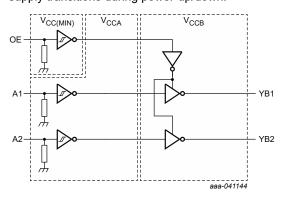
NXU0102

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Rev. 1 — 30 October 2024

Product data sheet

1. General description


The NXU0102 is a 2-bit, dual-supply level translating buffer with Schmitt-trigger inputs and 3-state outputs. It features two data inputs (A1 and A2), two data outputs (YB1 and YB2), and an output enable input (OE).

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 0.9 V and 5.5 V making the device suitable for translating between any of the voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V).

This device facilitates asynchronous communication between data buses. Transmit data with a fixed direction (unidirectionally) from the A bus to the B bus on two channels. The OE pin can be referenced to $V_{\rm CCA}$ and $V_{\rm CCB}$ domain and when OE pin is set LOW the outputs are disabled and enter a high-impedance OFF-state which isolates the buses. The OE pin can be left floating or externally pulled down to ground to ensure the high-impedance state of the outputs during power up or power down.

This device ensures low static and dynamic power consumption across the entire supply range and is fully specified for partial power down applications using I_{OFF}. The I_{OFF} circuitry prevents potentially damaging backflow current through the device when it is powered down or if one of the power supplies is disconnected (floating).

No power supply sequencing is required and output glitches during power supply transitions are prevented. As a result, glitches will not appear on the outputs for supply transitions during power-up/down.

2. Features and benefits

- Wide supply voltage range:
 - V_{CCA}: 0.9 V to 5.5 V
 - V_{CCB}: 0.9 V to 5.5 V
- Low power consumption for supply voltage range 1.1 V to 5.5 V
 - $3 \mu A (T_{amb} = 25 °C)$
 - $5 \mu A (T_{amb} = -40 ^{\circ}C to +125 ^{\circ}C)$
- Schmitt-trigger inputs with integrated static high ohmic pull-down resistor on the input
- Maximum data rates:
 - 250 Mbps (≥ 1.8 V to 5 V translation)
- High output drive 12 mA at 5 V
- Output enable (OE) allows connection to V_{CCA} or V_{CCB} domain
- Suspend mode when either one of the supply voltages is below 100 mV or disconnected (floating)
- Low noise overshoot and undershoot <10% of Voca
- I_{OFF} circuitry provides partial power-down mode operation
- Latch-up performance exceeds 100 mA per JESD78D Class II
- · Complies with JEDEC standard:
 - JESD8-12 (0.9 V to 1.3 V)
 - JESD8-11 (1.4 V to 1.6 V)
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
 - JESD12-6 (4.5 V to 5.5 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2500 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1500 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- · Similar function: NXU0202

3. Applications

- General purpose I/O level translation
- Noisy environments or slow input signals
- Supports push-pull voltage translation as 2-wire UART and 2-pin JTAG protocols
- Consumer

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
NXU0102DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
NXU0102GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	SOT833-1
NXU0102GX	-40 °C to +125 °C	X2SON8	plastic thermal enhanced extremely thin small outline package; no leads; 8 terminals; body 1.35 × 0.8 × 0.32 mm	SOT1233-2

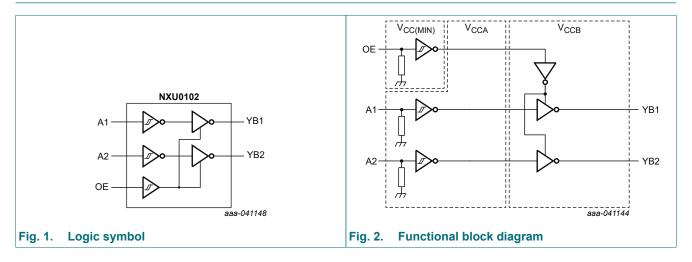
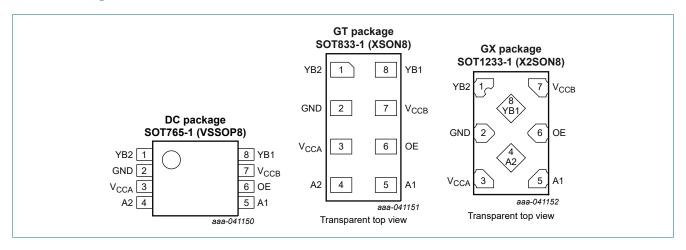

5. Marking

Table 2. Marking

Type number	Marking code[1]
NXU0102DC	L2
NXU0102GT	L2
NXU0102GX	L2

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


6. Functional diagram

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

7. Pinning information

7.1. Pinning

7.2. Pin description

Table 3. Pin description

Table 5. Fill de	somption		
Symbol	Pin	I/O	Description
YB2	1	0	data output B-side and referenced to V _{CCB}
GND	2	supply	ground (0 V)
V _{CCA}	3	supply	supply voltage A-side (pins A1, A2)
A2	4	I	data input A-side and referenced to V _{CCA}
A1	5	I	data input A-side and referenced to V _{CCA}
OE	6	I	output enable input (active HIGH)
V _{CCB}	7	-	supply voltage B-side (pins YB1, YB2)
YB1	8	0	data output B-side and referenced to V _{CCB}

8. Functional description

Table 4. Function table

 $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; X = don't care; Z = high-impedance OFF-state.}$

Supply voltage	Input	Input	Output
V _{CCA} , V _{CCB}	OE	An	YBn
0.9 V to 5.5 V	Н	L	L
0.9 V to 5.5 V	Н	Н	Н
0.9 V to 5.5 V	L	X	Z
GND [1]	X	X	Z
Floating [2]	X	X	Z

^[1] If either V_{CCA} or V_{CCB} is below 100 mV or GND, the device goes into suspend mode (Hi-Z).

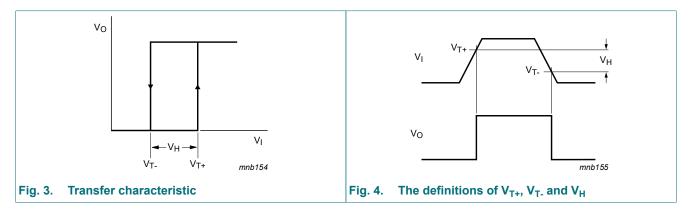
^[2] If either V_{CCA} or V_{CCB} disconnected (floating), the device goes into suspend mode (Hi-Z).

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

8.1. Overview

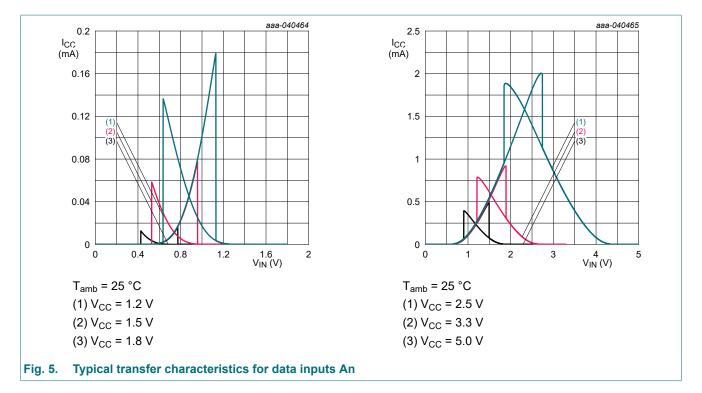
The NXU0102 is a 2-bit, dual-supply level translating buffer with Schmitt-trigger inputs and 3-state outputs. It features two data inputs (A1, A2), two data outputs (YB1, YB2), and an output enable input (OE). Both V_{CCA} and V_{CCB} can be supplied at any voltage between 0.9 V and 5.5 V.

