

U
SER

 M
A

N
U

A
L

NY7 Series

NYQUEST TECHNOLOGY CO. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and reliable.
However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications before
placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition,
NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction
or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

Single-Chip 4-bit MCU with 8~24 I/O,
8-ch Speech/MIDI Synthesizer

Version 1.5

May 7, 2018

NY7 User Manual

Ver. 1.5 2018/05/07 2

Revision History
Version Date Description Modified Page

1.0 2013/06/28 Formal release. --

1.1 2013/08/16

1. Add 4 mask options for Push-Pull analog volume adjustment.
2. Revise the description of Chapter 2.10.1 Speech Synthesis.
3. Provide the example code of ramp-up/ramp-down for DAC

output.
4. Flag Z will not be affected by instruction MVLA.
5. Instruction LDPR, RBDPR, RDN and RDNI belong to category

of “Other Instructions”.

7, 25
23

51

56
57

1.2 2014/01/02 Modify Data Transfer Instruction. 16, 63

1.3 2014/08/27 1. Modify the default value of weak input pull-high resistor.
2. Modify RRC and RLC command.

10, 21
66

1.4 2015/07/30 Modify Instruction “RET” is 2-word. 58, 81

1.5 2018/05/07 Add Instruction “MPG”. 58, 59, 83

NY7 User Manual

Ver. 1.5 2018/05/07 3

Table of Contents

Chapter 1. Introduction ... 6
1.1 General Description .. 6
1.2 Features ... 6
1.3 Product List .. 8
1.4 Block Diagram .. 9
1.5 Pad Description .. 9
1.6 Electrical Characteristics .. 10

1.6.1 Absolute Maximum Rating ... 10
1.6.2 DC Characteristics ... 10

Chapter 2. Hardware Architecture .. 11
2.1 Overview .. 11

2.1.1 Function Block Diagram ... 11
2.1.2 Hardware Summary Table ... 11

2.2 Clock Generator ... 12
2.3 System Reset ... 12

2.3.1 Power-On Reset (POR).. 12
2.3.2 Low Voltage Reset (LVR) ... 13
2.3.3 Watch-Dog Timer Reset (WDTR) .. 13
2.3.4 I/O Port External Reset .. 13

2.4 Address Pointer .. 13
2.4.1 Program Counter (PC) ... 13
2.4.2 Stack (STK) .. 14
2.4.3 Multi-function Register Pointer (RPT) .. 14
2.4.4 Head Voice Pointer (HVPR) & Tail Voice Pointer (TVPR) ... 15
2.4.5 Data Pointer (DPR) .. 15

2.5 Arithmetic Logic Unit (ALU) .. 15
2.5.1 ALU Instruction Summary .. 15
2.5.2 ALU Related Status Flag .. 18

2.6 Memory Organization ... 18
2.6.1 ROM ... 18
2.6.2 RAM.. 18

2.7 I/O Ports ... 19
2.7.1 Pull-High Input Mode .. 20
2.7.2 Floating Input Mode .. 20
2.7.3 Output Mode ... 20
2.7.4 I/O Pin Mask Option ... 21

2.8 Infrared Transmitter .. 22

NY7 User Manual

Ver. 1.5 2018/05/07 4

2.9 Interrupt Generator ... 22
2.10 Audio Synthesizer Structure ... 23

2.10.1 Speech Synthesis ... 23
2.10.2 MIDI Synthesis ... 23
2.10.3 PH Value .. 24
2.10.4 Audio Output .. 25
2.10.5 Envelope Control .. 26
2.10.6 Volume Control ... 26

Chapter 3. System Control .. 27
3.1 Introduction of System Function Register ... 27
3.2 RPT .. 29
3.3 ROD ... 29
3.4 BANK ... 29
3.5 XMD ... 29
3.6 I/O Ports Register ... 30
3.7 INT ... 30
3.8 Audio Control Register ... 31

3.8.1 CHARC ... 31
3.8.2 VOL .. 32
3.8.3 ONOFF ... 32
3.8.4 AUD .. 32
3.8.5 CHNO ... 32
3.8.6 ENVL & ENVH .. 33
3.8.7 DECMD .. 33

3.9 Register Without Address Mapping .. 33
3.9.1 PAGE.. 33
3.9.2 Head Play Flag ... 34
3.9.3 Play Flag .. 34
3.9.4 PH Value Setting .. 34
3.9.5 Mixer Data .. 34

3.10 Audio Playback... 35
3.10.1 Voice Playback ... 35
3.10.2 Melody Playback, Head-Only Mode ... 39
3.10.3 Melody Playback, Tail-Only Mode .. 43
3.10.4 Melody Playback, Head+Tail Mode ... 47
3.10.5 Ramp-up/Ramp-down Procedure for DAC... 51

3.11 Power Saving Mode ... 55
3.11.1 Slow Mode .. 55
3.11.2 Halt Mode ... 55

NY7 User Manual

Ver. 1.5 2018/05/07 5

Chapter 4. Instruction Set ... 57
4.1 Instruction Classified Table .. 57
4.2 Instruction Descriptions .. 60

4.2.1 Arithmetic Instructions .. 60
4.2.2 Conditional Instructions .. 68
4.2.3 Audio Instructions ... 71
4.2.4 Other Instructions ... 78

NY7 User Manual

Ver. 1.5 2018/05/07 6

Chapter 1. Introduction

1.1 General Description

The NY7 series IC is a powerful 4-bit micro-controller based sound processor. There are 8 channels that are

configured as speech or MIDI, and all of these 8 channels or part of them can be played with speech or MIDI

simultaneously. By using the high fidelity 6-bit ADPCM speech/ MIDI timbre synthesis algorithm with up to

44.1KHz sample rate, NY7 can produce near-CD quality voices. As NY7 is specially designated for MIDI

synthesis application, it provides Attack-Decay-Sustain-Release method (ADSR) with 256-level envelope for

Patch (instrument) synthesis. NY7 can precisely synthesize any tone frequency of MIDI with +/- 0.5%

accurate internal oscillation and automatic Tone-Calibration. Therefore NY7 melody quality is very close to

real instrument.

Moreover, NY7 is equipped with new Nyquest’s developed high-quality noise filtering algorithm of 128KHz

over-sampling, which can remove noise in order to improve speech and melody quality greatly. Up to 16-level

digital volume can be applied to final synthetic speech or melody that is tailored for applications of volume

adjustment. NY7A provides two kinds of audio outputs with fine resolution, one is 13-bit current-type D/A

converter (DAC) and the other is 12-bit Pulse-Width-Modulation (PWM). NY7B/NY7C provide two kinds of

audio outputs with fine resolution, one is 13-bit current-type D/A converter (DAC) and the other is 13-bit

Push-Pull amplifier (PP). Therefore NY7 speech/melody quality is the best choice among all solutions.

The RISC MCU architecture is very easy to program and control, various applications can be easily

implemented. There are 74 instructions, and most of them are executed in single cycle. Besides normal

operation mode, NY7 also provides Halt mode (or Sleep mode) and Slow mode to minimize power

dissipation.

1.2 Features

 Wide operating voltage range: 2.0V to 5.5V.

 4-bit RISC type micro-controller with 74 instructions.

 NY7A have 9 items. 192K x 12-bit ROM is the maximum size.

 NY7B have 10 items. 256K x 12-bit ROM is the maximum size.

 NY7C have 19 items. 1536K x 12-bit ROM is the maximum size.

 448x4-bit RAM, divided into 2 pages.

 Up to 4MHz system clock for instruction execution.

 Slow mode to operate with low power consumption (+/-3% accuracy).

 Halt mode to save power, less than 1uA@3V standby current.

NY7 User Manual

Ver. 1.5 2018/05/07 7

 Built-in RC oscillation is accurate with +/- 0.5% frequency deviation.

 Low voltage reset (LVR=1.9V) and watch-dog reset (WDT) are supported to protect the system.

 One interrupt entrance for multiple interrupt sources with an independent stack.

 Up to 24 flexible Bi-direction I/Os. Direction of each I/O is independently controlled by individual register

bit.

 Each Bi-direction I/O pin can be optioned as different input and output function. For the input option,

users can select one of three kinds of option: input with pull-high resistor, input without pull-high resistor,

or input with register-controlled pull-high resistor (high-to-low wakeup only). For the output option, users

can select one of three kinds of option: output with normal drive current and normal sink current, large

sink current or constant sink current.

 Shared pins to provide IR carrier and external reset feature:

Shared Pin Function NY7AxxxA NY7BxxxA NY7CxxxA

IR carrier (IR) PB2/IR PD2/IR PF2/IR

External reset (Reset) PB3/Reset PD3/Reset PF3/Reset

 Selection of IR carrier frequency and data high/low IR output is supported.

 Maximum of 8 channels can be played simultaneously, each channel can be arbitrarily assigned as speech

or MIDI channel.

 New high fidelity 6-bit ADPCM speech synthesis algorithm and ADSR with 256-step envelope for MIDI

synthesis.

 Patented noise filtering algorithm with 128KHz over sampling to enhance signal-to-noise ratio and provide

excellent sound quality without ROM size increase.

 16-level digital volume control for synthetic speech/melody.

 Built-in hardware automatic Tone-Calibration of near-zero frequency deviation for precise tone frequency.

 High quality 13-bit D/A converter, 12-bit PWM driver or 13-bit Push-Pull amplifier audio output with 4-level

mask-option analog volume of 100%, 83%, 66% and 50%. (Push-Pull output power Pout=1.3W@VDD=5V,

THD+N=10%, F=1kHz, RL=4Ω.)

 PWM driver can be normal PWM or Ultra PWM.

NY7 User Manual

Ver. 1.5 2018/05/07 8

1.3 Product List

P/N Voice Duration
@6KHz (sec)

ROM Size
(bit)

Program ROM
Size (bit) I/O PWM DAC Push-

Pull

NY7A004A 4.5 16K x 12 16K x 12 8 12-bit 13-bit -
NY7A007A 7.2 24K x 12 24K x 12 8 12-bit 13-bit -
NY7A010A 9.9 32K x 12 32K x 12 8 12-bit 13-bit -
NY7A016A 15.4 48K x 12 48K x 12 8 12-bit 13-bit -
NY7A021A 20.8 64K x 12 64K x 12 8 12-bit 13-bit -
NY7A032A 31.8 96K x 12 64K x 12 8 12-bit 13-bit -
NY7A043A 42.7 128K x 12 64K x 12 8 12-bit 13-bit -
NY7A054A 53.6 160K x 12 64K x 12 8 12-bit 13-bit -
NY7A065A 64.5 192K x 12 64K x 12 8 12-bit 13-bit -

NY7B007A 7.2 24K x 12 24K x 12 16 - 13-bit 13-bit
NY7B010A 9.9 32K x 12 32K x 12 16 - 13-bit 13-bit
NY7B016A 15.4 48K x 12 48K x 12 16 - 13-bit 13-bit
NY7B021A 20.8 64K x 12 64K x 12 16 - 13-bit 13-bit
NY7B032A 31.8 96K x 12 64K x 12 16 - 13-bit 13-bit
NY7B043A 42.7 128K x 12 64K x 12 16 - 13-bit 13-bit
NY7B054A 53.6 160K x 12 64K x 12 16 - 13-bit 13-bit
NY7B065A 64.5 192K x 12 64K x 12 16 - 13-bit 13-bit
NY7B076A 75.5 224K x 12 64K x 12 16 - 13-bit 13-bit
NY7B087A 86.4 256K x 12 64K x 12 16 - 13-bit 13-bit

NY7C010A 9.9 32K x 12 32K x 12 24 - 13-bit 13-bit
NY7C016A 15.4 48K x 12 48K x 12 24 - 13-bit 13-bit
NY7C021A 20.8 64K x 12 64K x 12 24 - 13-bit 13-bit
NY7C032A 31.8 96K x 12 64K x 12 24 - 13-bit 13-bit
NY7C043A 42.7 128K x 12 64K x 12 24 - 13-bit 13-bit
NY7C054A 53.6 160K x 12 64K x 12 24 - 13-bit 13-bit
NY7C065A 64.5 192K x 12 64K x 12 24 - 13-bit 13-bit
NY7C076A 75.5 224K x 12 64K x 12 24 - 13-bit 13-bit
NY7C087A 86.4 256K x 12 64K x 12 24 - 13-bit 13-bit
NY7C110A 111.0 328K x 12 64K x 12 24 - 13-bit 13-bit
NY7C130A 130.1 384K x 12 64K x 12 24 - 13-bit 13-bit
NY7C150A 151.9 448K x 12 64K x 12 24 - 13-bit 13-bit
NY7C170A 173.8 512K x 12 64K x 12 24 - 13-bit 13-bit
NY7C220A 222.9 656K x 12 64K x 12 24 - 13-bit 13-bit
NY7C260A 261.1 768K x 12 64K x 12 24 - 13-bit 13-bit
NY7C305A 304.8 896K x 12 64K x 12 24 - 13-bit 13-bit
NY7C345A 348.5 1024K x 12 64K x 12 24 - 13-bit 13-bit
NY7C450A 457.8 1344K x 12 64K x 12 24 - 13-bit 13-bit
NY7C520A 523.3 1536K x 12 64K x 12 24 - 13-bit 13-bit

NY7 User Manual

Ver. 1.5 2018/05/07 9

1.4 Block Diagram

224 x 2
SRAM

Program /Data
ROM

Clock
Generator

WDT
Control

I/O

8 - Channel
Voice / Melody

Synthesizer

AUDDRV
(Push Pull /

DAC/ PWM
)

PORT A, B, C, D, E, F

PWM1/DAC

PWM2
PP1
PP2

POR

IR

4- bit RISC
Controller

1.5 Pad Description

Pin ATTR. Description

VDD# Power Positive power

GND# Power Negative power

PWM1/DAC O PWM1 output or DAC output

PWM2 O PWM2 output

PP1 O Push-Pull output

PP2 O Push-Pull output

PA0~3 I/O Bit 0~3 for Port A

PB0~3 I/O Bit 0~3 for Port B

PC0~3 I/O Bit 0~3 for Port C

PD0~3 I/O Bit 0~3 for Port D

PE0~3 I/O Bit 0~3 for Port E

PF0~3 I/O Bit 0~3 for Port F

* NY7A: PA0~PB3, there is no Push-Pull output (PP1 & PP2).

* NY7B: PA0~PD3, there is no PWM output (PWM1 & PWM2).

* NY7C: PA0~PF3, there is no PWM output (PWM1 & PWM2).

NY7 User Manual

Ver. 1.5 2018/05/07 10

1.6 Electrical Characteristics

The following table lists the electrical characteristics of the NY7 EV chip. All the product’s properties must

refer to each part’s datasheet.

