MOSFET – SiC Power, Single N-Channel, TO247-3L

900 V, 20 mΩ, 118 A

NVHL020N090SC1

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 196 \text{ nC}$)
- Low Effective Output Capacitance (typ. C_{oss} = 296 pF)
- 100% UIL Tested
- Qualified According to AEC-Q101
- RoHS Compliant

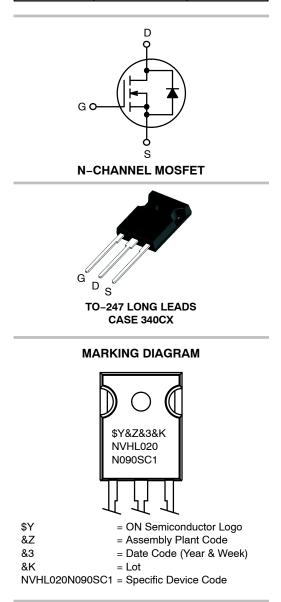
Typical Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	900	V		
Gate-to-Source Voltag	ge		V _{GS}	+19/-10	V
Recommended Operat ues of Gate – Source \			V _{GSop}	+15/-5	۷
Continuous Drain Current $R_{\theta JC}$	Steady State	$T_C = 25^{\circ}C$	I _{DC}	118	A
Power Dissipation $R_{\theta JC}$			P _{DC}	503	W
$\begin{array}{c} \text{Continuous Drain} \\ \text{Current } R_{\theta JC} \end{array}$	Steady State	T _C = 100°C	I _{DC}	83	A
Power Dissipation $R_{\theta JC}$			P _{DC}	251	W
Pulsed Drain Current (Note 2)	$T_A = 25^{\circ}C$	I _{DM}	472	А
Single Pulse Surge Drain Current Capa- bility(Note 3)	$T_{A} = 25^{\circ}C, t_{p} = 10 \ \mu s, \\ R_{G} = 4.7 \ \Omega$		I _{DSC}	854	A
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body	Diode)		۱ _S	153	А
Single Pulse Drain-to- gy (I _L = 23 A _{pk} , L = 1 m			E _{AS}	264	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature.
- 3. Peak current might be limited by transconductance.
- 4. E_{AS} of 264 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 23 A, V_{DD} = 100 V, V_{GS} = 15 V.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
900 V	28 mΩ @ 15 V	118 A

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. THERMAL CHARACTERISTICS

Parameter	Symbol	Мах	Units
Thermal Resistance Junction-to-Case (Note 1)	$R_{ extsf{ heta}JC}$	0.30	°C/W
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{ extsf{ heta}JA}$	40	°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				-		-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		900			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, refer to 25°C			500		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V V _{DS} = 900 V	T _J = 25°C T _J = 175°C			100 250	μΑ
Gate-to-Source Leakage Current	I _{GSS}		10 V, V _{DS} = 0 V			250 ±1	μΑ μΑ
ON CHARACTERISTICS	1688	VGS - +13/-	10 V, VDS - 0 V			±1	μιλ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	₃ , I _D = 20 mA	1.8	2.7	4.3	V
Recommended Gate Voltage	V _{GOP}	- 43 - 54	5,.0	-5		+15	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D	= 60 A, T _J = 25°C		20	28	mΩ
		V _{GS} = 15 V, I _D :	= 60 A, T _J = 175°C		27		mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 20	V, I _D = 60 A		49		S
CHARGES, CAPACITANCES & GATE R	ESISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 450 V			4415		pF
Output Capacitance	C _{OSS}				296		1
Reverse Transfer Capacitance	C _{RSS}				24		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/15 \text{ V}, V_{DS} = 720 \text{ V},$			196		nC
Threshold Gate Charge	Q _{G(TH)}	ID :	= 60 A		42		
Gate-to-Source Charge	Q _{GS}				78		
Gate-to-Drain Charge	Q _{GD}				55		
Gate-Resistance	R _G	f =	1 MHz		1.6		Ω
SWITCHING CHARACTERISTICS							
Turn–On Delay Time	t _{d(ON)}	V _{GS} = -5/15	V, V _{DS} = 720 V,		40		ns
Rise Time	t _r	I _D = 60 A Induc	, R _G = 2.5 Ω, tive Load		63		
Turn-Off Delay Time	t _{d(OFF)}				55		
Fall Time	t _f	-			13		
Turn–On Switching Loss	E _{ON}				2025		μJ
Turn–Off Switching Loss	E _{OFF}				201		
Total Switching Loss	E _{TOT}				2226]
DRAIN-SOURCE DIODE CHARACTERI	STICS						
Continuous Drain-Source Diode Forward Current	I _{SD}	V _{GS} = -5	V, T _J = 25°C			153	A
	1			1	1		-

