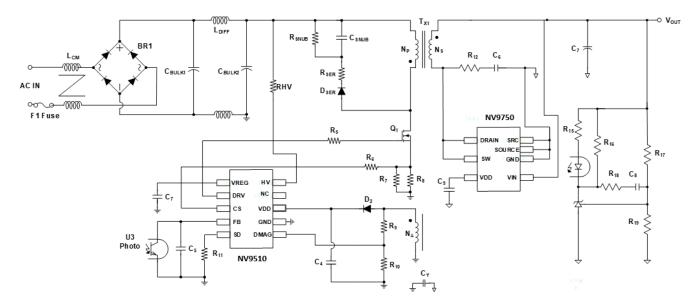


Figure 1. Low-Side SR Application Diagram

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
NV9750FN01	-40°C to +125°C	QFN5x6	5K/Tape & Reel

Pin Configuration and Marking Diagram

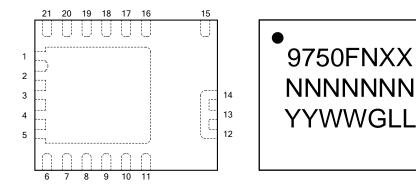


Figure 2. Pin Configuration & Marking Diagram (Top View)

Symbol	Content			
9750	Device Code			
FN	Package Code, FN=QFN 5x6			
XX	Trim Option Code			
NNNNNN	Lot Number			
YY	Year Code			
WW	Week Code			
G	Manufacture Code			
LL	Trace Code			

Pin Function

Pin No.	Name	Description
1, 2, 3, 4, 5, 11, 16	DRAIN	Connect to MOSFET Drain PAD.
6	SRC	Synchronous MOSFET source sense input.
7	VIN	Supports up to 26.5V operation, input of an integrated 5V LDO which generates the internal power supply for the low-voltage control circuitry.
8	GND	Ground Reference.
9	VDD	Internal regulator 5V output and gate driver power supply rail. Bypass with 1µF capacitor to GND.
10	NC	NC.
12, 13, 14	SOURCE	Connect to MOSFET Source PAD.
15	NC	NC.
17, 18, 19, 20	SOURCE	Connect to MOSFET Source PAD.
21	SW	Synchronous MOSFET drain sense input.
1, 2, 3, 4, 5, 11, 16	DRAIN	Connect to MOSFET Drain PAD.

Table 1. Pin Definition

Internal Function Block Diagram

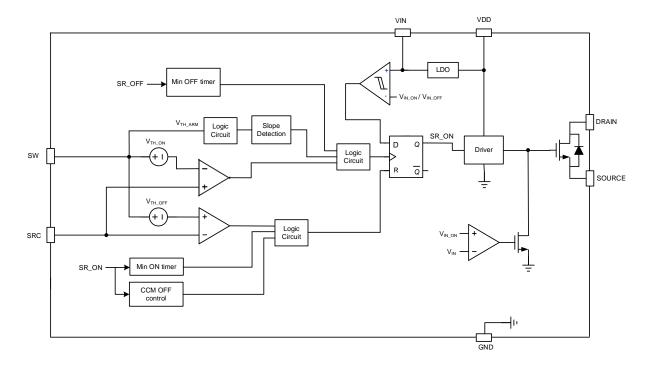


Figure 3. Internal Function Block Diagram

Electrical Characteristics

Absolute Maximum Ratings (1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	F	Parameter	Min.	Max.	Unit
VIN	Power Supply Input Pin Volta	age	-0.3	28	V
SW	SW Sense Input Pin Voltage		-1.0	120	V
DRAIN	MOSFET Drain Pin		-	100	V
VDD	Internal Regulator Output Pir	n Voltage	-0.3	6.0	V
SOURCE	MOSFET Source Pin	-0.3	-	V	
SRC	Source Sense Input Pin Volta	-0.3	5.5	V	
TJ	Operating Junction Tempera	-40	150	°C	
TSTG	Storage Temperature Range	-60	150	°C	
TL	Lead Soldering Temperature		-	260	°C
ESD	Electrostatic Discharge	Human Body Mode, ANSI/ESDA/JEDEC JS-001-2017	-	2.0	kV
Capability	Capability	Charge Device Mode, JED ANSI/ESDA/JEDEC JS-001-2018	-	2.0	kV