1.6.1 Absolute Maximum Rating

Symbol Parameter Rated Value Unit
VDD - VSS Supply voltage -0.5 ~ +6.0 V

VIN Input voltage VSS–0.3V ~ VDD+0.3 V
TOP Operating Temperature 0 ~ +70 °C
TST Storage Temperature -25 ~ +85 °C

1.6.2 DC Characteristics

Symbol Parameter VDD Min. Typ. Max. Unit Condition
VDD Operating voltage -- 2.0 3.0 5.5 V 4MHz.

ISB

Supply
current

Halt mode
3.0 1

uA Sleep, no load.
4.5 1

ISL Slow mode
3.0 300

uA Slow, no load.
4.5 600

IOP Normal mode
3.0 5

mA 4MHz, no load.
4.5 8

IIL
Input current

(Internal
pull-high)

Weak
(1.2M ohms)

3.0 2.5
uA

VIL=0V
4.5 7.4

Strong
(100k ohms)

3.0 30
uA

4.5 75

IOH Output high current
3.0 -7

mA
VOH=2.0V

4.5 -11 VOH=3.5V

IOL

Output low current
(Normal current)

3.0 11
mA

VOL=1.0V

4.5 17
Output low current

(Large current)
3.0 22

mA
4.5 33

Output low current
(Constant current)

3.0 20
mA

4.5 21
IDAC DAC output current 3.0 1.4 mA Half-scale

IPWM

PWM output current
(Normal PWM)

3.0 60
mA

Load=8 ohms

4.5 100
PWM output current

(Ultra PWM)
3.0 80

mA
4.5 125

IPP Push-Pull output current
3.0 180

mA
4.5 270

∆F/F Frequency deviation
by voltage drop

3.0 0.5
%

Fosc(3.0v)-Fosc(2.4v)
Fosc(3v)

4.5 -0.5 Fosc(4.5v)-Fosc(3.0v)
Fosc(4.5v)

∆F/F Frequency lot deviation 3.0 -0.5 0.5 % Fmax(3.0v)-Fmin(3.0v)
Fmax(3.0v)

Fosc Oscillation Frequency -- 3.6 4 4.1 MHz VDD=2.0~5.5V

NY7 User Manual

Ver. 1.5 2018/05/07 11

Chapter 2. Hardware Architecture

2.1 Overview

2.1.1 Function Block Diagram

ALU

ACC

Data Bus

ROM

INST

INST DEC

RPT

PC
STK 0~6

Colck Generator

BT
AUD DEC

WDT
C
Z

SYS
Reset

POR
LVDT

XMD

RAM

ENV 0~7

Multiplier

MIXERCHARC
AUD

PWM / DAC/ Push-Pull

ROD1

ROD2
I/O Ports

IR

VOL

ROM Address ROM Data

VDD GND

PAx~PFx

DACPWM1 PWM2

4

4

8

10

8

10

10

10

4 4 4

4 4

4

4

22

22

4

PP1 PP2

HVPR 0~7
TVPR 0~7
DPR 0~7

CHNO

DECMD
ONOFF

4

BANK

4

13

2.1.2 Hardware Summary Table

Name Function Address

STK0~6 7-level interrupt dedicated stack
PC Program counter
HVPR0~7 Voice Head pointer according to SFR(CHNO).
TVPR0~7 Voice Tail pointer according to SFR(CHNO).
DPR0~7 Data pointer
RPT Multi-function register pointer SFR[0x0~0x5]
ENV0~7 8-bit Envelope of SFR (CHNO) SFR[0x6~7]
ROD1 ROM[7:4] data access register SFR[0x8]
ROD2 ROM[11:8] data access register SFR[0x9]
CHARC Mix Channel#, Output choice SFR[0xA]
AUD Audio output Data SFR[0xB]
INT Interrupt generator SFR[0xC]
DECMD PCM / ADPCM control register SFR[0xD]
ONOFF Interrupt and audio control register SFR[0xE]
VOL Digital volume control register SFR[0xF]

NY7 User Manual

Ver. 1.5 2018/05/07 12

Name Function Address
BANK Program Bank Register SFR[0x10]
XMD Indexed RAM data access register SFR[0x11]
CHNO Active channel select SFR[0x12]
RAM 448 nibbles RAM
ROM Program & data ROM
Multiplier Hardware multiplier for MIDI
Mixer Channels audio data mixer
PWM / DAC / PP PWM, D/A or PP audio output
INST Instruction register
INST DEC Instruction decoder
AUD DEC Audio decoder
Clock Generator Ring oscillator clock generator
WDT Watch-dog timer and reset generator
BT System base timer
SYS Reset System reset generator
POR Power reset generator
ACC 4-bit accumulator
ALU 4-bit arithmetic logic unit
C Carry flag for arithmetic
Z Zero flag for arithmetic
IR Infrared transmit block
I/O Ports I/O port register SFR[0x14~0x1F]

*SFR[] : System Function Register

2.2 Clock Generator

The clock generator is a Ring oscillator, and users can only select the internal resistor oscillation (INT-R).

The INT-R oscillator accuracy is up to ± 0.5%.

2.3 System Reset

Reset Reset Initialization Normal Operation

131 ms

Reset Reset Initialization Normal Operation

Reset Vector

Reset Initialization Procedure

2.3.1 Power-On Reset (POR)
After Power-on, the power-on reset initialization will automatically be set out. After the system leaves the

reset initialization procedure, it enters the normal operation and the program counter starts at the reset

vector.

NY7 User Manual

Ver. 1.5 2018/05/07 13

2.3.2 Low Voltage Reset (LVR)
When the system enters the normal operation, the power supply voltage must be kept in an effective

working voltage range. When the power supply voltage is lower than the effective working voltage range,

the system can’t work properly. To prevent the system crash, we have a low voltage detector in the NY7

IC. When the detector detects a harmful low voltage supply, it will cause a low voltage reset. The so-

called “low voltage” point of the NY7 IC is approximate 1.9V.

2.3.3 Watch-Dog Timer Reset (WDTR)
To recover from program function, the NY7 IC supports an embedded watch-dog timer reset. The WDTR

function always works with the program executing. Users have clear the WDT periodically to prevent

from timing up with a reset generation. Typically, the minimum time-up period of the WDT is about 28ms

and users can clear WDT through instruction CWDT.

2.3.4 I/O Port External Reset
The PB3/Reset (NY7A), PD3/Reset (NY7B) or PF3/Reset (NY7C) I/O pin of the NY7 can be optioned as

a reset pin. A reset pin should always be pulled-high in normal operation, whether users use the built-in

internal pull-high resister option or use an external pull-high resister on PCB with internal pull-high

resister option disable. When the reset pin falls to the ground level, it generates an external reset.

2.4 Address Pointer

The NY7 micro-controller contains a program counter (PC), 8 data pointers, 7 interrupt dedicated stack

(STK), a multi-function register pointer (RPT) and 8 head pointers (HVPR0~7) and 8 tail pointers (TVPR0~7)

for channel 0~7. The length of each address pointer is 21-bit maximum, depends on the product parts. Users

have to keep in mind that the initial value of all the pointers is unknown, except the PC.

2.4.1 Program Counter (PC)
As a program instruction is executed, the PC will contain the address of the next program instruction to

be executed. PC is 18-bit wide for NY7A/NY7B and 21-bit wide for NY7C. The PC starts from the reset

vector (address 0x000400) after the system reset, and its value is increased by one every instruction

cycle unless changed by an interrupt or a branch instructions which are listed in table below. The

interrupt vector is at address 0x000000.

Inst./Event Function

JNC Addr Jump to {BANK, Addr} if Carry = 0

JC Addr Jump to {BANK, Addr} if Carry = 1

JNZ Addr Jump to {BANK, Addr} if Zero = 0

JZ Addr Jump to {BANK, Addr} if Zero = 1

NY7 User Manual

Ver. 1.5 2018/05/07 14

Inst./Event Function

JB b, Addr Jump to {BANK, Addr} if A[b] = 1

JMP Addr Jump to {BANK, Addr}.

CALL Addr Push the PC+2 to the STK and load {BANK, Addr} to PC.

RJMP Load RPT to PC, so users can execute a long jump.

RCALL Push the PC+2 to the STK and load RPT to PC.

Interrupt Push PC+2 to STK automatically.

RET Pop STK back to PC. Return to the main program from subroutine

IRET Pop STK back to PC. Return to the main program from the interrupt routine.

Addr : 16-bit immediate address.

A[b] : b-th bit of Accumulator, 0 ≦ b ≦3.

2.4.2 Stack (STK)
Seven level hardware push/pop stacks dedicated to the interrupt (CALL / RCALL) is available. When an

interrupt takes apart, the system pushes the PC+2 (next instruction) to the STK automatically. STK

occupy SFR from 0x8 to 0xE and STK is used from 0xE. When the program returns to the main program

from subroutine / the interrupt routine by RET / IRET instruction, the system pops the STK back to the

PC. Unused STK can be used as DPR. The STK max width is 18 bits for NY7A and 21 bits for

NY7B/NY7C.

2.4.3 Multi-function Register Pointer (RPT)

As implied in the name, RPT are multi-function registers. There are at must six RPT that are RPT0,

RPT1, RPT2, RPT3, RPT4 and RPT5. RPT0~RPT4 are 4-bit wide and RPT5 is 2-bit wide, i.e.

RPT5[1:0]. The RPT max width are 18 bits for NY7A and 21 bits for NY7B/7C. Users have to operate

RPT in coordination with instructions below.

Inst./Event Function

RJUMP Load RPT to PC, so users can execute a long jump.

RCALL Push the PC+2 to the STK and load RPT to PC.

PLAY Play RPT to HVPR, according to SFR(CHNO).

LDSEC Load RPT to TVPR, according to SFR(CHNO).

LDPR Load RPT to DPR/STK, according to SFR(CHNO).

LDPH Load RPT[13:0] to PH, according to SFR(CHNO).

RBVPR Read HVPR/TVPR to RPT, according to SFR(CHNO).

RBDPR Read DPR/STK to RPT, according to SFR(CHNO).

RBDA Read DAC data to RPT[12:0]

LDDA Load RPT[12:0] to DAC reg.

XMD Use RPT[7:0] as address to access indexed RAM data.

NY7 User Manual

Ver. 1.5 2018/05/07 15

2.4.4 Head Voice Pointer (HVPR) & Tail Voice Pointer (TVPR)
Because NY7 is an 8-channel sound processor, 8 voice pointers each with 21-bit width are necessary for

playing speech or MIDI of each channel. When PLAY is executed, the system loads RPT to HVPR of the

channel that assigned by the CHNO register. When LDSEC is executed, the system loads RPT to TVPR

of the channel that assigned by the CHNO register. When PLAYI is executed, the system loads

immediately address to HVPR of the channel that assigned by the CHNO register. When LDSECI is

executed, the system loads immediately address to TVPR of the channel that assigned by the CHNO

register. So users have to move the start address of the speech or MIDI data to RPT first. Besides, users

can read HVPR/TVPR back by RBVPR instruction, because RBVPR moves HVPR/TVPR of the channel

that assigned by the CHNO register to RPT. The HVPR/TVPR max width is 18 bits for NY7A and 21 bits

for NY7B/NY7C.

2.4.5 Data Pointer (DPR)
8 data pointers each with 21-bit width are necessary for reading ROM data of each channel. When LDPR

is executed, the system loads RPT to DPR of the channel that assigned by the CHNO register. When

LDPRI is executed, the system loads immediately address to DPR of the channel. The read back ROM

data is placed on ROD2, ROD1, ACC. ACC is the 4 LSB of ROM data. Besides, users can read DPR

back by RBDPR instruction, because RBDPR moves DPR of the channel that assigned by the CHNO

register to RPT. The DPR max width is 18 bits for NY7A and 21 bits for NY7B/NY7C. Unused STK can

be used as DPR.

2.5 Arithmetic Logic Unit (ALU)

The NY7 series provides a 4-bit arithmetic logic unit with a 4-bit accumulator to perform logic, unsigned

arithmetic, data transfer and conditional branch operation. We have two status bits (carry and zero) to

indicate the result of the operation. One or two operands will be the data sources of the ALU operation. The

operands can be ACC, RAM, SFR register, or literal constant data.

2.5.1 ALU Instruction Summary

2.5.1.1 Logic Instruction

Instruction Function Flag Influenced

XORA m1 A ← M[m1] ⊕ A Z
ANDA m1 A ← M[m1] & A Z
ORA m1 A ← M[m1] | A Z
RRM m1 Right Rotate M[m1] with C C, Z
RLM m1 Left Rotate M[m1] with C C, Z
XORL L A ← L ⊕ A Z
ANDL L A ← L & A Z

NY7 User Manual

Ver. 1.5 2018/05/07 16

Instruction Function Flag Influenced

ORL L A ← L | A Z
RRC Right Rotate A with C C, Z
RLC Left Rotate A with C C, Z
RRA Right Rotate A
RLA Left Rotate A

M[m1] : 4-bit RAM or SFR data at memory address m1, 0x00≦ m1 ≦0xFF.

2.5.1.2 Arithmetic Instruction

Instruction Function Flag Influenced

INCM m1 M[m1] ← M[m1] + 1 C, Z
DECM m1 M[m1] ← M[m1] - 1 C, Z
ADDA m1 {C, A} ← A + M[m1] + C C, Z
ADDL L A ← A + L + C C, Z
SUBA m {C,A} = A - M - (~B) C, Z
SUBL L {C,A} = A - L - (~B) C, Z
INCA A ← A + 1 C, Z
DECA A ← A - 1 C, Z
CPLA A ← 0 - A

M[m1] : 4-bit RAM or SFR data at memory address m1, 0x00≦ m1 ≦0xFF.

B : 1-bit borrow flag data, shared with carry flag, B=~C.

2.5.1.3 Data Transfer Instruction

Instruction Function Flag Influenced

MVAM m1 M[m1] ← A
MVMA m1 A ← M[m1] Z
MVRM m2, r M[m2] ← R[r]
MVMR m2, r R[r] ← M[m2]
MVLR L, r R[r] ← L
MVLA L A ← L
BCLR m2, b Clear M[m2][b]
BSET m2, b Set M[m2][b]
SETC C ← 1 C
CLRC C ← 0 C

M[m1] : 4-bit RAM or SFR data at memory address m1, 0x00≦ m1 ≦0xFF.

M[m2] : 4-bit RAM at memory address m2, 0x00≦ m2 ≦0x1F, means address 0x20~ 0x3F.

R[r] : 4-bit SFR data at register address r, 0x0≦ r ≦0x7.

The width of the SFR address `r’ of MVRM, MVMR, and MVLR command is 3-bit, and the MSB of the

memory register is forced to be 0. So users can only use the three commands to handle RPT0~5 and

NY7 User Manual

Ver. 1.5 2018/05/07 17

ENVL/ENVH. The width of the RAM or memory register address `m’ of MVRM, and MVMR command

is 5-bit, and the MSB 3-bit of the address is forced to be 0x1. Users can only use the two instructions

(MVRM, MVMR) to handle RAM or memory register of address 0x20~0x3F, but the RAM page is still

working.