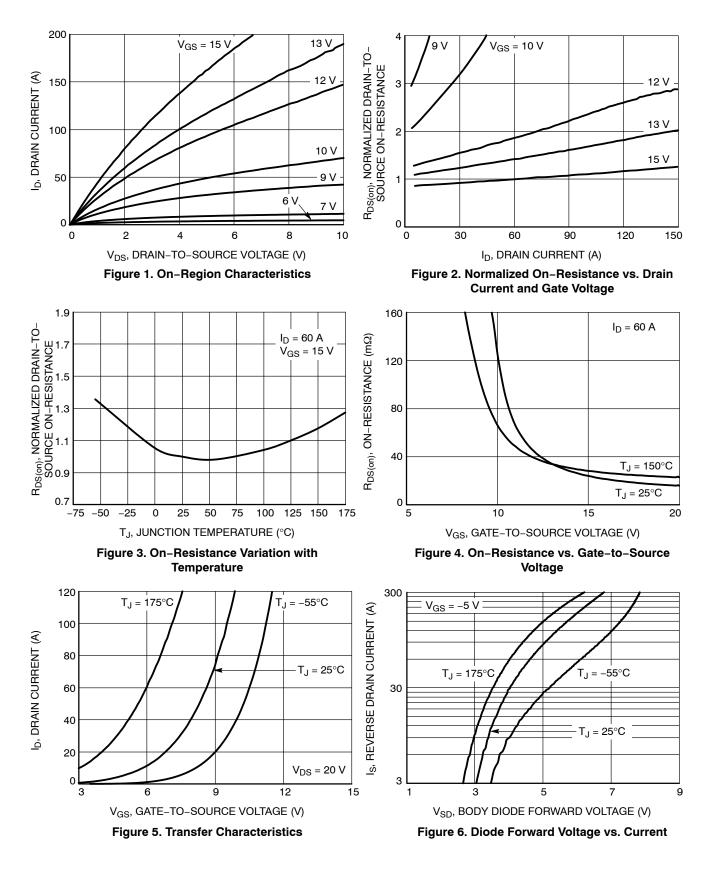
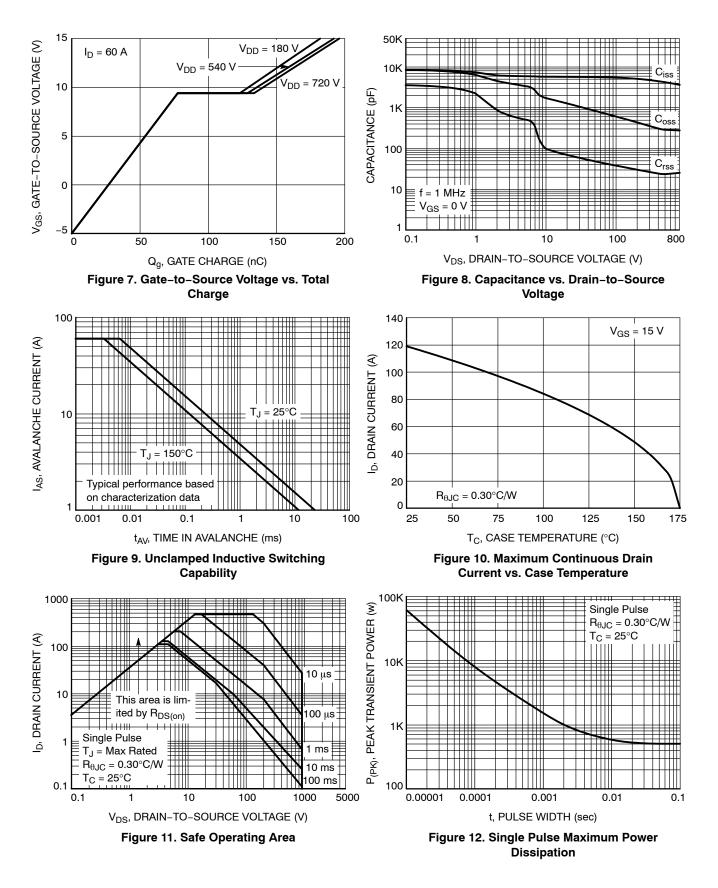

