NVD2014

Data Sheet
Vertical Driver for 4-Phase CCD Sensors

Information furnished by NEXTCHIP is subject to change without notice. Make sure to check and use an updated version of the Data sheet.

www.nextchip.com

2006.12.06. REV 0.0

Description

: NVD2014 is a clock driver for 4-Phase CCD Image Sensor.

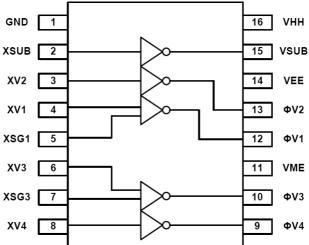
Features

- -. 3 Levels Output Driver × 2
- -. 2 Levels Output Driver × 2
- -. 2 Levels Sub Driver × 1

Ordering Information

Device	Package	Temperature Range
NVD2014	16-TSSOP	- 20°C ~ + 85°C

Applications


-. CCD Image Sensors

Related Products

-. NVD2004, NVD2006 -. NVP2000A, NVP2000E

Functional Block Diagram

<u>SWITRON</u>

[[Table of Contents]]

1. Pin Description ————————————————————————————————————
2. Absolute Maximum Ratings4
3. Logic Function Table ————————————————————————————————————
4. AC Characteristics ————————————————————————————————————
5. DC Characteristics5
6. Timing Diagram 6
7. Noise Diagram6
8. Test Circuit
9. Application Circuit (Example)8
10. Package Dimension9
11. Revision History ————————————————————————————————————
12. Contact Information 10
SWITRON

1. Pin Description

Pin	Symbol	I/O	Description Remark			
1	GND	-	Ground			
2	XSUB	I	Output Control (VSUB)			
3	XV2	I	Output Control (ФV2)			
4	XV1	I	Output Control (ФV1)			
5	XSG1	I	Output Control (ФV1)			
6	XV3	I	Output Control (ФV3)			
7	XSG3	I	Output Control (ФV3)			
8	XV4	I	Output Control (ФV4)			
9	ФV4	0	High Voltage Output (2 level : VME, VEE)			
10	ФV3	0	High Voltage Output (3 level : VME, VEE, VHH)			
11	VME	-	Power (0V)			
12	ФV1	0	High Voltage Output (3 level : VME, VEE, VHH)			
13	ФV2	0	High Voltage Output (2 level : VME, VEE)			
14	VEE	-	Power (-8.5V)			
15	VSUB	0	High Voltage Output (2 level : VHH, VEE)			
16	VHH	-	Power (15V)			
	U	U	MITICLIMITAL			

2. Absolute Maximum Ratings (Ta=25°C)

Characteristics	Symbol	Value	Unit
	VHH	-0.3 ~ VEE +29	
Supply Voltage	VME	VEE -0.3 ~ 3.0	
	VEE	0 ~ -10	V
Input Voltage	VI	-0.3 ~ VHH +0.3	
Output Voltage	ΦV1,ΦV2,ΦV3,ΦV4,VSUB	VEE -0.3 ~ VHH +0.3	
Operating Temperature	T _{OPR}	-20 ~ +85	mA
Storage Temperature	T _{STG}	-45 ~ +120	°C

3. Logic Function Table

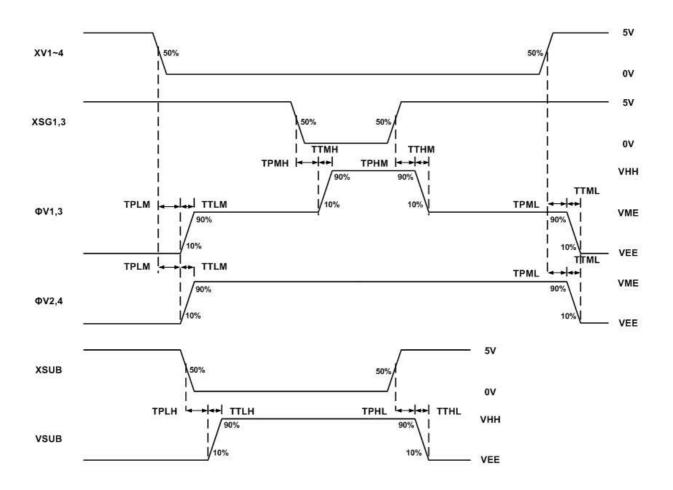
	INPUT				OUTPUT		
XV1,3	XSG1,3	XV2,4	XSUB	ΦV1,3	ФV2,4	VSUB	
L	L	-	-	VHH	-	-	
Н	L	-	-	Z	-	-	
L	Н	-	-	VME	-	-	
Н	Н	-	-	VEE	-	-	
-	-	L	-	-	VME	-	
-	-	Н	-	-	VEE	-	
-	-	-	L	-	-	VHH	
-	-	-	Н	-	-	VEE	

4. AC Characteristics

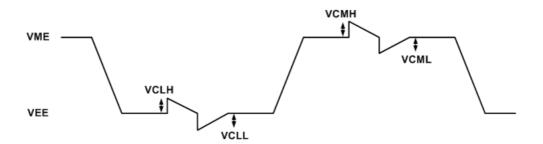
(VHH=15V, VME=GND, VEE=-8.5V ; $Ta=25^{\circ}C$)