8.2. Inputs


The inputs have integrated pull-down resistors of 6.5 M Ω (typical) which prevent an undefined state at the Schmitt-trigger input and the output. If an external pull-up is required, it should be no larger than 1 M Ω to avoid contention with the 6.5 M Ω internal pull-down.

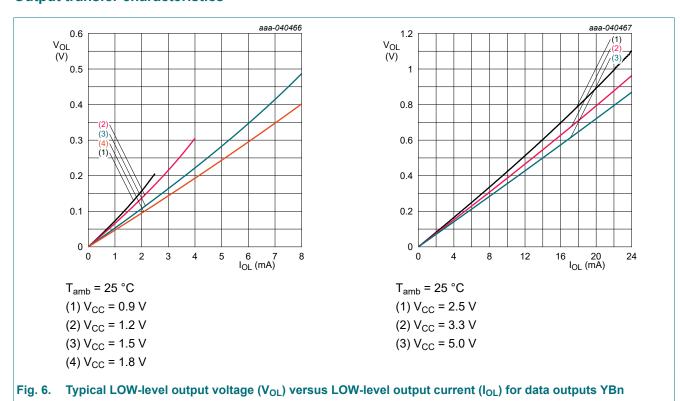
Additionally, each input is provided with a through Schmitt-trigger which makes this device tolerant for slow and noisy input signals. Prolonged input slopes at a slow rate may lead to increased dynamic current consumption.

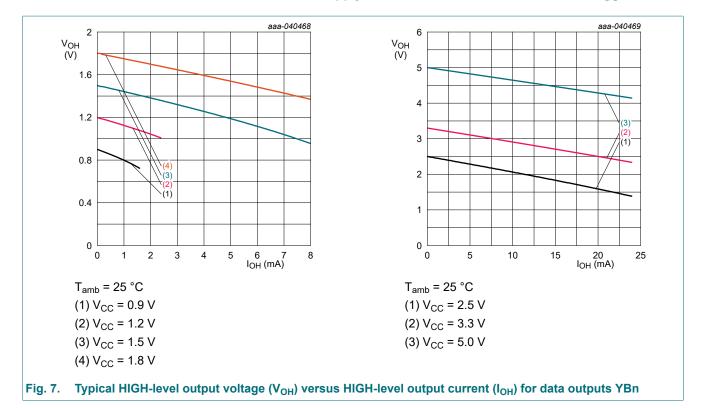
The output-enable input (OE) can be referenced to V_{CCA} and V_{CCB} domain by making use of the developed $V_{CC(MIN)}$ circuitry. When the OE pin is set LOW, the output is disabled and enters high-impedance OFF-state which isolates the output. The OE pin can be left floating or externally pulled down to ground to ensure outputs remain in the high-impedance state during power up or power down.


The input signals can be safely driven above the supply voltage, as long as the maximum input voltage value specified in the Recommended Operating Conditions is not exceeded.

Input transfer characteristics

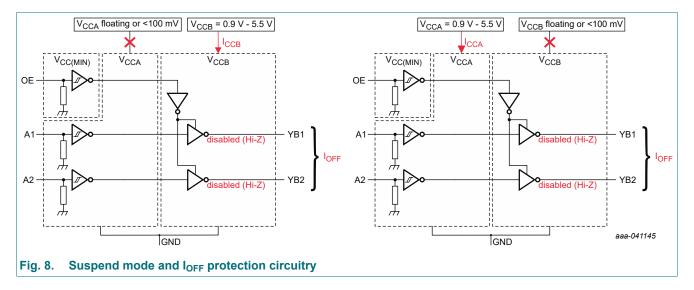
4 / 29


2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state


8.3. Outputs

Balanced output enables the device to both sink and source similar currents. The high drive capability of this device creates fast edges and capable of driving larger currents.

Output transfer characteristics


2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

8.4. Suspend mode and I_{OFF} protection circuitry

When either V_{CCA} or V_{CCB} drops below 100 mV or becomes disconnected (floating) the product enters suspend mode (Hi-Z). All outputs are disabled and in transition to a high-impedance OFF-state. The I_{OFF} circuitry prevents potentially damaging backflow current through the device when it is powered down or if one of the power supplies is disconnected (floating). It is advisable to keep the data inputs in low state before disconnecting (floating) either supply.

Below a graphical explanation:

6/29

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CCA}	supply voltage A			-0.5	+6.5	V
V _{CCB}	supply voltage B			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
V _O	output voltage	Active mode	[1][2][3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CCO}$	[2]	-	±25	mA
I _{CC}	supply current	I _{CCA} or I _{CCB} ; per V _{CC} pin		-	100	mA
I _{GND}	ground current	per GND pin		-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation		[4]	-	250	mW

^[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

For SOT833-1 (XSON8) package: Ptot derates linearly with 3.6 mW/K above 81 °C.

For SOT1233-2 (X2SON8) package: Ptot derates linearly with 4.6 mW/K above 95 °C.

10. ESD ratings

Table 6. ESD ratings

Symbol	Parameter	Conditions	Value	Unit
V	electrostatic discharge voltage	HBM: ANSI/ESDA/JEDEC JS-001 class 2	± 2500	V
V _{ESD}	electrostatic discharge voltage	CDM: ANSI/ESDA/JEDEC JS-002 class C3	± 1500	V

11. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Max	Unit
V_{CCA}	supply voltage A			0.9	5.5	V
V _{CCB}	supply voltage B			0.9	5.5	V
V _I	input voltage			0	5.5	V
Vo	output voltage	Active mode	[1]	0	V _{cco}	V
		Suspend or 3-state mode		0	5.5	V
T _{amb}	ambient temperature			-40	+125	°C

^[1] V_{CCO} is the supply voltage associated with the output pins (YBn).

^[2] V_{CCO} is the supply voltage associated with the output pins (YBn).

^[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

^[4] For SOT765-1 (VSSOP8) package: P_{tot} derates linearly with 5.3 mW/K above 103 °C.