2.5.1.4 Conditional Branch Instruction

Instruction Function Flag Influenced

JNC Addr Jump to {BANK, Addr} if Carry = 0

JC Addr Jump to {BANK, Addr} if Carry = 1

JNZ Addr Jump to {BANK, Addr} if Zero = 0

JZ Addr Jump to {BANK, Addr} if Zero = 1

JB b, Addr Jump to {BANK, Addr} if A[b] = 1

SAGT L Skip when A > L

SALT L Skip when A < L

SANE L Skip when A != L

SBZ b Skip when A[b] = 0

SBNZ b Skip when A[b] = 1

SNHP Skip when head Play = 0, according to SFR(CHNO).

SHP Skip when head Play = 1, according to SFR(CHNO).

SNP Skip when Play = 0, according to SFR(CHNO).

SP Skip when Play = 1, according to SFR(CHNO).

SANP Skip when ALL 8 channels Play = 0

A conditional branch instruction compares two operands and skips next instruction if expression is

true. The skip operation is making an instruction NOP, not jump across it.

⊕ : E xclusive O R bitw ise logical operation

& : AND bitwise logical operation

| : OR bitwise logical operation

A : 4-bit Accumulator data

C : 1-bit carry flag data

Z : 1-bit zero flag data

L : 4-bit immediately literal data

M[m1] : 4-bit RAM or SFR data at memory address m1, 0x00≦ m1 ≦0xFF.

M[m2] : 4-bit RAM at memory address m2, 0x00≦ m2 ≦0x1F, means address 0x20~ 0x3F.

R[r] : 4-bit SFR data at register address r, 0x0≦ r ≦0x7.

A[b] : b-th bit of Accumulator, 0 ≦ b ≦3.

NY7 User Manual

Ver. 1.5 2018/05/07 18

2.5.2 ALU Related Status Flag

Symbol Flag Description

C Carry
C=1 if a carry-out occurs after an addition operation.

C=0 if a borrow-in occurs after a subtraction operation.

Z Zero Z=1 if the result of an ALU operation is zero.

Besides CLRC and SETC commands directly assign the value of the carry flag, C is influenced by the

arithmetic result. C means carry and also means the complement of borrow. If the addition operation

result is larger than 0xF, C=1, and C=0 if the result is ≦15. If the subtraction operation smaller than 0,

C=0, and C=1 if the result ≧0.

2.6 Memory Organization

There are maximum 1.5M words ROM, 448 nibbles of RAM and 32 nibbles of dedicated System Function

Register (SFR).

2.6.1 ROM
A large program/data/voice single ROM is provided, and its structure is shown below. The reserved

region contains system information and can’t be utilized by users. After reset process is completed, NY7

will start program execution from address 0x400.

Because program page size is 64K words defined by 16-bit

length address of ROM, allowable range of unconditional branch

instructions JMP and CALL are limited by program page size.

However, combining with 4-bit BANK register (address $10 of

System Function Register), the total program size is 1M words. If

users want to branch to program which is located beyond current

program bank, user can change the BANK register first and then

execute JMP or CALL instruction.

If destination address is beyond 1M words, instructions RJMP

and RCALL associated with RPT[20:0] can be used and BANK

register is ignored. Instruction LDPRI can handle 20-bit length

address of ROM.

2.6.2 RAM
There are two pages of RAM, each page of RAM contains 224 nibbles. It’s total 448 nibbles. The page of

RAM defined by instruction (PAGE0, PAGE1), and its initial is PAGE0. System Function Registers will

occupy address space from 0x00 to 0x1F. Moreover, this address space of PAGE0 and PAGE1 are

Address ROM
0x000000

Interrupt Vector
0x00000F
0x000010

Reserved
0x0003FF
0x000400

Program & Data
Page 0

0x00FFFF
0x010000

Program & Data
Page 1 ~ 23

0x17FFFF

NY7 User Manual

Ver. 1.5 2018/05/07 19

mapped to the same System Function Registers. As consequence, the address space of PAGE0 and

PAGE1 RAM which can be used by programmer is 0x20~0xFF.

The address space from 0x20 to 0x3F of PAGE0 and PAGE1 can be

used with four special instructions MVRM, MVMR, BSET and BCLR.

These instructions can access this range of memory space in single

instruction cycle.

In addition to the immediate addressing mode, the indexed

addressing mode is also supported. The page and address of the

indexed RAM should be stored into RPT1 and RPT0 first, and users

can read from or write in the XMD memory register to realize the

indexed RAM access.

2.7 I/O Ports

There are at most 24 I/O pins, designated as PAx through PFx, and x=0~3. All the I/O pins are bi-directional.

An individual and independent register bit can determine the direction of each I/O pin. These register bits are

PAIO (SFR $15), PBIO (SFR $17), PCIO (SFR $19), PDIO (SFR $1B), PEIO (SFR $1D) and PFIO (SFR

$1F).

Using as input pin of each I/O, there are 3 kinds of mask option. Users can select input with pull-high resistor,

input without pull-high resistor, or input with register-controlled pull-high resistor (high-to-low wakeup only). If

users want to enable/disable pull-high resistor by register during program execution, only high-to-low level

change on this pin can wakeup NY7. On the other hand, if the pull-high resistor is fixed by option, either high-

to-low or low-to-high level change on this pin can wakeup NY7. Users can refer Chapter 3.6 I/O Ports

Register for details.

The pull-high resister of all the I/O pins has two kinds of option: weak and strong. The weak one is about

1.2MΩ@3V for normal application and the strong one is about 100KΩ@3V usually for key matrix function.

When users decide this option, the same strength of pull-high resister will be applied to every I/O pin.

Using as output pin of each I/O, there are 3 kinds of mask option. Users can select output with normal drive

current and normal sink current, normal drive current and large sink current, or normal drive current and

constant sink current.

Some I/O port can also be optioned as an external reset pin or an infrared (IR) output pin. A reset pin can

possess a pull-high resister or not according to the mask option, which is used to enable/disable the pull-high

resistor of I/O pin.

IR carrier frequency can be determined by a 5-bit option. IR carrier polarity can be initial low or high

according to data value. Moreover, the IR output can provide large sink current or not according to the mask

option, which is used to determine output sink current describe above.

Address RAM
0x00

System Function
Register

0x1F
0x20

224 Nibbles
General SRAM

0xFF
(Page 0 & Page 1)

NY7 User Manual

Ver. 1.5 2018/05/07 20

2.7.1 Pull-High Input Mode

Pad

PHEN

PT
Latch

DTBS

WAKE

RDPT

Pad

PTLH

NY7

Pull-high Input Mode Configuration

Data of PA~PF, which are used as input mode, can be read in by MVMA. If the pads are not connected,

a pull-high resistor will help to pull the pad toward supply voltage. All input or I/O pins can be used to

wake-up the IC. In input mode, the system will be waked-up by comparing PTLH with pad voltage level.

Therefore, users have to store the current pad status into PTLH before entering Halt or Slow mode. The

system will be waked-up when pad voltage change is detected.

2.7.2 Floating Input Mode
It is similar to the pull-high input mode except the internal pull-high resistor is not connected. User should

apply external pull-high resistor or pull-low resistor for high-resistance switch applications.

2.7.3 Output Mode

1

0 PTLH

Low/High_IR_ CARRY

IRSEL

 PAD

NY7

Output Mode Configuration

User can select output mode to supply both normal drive current and normal/large/constant sink current

by setting related mask options. But drive current of NY7 is always weaker than normal sink current,

about half the scale.

NY7 User Manual

Ver. 1.5 2018/05/07 21

2.7.4 I/O Pin Mask Option
This Section will describe the summary of available functionalities for each I/O pin. All functionalities are

determined by setting of corresponding mask options.

Category I/O pin Option Default Value

NY7A

PAx
PB0 ~ PB1

Normal I/O. Enable

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PB2/IR

IR carrier output or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PB3/Reset

Reset input or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

All I/O Weak or strong input pull-high resistor. Weak (1.2MΩ@3V)

NY7B

PAx
PBx
PCx

PD0 ~ PD1

Normal I/O. Enable

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PD2/IR

IR carrier output or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PD3/Reset

Reset input or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

All I/O Weak or strong input pull-high resistor. Weak (1.2MΩ@3V)

NY7C

PAx, PBx
PCx, PDx

PEx
PF1 ~ PF2

Normal I/O. Enable

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PF2/IR

IR carrier output or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

PF3/Reset

Reset input or Normal I/O. User Selection

Input with pull-high, floating or register-control pull-high. Pull-high

Normal, large or constant sink current output. Normal sink

All I/O Weak or strong input pull-high resistor. Weak (1.2MΩ@3V)

NY7 User Manual

Ver. 1.5 2018/05/07 22

2.8 Infrared Transmitter

The NY7 series provides an infrared transmitter block, which is used to send infrared signal. Users can use

PB2, PD2 or PF2 as an IR output. Users can option to determine the IR carrier frequency and IR Low/High

carrier. The IR Low/High carrier means that if users option the IR Low carrier, the IR output pin sends

infrared signal when the I/O port register value is low, and vice versa.

The IR frequency is programmable by 5 bits mask option, which can make frequency of IR carrier between

31.25KHz and 58.82KHz.

Category Option Description

IR

IR frequency 31.25 ~ 58.82KHz

IR low/high carrier
Low

High

Data Register

High carrier Low carrier

Output Pin

2.9 Interrupt Generator

There is one hardware interrupt in NY7. The interrupt event is a fixed interval, which is derived from system

base timer (BT). There is a system base timer in the NY7 IC, which functions as long as the IC isn’t in the

halt mode. NY7 provides 4 kinds of fixed intervals from the system base timer for interrupt source: 0.064ms,

0.128ms, 0.256ms and 1.024ms. In Slow mode, there are 4 kinds of base timer interval for polling: 1.024ms,

2.048ms, 4.096ms and 16.384ms. When using interrupts, user must select interrupt source first and then turn

on. However, the time interval from BT is enabled to first occurrence of interrupt may be not as accurate as

specified due to NY7 characteristic.

As an interrupt occurs, NY7 stores the accumulator (ACC), carry flag (C), zero flag (Z) and RAM page (PG)

automatically. PG is controlled by the command (PAGE0, PAGE1). Then NY7 move PC+2 to STK, and jump

to the interrupt vector (0x000000). An interrupt routine finishes with an IRET instruction. The IC draws back

ACC, C, Z and PG back, and moves STK to PC back to jump back the main program. The interrupt event of

BT will be automatically cleared after entering the interrupt routine.

NY7 User Manual

Ver. 1.5 2018/05/07 23

2.10 Audio Synthesizer Structure

NY7 provides a built-in speech/MIDI synthesizer. The synthesizer consists of eight channels for voice or

MIDI synthesis. The allowable simultaneous synthesis channel can be 2, 4, 6 and 8. The block diagram of

the synthesizer unit is shown in figure below.

CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CHNO($12),
CHARC($0A)

Multiplier

ENV AUD DECENVL($06)
ENVH($07) DECMD

Mixer

Multiplier PushPull /
PWM / DAC

VOL($0F)

CHARC($0A)

ONOFF($0E)

According to SFR(CHNO)

2.10.1 Speech Synthesis
NY7 supports 10-bit PCM and encoded 6-bit ADPCM speech data. The PCM voice has higher quality,

but it occupies double ROM space than the ADPCM one. By cooperating with embedded noise filter of

128KHz over-sampling, it could decode high fidelity voice data even if you adapt ADPCM voice. It

means you could store longer voice duration or provide more kinds of patch at lower sampling rate but

enrich user’s applications without degradation of sound quality.

2.10.2 MIDI Synthesis
There are three combinations to form a patch in NY7. The first way (called Head-Only) is to record a

complete waveform, then play it by playing whole wave only. This is the best way to represent a high

quality patch, but the price has to pay is the ROM cost. In contrast, user can extract the periodic part of

a patch (called Tail-Only), then play it by playing the periodic wave repeatedly. The ROM occupied by

this kind of patch is minimal, however, sound quality is sacrificed.

The compromise architecture is “Head+Tail” with envelope information, which is called ADSR. During

MIDI synthesis, the Head wave is played only once and the Tail wave is always repeated to generate

the synthesis output. Generally, the Head wave is used to represent the non-regular part at the

beginning of a patch or to represent a whole of general voice or sound effect. The Tail wave is to

NY7 User Manual

Ver. 1.5 2018/05/07 24

represent a periodic cycle in the regular and periodic part in a patch. The Head wave and Tail wave are

usually extracted from the same waveform and Tail wave is immediately successive to Head wave. This

patch synthesis method can dramatically reduce ROM size needed to store the patch data.

Besides, a hardware circuit of automatic Tone-Calibration is built-in. It can result in near-zero frequency

deviation for precise generation of tone frequency.

Note: There is a limitation about Tail waves that sample number of Tail waves must be integer

multiple of 4.

2.10.3 PH Value
User should set PH value in program to meet voice’s sample rate or note’s frequency. The PH value is

derived by formula below:

PH for voice synthesis (in Hex) = Factor
F

4096CH8SR
INST

×
×××

PH for MIDI synthesis (in Hex) = Factor
F
F

F
4096CH8SR

PATCH

NOTE

INST

××
×××

SR: sample rate of speech waveform or Head/Tail waveform. SR unit is hertz.

CH: the allowable value of CH is listed in table below.

Active Voice Channel CH Value

1 2
2 2
4 4

6 4 for channel 2, 3
8 for channel 0, 1, 4, 5

8 8

Active MIDI Channel CH Value
2 2
4 4

6 4 for channel 2, 3
8 for channel 0, 1, 4, 5

8 8

FINST: instruction cycle. It is 4,000,000 or 2,000,000 by mask option.

Factor is 1 if noise filter is disabled, and 2 if noise filter is enabled.

FNOTE: frequency of the note which is being played.

FPATCH: frequency of key note on which patch waveform is based.

NY7 User Manual

Ver. 1.5 2018/05/07 25

2.10.4 Audio Output
Before using the audio output, user can choose one of the 13-bit Push-Pull (PP), 13-bit DAC or 12-bit

PWM as the audio output for NY7. NY7A provides PWM and DAC audio output and NY7B/NY7C

provide Push-Pull (PP) and DAC audio output. If user selects Push-Pull, user has to enable the Push-

Pull by clearing bit 2 and 3 as zero in CHARC($0A) first. It provides hardware ramp-up and ramp-up

time is about 100us. Moreover, there are 4 mask options to select Push-Pull gain for volume

adjustment. These 4 mask options correspond to 100%, 83%, 66% or 50% of maximum analog volume

output. If DAC is selected, ramp-up process has to be implemented by user’s application program. If

PWM is selected, there is no need of ramp-up.

