onsemi

MOSFET - Power, Single N-Channel, STD Gate, μ8FL 40 V, 1.43 mΩ, 178 A

NVTFWS1D3N04XM

Features

- Low RDS(on) to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Small Footprint (3.3 x 3.3 mm) for Compact Design
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

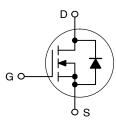
- Motor Drive
- Battery Protection
- Synchronous Rectification

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage	DC	V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C	۱ _D	178	А
	$T_{C} = 100^{\circ}C$		126	
Power Dissipation	T _A = 25°C	PD	83	W
Pulsed Drain Current	T _C = 25°C, t _p = 10 μs	I _{DM}	895	A
Operating Junction and Storage T Range	emperature	T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)		ا _S	71	А
Single Pulse Avalanche Energy (I _{LPK} = 17.2 A)		E _{AS}	281	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

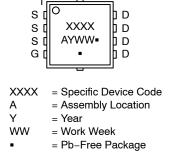
THERMAL CHARACTERISTICS


Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 2)	$R_{\theta JC}$	1.8	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 1, 2)	R_{\thetaJA}	46.4	

1. Surface mounted on FR4 board using 650 mm2, 2 oz Cu pad.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
40 V	1.43 m Ω @ 10 V	178 A

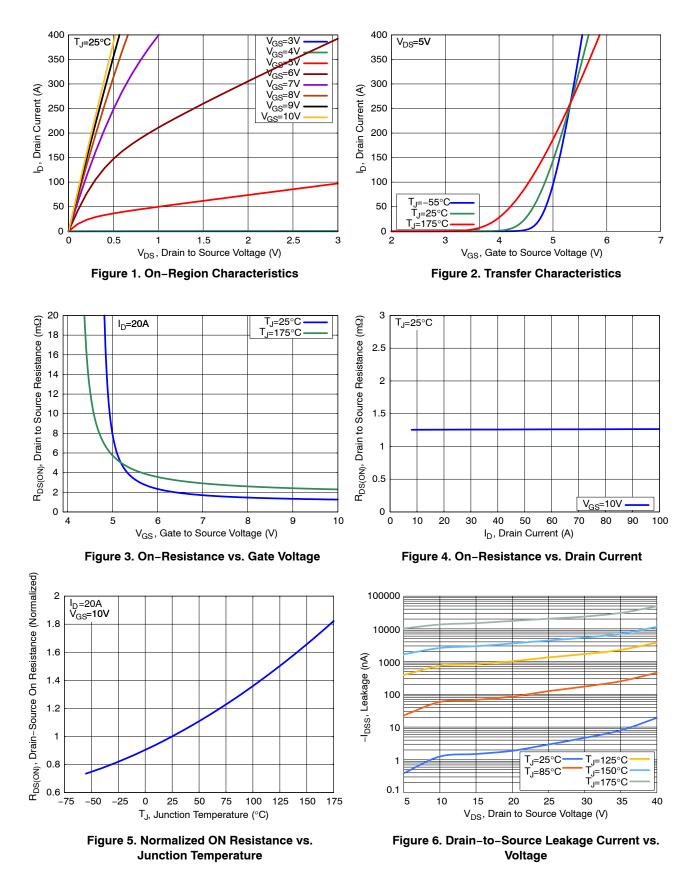

N-CHANNEL MOSFET

WDFNW8 (µ8FL) CASE 515AP

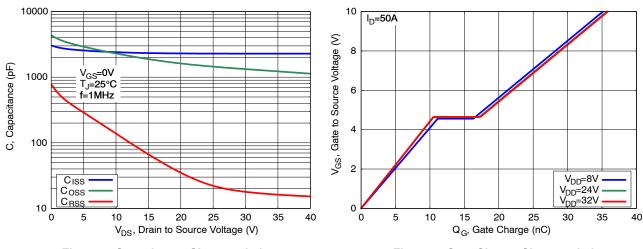
MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	40	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	${\Delta V_{(BR)DSS}/ \over \Delta T_J}$	I_D = 1 mA, Referenced to 25°C	-	15	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 40 V, T_J = 25°C			1	μA
		$V_{DS} = 40 \text{ V}, \text{ T}_{\text{J}} = 125^{\circ}\text{C}$	-	-	100	
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = 20 V, V_{DS} = 0 V	-	-	100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 20 A, T _J = 25 °C	-	1.24	1.43	mΩ
Gate Threshold Voltage	V _{GS(th)}	V_{GS} = V_{DS} , I_D = 90 μ A, T_J = 25°C	2.5	3	3.5	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{GS(th)} / \Delta T_J$	$V_{GS}=V_{DS},I_{D}=90\;\mu A$	-	-7.34	-	mV/°C
Forward Transconductance	9 FS	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	-	103	-	S
CHARGES, CAPACITANCES & GATE	RESISTANCE				•	
Input Capacitance	C _{ISS}	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz	-	2288	-	pF
Output Capacitance	C _{OSS}		-	1449	-	
Reverse Transfer Capacitance	C _{RSS}		_	22	-	
Total Gate Charge	Q _{G(tot)}	V_{DD} = 32 V, I_{D} = 50 A, V_{GS} = 10 V	-	36	-	nC
Threshold Gate Charge	Q _{G(th)}		-	7	-	
Gate-to-Source Charge	Q _{GS}		-	11	-	
Gate-to-Drain Charge	Q _{GD}		-	7	-	
Gate Resistance	R _G	f = 1 MHz	-	0.7	-	Ω
SWITCHING CHARACTERISTICS				-		
Turn-On Delay Time	t _{d(on)}	$V_{GS} = 0/10 \text{ V}, I_D = 50 \text{ A},$	-	21	-	ns
Rise Time	tr	V_{DD} = 32 V, R_{G} = 0 Ω	-	8	-	
Turn-Off Delay Time	t _{d(off)}		-	34	-	
Fall Time	t _f		-	8	-	
SOURCE-TO-DRAIN DIODE CHARAG	CTERISTICS				•	
Forward Diode Voltage	V _{SD}	I_{S} = 20 A, V_{GS} = 0 V, T_{J} = 25°C	-	0.79	1.2	V
		I_{S} = 20 A, V_{GS} = 0 V, T_{J} = 125°C	-	0.64	-	1
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 V, I_S = 50 A,$	-	48	-	ns
Charge Time	ta	dI/dt = 100 A/ μ s, V _{DD} = 32 V	-	20	-	1
Discharge Time	t _b		_	28	-	
Reverse Recovery Charge	Q _{RR}		_	48	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