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

12. Thermal characteristics

Table 8. Thermal characteristics

Symbol	Parameter	Condition	SOT765-1	SOT833-1	SOT1233-2	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air; JEDEC test board	189	276	219	°C/W
R _{th(j-c)}	thermal resistance from case (top) of package	in free air; JEDEC test board	98	121	118	°C/W
Ψ _{j-top}	thermal characterization parameter from junction to top of package	in free air; JEDEC test board	25	3.3	4.5	°C/W

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

13. Static characteristics

Table 9. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		+25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{T+}	positive-going	An input								
	threshold voltage	V _{CCA} = V _{CCB} = 0.9 V	-	0.58	-	-	-	-	-	V
		V _{CCA} = V _{CCB} = 1.1 V	-	0.71	-	0.44	0.88	0.44	0.88	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.89	-	0.60	0.98	0.60	0.98	V
		V _{CCA} = V _{CCB} = 1.65 V	-	1.05	-	0.76	1.13	0.76	1.13	V
		V _{CCA} = V _{CCB} = 2.3 V	-	1.39	-	1.08	1.56	1.08	1.56	V
		V _{CCA} = V _{CCB} = 3.0 V	-	1.75	-	1.48	1.92	1.48	1.92	V
		V _{CCA} = V _{CCB} = 4.5 V	-	2.50	-	2.19	2.74	2.19	2.74	V
		V _{CCA} = V _{CCB} = 5.5 V	-	3.02	-	2.65	3.33	2.65	3.33	V
		OE input (referenced to V _{CCA} or V _{CCB})								
		V _{CCA} = V _{CCB} = 0.9 V	-	0.58	-	-	-	-	-	V
		V _{CCA} = V _{CCB} = 1.1 V	-	0.70	-	0.44	0.88	0.44	0.88	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.89	-	0.60	0.98	0.60	0.98	V
		V _{CCA} = V _{CCB} = 1.65 V	-	1.04	-	0.76	1.13	0.76	1.13	V
		V _{CCA} = V _{CCB} = 2.3 V	-	1.38	-	1.08	1.56	1.08	1.56	V
		V _{CCA} = V _{CCB} = 3.0 V	-	1.74	-	1.48	1.92	1.48	1.92	V
		V _{CCA} = V _{CCB} = 4.5 V	-	2.50	-	2.19	2.74	2.19	2.74	V
		V _{CCA} = V _{CCB} = 5.5 V	-	3.03	-	2.65	3.33	2.65	3.33	V

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Symbol	Parameter	Conditions		+25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{T-}	negative-going	An input								
	threshold voltage	V _{CCA} = V _{CCB} = 0.9 V	-	0.33	-	-	-	-	-	V
	voitage	V _{CCA} = V _{CCB} = 1.1 V	-	0.40	-	0.17	0.48	0.17	0.48	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.50	-	0.28	0.59	0.28	0.59	V
		V _{CCA} = V _{CCB} = 1.65 V	-	0.59	-	0.35	0.69	0.35	0.69	V
		V _{CCA} = V _{CCB} = 2.3 V	-	0.84	-	0.56	0.97	0.56	0.97	V
		V _{CCA} = V _{CCB} = 3.0 V	-	1.12	-	0.89	1.5	0.89	1.5	V
		V _{CCA} = V _{CCB} = 4.5 V	-	1.71	-	1.51	1.97	1.51	1.97	V
		V _{CCA} = V _{CCB} = 5.5 V	-	2.10	-	1.88	2.4	1.88	2.4	V
		OE input (referenced to V _{CCA} or V _{CCB})								
		V _{CCA} = V _{CCB} = 0.9 V	-	0.33	-	-	-	-	-	V
		V _{CCA} = V _{CCB} = 1.1 V	-	0.41	-	0.17	0.48	0.17	0.48	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.51	-	0.28	0.59	0.28	0.59	V
		V _{CCA} = V _{CCB} = 1.65 V	-	0.59	-	0.35	0.69	0.35	0.69	V
		V _{CCA} = V _{CCB} = 2.3 V	-	0.84	-	0.56	0.97	0.56	0.97	V
		V _{CCA} = V _{CCB} = 3.0 V	-	1.12	-	0.89	1.5	0.89	1.5	V
		V _{CCA} = V _{CCB} = 4.5 V	-	1.69	-	1.51	1.97	1.51	1.97	V
		V _{CCA} = V _{CCB} = 5.5 V	-	2.07	-	1.88	2.46	1.88	2.46	V

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Symbol	Parameter	Conditions		+25 °C		-40 °C to	+85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
V_{H}	hysteresis	An input								
	voltage	V _{CCA} = V _{CCB} = 0.9 V	-	0.25	-	-	-	-	-	V
		V _{CCA} = V _{CCB} = 1.1 V	-	0.31	-	0.2	0.4	0.2	0.4	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.39	-	0.25	0.5	0.25	0.5	V
		V _{CCA} = V _{CCB} = 1.65 V	-	0.46	-	0.3	0.55	0.3	0.55	V
		V _{CCA} = V _{CCB} = 2.3 V	-	0.59	-	0.38	0.65	0.38	0.65	V
		V _{CCA} = V _{CCB} = 3.0 V	-	0.63	-	0.46	0.72	0.46	0.72	V
		V _{CCA} = V _{CCB} = 4.5 V	-	0.79	-	0.58	0.93	0.58	0.93	V
		V _{CCA} = V _{CCB} = 5.5 V	-	0.93	-	0.69	1.06	0.69	1.06	V
		OE input (referenced to V _{CCA} or V _{CCB})								
		V _{CCA} = V _{CCB} = 0.9 V	-	0.25	-	-	-	-	-	V
		V _{CCA} = V _{CCB} = 1.1 V	-	0.30	-	0.15	0.41	0.15	0.41	V
		V _{CCA} = V _{CCB} = 1.4 V	-	0.39	-	0.2	0.5	0.2	0.5	V
		V _{CCA} = V _{CCB} = 1.65 V	-	0.44	-	0.23	0.55	0.23	0.55	V
		V _{CCA} = V _{CCB} = 2.3 V	-	0.54	-	0.32	0.65	0.32	0.65	V
		V _{CCA} = V _{CCB} = 3.0 V	-	0.62	-	0.39	0.72	0.39	0.72	V
		V _{CCA} = V _{CCB} = 4.5 V	-	0.81	-	0.57	0.97	0.57	0.97	V
		V _{CCA} = V _{CCB} = 5.5 V	-	0.96	-	0.69	1.18	0.69	1.18	V
V _{OH}	HIGH-level	$V_1 = V_{T+(MAX)}$ [1][2]								
	output voltage	I_{O} = -0.1 mA; V_{CCO} = 0.9 V to 5.5 V	V _{CCO} - 0.1	0.9	-	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		I _O = -1.5 mA; V _{CCO} = 1.1 V	0.825	1.0	-	0.825	-	0.825	-	V
		I _O = -3 mA; V _{CCO} = 1.4 V	1.05	1.2	-	1.05	-	1.05	-	V
		I _O = -4.5 mA; V _{CCO} = 1.65 V	1.2	1.4	-	1.2	-	1.2	-	V
		I _O = -8 mA; V _{CCO} = 2.3 V	1.7	1.94	-	1.7	-	1.7	-	V
		I _O = -10 mA; V _{CCO} = 3.0 V	2.2	2.6	-	2.2	-	2.2	-	V
		I _O = -12 mA; V _{CCO} = 4.5 V	3.7	4.1	-	3.7	-	3.7	-	V

NXU0102 Submit document feedback All information provided in this document is subject to legal disclaimers.