Description	Symbol	Test Condition	Min	Тур	Max	Unit
	TPLM	No Load (*1)	10	40	70	
	TPMH	No Load (*1)	10	30	70	
Delay Time	TPLH	No Load (*1)	10	40	100	
Delay Tillle	TPML	No Load (*1)	10	100	200	
	TPHM	No Load (*1)	10	100	180	
	TPHL	No Load (*1)	10	60	100	no
Rising Time	TTLM	VEE → VME (*1)	400	700	930	ns
	TTMH	VME → VHH (*1)	400	650	930	
	TTLH	VEE → VHH (*1)	10	50	100	
	TTML	VME → VEE (*1)	200	300	500	
Falling Time	TTHM	VHH → VME (*1)	400	600	820	
	TTHL	VHH → VEE (*1)	10	50	100	
Output Noise	VCLH, VCLL	(+0)			0.5	.,
Voltage	VCMH, VCML	(*2)	Ā	_	0.5	V

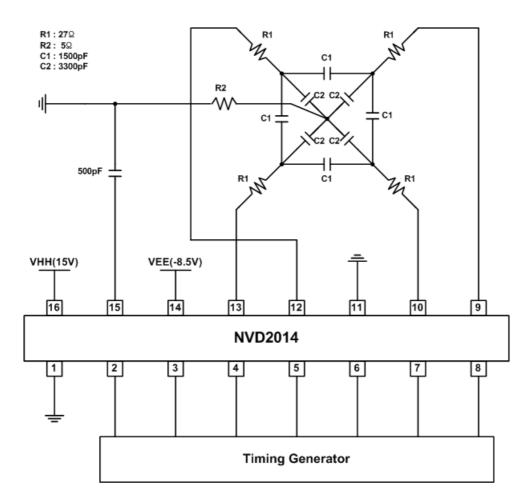
- (*1) Refer Timing Diagram
- (*2) Refer Noise Diagram

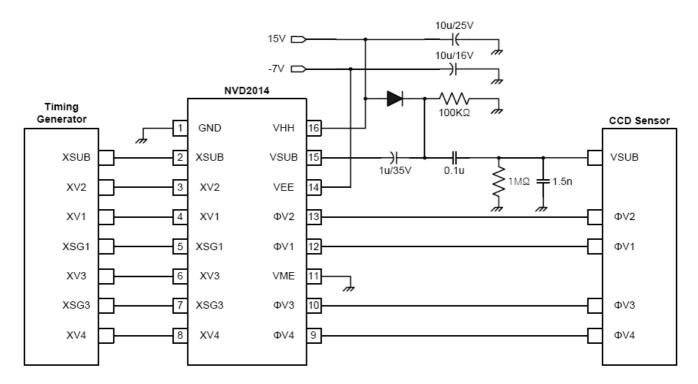

5. DC Characteristics

(VHH=15V, VME=GND, VEE=-8.5V ; Ta=25°C)

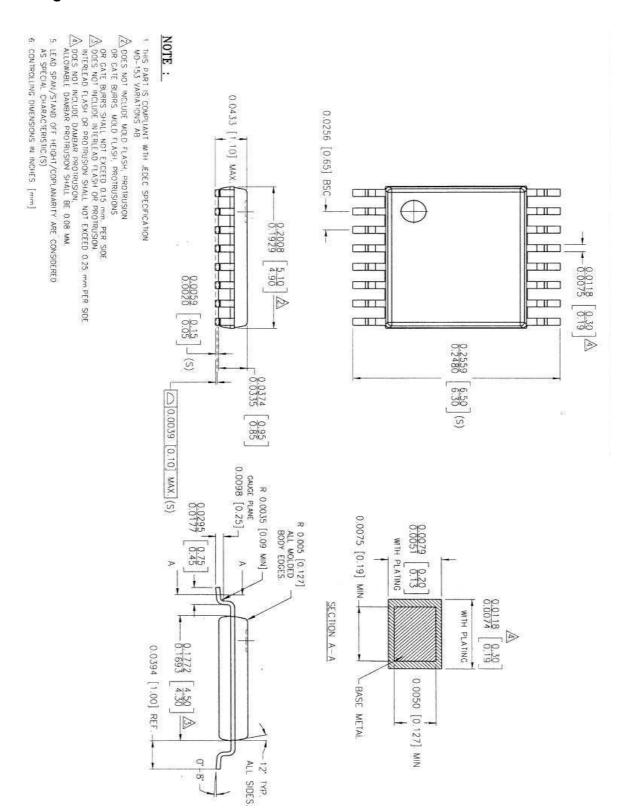

Description	Symbol	Test Condition	Min	Тур	Max	Unit
Overally Mallana	VHH		14.5	15	15.5	
Supply Voltage	VEE		-9.5	-8.5	-7.5	V
High Level Input Voltage	VIH	(*3)	2.3	-	-	V
Low Level Input Voltage	VIL	(*3)	-	-	1.2	
Input Current	II	$VIN = 0 \sim 5V (*3)$	-1.0	0.0	1.0	uA
Operation Current	IHH	(*4)	-	2.0	3.5	
	IME	(*4)	-	4.5	5.0	
	IEE	(*4)	-8.5	-6.5	-	
	IOL	ФV1~4 = -8.0V	25	37	-	
Output Current	IOM1	ΦV1~4 = -0.5V	-	-15	-10	mA
	IOM2	ΦV1,3 = 0.5V	9	13.5	-	
	IOH	ΦV1,3 = 14.5V	-	-18	-12	
	IOSL	VSUB = -8.0V	12	18	-	
	IOSH	VSUB = 14.5V	-	-10.5	-7	

- (*3) XV1~4, XSG1, XSG3, XSUB Pin
- (*4) Refer the Test Circuit.


6. Timing Diagram


7. Noise Diagram

8. Test Circuit



9. Application Circuit (Example)

SWITRON

10. Package Dimension

11. Revision History

REV	Date	Description
Version 0.0	2006. 12. 13.	1 st release

12. Contact Information

-. Homepage: www.nextchip.com
-. E-mail: sales@nextchip.com
-. TEL: 82-2-3460-4700

CONFIDENTIAL SWITRON