Besides in NY7A, it provides a pad detecting mechanism to detect whether DAC or PWM is used. The

pad detecting mechanism detects the PWM2 pad during the reset initialization period, and sets the

initial value of the audio output register as PWM if the PWM2 connection is floating, or sets the initial

value of the audio output register as DAC if the PWM2 connection is high. In conclusion, connect the

speaker to PWM1 and PWM2 only if using PWM, otherwise connect PWM2 to VDD if using DAC. Since

the mechanism sets only the initial value of AUD, don’t change the value of the AUD register if the pad

detecting mechanism is adopted.

PWM2 Pad Audio Output Initialization
Speaker (Floating) PWM

VDD DAC

PWM Output Connection DAC Output Connection PWM/DAC Connection Together

When using the PWM output, we provide an option of normal PWM current or Ultra PWM current for

different customer demand. The Ultra PWM current consumes more current but makes sound louder.

As to connection for Push-Pull output, it just needs to connect PP1 to one terminal of speaker and PP2

to another terminal of speaker.

PWM2

PWM1/
DAC

VDD

PWM2

PWM1/
DAC

at PWM
connection

VDD

PWM2

PWM1/
DAC

DAC

No component

PWM

NY7 User Manual

Ver. 1.5 2018/05/07 26

PP1

PP2

Push-Pull Output Connection

2.10.5 Envelope Control
During speech synthesis or melody synthesis, there is one set of 8-bit envelope register (ENVH and

ENVL), which can store the envelope information. Therefore NY7 can provide 256-level envelope

control for each channel and users can use it as alternative of volume control for each channel. If user

wants to have largest volume, value 0xFF is recommended.

As NY7 is a 8-channel synthesizer but there is only one set of envelope register physically, user has to

write value to SFR CHNO to select a specific channel and the 256-level envelope data will be updated

to this selected channel. Moreover, as NY7 micro-controller is 4-bit but envelope information is 8-bit, the

envelope data of selected channel will not be updated until SFR ENVH is written. User can refer

Chapter 3.8.6 for details.

2.10.6 Volume Control
NY7 supports 16-step digital volume control by the VOL register. Default value of VOL register is 0x2. In

order to have suitable volume, VOL=0x2 is recommended for 8-ch speech/MIDI synthesis. VOL=0x3 is

recommended for 6-ch speech/MIDI synthesis. VOL=0x4 is recommended for 4-ch speech/MIDI

synthesis. VOL=0x8 is recommended for 2-ch speech/MIDI synthesis. VOL=0xF is recommended for 1-

ch speech synthesis.

As sampled waveform of speech or Head/Tail may not fully occupy between maximum and minimum

value, user may consider using larger value as digital volume than above recommended value for VOL

register in order to have satisfied loudness. Moreover, because there is a Limiter after Mixer to saturate

multi-channel synthetic result, it can prevent quality degradation of synthetic result.

NY7 User Manual

Ver. 1.5 2018/05/07 27

Chapter 3. System Control

3.1 Introduction of System Function Register

The combination of RPT0~5 are multi-function register pointers. The ENVL/H, CHARC, AUD, CHNO,

DECMD, ONOFF and VOL are audio control related registers. INT register is used to control or access the

system base timer (BT) and interrupt. The BANK register is used to switch the program bank when targeting

branch address is located beyond current program bank. The XMD is RAM indirect access registers. The

ROD1 and ROD2 registers are used to read the ROM data. The Px and PxIO are I/O ports registers, here x

could A, B, C, D, E or F. As PA, PB, PC, PD, PE and PF are bi-directional I/O ports, SFR PAIO, PBIO, PCIO,

PDIO, PEIO and PFIO are used to determine the direction of each I/O pin.

Addr Name R/W Bit Data Description Default

$00 RPT0 R/W [3:0] 0/1 Multi-function register pointer [3:0] xxxx

$01 RPT1 R/W [3:0] 0/1 Multi-function register pointer [7:4] xxxx

$02 RPT2 R/W [3:0] 0/1 Multi-function register pointer [11:8] xxxx

$03 RPT3 R/W [3:0] 0/1 Multi-function register pointer [15:12] xxxx

$04 RPT4 R/W [3:0] 0/1 Multi-function register pointer [19:16] xxxx

$05 RPT5 R/W [0] 0/1 Multi-function register pointer [20] xx

$06 ENVL R/W [3:0] 0/1 Envelope [3:0] xxxx

$07 ENVH R/W [3:0] 0/1 Envelope [7:4] xxxx

$08 ROD1 R [3:0] 0/1 ROM Data Latch[7:4] xxxx

$09 ROD2 R [3:0] 0/1 ROM Data Latch[11:8] xxxx

$0A CHARC R/W

[1:0]

00 8 channels

8 CH
01 6 channels

10 4 channels

11 2 channels

[3:2]

0x Push-Pull (PP)

PP 10 DAC

11 PWM

$0B AUD R [3:0] 0/1 DAC[12:9] xxxx

$0C INT

R

[0] 0/1 BT = 0.064 ms

[1] 0/1 BT = 0.128 ms

[2] 0/1 BT = 0.256 ms

[3] 0/1 BT = 1.024 ms

W [1:0]

00 Interrupt ~= 0.064 ms

0.064 ms
01 Interrupt ~= 0.128 ms

10 Interrupt ~= 0.256ms

11 Interrupt ~= 1.024 ms

$0D DECMD R/W
[0] 0/1 reserved

[1] 0/1 Tail Disable / Enable Enable

NY7 User Manual

Ver. 1.5 2018/05/07 28

Addr Name R/W Bit Data Description Default

[2] 0/1 Head PCM / ADPCM ADPCM

[3] 0/1 Tail PCM / ADPCM ADPCM

$0E ONOFF R/W

[0] 0/1 Interrupt Off / On Off
[1] 0/1 Audio Out Off / On Off
[2] 0/1 Noise filter Off / ON @ 16 cycles per channel OFF
[3] 0/1 Audio Mixer Off / On OFF

$0F VOL R/W [3:0] 0/1 Volume level of Mixer 0010
$10 BANK R/W [3:0] 0/1 Program Bank Register 0000
$11 XMD R/W [3:0] 0/1 Indexed SRAM data xxxx
$12 CHNO R/W [3:0] 0/1 Active channel select 0000

$14 PA
R [3:0] 0/1

PAIO = 1: Read port A input pad data xxxx
PAIO = 0: Read port A output register xxxx

W [3:0] 0/1
PAIO = 1: wakeup status / pull-high control wakeup status
PAIO = 0: Write to port A output register xxxx

$15 PAIO R/W [3:0] 0/1 Port A direction = Output / Input Input

$16 PB
R [3:0] 0/1

PBIO = 1: Read port B input pad data xxxx

PBIO = 0: Read port B output register xxxx

W [3:0] 0/1
PBIO = 1: wakeup status / pull-high control wakeup status
PBIO = 0: Write to port B output register xxxx

$17 PBIO R/W [3:0] 0/1 Port B direction = Output / Input Input

$18 PC
R [3:0] 0/1

PCIO = 1: Read port C input pad data xxxx

PCIO = 0: Read port C output register xxxx

W [3:0] 0/1
PCIO = 1: wakeup status / pull-high control wakeup status
PCIO = 0: Write to port C output register xxxx

$19 PCIO R/W [3:0] 0/1 Port C direction = Output / Input Input

$1A PD
R [3:0] 0/1

PDIO = 1: Read port D input pad data xxxx

PDIO = 0: Read port D output register xxxx

W [3:0] 0/1
PDIO = 1: wakeup status / pull-high control wakeup status
PDIO = 0: Write to port D output register xxxx

$1B PDIO R/W [3:0] 0/1 Port D direction = Output / Input Input

$1C PE
R [3:0] 0/1

PEIO = 1: Read port E input pad data xxxx

PEIO = 0: Read port E output register xxxx

W [3:0] 0/1
PEIO = 1: wakeup status / pull-high control wakeup status
PEIO = 0: Write to port E output register xxxx

$1D PEIO R/W [3:0] 0/1 Port E direction = Output / Input Input

$1E PF
R [3:0] 0/1

PFIO = 1: Read port F input pad data xxxx

PFIO = 0: Read port F output register xxxx

W [3:0] 0/1
PFIO = 1: wakeup status / pull-high control wakeup status
PFIO = 0: Write to port F output register xxxx

$1F PFIO R/W [3:0] 0/1 Port F direction = Output / Input Input

NY7 User Manual

Ver. 1.5 2018/05/07 29

3.2 RPT

As RPT have 6 registers and memory access may need up to 21 bits, RPT[3:0] is mapped to RPT0, RPT[7:4]

is mapped to RPT1, RPT[11:8] is mapped to RPT2, RPT[15:12] is mapped to RPT3, RPT[19:16] is mapped

to RPT4, RPT[20] is mapped to RPT5[0] and RPT5[3:1] are not used.

The RPT of NY7A and NY7B is 18-bit long, and the NY7C’s RPT is 21-bit. The redundant bits of RPT

(RPT[20:18] of NY7A and NY7B) are un-writable and un-know if users read them. The RPT5 is 1-bit and its

allocation is [0]. The functions of RPT are listed in the section 2.4.3.

Besides the instructions related to the LDPH only access bit [13:0] of the RPT, the LDDA and RBDA only

access bit [12:0] of the RPT, and the XMD only access bit [7:0] of the RPT, others instructions require all 18

or 21 bits available at RPT registers. The RPT will be frequently accessed because of its multi-functionality,

so the NY7 series provides 3 instructions to accelerate the access of RPT0~5, ENVL and ENVH. The three

instructions are MVRM, MVMR and MVLR.

The RCALL instruction pushes the RPT to the PC and jump to the subroutine address. When the subroutine

is finished, use RET to come back to the main program.

3.3 ROD

When reading data from data ROM by table read instructions, these two registers will be used to store the

higher bits of the obtained ROM data. After executing the RD, RDI, RDN and RDNI instructions, bits [11:4] of

the obtained 12-bit ROM data will be placed in ROD2[3:0] and ROD1[3:0] and bits [3:0] of ROM data will be

placed in ACC.

3.4 BANK

The BANK register is used to switch the program bank when the total program size has exceeded the

capacity of single program bank. This register of NY7A and NY7B is 2-bit wide and that of NY7C is 4-bit

wide. Each program bank can address up to 64K words space and at most 16 banks are supported in NY7

chip. While the program execution will change to another program bank by JMP or CALL instruction, the

BANK register should be set with the program bank of targeting address in advance. Therefore, combining

with BANK register and 64K words program page, the total address space is 1M words. If users want to

branch to program located beyond 1M words, instructions RJMP and RCALL with RPT[20:0] are used and

BANK register will not be used in this case.

3.5 XMD

The NY7 series supports indirect-mode access of SRAM data. The RPT0 and RPT1 registers are used to set

the 8-bit SRAM address within a SRAM page for indirect read/write. After setting the SRAM address, the

NY7 User Manual

Ver. 1.5 2018/05/07 30

SRAM data can be read by reading data from the XMD register and can be written by writing data to the

XMD register. Users have to watch out that the NY7 series does not support using XMD to access System

Function Register, so the RPT[7:0] can’t be 0x0~0x1F when accessing XMD.

3.6 I/O Ports Register

As PA, PB, PC, PD, PE and PF are bi-directional I/O ports, SFR PAIO, PBIO, PCIO, PDIO, PEIO and PFIO

are used to determine the direction of each I/O pin. Writing 1 to any bit of SFR PXIO (X=A~F), the

corresponding I/O pin is configured as input pin. Writing 0 to any bit of PXIO (X=A~F), the corresponding I/O

pin is configured as output pin.

For I/O pin used as input pin, reading SFR PX (X=A~F) will obtain current state on I/O pin. For I/O pin used

as output pin, reading SFR PX (X=A~F) will obtain the value of output register.

For I/O pin used as input pin, there is a mask option to define whether pull-high resistor of corresponding I/O

pin can be enabled or disabled during program execution. When this mask option is disabled, either high-to-

low or low-to-high level change on this pin can wake up NY7 from Halt mode or Slow mode. Therefore, user

has to read the I/O pin state before entering Halt mode or Slow mode and write back to SFR PX[y] (X=A~F,

y=0~3). When 1 is written to SFR PX[y], high-to-low level change on this pin will wake up NY7. When 0 is

written to SFR PX[y], low-to-high level change on this pin will wake up NY7. However, user can not enable or

disable pull-high resistor during program execution. When this mask option is enabled, only high-to-low level

change on this pin can wake up NY7 from Halt mode or Slow mode. On the other hand, the pull-high resistor

can be disabled or enabled again during program execution by writing 1 or 0 to SFR PX[y]. When 1 is written

to PX[y], the pull-high resistor is enabled and when 0 is written to PX[y], the pull-high resistor is disabled.

For I/O pin used as output pin, writing value to SFR PX is to write this value to output register of this I/O pin.

The register value of an output pin simply means the output data. If the pin is an IR output, it outputs the IR

carrier frequency when the register is 0 and the IR low/high carrier option is low; it outputs 1 when the

register is 1 and the IR low/high carrier option is low. An IR port output 0 when the register is 0 and the IR

low/high carrier option is high; it outputs the IR carrier frequency when the register is 1 and the IR low/high

carrier option is high. Users have to note that reading from an output port also getting the pad potential level,

not the register value.

3.7 INT

The reading source and the writing destination of the SFR[0x0C] (INT register) are different. Reading the 4-

bit data of INT acquires the value of the BT counter. The NY7 series provides 4 different base timer intervals

for polling: 0.064ms, 0.128ms, 0.256ms and 1.024ms. The value of time means the period, so polling and

finding data toggle means half time of the interval. Writing INT[1:0] is selected interrupt source: 0.064ms,

0.128ms, 0.256ms and 1.024ms.

NY7 User Manual

Ver. 1.5 2018/05/07 31

INT[0]

INT[1]

INT[2]

INT[3]

0.128ms

0.256ms

1.024ms

0.064ms

INT Timing Figure

3.8 Audio Control Register

3.8.1 CHARC
The CHARC[1:0] set the active voice/MIDI channel number in NY7 voice/MIDI synthesizer as the

following table:

CHARC Total active Channels
[1] [0] channel number enabled

0 0 8 channel 0~7

0 1 6 channel 0~5

1 0 4 channel 0~3

1 1 2 channel 0~1

Thus the setting of fewer active channel numbers can achieve note synthesis of higher pitch frequency or

higher octaves.

When the active channel number is set to 6, channel 6 and 7 are disabled but channel 2 and 3 will be

synthesized twice in a whole sample synthesis cycle. In other words, there are 8 active channels which

are channel 0,1,2,3,4,5,2,3 while CHARC[1:0] is 01b. Therefore, PH calculation for channel 0,1,4,5

should follow the rule of total 8 active channels but PH calculation for channel 2,3 should adopt the rule

of total 4 active channels.

CHARC Active NY7
[3] [2] Output NY7A NY7B NY7C
0 X Push-Pull - v v
1 0 DAC v v v
1 1 PWM v - -

The CHARC[3:2] is used to select the Push-Pull or DAC or PWM output mode. If the Push-Pull mode is

selected, all voice/MIDI channels will be mixed to Push-Pull output. Switching between Push-Pull, DAC

and PWM modes during voice/MIDI playing should also be avoided.