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Symbol	Parameter	Conditions			+25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
V _{OL}	LOW-level	$V_I = V_{T-(MIN)}$	[1][2]								
	output voltage	I _O = 0.1 mA; V _{CCO} = 0.9 V to 5.5 V		-	0	0.1	-	0.1	-	0.1	V
		I _O = 1.5 mA; V _{CCO} = 1.1 V		-	0.12	0.275	-	0.275	-	0.275	V
		I _O = 3 mA; V _{CCO} = 1.4 V		-	0.17	0.35	-	0.35	-	0.35	V
		I _O = 4.5 mA; V _{CCO} = 1.65 V		-	0.23	0.45	-	0.45	-	0.45	V
		I _O = 8 mA; V _{CCO} = 2.3 V		-	0.35	0.7	-	0.7	-	0.7	V
		I _O = 10 mA; V _{CCO} = 3.0 V		-	0.39	0.8	-	0.8	-	0.8	V
		I _O = 8 mA; V _{CCO} = 4.5 V		-	0.28	0.5	-	0.5	-	0.5	V
		I _O = 12 mA; V _{CCO} = 4.5 V		-	0.43	0.8	-	0.8	-	0.8	V
I _I	input leakage	An input; V _I = 0 V to 5.5 V; V _{CCI} = 0.9 V to 5.5 V	[3]	-0.1	1	1.5	-0.1	1.85	-0.1	2	μA
	current	OE input; V _I = 0 V to 5.5 V; V _{CCI} = 0.9 V to 5.5 V	[3]	-0.1	1	1.5	-0.1	1.85	-0.1	2	μA
I _{OZ}	OFF-state output current	Suspend mode YBn output; $V_{CCA} = V_{CCB} = 0.9 \text{ V to } 5.5 \text{ V};$ $V_{I} = 0 \text{ V or } V_{CCI}; V_{O} = 0 \text{ V or } V_{CCO} \text{ OE} = \text{GND}$	[1]	-0.1	-	0.1	-0.5	0.5	-2	2	μА
I _{OFF}	power-off leakage current	YBn output; V_I or V_O = 0 V to 5.5 V; V_{CCA} = 0 V; V_{CCB} = 0.9 V to 5.5 V		-1.5	-	1.5	-1.85	1.85	-2	2	μΑ
		YBn output; V_1 or V_0 = 0 V to 5.5 V; V_{CCB} = 0 V; V_{CCA} = 0.9 V to 5.5 V		-1.5	-	1.5	-1.85	1.85	-2	2	μΑ
		YBn output; V_1 or V_0 = GND; V_{CCA} = floating; V_{CCB} = 0.9 V to 5.5 V	[4]	-1.5	-	1.5	-1.85	1.85	-2	2	μΑ
		YBn output; V_1 or V_0 = GND; V_{CCB} = floating; V_{CCA} = 0.9 V to 5.5 V	[4]	-1.5	-	1.5	-1.85	1.85	-2	2	μΑ

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Symbol	Parameter	Conditions			+25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
I _{CC}	supply current	I_{CCA} ; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A	[3]								
		V _{CCA} , V _{CCB} = 0.9 V to 5.5 V		-	1	1.8	-	2.5	-	3	μΑ
		V _{CCA} = 5.5 V; V _{CCB} = 0 V		-	1	1.8	-	2.5	-	3	μΑ
		V _{CCA} = 0 V; V _{CCB} = 5.5 V		-0.1	-	0.1	-0.4	0.4	-1	1	μΑ
		I_{CCB} ; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$	[3]								
		V _{CCA} , V _{CCB} = 0.9 V to 5.5 V		-	1	1.8	-	2.5	-	3	μΑ
		V _{CCB} = 5.5 V; V _{CCA} = 0 V		-	1	1.8	-	2.5	-	3	μΑ
		V _{CCB} = 0 V; V _{CCA} = 5.5 V		-0.1	-	0.1	-0.4	0.4	-1	1	μΑ
		I _{CCA} or I _{CCB} ; V _I or V _O = GND; I _O = 0 A									
		I _{CCA} ; V _{CCB} = floating; V _{CCB} = 5.5 V	[4]	-	1	1.5	-	2.5	-	3	μΑ
		I _{CCB} ; V _{CCA} = floating; V _{CCA} = 5.5 V	[4]	-	1	1.5	-	2.5	-	3	μΑ
		$I_{CCA} + I_{CCB}$ combined; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$; $V_{CCA} = V_{CCB} = 0.9 \text{ V to } 5.5 \text{ V}$	[3]	-	2	3	-	4.5	-	5	μΑ

^[1] V_{CCO} is the supply voltage associated with the output pins (YBn).

^[2] Typical values for V_{OL} and V_{OH} are measured at V_{CCO} is 0.9 V.

^[3] V_{CCI} is the supply voltage associated with the control input or input pins (An).

^[4] Floating is defined, if one of the supply pins is not actively driven externally and has a leakage not exceeding 10 nA

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Table 10. Typical total supply current I_{CCA} at T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V).

V _{CCA}		V _{CCB}												
	0 V	0.9 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V						
0 V	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	μA					
0.9 V	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	μA					
1.2 V	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	μA					
1.5 V	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	μA					
1.8 V	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	μΑ					
2.5 V	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	μA					
3.3 V	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	μA					
.0 V	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	μA					

Table 11. Typical total supply current I_{CCB} at T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V).

V _{CCA}		V _{CCB}												
	0 V	0.9 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V						
0 V	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	μA					
0.9 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
1.2 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
1.5 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
1.8 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
2.5 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
3.3 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.7	μA					
5.0 V	0.01	0.2	0.25	0.3	0.4	0.45	0.5	0.9	μΑ					

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

14. Dynamic characteristics

Table 12. Maximum data rate and output skew

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12.