Continuous Drain–Source Diode Forward Current	I _{SD}	V_{GS} = -5 V, T _J = 25°C		153	A
Pulsed Drain-Source Diode Forward Current (Note 2)	I _{SDM}	V_{GS} = -5 V, T_{J} = 25°C		472	A
Forward Diode Voltage	V _{SD}	V_{GS} = –5 V, I_{SD} = 30 A, T_J = 25°C	3.8		V

Table 2. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise stated)

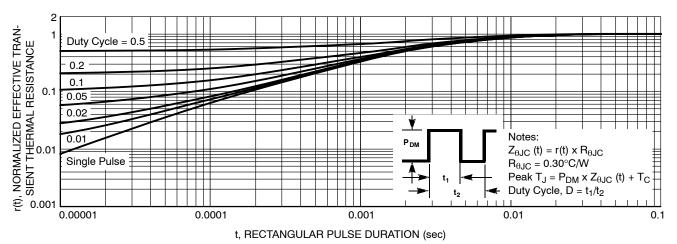

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	$ V_{GS} = -5/15 \text{ V}, \text{ I}_{SD} = 60 \text{ A}, \text{ dI}_S/\text{dt} = \\ 1000 \text{ A}/\mu\text{s}, \text{ V}_{DS} = 720 \text{ V} \\ - \frac{1000 \text{ A}}{2000 \text{ A}} + \frac{10000 \text{ A}}{2000 \text{ A}} + \frac{1000 \text{ A}}{2000 \text{ A}} + \frac$		28		ns		
Reverse Recovery Charge	Q _{RR}			199		nC		
Reverse Recovery Energy	E _{REC}	1		4		μJ		
Peak Reverse Recovery Current	I _{RRM}	1		14		А		
Charge time	Та	7		16		ns		
Discharge time	Tb			12		ns		

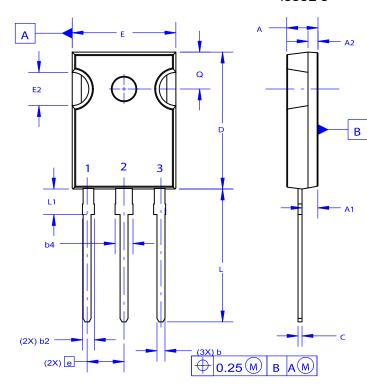
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

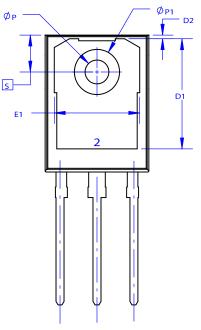
TYPICAL CHARACTERISTICS




Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Size	Quantity
NVHL020N090SC1	NVHL020N090SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units


PACKAGE DIMENSIONS

TO-247-3LD CASE 340CX ISSUE O

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	4.58	4.70	4.82			
A1	2.20	2.40	2.60			
A2	1.40	1.50	1.60			
D	20.32	20.57	20.82			
Е	15.37	15.62	15.87			
E2	4.96	5.08	5.20			
е	~	5.56	1			
L	19.75	20.00	20.25			
L1	3.69	3.81	3.93			
ØР	3.51	3.58	3.65			
Q	5.34	5.46	5.58			
S	5.34	5.46	5.58			
b	1.17	1.26	1.35			
b2	1.53	1.65	1.77			
b4	2.42	2.54	2.66			
С	0.51	0.61	0.71			
D1	13.08	~	~			
D2	0.51	0.93	1.35			
E1	12.81	~	~			
Ø P 1	6.60	6.80	7.00			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates theets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmlese against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

NVHL020N090SC1