NY7 User Manual

Ver. 1.5 2018/05/07 32

3.8.2 VOL
The VOL register dominates the digital volume control of Mixer. The VOL has 16 steps. 0x0 means the

smallest volume (or mute) and 0xF is the loudest level. Recommended VOL value associated with total

active channels are listed in the table below.

Total active
channel

Recommended
VOL value

8 0x2

6 0x3

4 0x4

2 0x8

1 0xF

3.8.3 ONOFF
The ONOFF[0] bit is used to enable (=1) or disable (=0) in the Interrupt. The Interrupt setting is selected

by writing INT[1:0] in SFR[0xC]. Before Interrupt is enabled, the interrupt time base must be selected

first.

The ONOFF[1] bit is used to enable (=1) or disable (=0) in the Audio Output. Users have to program

Audio Output setting by CHARC[1:0] in SFR[0xC] in advance.

The noise filtering of 128KHz over-sampling is enabled by setting bit[2] of ONOFF register to 1. It must

be achieved before playback of voice/MIDI and this feature can not be disabled during playback. As this

feature can improve sound quality a lot, it is strongly recommended to enable this feature for

every application.

The ONOFF[3] bit is used to enable (=1) or disable (=0) channel Mixer.

3.8.4 AUD
Reading the 4-bit data of AUD will obtain value of the 4-bit MSB (Most Significant Bit) audio data, which

is constituted by 1-bit sign and 3-bit MSB of amplitude. The 4-bit MSB is represented by 2’s complement

number. This information helps users to get the amplitude of the playing sound. 0x0 and 0xF means the

smallest and 0x7 and 0x8 means the largest level of the output audio data.

3.8.5 CHNO
The CHNO register is a channel selector that specifies which voice or MIDI channel will be referred to by

the subsequently channel related register control or instruction execution. Before accessing the channel

related registers or executing the channel related instructions, the CHNO register should be set correctly.

The channel related registers include the ENVL[3:0] in SFR[0x6], ENVH[3:0] in SFR[0x7] and the

DECMD in SFR[0xD]. These registers have individual register settings for each channel. The channel

NY7 User Manual

Ver. 1.5 2018/05/07 33

related instructions include the PLAY, PLAYI, LDSEC, LDSECI, STOP, SNP, SP, SNHP, SHP and LDPH

instructions.

The CHNO register is also used to specify the data or voice pointer register to be utilized by the LDPR,

RDN, RDNI, RBDPR and RBVPR instructions. In NY7 chip, there are total 15 register locations shared

by the data pointer registers and stack registers. The usage of stack registers grows from location 0xE

toward location 0x8 and the usage of data pointer registers should grow in the opposite direction.

3.8.6 ENVL & ENVH
These two registers are used to set the output voice envelope value (0x00 ~ 0xFF). Therefore digital

volume of each channel is also controlled by 8-bit envelope. The channel to apply envelope setting is

selected is by setting CHNO[3:0] in SFR[0x12]. As envelope data is 8-bit but ENVL/ENVH are both 4-bit

registers, ENVL must be written first and then ENVH. Moreover ENVH must be written otherwise the 8-bit

envelope data will not be updated by NY7.

3.8.7 DECMD
The DECMD[1] bit is used to enable (=1) or disable (=0) the inclusion of Tail wave in the voice synthesis

procedure. The general situations to disable the Tail wave contain playing pure voice, sound effect or

using a whole patch wave to synthesize MIDI (Head-Only). Note that before writing the DECMD[1] bit,

the referenced channel should be specified by setting CHNO[3:0] in SFR[0x12] in advance.

When “Tail-Only” mode is used in MIDI synthesis, it still takes advantage of “Head + Tail” mode. User

has to enable Head waveform, which is the same as the Tail waveform.

The DECMD[3:2] are for user to turn-on (=1) or turn-off (=0) the embedded voice decoder of Head wave

or/and Tail wave. When the voice decoder is turned-off, NY7 plays the ROM data as pure PCM format.

PCM format occupies twice the ROM space than ADPCM mode, and yield high quality voice. This setting

is also specified for each channel individually. Therefore, specifies CHNO in SFR[0x12] in advance

before programming DECMD[3:2].

3.9 Register Without Address Mapping

This Section will describe registers with implied addressing mode. There is no address assigned to this kind

of registers.

3.9.1 PAGE
There are 2 memory pages in NY7 series. As PAGE register is not a system register or a memory

mapped register, it can only be written by the PAGE0, PAGE1 instruction and can’t be read. The

PAGE0、PAGE1 instruction will write the specific page number to PG register.

NY7 User Manual

Ver. 1.5 2018/05/07 34

3.9.2 Head Play Flag
HPF flag of a specific channel reflects the playback status of Head waveform at this specific channel,

which can be Channel 0 to Channel 7. Therefore HPF flag is only associated with Head waveform. When

HPF flag of a specific channel is 0, it means playback at this specific channel is completed. When HPF

flag of a specific channel is 1, it means playback at this specific channel is on-going. The specific channel

is determined by writing value to SFR CHNO. Users can obtain the status of HPF flag by instruction SHP

or SNHP.

3.9.3 Play Flag

PF flag of a specific channel reflects the playback status of Head waveform or Tail waveform at this

specific channel, which can be Channel 0 to Channel 7. Therefore PF flag is associated with Head

waveform and Tail waveform. As long as either Head waveform is playing or Tail waveform is playing, PF

flag of this specific channel will be 1. When Head waveform is end of play and Tail waveform is end of

play, PF flag of this specific channel will be 0.

User can use PF flag and HPF flag together to understand the playback status while Tail-Only mode or

Head+Tail mode is used for MIDI synthesis. For example, PH=1 and HPF=0 means Head waveform is

end of play and Tail waveform playback is on-going for a specific channel. The specific channel is

determined by writing value to SFR CHNO. Users can obtain the status of PF flag by instruction SP, SNP

or SANP.

After instruction STOP is executed, the playback of specific channel determined by content of SFR

CHNO would stop immediately and PF flag will become 0.

3.9.4 PH Value Setting

PH is a 14-bit value, which represents how much relative time is elapsed from last playback sample

based on ratio of sample rate to system clock. Therefore, this architecture will not produce accumulated

error while counting sample rate in order to synthesize each note frequency precisely. Each channel has

its own PH value. User can select a specific channel by writing value to SFR CHNO and utilize instruction

LDPH to write value to PH.

It is recommended to keep PH value less than 0x0FFF in order to have better synthetic sound/melody

quality. While PH value is larger than 0x1000, synthetic sound/melody quality may degrade a little.

3.9.5 Mixer Data

The Mixer output is temporarily stored to a 13-bit register, which is fed into Audio Output to produce

audio signal.

When Mixer is on (SFR ONOFF[3]=1), user can utilize instruction RBDA to read this 13-bit register to

RPT[12:0]. If user wants to write value to this register, it has to turn Mixer off in advance. Instruction

LDDA can be used to write the contents of RPT[12:0] to this register.

NY7 User Manual

Ver. 1.5 2018/05/07 35

3.10 Audio Playback
This section will describe how to play voice and melody with example codes.

3.10.1 Voice Playback
3.10.1.1 Flow Chart

The flow chart of voice playback is depicted as graph below.

Start Play Wave

Set Total Playback Channel

Set Audio Output

Set Mixer On

Wait 32 Instruction Cycles

Set Audio On

Wait 100 us
(for Push-Pull Mode)

Set Digital Volume

Set Channel
Volume(Envelope)

Set Voice Mode

Set Voice PH Value

Specify Channel No

Execute “PLAY” Instruction Set

3.10.1.2 Programming Procedure

1. Setup Initial Starting Address of Voice File to Be Played.

The starting address must be aligned with specific address whose last 4 bits must be all zeros.

Orgalign $, 0x10

@@Voice0:

#includata "Demo.v7x"

2. Setup Total Playback Channel and Audio Output.

NY7 User Manual

Ver. 1.5 2018/05/07 36

The total number of playback channel can be 2, 4, 6 or 8. This value will determine PH setting

and volume setting accordingly. The audio output will depend on which NY7 series is used: NY7A

can be PWM or DAC, and NY7B/NY7C can be DAC or Push-Pull.

3. Enable Mixer

After Mixed is enabled, user cannot execute next step until 32 instruction cycles are expired.

4. Enable Audio Output

If Push-Pull is selected, it needs to wait 100 us for ramp-up procedure, which is performed by

NY7. If DAC is selected, user has to implement ramp-up procedure by his program codes. If PWM

is selected, it did not need ramp-up procedure.

5. Configure Digital Volume

There are 16 kinds of digital volume could be applied, from 0x0 to 0xF.

6. Assign CHNO to Play

Select specific NY7 channel to play voice before any further configuration.

7. Configure Envelop to Change Channel Volume

By writing value to System Function Register ENVL and ENVH, there are at most 256 levels to

adjust channel volume. ENVL must be written before ENVH is written. Moreover, ENVH must be

written otherwise ENVL and ENVH will not be updated.

8. Setup “Head” Waveform and Voice File Format

As voice is played, only is “Head” waveform allowed. The file format of voice file could be PCM or

ADPCM.

9. Determine PH value

PH value is determined according to formula Factor
F

4096CH8SR
INST

×
××× .

For example, SR=16,000 Hz, CH=2, Factor=2 (noise filter is enabled), FINST=4,000,000, the PH

value will be 0x20C.

10. Play Voice

Instruction PLAY or PLAYI can be used to play voice and its usage is illustrated by the following

piece of codes.

……………

……………

PLAYI @@Voice0 ;PLAY Demo Voice

NY7 User Manual

Ver. 1.5 2018/05/07 37

……………

……………

mvlr 0x0,rpt0 ;PLAY Demo1 Voice

mvlr 0x0,rpt1

mvlr 0x5,rpt2

mvlr 0x2,rpt3

mvlr 0x1,rpt4

mvlr 0x0,rpt5

PLAY

Orgalign $, 0x10

@@Voice0:

#includata "Demo.v7x"

ORG 0x12500

@@Voice1:

#includata "Demo1.v7x"

3.10.1.3 Example Code of Voice Playback

@@START:

CLEAR_SFR ; Clear System Function Register

mvla 0x0 ;Set Push-Pull, Total Output Channel =8

mvam charc

mvma onoff ;Set Mixer on

orl 0x8

mvam onoff

Wait_Mix_32Cycles ;Wait Mixer on

mvma onoff ;Set Audio On

orl 0x2

mvam onoff

Wait_PP_100us ;Wait Push-Pull Ramp up

mvla 0xF ;Set Master Volume=0xF

NY7 User Manual

Ver. 1.5 2018/05/07 38

mvam vol

mvla 0x0 ;Set channel number=0

mvam chno

mvla 0x0 ;Set Voice =PCM Mode, Full Wave Play

mvam decmd

mvla 0xF ;Set Channel0 Volume=0xFF

mvam envl

mvam envh

mvlr 0x6,rpt0 ;Set Voice PH (Voice S.R.=16K)

mvlr 0x0,rpt1

mvlr 0x1,rpt2

mvlr 0x0,rpt3

LDPH ;Load PH Value

PLAYI @@Voice0 ;PLAY Demo Voice

Orgalign $, 0x10

@@Voice0:

 #includata "Demo.v7x"

NY7 User Manual

Ver. 1.5 2018/05/07 39

3.10.2 Melody Playback, Head-Only Mode

3.10.2.1 Flow Chart

The flow chart of Head-Only melody playback is depicted as graph below.

Start Play Note

Set Total Playback Channel

Set Audio Output

Set Mixer On

Wait 32 Instruction Cycles

Set Audio On

Set Digital Volume

Set Channel Volume
(Envelope)

Set Head-Only Mode

Set Note PH Value

Set Head Wave Address
 and Execute “ PLAY ”

Specify Channel No

Wait 100 us
(for Push-Pull Mode)

3.10.2.2 Programming Procedure

1. Setup Initial Starting Address of Patch File to Be Played.

The starting address must be aligned with specific address whose last 4 bits must be all zeros.

Orgalign $, 0x10

@@Head0:

#includata "Piano_Head0.v7x"

2. Setup Total Playback Channel and Audio Output.

The total number of playback channel can be 2, 4, 6 or 8. This value will determine PH setting

and volume setting accordingly. The audio output will depend on which NY7 series is used: NY7A

can be PWM or DAC, and NY7B/NY7C can be DAC or Push-Pull.

NY7 User Manual

Ver. 1.5 2018/05/07 40

3. Enable Mixer

After Mixed is enabled, user can not execute next step until 32 instruction cycles are expired.

4. Enable Audio Output

If Push-Pull is selected, it needs to wait 100 us for ramp-up procedure, which is performed by

NY7. If DAC is selected, user has to implement ramp-up procedure by his program codes. If PWM

is selected, it did not need ramp-up procedure.

5. Configure Digital Volume

There are 16 kinds of digital volume could be applied, from 0 to 15.

6. Assign Channel # to Play

Select specific NY7 channel to play melody before any further configuration.

7. Configure Envelop to Change Channel Volume

By writing value to System Function Register ENVL and ENVH, there are at most 256 levels to

adjust channel volume. ENVL must be written before ENVH is written. Moreover, ENVH must be

written otherwise ENVL and ENVH will not be updated.

8. Setup Waveform File Format

As Head-Only mode is adopted, “Tail” waveform is disabled. The file format of patch file could be

PCM or ADPCM.

9. Determine PH value

PH value is determined according to formula Factor
F
F

F
4096CH8SR

PATCH

NOTE

INST

××
××× .

For example, patch SR=22,050 Hz, CH=2, Factor=2 (noise filter is enabled), FINST=4,000,000,

FPATCH is G3 (196.0 Hz), FNOTE is B3 (246.9 Hz), the PH value will be 0x38E.

10. Play Melody

Instruction PLAY or PLAYI can be used to play “Head” waveform and its usage is illustrated by

the following piece of codes.