Symbol	Parameter	Conditions	T _{amb} =	-40 °C to -	+125 °C	Unit
			Min	Тур	Max	
data	data rate	50% duty cycle input; one channel switching; [1] 20% of pulse > 0.7xV _{CCO} ; 20% of pulse < 0.3xV _{CCO}				
		Up translation [1][2]				
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 4.5 V to 5.5 V	-	350	250	Mbps
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 4.5 V to 5.5 V	-	350	250	Mbps
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 4.5 V to 5.5 V	-	220	100	Mbps
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 3.0 V to 3.6 V	-	230	150	Mbps
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 3.0 V to 3.6 V	-	300	140	Mbps
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 1.65 V to 1.95 V	-	100	40	Mbps
		Down translation [1][2]				
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 3.0 V to 3.6 V	-	250	170	Mbps
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 1.65 V to 1.95 V	-	150	60	Mbps
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 1.1 V to 1.3 V	-	80	30	Mbps
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 1.65 V to 1.95 V	-	150	60	Mbps
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 1.1 V to 1.3 V	-	80	30	Mbps
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 1.1 V to 1.3 V	-	70	30	Mbps
sk(o)	output skew time	Timing skew between any switching outputs on the rising or falling edge				
		Up translation [1][2]				
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 4.5 V to 5.5 V	-	0.15	0.7	ns
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 4.5 V to 5.5 V	-	0.25	1	ns
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 4.5 V to 5.5 V	-	0.5	2.1	ns
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 3.0 V to 3.6 V	-	0.25	1	ns
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 3.0 V to 3.6 V	-	0.5	2.1	ns
		V _{CCI} = 1.1 V to 1.3 V; V _{CCO} = 1.65 V to 1.95 V	-	0.5	2.1	ns
		Down translation [1][2]				
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 3.0 V to 3.6 V	-	0.15	0.8	ns
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 1.65 V to 1.95 V	-	0.25	1.1	ns
		V _{CCI} = 4.5 V to 5.5 V; V _{CCO} = 1.1 V to 1.3 V	-	0.6	2.5	ns
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 1.65 V to 1.95 V	-	0.25	2.5	ns
		V _{CCI} = 3.0 V to 3.6 V; V _{CCO} = 1.1 V to 1.3 V	-	0.6	2.5	ns
		V _{CCI} = 1.65 V to 1.95 V; V _{CCO} = 1.1 V to 1.3 V	-	0.6	2.5	ns

^[1] V_{CCO} is the supply voltage associated with the output pins (YBn).

^[2] V_{CCI} is the supply voltage associated with the input pins (An).

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Table 13. Typical dynamic characteristics at V_{CCA} = 0.9 V and T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12; for waveforms see Fig. 9, Fig. 11 and Fig. 10.

Symbol	Parameter	Conditions					V _{CCB}				Unit
				0.9 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{pd}	propagation delay	An to YBn	[1]	61	44	41	39.5	38.5	38.5	39.4	ns
t _{dis}	disable time	OE to YBn	[1]	67	51	47	47	44	44	42	ns
t _{en}	enable time	OE to YBn	[1]	67	51	47	47	44	44	42	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 14. Typical dynamic characteristics at V_{CCB} = 0.9 V and T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12; for waveforms see Fig. 9, Fig. 11 and Fig. 10.

Symbol	Parameter	Conditions	V _{CCA}							
			0.9 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{pd}	propagation delay	An to YBn [1]	61	44	41	39.5	38.5	38.5	39.4	ns
t _{dis}	disable time	OE to YBn [1]	67	68	70	72	76	81	94	ns
t _{en}	enable time	OE to YBn [1]	70	60	52	52	52	50	50	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}; t_{en} is the same as t_{PZL} and t_{PZH}.

Table 15. Typical dynamic characteristics at T_{amb} = 25 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12.

Symbol	Symbol Parameter Conditions			Sup	ply vol	tage (V	_{CCA} = V	ссв)		Unit
			0.9 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
C_{PD}	power dissipation capacitance	$V_{CCA}[1][2][3]$ $f_i = 10 \text{ MHz}; V_i = \text{GND to } V_{CCI}; t_r = t_f = 0$: 1 ns; (C _L = 0 p	oF; R _L =	: ∞ Ω				
		An to YBn; output disabled	1.5	1.6	1.7	1.7	1.9	2.1	2.7	pF
		An to YBn; output enabled	1.5	1.6	1.7	1.7	1.9	2.1	2.7	pF
		$V_{CCB}[1][2][3]$ $f_i = 10 \text{ MHz}; V_i = \text{GND to } V_{CCI}; t_r = t_f = 0$: 1 ns; (C _L = 0 p	oF; R _L =	: ∞ Ω				
		An to YBn; output disabled	1.5	1.6	1.7	1.7	1.9	2.1	2.7	pF
		An to YBn; output enabled	10	10.4	10.6	10.7	10.9	11.3	12.1	pF
C _I	input capacitance	$V_I = 0 \text{ V or } V_{CCI}$ [2]	1.9	1.9	1.9	1.9	1.9	1.9	1.9	pF
Co	output capacitance	OE = GND; V _{CCA} = 3.3 V; V _{CCB} = 3.3 V; V _O = 0 V or V _{CCI}	3.2	3.2	3.2	3.2	3.2	3.2	3.2	pF

^[1] C_{PD} per channel is used to determine the dynamic power dissipation (P_{DYN} in μW).

 $P_{DYN} = N \times (C_{PD} \times V_{CCI}^2 \times f_i) + N \times (C_L \times V_{CCO}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = load capacitance in pF;

V_{CCI} = the supply voltage associated with the input pins in V;

V_{CCO} = the supply voltage associated with the output pins in V;

N = total number of inputs or outputs switching.

- [2] V_{CCI} is the supply voltage associated with the input pins (An).
- [3] V_{CCO} is the supply voltage associated with the output pins (YBn).

16 / 29

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Table 16. Dynamic characteristics for temperature range -40 °C to +85 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12; for waveforms see Fig. 9, Fig. 11 and Fig. 10.

Symbol	Parameter	Conditions						Vo	СВ						Unit
			1.2 V	± 0.1 V	1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V ± 0.3 V		5.0 V ± 0.5 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}	propagation	An to YBn [1]													
	delay	V _{CCA} = 1.2 V ± 0.1 V	6.0	42.1	5.3	30.1	5.0	26.5	4.7	22.8	4.7	21.5	4.7	21.9	ns
		V _{CCA} = 1.5 V ± 0.1 V	5.3	33.4	4.6	21.4	4.2	18.1	3.8	14.6	3.8	13.3	3.8	12.7	ns
		V _{CCA} = 1.8 V ± 0.15 V	5.0	31.3	4.3	19.2	3.5	15.6	3.4	12.4	3.4	11.2	3.4	10.1	ns
		V _{CCA} = 2.5 V ± 0.2 V	4.6	29.5	3.7	17.3	3.4	13.6	3.0	10.1	2.9	8.8	2.9	7.7	ns
		V _{CCA} = 3.3 V ± 0.3 V	4.6	29.1	3.8	16.6	3.5	12.9	3.1	9.4	2.9	7.9	2.8	6.8	ns
		V _{CCA} = 5.0 V ± 0.5 V	4.8	29.6	4.1	16.3	3.7	12.5	3.2	8.7	2.9	7.3	2.6	6.1	ns
t _{en}	enable time	OE to YBn [1]													
		V _{CCA} = 1.2 V ± 0.1 V	8.5	42.8	7.7	31.8	7.4	28.5	7.2	25.5	7.2	24.6	7.2	24.2	ns
		V _{CCA} = 1.5 V ± 0.1 V	7.9	39.4	6.4	23.1	5.8	19.8	5.6	16.7	5.6	15.7	5.6	15.2	ns
		V _{CCA} = 1.8 V ± 0.15 V	7.5	38.5	6.1	22.2	5.2	17.2	4.7	13.7	4.6	12.5	4.6	11.8	ns
		V _{CCA} = 2.5 V ± 0.2 V	7.1	37.5	5.3	21.3	4.4	16.1	3.9	10.7	3.7	9.5	3.7	8.6	ns
		V _{CCA} = 3.3 V ± 0.3 V	6.6	37.1	5.1	20.8	4.1	15.5	3.4	10.1	3.3	8.2	3.2	7.3	ns
		V _{CCA} = 5.0 V ± 0.5 V	6.2	36.5	4.5	20.2	3.6	15.1	2.9	9.4	2.6	7.4	2.6	6.2	ns
t _{dis}	disable time	OE to YBn [1]													
		V _{CCA} = 1.2 V ± 0.1 V	11.6	58.7	11.6	58.7	11.6	58.7	11.6	58.7	11.6	58.7	11.6	58.7	ns
		V _{CCA} = 1.5 V ± 0.1 V	10.8	50.5	8.5	39.4	8.5	39.4	8.5	39.4	8.7	39.4	8.7	39.4	ns
		V _{CCA} = 1.8 V ± 0.15 V	7.5	49.5	7.5	37.9	7.5	34.3	5.0	34.3	5.0	34.3	4.0	27.0	ns
		V _{CCA} = 2.5 V ± 0.2 V	7.5	44.5	7.5	32.5	5.0	28.9	5.0	25.1	5.0	16.1	2.6	19.5	ns
		V _{CCA} = 3.3 V ± 0.3 V	7.5	39.6	7.5	27.2	5.0	22.4	5.0	15.0	5.0	14.9	4.7	18.1	ns
		V _{CCA} = 5.0 V ± 0.5 V	7.5	33.7	7.5	20.4	4.9	16.5	4.9	12.3	4.9	11.9	3.6	12.3	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