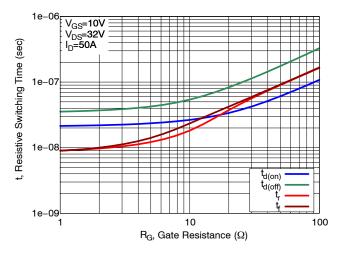


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

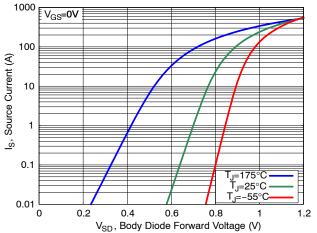


Figure 10. Diode Forward Characteristics

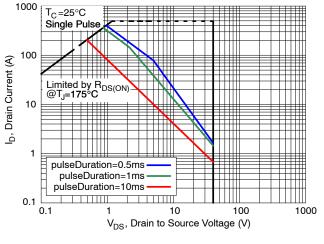
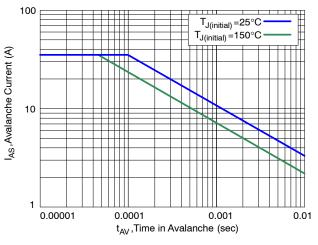
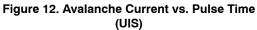




Figure 11. Safe Operating Area (SOA)

TYPICAL PERFORMANCE CHARACTERISTICS

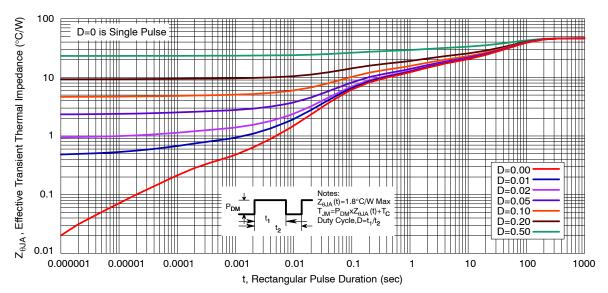
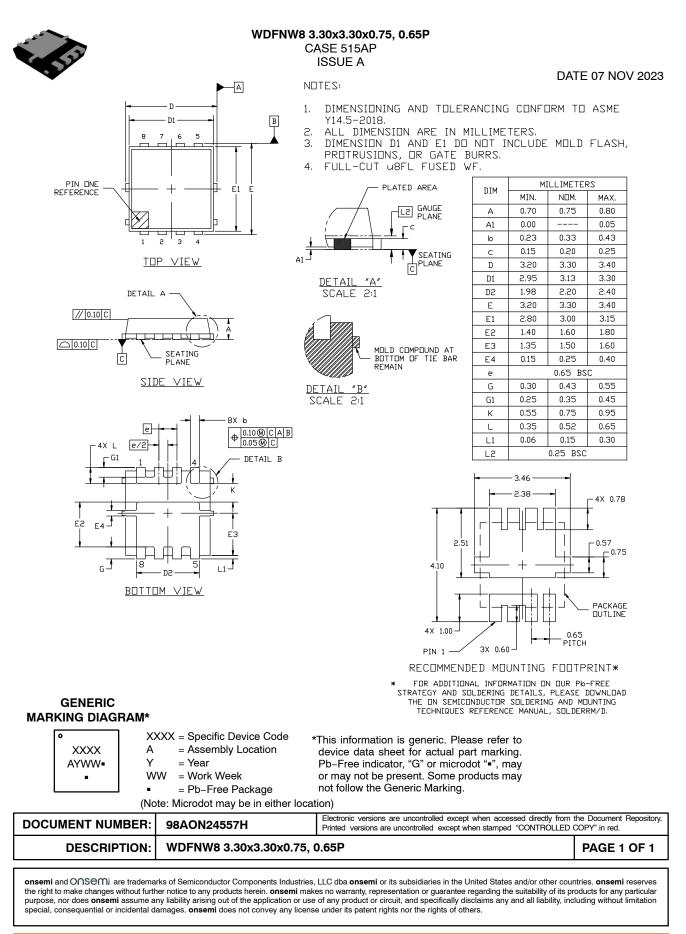



Figure 13. Transient Thermal Response

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVTFWS1D3N04XMTAG	1D3W	WDFNW8	Tape & Reel	N/A	N/A	1500 Units

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>