……………

……………

PLAYI @@Head0 ;Set Head Wave Address and PLAY

……………

……………

NY7 User Manual

Ver. 1.5 2018/05/07 41

mvlr 0x0,rpt0 ;Set Head Wave Address

mvlr 0x0,rpt1

mvlr 0x5,rpt2

mvlr 0x2,rpt3

mvlr 0x1,rpt4

mvlr 0x0,rpt5

PLAY ;PLAY

Orgalign $, 0x10

@@Head0:

#includata "Piano_Head0.v7x"

ORG 0x12500

@@Head1:

#includata "Piano_Head1.v7x"

3.10.2.3 Example Code of Head-Only Melody Playback

@@START:

CLEAR_SFR ;Clear SRF Register

mvla 0x0 ;Set Push-Pull, Total Output Channel =8

mvam charc

mvma onoff ;Set Mixer on

orl 0x8

mvam onoff

Wait_Mix_32Cycles ;Wait Mixer on

mvma onoff ;Set Audio On

orl 0x2

mvam onoff

Wait_PP_100us ;Wait Push-Pull Ramp up

mvla 0xF ;Set Master Volume=0xF

mvam vol

NY7 User Manual

Ver. 1.5 2018/05/07 42

mvla 0x0 ;Set channel number=0

mvam chno

mvla 0x0 ;Set Voice =PCM Mode, Head Only

mvam decmd

mvla 0xF ;Set Channel0 Volume=0xFF

mvam envl

mvam envh

mvlr 0x6,rpt0 ;Set Note PH

mvlr 0x0,rpt1

mvlr 0x1,rpt2

mvlr 0x0,rpt3

LDPH ;Load Note PH Value

PLAYI @@HEAD_WAVE ;PLAY Head Wave

Orgalign $, 0x10

@@HEAD_WAVE:

#includata "Piano_Head.v7x"

NY7 User Manual

Ver. 1.5 2018/05/07 43

3.10.3 Melody Playback, Tail-Only Mode

3.10.3.1 Flow Chart

The flow chart of Tail-Only melody playback is depicted as graph below.

Start Play Note

Set Total Playback Channel

Set Audio Output

Set Mixer On

Wait 32 Instruction Cycles

Set Audio On

Set Digital Volume

Set Channel Volume
(Envelope)

Set Tail-Only Mode

Set Note PH Value

Set Tail Wave Address

Specify Channel No

 Execute “ PLAY”

Wait 100 us
(for Push-Pull Mode)

3.10.3.2 Programming Procedure

1. Setup Initial Starting Address of Patch File to Be Played.

The starting address must be aligned with specific address whose last 4 bits must be all zeros.

Orgalign $, 0x10

@@Tail0:

#includata "Piano_Tail0.v7x"

2. Setup Total Playback Channel and Audio Output.

The total number of playback channel can be 2, 4, 6 or 8. This value will determine PH setting

and volume setting accordingly. The audio output will depend on which NY7 series is used: NY7A

can be PWM or DAC, and NY7B/NY7C can be DAC or Push-Pull.

NY7 User Manual

Ver. 1.5 2018/05/07 44

3. Enable Mixer

After Mixed is enabled, user can not execute next step until 32 instruction cycles are expired.

4. Enable Audio Output

If Push-Pull is selected, it needs to wait 100 us for ramp-up procedure, which is performed by

NY7. If DAC is selected, user has to implement ramp-up procedure by his program codes. If PWM

is selected, it did not need ramp-up procedure.

5. Configure Digital Volume

There are 16 kinds of digital volume could be applied, from 0 to 15.

6. Assign Channel # to Play

Select specific NY7 channel to play melody before any further configuration.

7. Configure Envelop to Change Channel Volume

By writing value to System Function Register ENVL and ENVH, there are at most 256 levels to

adjust channel volume. ENVL must be written before ENVH is written. Moreover, ENVH must be

written otherwise ENVL and ENVH will not be updated.

8. Setup Waveform File Format

As Tail-Only mode is adopted, “Tail” waveform is enabled. The file format of patch file could be

PCM or ADPCM.

9. Determine PH value

PH value is determined according to formula Factor
F
F

F
4096CH8SR

PATCH

NOTE

INST

××
××× .

For example, patch SR=22,050 Hz, CH=2, Factor=2 (noise filter is enabled), FINST=4,000,000,

FPATCH is G3 (196.0 Hz), FNOTE is B3 (246.9 Hz), the PH value will be 0x38E.

10. Play Melody

Although Tail-Only mode is adopted, NY7 still take advantage of Head+Tail mode to synthesize

melody. In other words, the same waveform will be played as Head waveform and Tail waveform.

What users have to do is to assign the starting address of Tail-only waveform as that of Head-

Only waveform. Therefore both waveforms point to the same address. Instruction LDSEC or

LDSECI can be used to play “Tail” waveform and its usage is illustrated by the following piece of

codes.

……………

……………

NY7 User Manual

Ver. 1.5 2018/05/07 45

LDSECI @@Tail0 ;Set Tail Wave Address

PLAYI @@Tail0 ;Set Tail Wave Address and Play

……………

……………

mvlr 0x0,rpt0 ;Set Tail Wave Address

mvlr 0x0,rpt1

mvlr 0x5,rpt2

mvlr 0x2,rpt3

mvlr 0x1,rpt4

mvlr 0x0,rpt5

LDSEC

Mvlr 0x0,rpt0 ;Set Tail Wave Address

mvlr 0x0,rpt1

mvlr 0x5,rpt2

mvlr 0x2,rpt3

mvlr 0x1,rpt4

mvlr 0x0,rpt5

PLAY ;PLAY

Orgalign $, 0x10

@@Tail0:

#includata "Piano_Tail0.v7x"

ORG 0x12500

@@Tail1:

#includata "Piano_Tail1.v7x"

3.10.3.3 Example Code of Tail-Only Melody Playback

@@START:

CLEAR_SFR ; Clear System Function Register

mvla 0x0 ;Set Push-Pull, Total Output Channel =8

mvam charc

mvma onoff ;Set Mixer on

orl 0x8

mvam onoff

NY7 User Manual

Ver. 1.5 2018/05/07 46

Wait_Mix_32Cycles ;Wait Mixer on

Mvma onoff ;Set Audio On

orl 0x2

mvam onoff

Wait_PP_100us ;Wait Push-Pull Ramp up

mvla 0xF ;Set Master Volume=0xF

mvam vol

mvla 0x0 ;Set channel number=0

mvam chno

mvla 0xE ;Set Head/Tail = ADPCM Mode, Set Tail Wave Enable

mvam decmd

mvla 0xF ;Set Channel0 Volume=0xFF

mvam envl

mvam envh

mvlr 0x6,rpt0 ;Set Note PH

mvlr 0x0,rpt1

mvlr 0x1,rpt2

mvlr 0x0,rpt3

LDPH ;Load Note PH Value

LDSECI @@TAIL_Wave ;Load Tail Wave Address

PLAYI @@TAIL_Wave ;PLAY Tail Wave

Orgalign $, 0x10

@@TAIL_WAVE:

#includata "Piano_TAIL.v7x"

NY7 User Manual

Ver. 1.5 2018/05/07 47

3.10.4 Melody Playback, Head+Tail Mode

3.10.4.1 Flow Chart

The flow chart of Head+Tail melody playback is depicted as graph below.

Start Play Note

Set Total Playback Channel

Set Audio Output

Set Mixer On

Wait 32 Instruction Cycles

Set Audio On

Set Digital Volume

Set Channel Volume
(Envelope)

Set Tail-Only Mode

Set Note PH Value

Set Tail Wave Address

Specify Channel No

Set Head Wave Address
 and Execute “ PLAY”

Wait 100 us
(for Push-Pull Mode)

3.10.4.2 Programming Procedure

1. Setup Initial Starting Address of Patch File to Be Played.

The starting address must be aligned with specific address whose last 4 bits must be all zeros.

Orgalign $, 0x10

@@Head0:

#includata "Piano_Head0.v7x"

2. Setup Total Playback Channel and Audio Output.

The total number of playback channel can be 2, 4, 6 or 8. This value will determine PH setting

and volume setting accordingly. The audio output will depend on which NY7 series is used: NY7A

can be PWM or DAC, and NY7B/NY7C can be DAC or Push-Pull.

NY7 User Manual

Ver. 1.5 2018/05/07 48

3. Enable Mixer

After Mixed is enabled, user can not execute next step until 32 instruction cycles are expired.

4. Enable Audio Output

If Push-Pull is selected, it needs to wait 100 us for ramp-up procedure, which is performed by

NY7. If DAC is selected, user has to implement ramp-up procedure by his program codes. If PWM

is selected, it did not need ramp-up procedure.

5. Configure Digital Volume

There are 16 kinds of digital volume could be applied, from 0 to 15.

6. Assign Channel # to Play

Select specific NY7 channel to play melody before any further configuration.

7. Configure Envelop to Change Channel Volume

By writing value to System Function Register ENVL and ENVH, there are at most 256 levels to

adjust channel volume. ENVL must be written before ENVH is written. Moreover, ENVH must be

written otherwise ENVL and ENVH will not be updated.

8. Setup Waveform File Format

As Head+Tail mode is adopted, “Tail” waveform is enabled too. The file format of patch file could

be PCM or ADPCM.

Moreover, the file format of Head and Tail waveform must be the same. In other words, the

allowable combination of file format of <Head, Tail> is <PCM, PCM> or <ADPCM, ADPCM>.

9. Determine PH value

PH value is determined according to formula Factor
F
F

F
4096CH8SR

PATCH

NOTE

INST

××
××× .

For example, patch SR=22,050 Hz, CH=2, Factor=2 (noise filter is enabled), FINST=4,000,000,

FPATCH is G3 (196.0 Hz), FNOTE is B3 (246.9 Hz), the PH value will be 0x38E.

10. Play Melody

Instruction PLAY or PLAYI can be used to play “Head” waveform. Instruction LDSEC or LDSECI

can be used to play “Tail” waveform. Its usage is illustrated by the following piece of codes.

……………

……………

LDSECI @@Tail0 ;Set Tail Wave Address

PLAYI @@Head0 ;Set Head Wave Address and Play

NY7 User Manual

Ver. 1.5 2018/05/07 49

……………

……………

mvlr 0x0,rpt0 ;Set Tail Wave Address

mvlr 0x0,rpt1

mvlr 0x5,rpt2

mvlr 0x2,rpt3

mvlr 0x1,rpt4

mvlr 0x0,rpt5

LDSEC

mvlr 0x0,rpt0 ;Set Head Wave Address

mvlr 0x0,rpt1

mvlr 0x0,rpt2

mvlr 0x5,rpt3

mvlr 0x2,rpt4

mvlr 0x0,rpt5

PLAY ;PLAY

Orgalign $, 0x10

@@Tail0:

#includata "Piano_Tail0.v7x"

ORG 0x12500

@@Tail1:

#includata "Piano_Tail1.v7x"

Orgalign $, 0x10

@@Head0:

#includata "Piano_Head0.v7x"

ORG 0x25000

@@Head1:

#includata "Piano_Head1.v7x"

3.10.4.3 Example Code of Head+Tail Melody Playback

@@START:

CLEAR_SFR ; Clear System Function Register

mvla 0x0 ;Set Push-Pull, Total Output Channel =8

NY7 User Manual

Ver. 1.5 2018/05/07 50

mvam charc

mvma onoff ;Set Mixer on

orl 0x8

mvam onoff

Wait_Mix_32Cycles ;Wait Mixer on

mvma onoff ;Set Audio On

orl 0x2

mvam onoff

Wait_PP_100us ;Wait Push-Pull Ramp up

mvla 0xF ;Set Master Volume=0xF

mvam vol

mvla 0x0 ;Set channel number=0

mvam chno

mvla 0x2 ;Set Head/Tail =PCM Mode, Set Tail Wave Enable

mvam decmd

mvla 0xF ;Set Channel0 Volume=0xFF

mvam envl

mvam envh

mvlr 0x6,rpt0 ;Set Note PH

mvlr 0x0,rpt1

mvlr 0x1,rpt2

mvlr 0x0,rpt3

LDPH ;Load Note PH Value

LDSECI @@TAIL_Wave ;Load Tail Wave Address

PLAYI @@HEAD_Wave ;Load Head Wave Address and Play

Orgalign $, 0x10

@@HEAD_WAVE:

#includata "Piano_HEAD.v7x"

NY7 User Manual

Ver. 1.5 2018/05/07 51

Orgalign $, 0x10

@@TAIL_WAVE:

#includata "Piano_TAIL.v7x"

3.10.5 Ramp-up/Ramp-down Procedure for DAC
3.10.5.1 Operating Principle

While DAC is selected as audio output, the central point of DAC output is VDD/2 but DAC output is

0V before DAC is enabled. Therefore it needs a ramp-up process to make DAC output from 0V to

VDD/2 before start of playback, and vice versa, a ramp-down process is necessary to make DAC

output from VDD/2 to 0V after end of playback.

When user’s voice data, either Speech, Head or Tail waveform, is encoded by Voice_Encoder and

stored in NY7, users can take advantage of NY7 hardware to complete the ramp-up/ramp-down

process. First of all, users have to provide one ramp-up and one ramp-down *.wav data and encode

them with command “Encode Ramp Up/Down Table” in PCM format by Voice_Encoder and stored

them in *.V7x format. It is recommended that length of ramp-up/ramp-down *.wav data is about 10ms

and sample rate is higher than 8KHz. An example of ramp-up/ramp-down *.wav data is illustrated in

the following graphs.

0x0000

0x1000

0x1FFF

Time

Output Value

Ramp-up Waveform 10 ms

0x0000

0x1000

0x1FFF

Time

Output Value

Ramp-down Waveform 10 ms

After ramp-up/ramp-down *.V7x files are ready, users can play this ramp-up/ramp-down *.V7x file by

instruction PLAY/PLAYI as playing ordinary voice data to complete ramp-up/ramp-down process.

On the other hand, if user’s voice data is stored outside NY7, for example external SPI Flash, users

have to implement ramp-up/ramp-down process by firmware as following.

The steps to implement ramp-up process are described below.

1. Initialize RPT0~RPT3 (RPT[3:0]) by content of data buffer of DAC output with instruction RBDA.

2. Increase RPT[3:0] by 1 and write RPT[3:0] to data buffer of DAC output by instruction LDDA.

3. Repeat until RPT[3:0] is 0x1000.

The steps to implement ramp-down process are described below.