NXU0102 Submit document feedback All information provided in this document is subject to legal disclaimers.

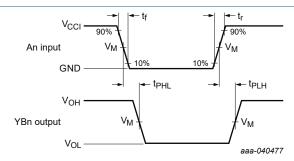
© Nexperia B.V. 2024. All rights reserved

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Table 17. Dynamic characteristics for temperature range -40 °C to +125 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 12; for waveforms see Fig. 9, Fig. 11 and Fig. 10.

Symbol	Parameter	Conditions						Vc	СВ						Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V ± 0.3 V		5.0 V ± 0.5 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}		An to YBn [1]													
	delay	V _{CCA} = 1.2 V ± 0.1 V	6.0	42.1	5.3	31.1	5.0	27.4	4.7	23.6	4.7	22.2	4.7	22.3	ns
		V _{CCA} = 1.5 V ± 0.1 V	5.3	34.1	4.6	22.6	4.2	19.2	3.8	15.7	3.8	14.2	3.8	13.4	ns
		V _{CCA} = 1.8 V ± 0.15 V	5.0	31.8	4.3	20.4	3.5	16.6	3.4	13.3	3.4	12.1	3.4	10.7	ns
		V _{CCA} = 2.5 V ± 0.2 V	4.6	29.9	3.7	18.3	3.4	14.5	3.0	10.9	2.9	9.4	2.9	8.2	ns
		V _{CCA} = 3.3 V ± 0.3 V	4.6	29.5	3.8	17.6	3.5	13.7	3.1	10.1	2.9	8.5	2.8	7.2	ns
		V _{CCA} = 5.0 V ± 0.5 V	4.8	29.9	4.1	17.2	3.7	13.2	3.2	9.3	2.9	7.7	2.6	6.4	ns
t _{en}	enable time	OE to YBn [1]													
		V _{CCA} = 1.2 V ± 0.1 V	8.5	43.3	7.7	32.7	7.4	29.4	7.2	26.2	7.2	25.3	7.2	24.8	ns
		V _{CCA} = 1.5 V ± 0.1 V	7.9	39.8	6.4	24.3	6.1	21.1	5.6	17.6	5.6	16.5	5.6	15.9	ns
		V _{CCA} = 1.8 V ± 0.15 V	7.5	38.9	6.1	23.4	5.2	18.2	4.7	14.6	4.6	13.3	4.6	12.6	ns
		V _{CCA} = 2.5 V ± 0.2 V	7.1	37.9	5.3	22.4	4.4	17.2	3.9	11.5	3.7	10.2	3.7	9.2	ns
		V _{CCA} = 3.3 V ± 0.3 V	6.6	37.4	5.1	21.9	4.1	16.5	3.4	10.8	3.3	8.8	3.2	7.7	ns
		V _{CCA} = 5.0 V ± 0.5 V	6.2	36.9	4.5	21.4	3.6	16.1	2.9	10.2	2.6	8.1	2.6	6.5	ns
t _{dis}	disable time	OE to YBn [1]													
		V _{CCA} = 1.2 V ± 0.1 V	11.7	45.2	10.9	38.2	11.5	36.8	10.6	33.2	10.8	33.9	9.9	33.4	ns
		V _{CCA} = 1.5 V ± 0.1 V	11.6	45.2	8.5	27.8	8.9	26.3	7.4	22.6	7.4	23.2	7.4	21.2	ns
		V _{CCA} = 1.8 V ± 0.15 V	11.6	45.4	8.4	27.8	6.9	22.6	5.3	19.2	5.3	19.5	6.3	17.3	ns
		V _{CCA} = 2.5 V ± 0.2 V	11.6	45.8	8.3	27.9	7.1	22.6	4.7	18.9	6.0	16.0	4.6	14.1	ns
		V _{CCA} = 3.3 V ± 0.3 V	11.3	46.4	8.2	28.2	6.7	22.7	4.1	15.5	4.9	15.0	4.1	12.8	ns
		V _{CCA} = 5.0 V ± 0.5 V	11.3	59.2	8.4	28.8	6.4	25.6	3.4	16.9	4.9	17.1	3.1	13.3	ns

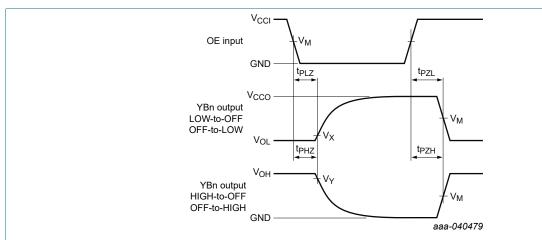

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

NXU0102 Submit document feedback All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2024. All rights reserved

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

14.1. Waveforms and test circuit



 V_{CCI} is the supply voltage associated with the control input or input port.

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical output voltage levels that occur with the output load.

Measurement points are given in Table 18.

Fig. 9. Input (An) to output (YBn) propagation delay times

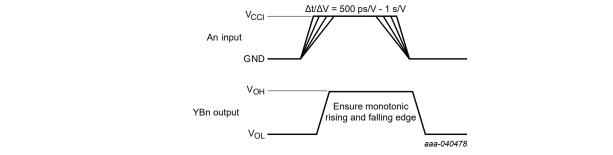
 $\ensuremath{\text{V}_{\text{CCI}}}$ is the supply voltage associated with the control input or input port.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Measurement points are given in Table 18.

