NEXSEM.

HIGH SPEED 5V SYNCHRONOUS MOSFET DRIVER

PRELIMINARY DATA SHEET

Pb Free Product

- DESCRIPTION =

- FEATURES

The NX3101 is a high frequency MOSFET driver designed to drive two N-Channel MOSFETs in a synchronous rectified Step Down(BUCK) regulator topology. This driver combined with other NEXSEM controllers such as NX2511 ■ or NX2517 2 to 4 phase controller ICs makes a high efficiency high performance Multiphase regulator designed for latest Microprocessor Vcore power as well as other high current regulator applications. The IC is powered by a single 5V supply and its ultra low resistance drivers minimizes switching losses for high frequency applications using high gate capacitance MOSFETs. The NX3101 features 0.44 ohm sink resistance for the lower gate driver capable of holding the lower MOSFET gate off during SW node fast dv/dt rise time, preventing shoot through power loss.

- Bus voltage operation from 3V to 25V
- High Peak Current Drive Capability (Lower Driver Sink Resistance 0.44 ohm)
- High Frequency Operating Range(up to 2MHz)
- Minimal Propagation Delay
- Adaptive Non-overlap Control
- Output disable(ODB) signal turns both outputs
- Pb-free and RoHS compliant

- APPLICATIONS

- Desktop and Notebook Microprocessor Vcore regulator applications
- High Current Multiphase Converter
- High Efficiency / High Current Graphic Vcore

TYPICAL APPLICATION

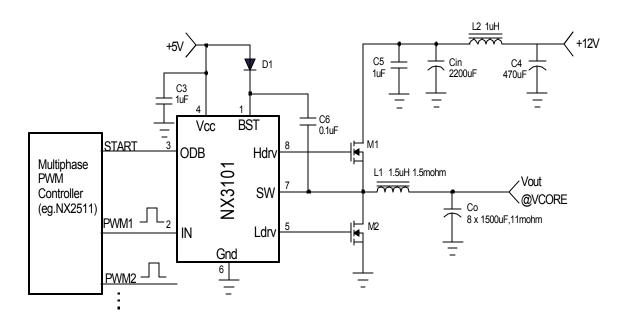
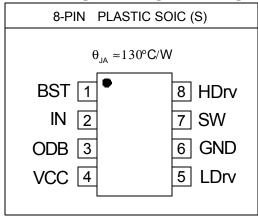


Figure 1 - Typical application of 3101

ORDERING INFORMATION


Device	Temperature	Package	Pb-Free
NX3101CSTR	0 to 70°C	SOIC-8L	Yes

ABSOLUTE MAXIMUM RATINGS

Vcc to GND & BST to SW Voltage	6.5V
BST to GND Voltage	35V
SW to GND Voltage	35V
ODB & IN to GND Voltage	6.5V
Storage Temperature Range	65°C to 150°C
Operating Junction Temperature Ran	ige40°C to 125°C

Caution: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over VCC =BST= 5V, SW=GND=0V, ODB=VCC, and T_A = 0 to 125°C. Typical values refer to T_A = 25°C.

PARAMETERS	SYM	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Vcc Supply						
Vcc Quiescent Current Operating	Iq	VBST=12V, IN=0V		0.5	2	mA
Mode						
		VBST=12V, IN=5V		0.5	2	
		IN=Swch at 500Khz, 50% DC,		TBD		
		CL=0				
		IN=Swch at 500Khz, 50% DC,		TBD		
		CL=3nF				
Vcc Quiescent Current	Iqsd	ODB=0V		0.5	2	uA
Shutdown Mode						
ODB						
ODB Threshold (High)	ODB(H)		2.4			V
ODB Threshold (Low)	ODB(L)				0.8	V
ODB Current	Ienb		-2		2	uA
Propagation delay time	Tprop			15		ns
IN						
Input voltage High	IN (H)		2.4			V
Input Voltage low	IN(L)				0.8	V
Input Current	I _{bias-ODB}		-2		2	uA

NEXSEM____

PARAMETERS	SYM	TEST CONDITIONS	MIN	TYP	MAX	UNITS
High Side driver(CL=3300pF)						
Output Impedance, Sourcing	R _{source} (Hdrv)			0.85		ohm
Current	Source					
Output Impedance, Sinking	R _{sink} (Hdrv)			0.65		ohm
Current	Sime					
Rise Time	THDrv(Rise)	10% to 90%		25		ns
Fall Time	THDrv(Fall)	90% to 10%		20		ns
Deadband Time	Tdead(L to H)	LDRV going Low to HDRV		30		ns
		going High, 10% to 10%				
Propagation Delay	Tdelay(H)	IN going HI to LDRV going		10		ns
		Low				
Low Side Driver(CL=3300pF)						
Output Impedance, Sourcing	$R_{\text{source}}(Ldrv)$			0.85		ohm
Current						
Output Impedance, Sinking	$R_{\text{source}}(Ldrv)$			0.5		ohm
Current						
Rise Time	TLDrv(Rise)	10% to 90%		25		ns
Fall Time	TLDrv(Fall)	90% to 10%		20		ns
Deadband Time	Tdead(H to L)	SW going Low to LDRV going		20		ns
		High, 10% to 10%				
Propagation Delay	Tdelay(L)	IN going Low to LDRV going		10		ns
		High				

PIN DESCRIPTIONS

Pin#	Pin Symbol	Pin Description		
1	BST	Bootstrap Pin. A capacitor is connected between BST and SW pins to generate the floating bootstrap voltage for High-side Driver. The capacitor value is typically between 0.1uf to 1uF.		
2	IN	PWM input signal to the MOSFET drivers.		
3	ODB	Output disable pin. When high the internal circuitry is enabled. When low both high side and low side drivers are turned off.		
4	VCC	Biasing supply both for the IC and low side driver, a minimum of 1uF ceramic cap should be connected between this pin and PGND.		
5	LDRV	Output driver for low side MOSFET.		
6	GND	Power ground.		
7	SW	Switching point, this pin connects to the junction of external high-side and low-side MOSFETs.		
8	HDRV	Output drive for high-side MOSFET.		

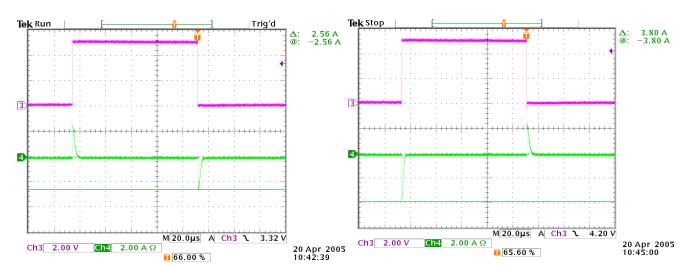


Figure 2 - Hdrv peak current

Figure 3 - Ldrv peak current