NY7 User Manual

Ver. 1.5 2018/05/07 52

1. Initialize RPT0~RPT3 (RPT[3:0]) by content of data buffer of DAC output with instruction RBDA.

2. Decrease RPT[3:0] by 1 and write RPT[3:0] to data buffer of DAC output by instruction LDDA.

3. Repeat until RPT[3:0] is 0x0000.

3.10.5.2 Example Code of Ramp-up/Ramp-down by Hardware

@@START:

CLEAR_SFR ;Clear System Function Register

mvla 0x8 ;Set DAC, Total Output Channel =8

mvam charc

mvma onoff ;Set Mixer on

orl 0x8

mvam onoff

Wait_Mix_32Cycles ;Wait Mixer on

mvma onoff ;Set Audio On

orl 0x2

mvam onoff

@@Ramp_up:

mvla 0x2 ;Set Master Volume=0x2

mvam vol

Voice_Play @@Rampup,CH0

Voice_Play @@Rampup,CH1

Voice_Play @@Rampup,CH2

Voice_Play @@Rampup,CH3

Voice_Play @@Rampup,CH4

Voice_Play @@Rampup,CH5

Voice_Play @@Rampup,CH6

Voice_Play @@Rampup,CH7

@@check_rampup:

cwdt

sanp ;check all 8 channels play =0

jmp @@check_rampup

mvma 0xF

mvam vol

NY7 User Manual

Ver. 1.5 2018/05/07 53

@@Ramp_down:

Voice_Play @@Rampdown,CH0

Voice_Play @@Rampdown,CH1

Voice_Play @@Rampdown,CH2

Voice_Play @@Rampdown,CH3

Voice_Play @@Rampdown,CH4

Voice_Play @@Rampdown,CH5

Voice_Play @@Rampdown,CH6

Voice_Play @@Rampdown,CH7

@@check_rumpdown:

cwdt

sanp ;check all 8 channels play =0

jmp @@check_rumpdown

mvla 0x0 ;audio off

mvamonoff

Orgalign $, 0x10

@@Rampup:

 #includata "Rampup.v7x"

Orgalign $, 0x10

@@Rampdown:

 #includata "Rampdown.v7x"

3.10.5.3 Example Code of Ramp-up/Ramp-down by Firmware

@@START:

CLEAR_SFR ;Clear SRF Register

mvla 0x8 ;Set DAC, and don’t care channel set.

mvam charc

mvma onoff ;Set Audio On

orl 0x2

mvam onoff

rbda ;Read DAC to RPT[12:0]

@@Ramp_up:

clrc

incm rpt0 ;Increase rpt[12:0] by 1 from 0 to 0x1000.

jnc $+9

NY7 User Manual

Ver. 1.5 2018/05/07 54

incm rpt1

jnc $+6

incm rpt2

jnc $+3

incm rpt3

mvma rpt3

jnz L_Rampup_End

ldda ;Load RPT[12:0] to DAC reg.

jmp L_WaitRampup

L_Rampup_End:

mvla 0x00

mvam rpt0

mvam rpt1

mvam rpt2

mvla 0x01

mvam rpt3

ldda

@@Ramp_down:

rbda ;Read DAC to RPT[12:0]

L_WaitRampDN:

cwdt ;Decrease RPT[12:0] by 1 to 0.

setc

decm rpt0

jc $+9

decm rpt1

jc $+6

decm rpt2

jc $+3

decm rpt3

jnc L_RampDN_End

ldda

jmp L_WaitRampDN

L_RampDN_End:

mvla 0

mvam rpt0

mvam rpt1

NY7 User Manual

Ver. 1.5 2018/05/07 55

mvam rpt2

mvam rpt3

ldda

mvla 0 ;audio off

mvam onoff

3.11 Power Saving Mode

Reset
procedure

Slow mode

Halt mode

Normal mode

Power on
Reset

Reset

Reset

Reset procedure done

Wake-up

Wake-up
SLOW

HALT

 Power Saving Mode Flow Chart

3.11.1 Slow Mode
The system enters the Slow mode if the SLOW command is executed. The system clock in the Slow

mode is about 16 times slower than in the Normal mode. The difference between the Halt mode and the

Slow mode is only the system clock. So the IC can be waked-up from the Slow mode by the interrupt in

addition to the input port level change. In Slow mode, there are 4 kinds of base timer intervals for

polling: 1.024ms, 2.048ms, 4.096ms and 16.384ms.The wake-up stable time from Slow mode is about

50us.

The input wake-up manner is the same as the Halt mode. So before executing the SLOW instruction,

users have to keep in mind to store the current input port statuses into port registers. If NY7 is waked-

up from the Slow mode by an external reset signal, it goes into the reset procedure. After IC is waked-

up by the input port level change, the next instruction after the SLOW instruction will be executed

immediately. On the other hands, after IC is waked-up by the interrupt of BT, its interrupt service routine

will be executed immediately. Remember to turn off the audio output before entering to the slow mode.

3.11.2 Halt Mode
The system enters the Halt mode if the HALT command executed. The halt mode is also known as the

Sleep mode. As implied by the name, the IC falls asleep and the system clock is completely turned off,

so all the IC functions are halted and it minimizes the power consumption.

NY7 User Manual

Ver. 1.5 2018/05/07 56

The only way to wake-up the system from Halt mode is an input port level change wake-up. The IC

keeps monitoring the input pads during the Halt mode. If the input status of any input pad differs from

the corresponding port register, the system will be waked-up. Then the next instruction after the HALT

instruction will be executed after the wake-up stable time (about 50us) is expired. So before executing

the HALT instruction, users have to keep in mind to store the current input port statuses into port

registers.

If the IC is waked-up from the Halt mode by external reset signal, it goes into the reset procedure.

NY7 User Manual

Ver. 1.5 2018/05/07 57

Chapter 4. Instruction Set

4.1 Instruction Classified Table

Item Inst. Op1 Op2 Operation Exec.
Cycle

Inst.
Length

Oper.
Flag

Flag
Affected

Arithmetic Instructions
1 ADDA 8m {C,A} = A + M + C 1 1 C C, Z
2 XORA 8m A = A ⊕ M 1 1 Z
3 INCM 8m {C,M} = M + 1 1 1 C, Z
4 DECM 8m {C,M} = M – 1 1 1 C, Z
5 RRM 8m Right Rotate M with C 1 1 C C, Z
6 RLM 8m Left Rotate M with C 1 1 C C, Z
7 MVAM 8m M = A 1 1
8 MVMA 8m A = M 1 1 Z
9 ANDA 8m A = A & M 1 1 Z
10 ORA 8m A = A | M 1 1 Z
11 SUBA 8m {C,A} = A – M - (~B) 1 1 C C, Z
12 BCLR 5m 2b Clear M[b] 1 1
13 BSET 5m 2b Set M[b] 1 1
14 MVRM 5m 3r M = R 1 1
15 MVMR 5m 3r R = M 1 1
16 MVLR 4L 3r R = L 1 1
17 MVLA 4L A = L 1 1
18 ADDL 4L {C,A} = L + A + C 1 1 C C, Z
19 SUBL 4L {C,A} = A – L - (~B) 1 1 C C, Z
20 ANDL 4L A = A & L 1 1 Z
21 ORL 4L A = A | L 1 1 Z
22 XORL 4L A = A ⊕ L 1 1 Z
23 INCA {C,A} = A + 1 1 1 C, Z
24 DECA {C,A} = A – 1 1 1 C, Z
25 RRC Right Rotate A with C 1 1 C C, Z
26 RLC Left Rotate A with C 1 1 C C, Z
27 RRA Right Rotate A 1 1 Z
28 RLA Left Rotate A 1 1 Z
29 CPLA A = 0 – A 1 1 Z
30 SETC Set Carry flag 1 1 C
31 CLRC Clear Carry flag 1 1 C

Conditional Instructions
32 JNC 16a Jump when Carry = 0 2 2 C
33 JC 16a Jump when Carry = 1 2 2 C
34 JNZ 16a Jump when Zero = 0 2 2 Z
35 JZ 16a Jump when Zero = 1 2 2 Z
36 JB 16a 2b Jump Adr when A[b] = 1 2 2
37 SAGT 4L Skip when A > L 1-4 1

NY7 User Manual

Ver. 1.5 2018/05/07 58

Item Inst. Op1 Op2 Operation Exec.
Cycle

Inst.
Length

Oper.
Flag

Flag
Affected

38 SALT 4L Skip when A < L 1-4 1
39 SANE 4L Skip when A != L 1-4 1
40 SBZ 2b Skip when A[b] = 0 1-4 1
41 SBNZ 2b Skip when A[b] = 1 1-4 1

Audio Instructions
42 PLAY Play RPT to HVPR of CHNO 3 1
43 LDSEC Load RPT to TVPR of CHNO 3 1
44 LDPH Load RPT[13:0] to PH of CHNO 1
45 RBVPR Read HVPR/TVPR to RPT of CHNO 3 1
46 SNP Skip when No Play of CHNO 1-4 1
47 SP Skip when Play of CHNO 1-4 1
48 SANP Skip when ALL 8 channels Play = 0 1-4 1
49 STOP Stop wave play of CHNO 1
50 SNHP Skip when head wave No Play of CHNO 1-4 1
51 SHP Skip when head wave Play of CHNO 1-4 1
52 PLAYI 22a Play Immediately Adr to HVPR of CHNO 4 3
53 LDSECI 22a Load Immediately Adr to TVPR of CHNO 4 3

Other Instructions
54 LDPR Load RPT to DPR/STK of CHNO 3 1
55 RBDPR Read DPR/STK to RPT of CHNO 3 1
56 RDN Data Table Read of CHNO 3 1
57 RDNI Data Table Read of CHNO 3 1
58 RD 4d ROM Data Read of DPR/STK 3 1
59 RDI 4d ROM Data Read of DPR/STK 3 1
60 LDPRI 4d 20a Load Immediately Adr to DPR/STK 4 3
61 CALL 16a Call Adr 2 2
62 JMP 16a Jump Adr 2 2
63 RCALL Call RPT 2 1
64 RJMP Jump RPT 2 1
65 RET Return from subroutine(CALL) 2 2
66 IRET Return from interrupt 2 2
67 HALT Enter sleep mode 1
68 SLOW Enter slow mode 1
69 CWDT Clear WDT 1
70 PAGE0 SRAM Page 0 1
71 PAGE1 SRAM Page 1 1
72 RBDA Read DAC data to RPT[12:0] 1
73 LDDA Load RPT[12:0] to DAC reg. 1
74 NOP No Operation 1
75 MPG 1p Set SRAM Page 1 1

NY7 User Manual

Ver. 1.5 2018/05/07 59

A, ACC : 4-bit Accumulator data

B : 1-bit borrow flag data, shared with carry flag, B=~C.

C : 1-bit carry flag data

M : 4-bit RAM or memory register data, M=[m]

R : 4-bit memory register data

L : 4-bit immediately literal data

Z : 1-bit zero flag data

RPT : Multi-function register data

CHNO : 2-bit channel number register in SFR[0x12]

PH : 14-bit value for MIDI synthesis of CHNO

HVPR, TVPR : Head / Tail Voice address pointer of CHNO

ENV : 8-bit envelope data of CHNO

ROM : 12-bit ROM data

ROD : ROM data access register data

PC : Program counter address pointer

DPR : Data address pointer

STK : Interrupt dedicated stack address pointer

a: ROM address

b: bit address

d: data pointer number

m: RAM or memory register address

r: 3-bit address of System Function Register

p: 1-bit page pointer of RAM

NY7 User Manual

Ver. 1.5 2018/05/07 60

4.2 Instruction Descriptions

4.2.1 Arithmetic Instructions
ADDA m

Function : Add (m) to ACC with Carry and the result is

save back to ACC.

Operation : {C, ACC} ← ACC + M + C

Operand: :m: 8-bit address of register or SRAM to

ADD, 0x00 to 0xFF

Words :1

Cycles :1

Operative Flags: C

Flags Affected: C, Z

Example :ADDA m0

Before Instruction

A=0x7, [m0]=0xA, C=0

After Instruction

A=0x1, [m0]=0xA, C=1, Z=0

XORA m

Function :Exclusive OR ACC with M of address m, and

the result is save back to ACC.

Operation :ACC ← ACC ⊕ M

Operand: m: 8-bit address of register or SRAM to

XOR, 0x00 to 0xFF

Words :1

Cycles :1

Operative Flags:

Flags Affected: Z

Example : XORA m0

Before Instruction

A=0x3, [m0]=0xB

After Instruction

A=0x8, [m0]=0xB, Z=0

INCM m

Function: Add 1 to M of address m, and save the result

back to M.

Operation: M ← M + 1

Operand: m: 8-bit address of register or SRAM to

increase, 0x00 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: C, Z

Example: INCM m0

Before Instruction

[m0]=0x0

After Instruction

[m0]=0x1, C=0, Z=0

DECM m

Function: Subtract 1 from M of address m, and save

the result back to M.

Operation: M ← M - 1

Operand: m: 8-bit address of register or SRAM to

decrease, 0x00 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: C, Z

Example: DECM m0

Before Instruction

[m0]=0x0

After Instruction

[m0]=0xF, C=0, Z=0

NY7 User Manual

Ver. 1.5 2018/05/07 61

RRM m

Function :Right rotate (m) with Carry.

Operation :{ (m)[3:0], C } ← { C, (m)[3:0] }

Operand: m: 8-bit address of register or SRAM to

rotate, 0x00 to 0xFF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :RRM m0

Before Instruction

[m0]=0x3 and Carry=1

After Instruction

 [m0]=0x9 and Carry=1

RLM m

Function :Left rotate (m) with Carry, i.e.

Operation :{ C, (m)[3:0] } ← { (m)[3:0], C }

Operand: m: 8-bit address of register or SRAM to

rotate, 0x00 to 0xFF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :RLM m0

Before Instruction

[m0]=0xE and Carry=0

After Instruction

[m0]=0xC and Carry=1

MVAM m

Function: Move A to M of address m.

Operation: M ← A

Operand: m: 8-bit address of register or SRAM

to move, 0x00 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: MVAM m0

Before Instruction

A=0x8

After Instruction

[m0]=0x8

MVMA m

Function: Move M of address m to A.

Operation: A ← M

Operand: m: 8-bit address of register or SRAM to

move, 0x00 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: Z

Example: MVMA m0

Before Instruction

[m0]=0x8

After Instruction

A=0x8

NY7 User Manual

Ver. 1.5 2018/05/07 62

ANDA m

Function: AND A with M of address m, and save

the result back to A.

Operation: A ← A & M

Operand: m: 8-bit address of register or SRAM

to AND with, 0x0 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: Z

Example: ANDM m0

Before Instruction

A=0x7, [m0]=0xA

After Instruction

A=0x2, [m0]=0xA, Z=0

ORA m

Function: OR ACC with M of address m, and the

result is save back to ACC, i.e.

Operation: ACC ← ACC | M

Operand: m: 8-bit address of register or SRAM to

OR with, 0x0 to 0xFF

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: ORA m0

Before Instruction

A=0x3, [m0]=0xB

After Instruction

A=0xB, [m0]=0xB, Z=0

SUBA m

Function : Subtract M of address m from ACC with

Borrow, i.e. The (B) quantity effectively

implements a borrow capability for multi-

precision subtractions.

Operation : {C,A} = A－ m － (~B)

Operand: m: 8-bit address of register or SRAM to

subtract with, 0x0 to 0xFF

B: 1-bit borrow flag data, shared with carry flag, B=~C.

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example : SUBA m0

Before Instruction

A=0xA, [m0]=0x2, C=1

After Instruction

A=0x8, [m0]=0x2, Z=0, C=1

BCLR m2, b

Function: Clear bit [b] of (m2) to 0

Operation: 0 ← m2[b]

Operand: m2: 5-bit address of SRAM to clear bit, 0x0

to 0x1F

b: 2-bit bit location to clear to 0, 0x0 to 0x3

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: BCLR m20, 0x2

Before Instruction

[m20]=0xF

After Instruction

[m20]=0xB

Note: The BCLR instruction can only be applied to 32

general SRAMs (0x20~0x3F) of each page.