Fig. 10. Enable and disable times

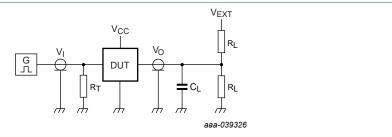
Table 18. Measurement points


Supply voltage	Input[1]	Output[2]	Output[2]						
V _{CCA} , V _{CCB}	V _M	V _M	V _X	V _Y					
0.9 V to 1.6 V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.1 V	V _{OH} - 0.1 V					
1.65 V to 2.7 V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15 V	V _{OH} - 0.15 V					
3.0 V to 5.5 V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.3 V	V _{OH} - 0.3 V					

^[1] V_{CCI} is the supply voltage associated with the control input or input pins (An).

19 / 29

^[2] V_{CCO} is the supply voltage associated with the output pins (YBn).


2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

 V_{CCI} is the supply voltage associated with the control input or input port.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 11. Input transition rise and fall rate

Test data is given in Table 19.

R_L = Load resistance;

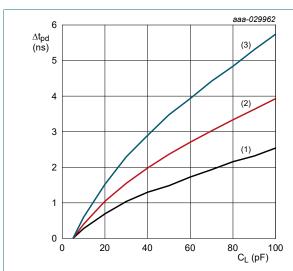
C_L = Load capacitance including jig and probe capacitance;

R_T = Termination resistance;

V_{EXT} = External voltage for measuring switching times.

Fig. 12. Test circuit for measuring switching times

Table 19. Test data


Supply voltage			Input		V _{EXT}					
V _{CCA} , V _{CCB}	CL	R_L	t _r , t _f	V _I [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [2]			
0.9 V to 5.5 V	5 pF	10 kΩ	≤1.0 ns/V	V _{CCI}	open	GND	2 × V _{CCO}			

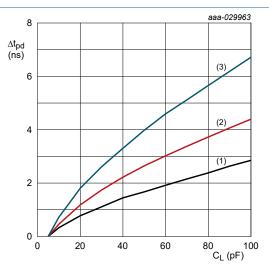
^[1] V_{CCI} is the supply voltage associated with the control input or input pins (An).

^[2] V_{CCO} is the supply voltage associated with the output pins (YBn).

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

14.2. Additional propagation delay versus load capacitance graphs

 T_{amb} = -40 °C to +125 °C


For t_{PLH}, t_{PHL}, t_{PZH} and t_{PZL}.

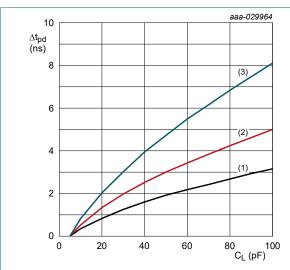
(1) Minimum: $V_{CCO} = 5.5 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CCO} = 5 V

(3) Maximum: V_{CCO} = 4.5 V

Fig. 13. Additional propagation delay versus load capacitance

 T_{amb} = -40 °C to +125 °C


For t_{PLH}, t_{PHL}, t_{PZH} and t_{PZL}.

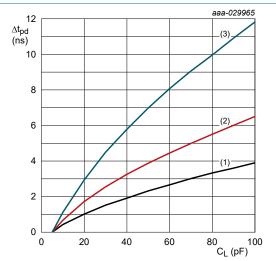
(1) Minimum: $V_{CCO} = 3.6 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CCO} = 3.3 V

(3) Maximum: V_{CCO} = 3 V

Fig. 14. Additional propagation delay versus load capacitance

 T_{amb} = -40 °C to +125 °C


For t_{PLH}, t_{PHL}, t_{PZH} and t_{PZL}.

(1) Minimum: $V_{CCO} = 2.7 \text{ V}$

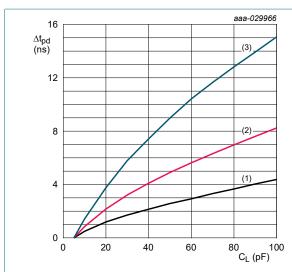
(2) Typical: T_{amb} = 25 °C; V_{CCO} = 2.5 V

(3) Maximum: V_{CCO} = 2.3 V

Fig. 15. Additional propagation delay versus load capacitance

 T_{amb} = -40 °C to +125 °C

For t_{PLH} , t_{PHL} , t_{PZH} and t_{PZL} .


(1) Minimum: $V_{CCO} = 1.95 V$

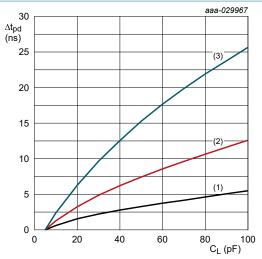
(2) Typical: T_{amb} = 25 °C; V_{CCO} = 1.8 V

(3) Maximum: V_{CCO} = 1.65 V

Fig. 16. Additional propagation delay versus load capacitance

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

 T_{amb} = -40 °C to +125 °C


For t_{PLH} , t_{PHL} , t_{PZH} and t_{PZL} .

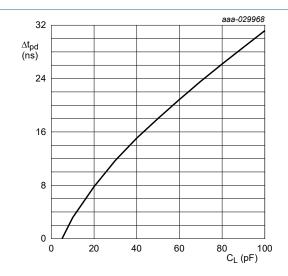
(1) Minimum: $V_{CCO} = 1.6 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CCO} = 1.5 V

(3) Maximum: $V_{CCO} = 1.4 \text{ V}$

Fig. 17. Additional propagation delay versus load capacitance

 T_{amb} = -40 °C to +125 °C


For t_{PLH} , t_{PHL} , t_{PZH} and t_{PZL} .

(1) Minimum: $V_{CCO} = 1.3 \text{ V}$

(2) Typical: T_{amb} = 25 °C; V_{CCO} = 1.2 V

(3) Maximum: $V_{CCO} = 1.1 \text{ V}$

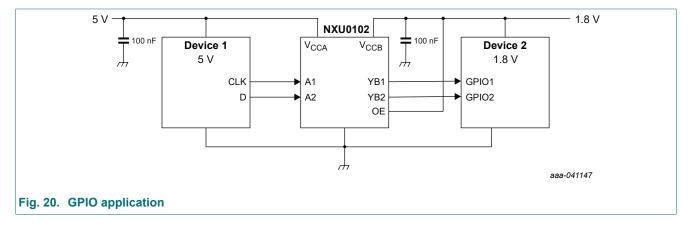
Fig. 18. Additional propagation delay versus load capacitance

 $T_{amb} = 25 \, ^{\circ}C;$

For t_{PLH}, t_{PHL}, t_{PZH} and t_{PZL}.

 $V_{CCO} = 0.9 V$

Fig. 19. Additional propagation delay versus load capacitance


2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

15. Application information

NXU0102

The NXU0102 is a 2-bit level-shifting transceiver suitable for level-translation purposes. This device is ideal in any application requiring level-shifting between two voltage domains and especially designed for applications where push-pull drivers are utilized to the data input pins. Below an example of possible GPIO application.