Notes (1):

- Stress beyond those listed under absolute maximum ratings may cause permanent damage to the device.
- All voltage values are with respect to the GND pin

Recommended Operating Conditions (2)

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Elevation does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIN	Power Supply Input Pin Voltage	3.0	-	24	V
SW	SW Sense Input Pin Voltage	-1.0	-	120	V
DRAIN	MOSFET Drain Pin	-	-	100	V
VDD	Internal Regulator Output Pin Voltage	-0.3	-	5.5	V
SOURCE	MOSFET Source Pin	-0.3	-	-	V
SRC	Source Sense Input Pin Voltage	-0.3	-	-	V

Notes (2):

Functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied, exposure to absolute maximum rated conditions of extended periods may affect device reliability.
All voltage values are with respect to the normal operation ambient temperature range is from -40°C to +85°C unless
otherwise noted.

Electrical Specifications

 V_{IN} (Typ.) = V_{DD} (Typ.) = 5V, T_A =-40°C to 85°C, and T_A (Typ.) =25°C, unless otherwise specified.

D		Test Conditions	Min.	Type.	Max.	Unit
Power Supply						•
$V_{IN_{-}ON}$	Turn-on Input Voltage	Turn-on Input Voltage Vin Rising		2.2	2.4	V
V _{IN_OFF}	Turn off Input Voltage	Vin Falling	1.8	2.0	2.2	V
I _{IN_GREEN}	Quiescent Current	No DRV Switching	175	240	400	μΑ
T _{GREEN} (3)	Time Threshold for Power Save		-	100	-	μs
IN_OP_20kHz_5V	Operating Current at 5V	$F_{SW} = 20kHz, V_{IN} = 5V$	495	710	805	μA
IN_OP_100kHz_5V	Operating Current at 5V	Fsw = 100kHz, V _{IN} = 5V	1.5	2.0	2.5	mΑ
IIN_OP_100kHz_20V (3)	Operating Current at 20V	F _{SW} = 100kHz, V _{IN} = 20V	-	2.0	-	mA
V _{DD_ON}	VDD Turn-on Threshold	V _{DD} Rising	2.7	2.9	3.1	V
V_{DD_OFF}	VDD Turn-off Threshold	V _{DD} Falling	2.5	2.7	2.9	V
V_{DD_0A}	VDD Regulation Voltage W/O Load	V _{IN} =12V I _{VDD} =0A	4.8	5.0	5.2	V
V _{DD_10mA}	VDD Regulation Voltage with 10mA Load	V _{IN} =12V I _{VDD} =10mA	4.7	4.9	5.1	V
SW Pin Sensing	g		11	I.		I.
V _{TH_ON}	Turn-on Threshold		-405	-250	-95	mV
Ton_dly (3)	Turn-on Delay Time		-	10	-	ns
V _{TH_OFF}	Turn-off Threshold		0.01	-	0.8	mV
Toff_dly (3)	Turn-off Delay Time		-	10	-	ns
SR Gate Contro						
T _{ON_MIN}	SR Minimum ON-Time		295	350	420	ns
Ton_min_h	Ton_min at Heavy Load		565	650	735	ns
Toff_min (3)	SR Minimum OFF-Time		-	1.2	-	μs
MOSFET Section	on					
V _{DS(CONT)}	Drain-Source voltage		-	-	100	V
R _{DS(ON)}	Drain-Source resistance		-	12	16	mΩ

Note (3):