Typical GPIO application

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

16. Package outline

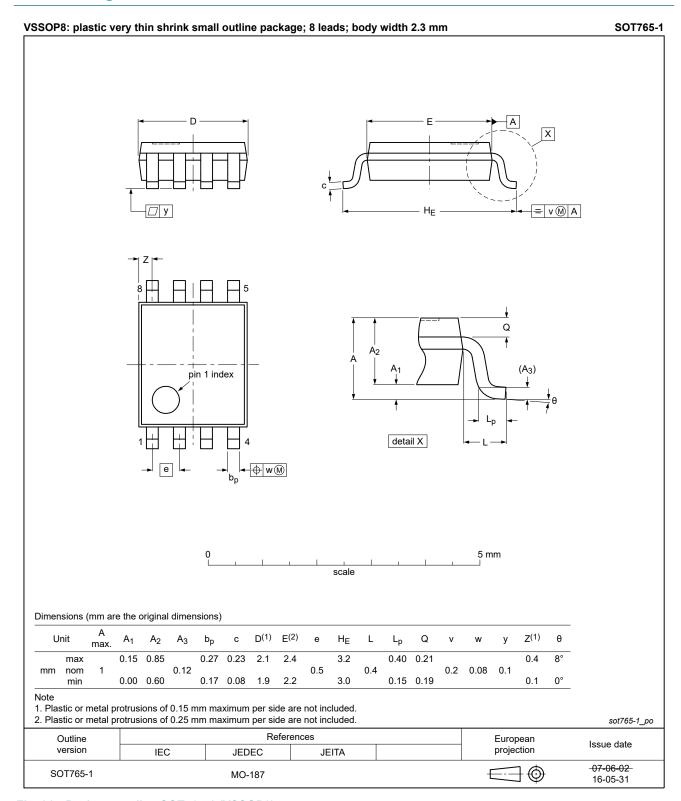


Fig. 21. Package outline SOT765-1 (VSSOP8)

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

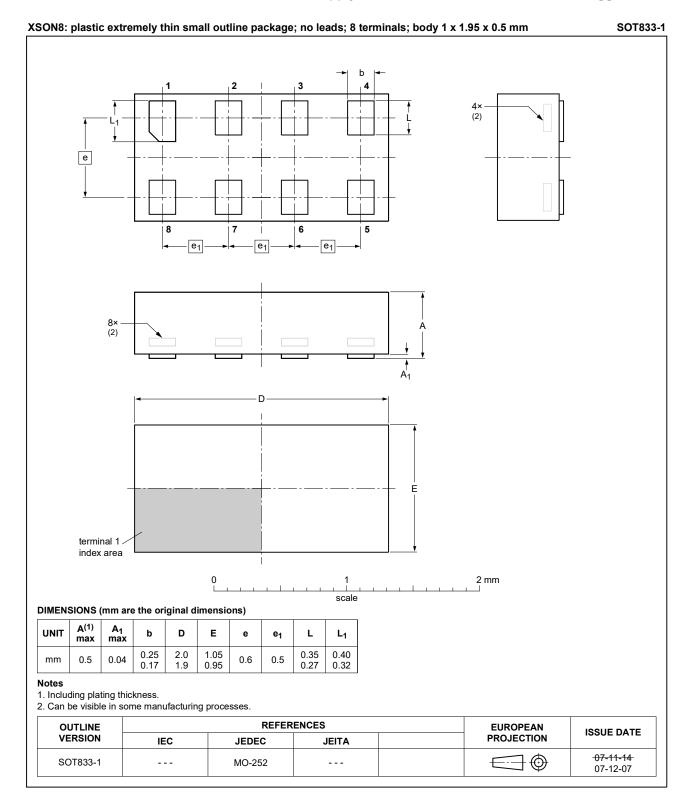


Fig. 22. Package outline SOT833-1 (XSON8)

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

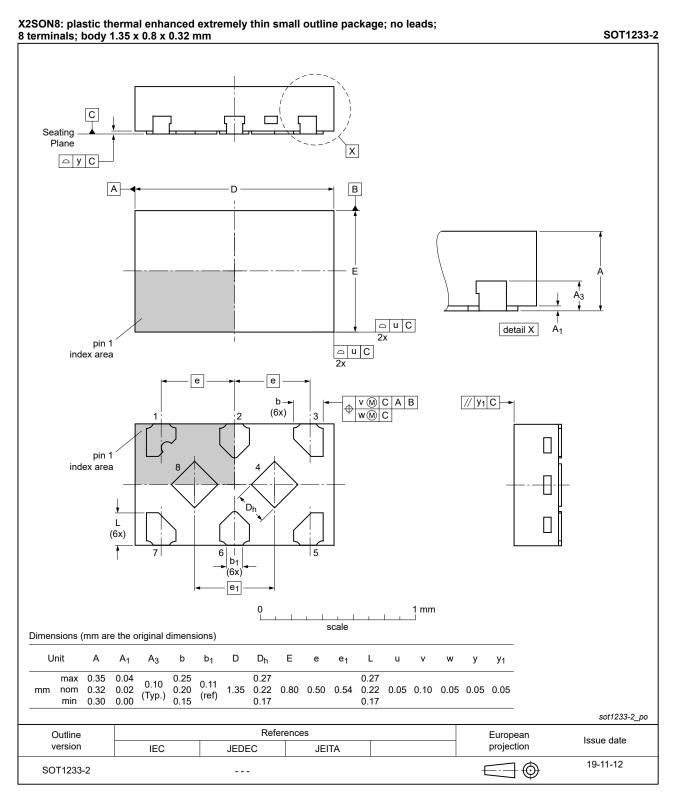


Fig. 23. Package outline SOT1233-2 (X2SON8)

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

17. Abbreviations

Table 20. Abbreviations

Acronym	Description
ANSI	American National Standards Institute
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
ESDA	Earth Sciences Data Standards
НВМ	Human Body Model
JEDEC	Joint Electron Device Engineering Council
JTAG	Joint Test Action Group
UART	Universal Asynchronous Receiver/Transmitter

18. Revision history

Table 21. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NXU0102 v.1	20241030	Product data sheet	-	-

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

19. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXU0102

All information provided in this document is subject to legal disclaimers.

2-bit dual-supply buffer/level translator with Schmitt-trigger; 3-state

Contents

1. General description	1			
2. Features and benefits	1			
3. Applications	1			
4. Ordering information				
5. Marking	2			
6. Functional diagram	2			
7. Pinning information	3			
7.1. Pinning	3			
7.2. Pin description	3			
8. Functional description	3			
8.1. Overview	4			
8.2. Inputs	4			
8.3. Outputs	5			
8.4. Suspend mode and I _{OFF} protection circuitry	6			
9. Limiting values	7			
10. ESD ratings	7			
11. Recommended operating conditions	7			
12. Thermal characteristics	8			
13. Static characteristics	9			
14. Dynamic characteristics	15			
14.1. Waveforms and test circuit	19			
14.2. Additional propagation delay versus load				
capacitance graphs				
15. Application information				
16. Package outline				
17. Abbreviations				
18. Revision history				
19. Legal information	28			
© Navyavia P.V. 2024. All viabte received				

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 30 October 2024

Rev. 1 — 30 October 2024

[©] Nexperia B.V. 2024. All rights reserved