• Guarantee by design

Typical Performance Characteristics

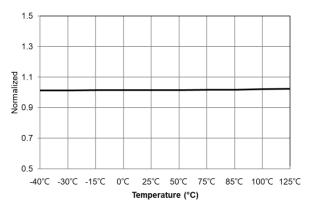


Figure 4 V_{IN_ON}

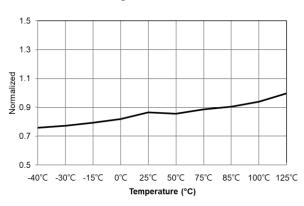


Figure 6 I_{IN_GREEN}

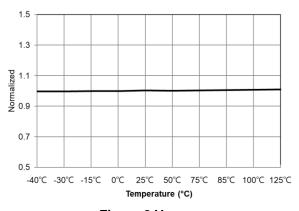


Figure 8 V_{DD_OFF}

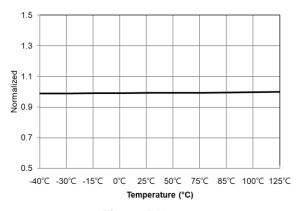


Figure 5 V_{IN_OFF}

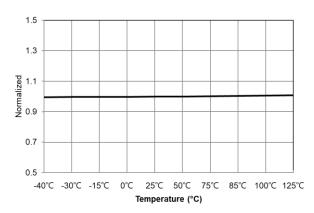


Figure 7 V_{DD_ON}

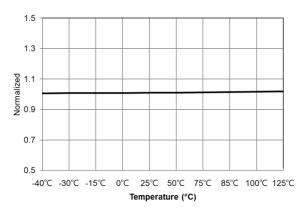
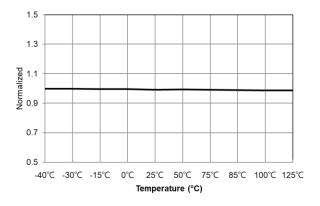



Figure 9 V_{DD_LDO}

Figure 10 V_{LDO}

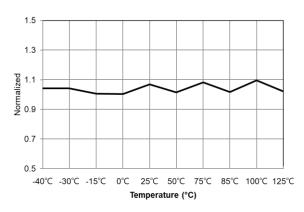


Figure 12 V_{TH_ON}

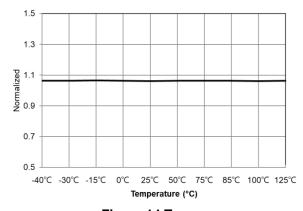


Figure 14 Ton_MIN

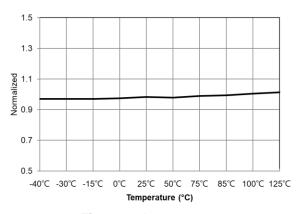


Figure 11 I_{IN_OP_20kHz_5V}

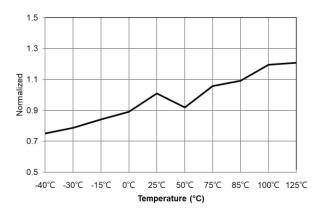


Figure 13 V_{TH_OFF}

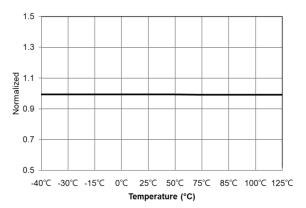
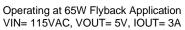



Figure 15 T_{ON_MIN_H}

Typical Performance Characteristics (Continued)

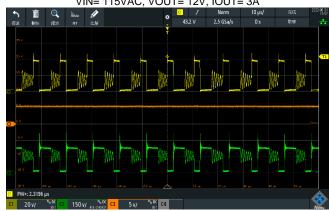
Operating at 65W Flyback Application VIN= 230VAC, VOUT= 5V, IOUT= 3A

CH1: VDS 20V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

Operating at 65W Flyback Application VIN= 115VAC, VOUT= 9V, IOUT= 3A

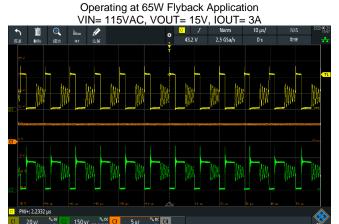
CH1: VDS 30V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

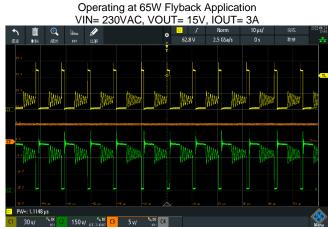
Operating at 65W Flyback Application VIN= 230VAC, VOUT= 9V, IOUT= 3A



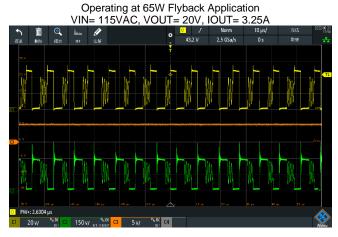
CH1: VDS 20V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

CH1: VDS 30V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

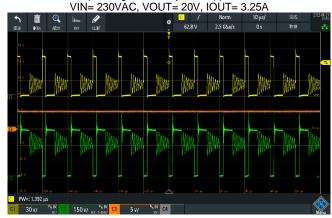



Operating at 65W Flyback Application VIN= 230VAC, VOUT= 12V, IOUT= 3A

CH1: VDS 20V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div



CH1: VDS 30V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div



CH1: VDS 20V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

CH1: VDS 30V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div Operating at 65W Flyback Application

CH1: VDS 20V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

CH1: VDS 30V/div, CH2: Pri_VDS 150V/div, CH3: VDD 5V/div

Detailed Function Description

Operation

NV9750FN supports operation in discontinuous conduction mode (DCM), quasi-resonant (QR) and continuous conduction mode (CCM) flyback converters. The control circuitry controls the gate of synchronous rectification (SR) MOSFET on in forward mode and turn the gate off when the SR MOSFET current drops to certain value.

VDD Power Supply

VDD is the supply power for the NV9750FN, a bypass ceramic (typical 1µF) capacitor should be put closely from VDD to GND to guarantee the normal operation.

During startup, when V_{IN} rises above V_{IN_ON} (2.2V) and VDD rises to V_{DD_ON} (2.9V), NV9750FN starts to operate according to its internal logic. When VDD falls below V_{DD_OFF} (2.7V) or V_{IN} falls below V_{IN_OFF} (2.0V), then NV9750FN stops working right away.

SR Gate Turn-On Control

As shown in Figure 17, the turn-on of SR GATE is active when the SW sense voltage is lower than turn on threshold V_{TH_ON} (-250mV). To prevent the mis-trigger turn-on of SR MOSFET, a minimum off time T_{OFF_MIN} is used after SR MOSFET is turned off.

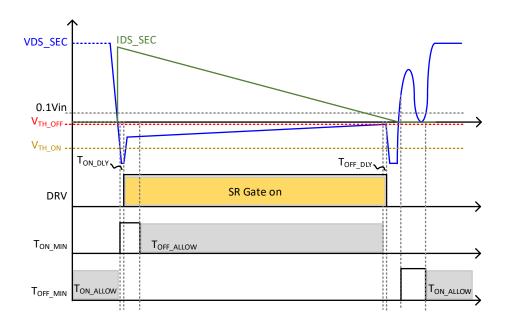


Figure 16. SR Turn-On Control Sequence

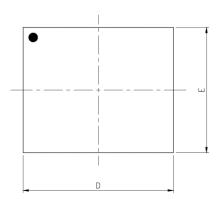
SR Gate Turn-Off Control

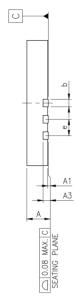
NV9750FN will detect the SW voltage, when it is higher than V_{TH_OFF} (0mV), the GATE will be turned off.

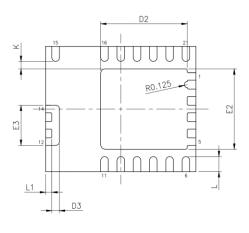
PCB Layout Guidelines

Optimized PCB layout is key for stable operation. Please refer to following layout guidelines to design your platform.

Sensing Loop for VSW and VSRC


- Make the sensing path of SW, SRC as short to Drain and Source as possible.
- Make two independent routing trace to Drain and Source directly.


Power Supply Loop

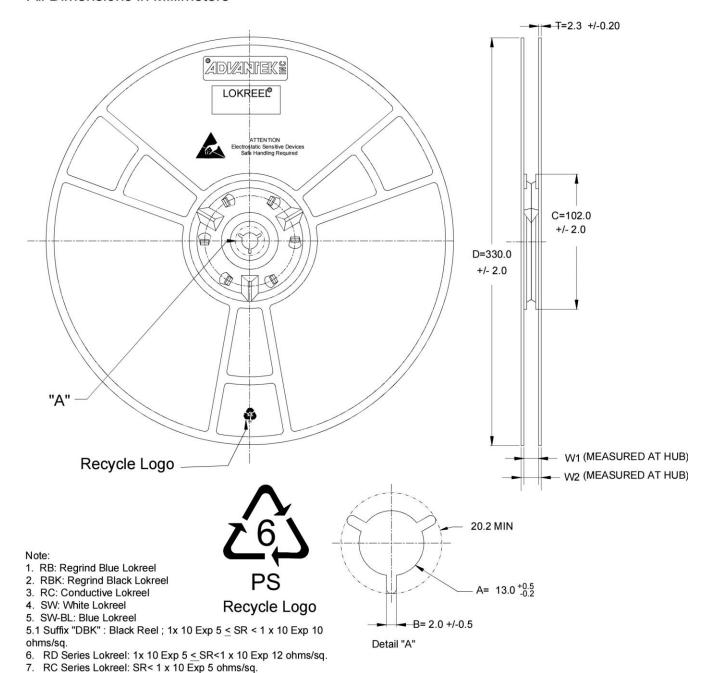

- Put a low ESR and low ESL decoupling ceramic capacitor from VDD to GND as close to NV9750FN as
 possible for stable power supply.
- The sensing loop (SRC and SW to the Source and Drain) is minimized and keep away from the switching power loop.

Package Dimensions

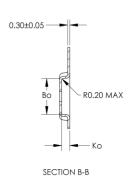
NOTES :

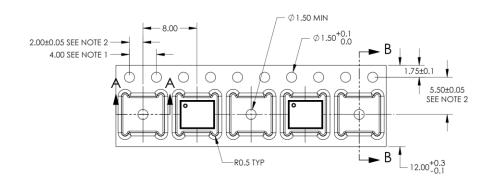
- NOTES:

 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
 3. BILLATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.


JEDEC OUTLINE	MO-220				
PKG CODE	VQFN				
SYMBOLS	MIN.	NOM.	MAX.		
A	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
А3	0.203 REF.				
b	0.25	0.30	0.35		
D	6	.00 BS	SC .		
E	5	.00 BS	SC .		
е	0	.65 BS	SC.		
L	0.55	0.60	0.65		
L1	0.20	0.25	0.30		
K	0.20	-	-		

PAD SIZE		D2			E2	D3 E3			LEAD	FINISH	JEDEC CODE				
PAD SIZE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF	SEDEC CODE
	3.40	3.45	3.50	3.15	3.20	3.25	0.25	0.30	0.35	1.55	1.60	1.65	X	V	N/A




Tape and Reel Information

-All Dimensions in Millimeters-

Nominal Hub Width	W1	W2 MAX
12mm	12.8mm +1.6 / -0.4	1.84mm

	DIM	±
Αo	6.30	0.1
Во	5.30	0.1
Ко	1.20	0.1

NOTES:

1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2

2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE.

3. AO AND BO ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Revision History

Date	Status	Notes
May. 12, 2023	DATASHEET	First publication
May. 27, 2024		Remove high side application because it causes additional design effort to system cost and layout space.

Additional Information

DISCLAIMER Navitas Semiconductor (Navitas) reserves the right to modify the products and/or specifications described herein at any time and at Navitas' sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied. This document is presented only as a guide and does not convey any license under intellectual property rights of Navitas or any third parties. Navitas' products are not intended for use in applications involving extreme environmental conditions or in life support systems. Terms and Conditions.

Navitas Semiconductor, Navitas, GaNFast, GaNSense and associated logos are registered trademarks of Navitas.

Copyright ©2023 Navitas Semiconductor. All rights reserved

Contact info@navitassemi.com