NY7 User Manual

Ver. 1.5 2018/05/07 63

BSET m, b

Function :Set bit [b] of (m) to 1

Operation :1 ← m2[b]

Operand : m2: 5-bit address of SRAM to clear bit, 0x0

to 0x1F

b: 2-bit bit location to set to 1, 0x0 to 0x3

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :BSET m20, 0x2

Before Instruction

[m20]=0x0

After Instruction

[m20]=0x4

Note : The BSET instruction can only be applied to 32

general SRAMs (0x20~0x3F) of each page.

MVRM m, r

Function : Move SFR(r) to M of address m2.

Operation :M(m2) ← SFR[r]

Operand : m2: 5-bit address of SRAM to set bit, 0x20

to 0x3F

r: 3-bit bit address of SFR to set bit, 0x00 to

0x07

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :MVRM m20, 0x2

Before Instruction

[m20]=0x0, SFR[0x2]=0x3

After Instruction

[m20]=0x3, SFR[0x2]=0x3

Note : The MVRM instruction can only be applied to 32

general SRAMs (0x20~0x3F) of each page.

MVMR m, r

Function :Move M of address m2 to SFR(r).

Operation : SFR[r] ←M(m2)

Operand : m2: 5-bit address of SRAM to set bit, 0x20 to

0x3F

r: 3-bit bit address of SFR to set bit, 0x00 to

0x07

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :MVMR m20, 0x2

Before Instruction

[m20]=0x0, SFR[0x2]=0x3

After Instruction

[m20]=0x0, SFR[0x2]=0x0

Note : The MVMR instruction can only be applied to 32

general SRAMs (0x20~0x3F) of each page.

MVLR L, r

Function :Move immediate constant to SFR(r)

Operation : SFR[r] ←L

Operand :L: 4-bit immediate constant value, 0x0 to

0xF

r: 3-bit bit address of SFR to set bit, 0x00 to

0x07

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :MVLR 0x7, 0x2

Before Instruction

SFR[0x2]=0x3

After Instruction

SFR[0x2]=0x7

NY7 User Manual

Ver. 1.5 2018/05/07 64

MVLA L

Function :Move immediate constant to ACC.

Operation : ACC ←L

Operand :L: 4-bit immediate constant value, 0x0 to

0xF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :MVLA 0x7

Before Instruction

ACC=0x3

After Instruction

ACC=0x7

ADDL L

Function : Add immediate constant to ACC with Carry

and the result is save back to ACC.

Operation : {C, ACC} ← ACC + L + C

Operand: L:4-bit immediate constant value, 0x0 to 0xF

Words :1

Cycles :1

Operative Flags: C

Flags Affected: C, Z

Example :ADDL 0xA

Before Instruction

A=0x7, L=0xA, C=0

After Instruction

A=0x1, C=1, Z=0

SUBL L

Function : Subtract immediate constant from ACC

with Borrow, i.e. The (B) quantity effectively

implements a borrow capability for multi-

precision subtractions.

Operation : {C,A} = A－ L － (~B)

Operand: L: 4-bit immediate constant value, 0x0 to

0xF

B: 1-bit borrow flag data, shared with carry flag, B=~C.

Words :1

Cycles :1

Operative Flags: C

Flags Affected: C, Z

Example : SUBL 0x2

Before Instruction

A=0xA, L=0x2, C=1

After Instruction

A=0x8, Z=0, C=1

ANDL L

Function : AND ACC with immediate constant, and the

result is save back to ACC, i.e.

Operation :ACC ← ACC & L

Operand: L: 4-bit immediate constant value, 0x0 to

0xF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: Z

Example : ANDL 0xB

Before Instruction

A=0x3, L=0xB

After Instruction

A=0x3, Z=0

NY7 User Manual

Ver. 1.5 2018/05/07 65

ORL L

Function : OR ACC with immediate constant, and the

result is save back to ACC, i.e.

Operation: ACC ← ACC | L

Operand: L: 4-bit immediate constant value, 0x0 to

0xF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example : ORL 0xB

Before Instruction

A=0x3, L=0xB

After Instruction

A=0xB, L=0xB, Z=0

XORL L

Function : Exclusive OR ACC with immediate constant,

and the result is save back to ACC.

Operation :ACC ← ACC ⊕ L

Operand: L: 4-bit immediate constant value, 0x0 to

0xF

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example : XORL 0xB

Before Instruction

A=0x3, L=0xB

After Instruction

A=0x8, L=0xB, Z=0

INCA

Function: Add 1 to ACC, and save the result

back to ACC.

Operation: ACC ← ACC + 1

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: C, Z

Example: INCA

Before Instruction

ACC=0x0

After Instruction

ACC=0x1, C=0, Z=0

DECA

Function: Subtract 1 from ACC, and save the

result back to ACC.

Operation: ACC ← ACC – 1

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: C, Z

Example: DECA

Before Instruction

ACC=0x0

After Instruction

ACC=0xF, C=0, Z=0

NY7 User Manual

Ver. 1.5 2018/05/07 66

RRC

Function :Left rotate ACC with Carry, i.e.

Operation: { C, ACC [3:0] } ← { ACC [3:0], C }

Operand: None

Words :1

Cycles :1

Operative Flags: C

Flags Affected: C, Z

Example :RRC

Before Instruction

ACC =0x3 ,C=1

After Instruction

ACC =0x9 ,C=1 ,Z=0

RLC

Function :Right rotate ACC with Carry.

Operation: { ACC[3:0], C } ← { C, ACC [3:0] }

Operand: None

Words :1

Cycles :1

Operative Flags: C

Flags Affected: C, Z

Example :RLC

Before Instruction

ACC =0xE ,C=0

After Instruction

ACC =0xC ,C=1 ,Z=0

RRA

Function :Right rotate ACC.

Operation: { ACC[0], ACC [3:1] } ← { ACC [3:0]}

Operand: None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: Z

Example :RRA

Before Instruction

ACC =0xE ,Z=0

After Instruction

 ACC =0x7 ,Z=0

RLA

Function :Left rotate ACC.

Operation: { ACC[2:0], ACC[3] } ← { ACC [3:0] }

Operand: None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: Z

Example :RLA

Before Instruction

ACC =0x3 ,Z=0

After Instruction

 ACC =0x6 ,Z=0

NY7 User Manual

Ver. 1.5 2018/05/07 67

CPLA

Function :Take complement with ACC.

Operation: ACC← 0 －ACC

Operand: None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: Z

Example :CPLA

Before Instruction

ACC =0xB ,Z=0

After Instruction

 ACC =0x5 ,Z=0

SETC

Function :Set Carry bit to 1

Operation: C←1

Operand: None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: C

Example :SETC

Before Instruction

C=0

After Instruction

 C=1

CLRC

Function :Clear Carry bit to 0

Operation: C←0

Operand: None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: C

Example :CLRC

Before Instruction

C=1

After Instruction

 C=0

NY7 User Manual

Ver. 1.5 2018/05/07 68

4.2.2 Conditional Instructions
JNC a

Function :JNC branches to the address indicated by a

if the carry bit is not set.

Operation : When C=0, PC ← {BANK, a}

Operand :a: 16-bit Address, 0x0 to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JNC a1

Before Instruction

PC=next ADR, C=0

After Instruction

PC={BANK, a1}

Note: PC[21:20] will not be changed

JC a

Function :JC branches to the address indicated by a if

the carry bit is set.

Operation : When C=1, PC ← {BANK, a}

Operand : a: 16-bit Address, 0x0 to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JC a1

Before Instruction

PC= next ADR, C=1

After Instruction

PC={BANK, a1}

Note: PC[21:20] will not be changed

JNZ a

Function :JNZ branches to the address indicated by a

if the Zero bit is not set.

Operation : When Z=0, PC ← {BANK, a}

Operand :a: 16-bit Address, 0x0 to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JNZ a1

Before Instruction

PC= next ADR, Z=0

After Instruction

PC={BANK, a1}

Note: PC[21:20] will not be changed

JZ a

Function :JZ branches to the address indicated by a if

the Zero bit is set.

Operation : When Z=1, PC ← {BANK, a}

Operand :a: 16-bit Address, 0x0 to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JZ a1

Before Instruction

PC= next ADR, Z=1

After Instruction

PC={BANK, a1}

Note: PC[21:20] will not be changed

NY7 User Manual

Ver. 1.5 2018/05/07 69

JB b, a

Function : JB branches to the address indicated by a if

ACC[b] is set.

Operation : When ACC[b]=1, PC ← {BANK, a}

Operand : a: 16-bit Address, 0x0 to 0xFFFF

b: 2-bit bit location, 0x0 to 0x3

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JB 0x3, a1

Before Instruction

ACC = 0x8, PC= next ADR

After Instruction

ACC = 0x8, PC={BANK, a1}

Note: PC[21:20] will not be changed

SAGT L

Function: Skip the next instruction if ACC greater than

immediate constant.

Operation: Skip next if ACC > L

Operand: L: 4-bit immediate constant value, 0x0 to 0xF

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: SAGT 0x8

Inst1

Inst2

After Instruction

If ACC = (or <) 0x8, `Inst1’ is executed.

If ACC > 0x8, `Inst1’ is discarded, and `Inst2’ is

executed.

SALT L

Function: Skip the next instruction if ACC less than

immediate constant.

Operation: Skip next if ACC < L

Operand: L: 4-bit immediate constant value, 0x0 to 0xF

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: SALT 0x8

Inst1

Inst2

After Instruction

If ACC = (or >) 0x8, `Inst1’ is executed.

If ACC < 0x8, `Inst1’ is discarded, and `Inst2’ is

executed.

SANE L

Function: Skip the next instruction if ACC not equal

immediate constant.

Operation: Skip next if ACC ≠ L

Operand: L: 4-bit immediate constant value, 0x0 to 0xF

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: SANE 0x8

Inst1

Inst2

After Instruction

If ACC = 0x8, `Inst1’ is executed.

If ACC < (or >) 0x8, `Inst1’ is discarded, and

`Inst2’ is executed.

NY7 User Manual

Ver. 1.5 2018/05/07 70

SBZ b

Function :Skip the next instruction if ACC[b] is not set.

Operation : Skip next if ACC[b]=0.

Operand :b: 2-bit bit location, 0x0 to 0x3

Words :2

Cycles :2

Example :SBZ 0x3

Inst1

Inst2

After Instruction

If ACC[3] = 1, `Inst1’ is executed.

If ACC[3] = 0, `Inst1’ is discarded, and `Inst2’ is

executed.

SBNZ b

Function :Skip the next instruction if ACC[b] is set.

Operation : Skip next if ACC[b]=1.

Operand :b: 2-bit bit location, 0x0 to 0x3

Words :2

Cycles :2

Example :SBNZ 0x3

Inst1

Inst2

After Instruction

If ACC[3] = 0, `Inst1’ is executed.

If ACC[3] = 1, `Inst1’ is discarded, and `Inst2’ is

executed.

NY7 User Manual

Ver. 1.5 2018/05/07 71

4.2.3 Audio Instructions
PLAY

Function : Play voice (Head wave) on the channel

indexed by the CHNO($12) register. The

voice (Head wave) address should be

loaded in RPT firstly.

Operation : HVPR[CHNO] ← RPT

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x1

 MVAM CHNO

MVLR 0x4, RPT0

MVLR 0x3, RPT1

MVLR 0x2, RPT2

MVLR 0x0, RPT3

MVLR 0x1, RPT4

MVLR 0x0, RPT5

PLAY

Before Instruction

HVPR[0x1]= 0xXXXXX

After Instruction

HVPR[0x1]= 0x010234, PFLG[0x1]=1

LDSEC

Function : Load Tail wave address for the channel

indexed by the CHNO($12) register. The

Tail wave address should be loaded in

TREG[19:0] firstly.

Operation : TVPR[CHNO] ← RPT

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x4

 MVAM CHNO

MVLR 0x4, RPT0

MVLR 0x3, RPT1

MVLR 0x2, RPT2

MVLR 0x0, RPT3

MVLR 0x1, RPT4

MVLR 0x0, RPT5

LDSEC

Before Instruction

TVPR[0x1]= 0xXXXXX

After Instruction

TVPR[0x1]= 0x010234

Note : The LDSEC/LDSECI instruction will stop

playing current voice first. Therefore, please

always put the LDSCE/LDSECI instruction

before the PLAY/PLAYI instruction while

intending to start a new voice playing. Don’t use

LDSEC/LDSECI in ramp-up/ ramp-down.

NY7 User Manual

Ver. 1.5 2018/05/07 72

LDPR

Function : Load ROM address to the DPR (data

pointer) indexed by the CHNO($12) register.

The ROM address should be loaded in RPT

firstly.

Operation : DPR [CHNO] ← RPT

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x2

 MVAM CHNO

MVLR 0x0, RPT0

MVLR 0x9, RPT1

MVLR 0x3, RPT2

MVLR 0xD, RPT3

MVLR 0x1, RPT4

MVLR 0x0, RPT5

LDPR

Before Instruction

DPR [0x2]= 0xXXXXX

After Instruction

DPR [0x2]= 0x01D390

LDPH

Function : Load PH value to the channel indexed by

the CHNO($12) register. The PH value

should be loaded in RPT[13:0] firstly.

Operation : PH[CHNO] ← RPT[13:0]

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x4

MVAM CHNO

MVLR 0x4, RPT0

MVLR 0x3, RPT1

MVLR 0x2, RPT2

MVLR 0x0, RPT3

LDPH

Before Instruction

PH [0x4]= 0xXXXX

After Instruction

PH[0x4]= 0x0234

NY7 User Manual

Ver. 1.5 2018/05/07 73

RBVPR

Function : Read HVPR/TVPR (voice pointer) content.

The HVPR/TVPR to read is indexed by the

CHNO($12) register and the obtained

content is put in RPT.

Operation : RPT ← HVPR/TVPR[CHNO]

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x4

MVAM CHNO

RBVPR

Before Instruction

HVPR[0x4]= 0x010234

After Instruction

RPT = 0x010234

RBDPR

Function : Read DPR (data pointer) content. The DPR

to read is indexed by the CHNO($12)

register and the obtained content is put in

RPT.

Operation : RPT ← DPR[CHNO]

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x5

MVAM CHNO

RBDPR

Before Instruction

DPR[0x5]= 0x010234

After Instruction

RPT = 0x010234

NY7 User Manual

Ver. 1.5 2018/05/07 74

RDN

Function : Read ROM data using the DPR (data

pointer) indexed by the CHNO($12)

register.

Operation : ACC ← bit [3:0] of read data

ROD1($08) ← bit [7:4] of read data

ROD2($09) ← bit [11:8] of read data

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x1

 MVAM CHNO

MVLR (LOW0 data0),RPT0

MVLR (LOW1 data0),RPT1

MVLR (MID0 data0),RPT2

MVLR (MID1 data0),RPT3

MVLR (HIGH0 data0),RPT4

MVLR (HIGH1 data0),RPT5

LDPR

RDN

Before Instruction

data0 is 0x135

After Instruction

ACC=0x5, ROD1=0x3, ROD2=0x1, and

DPR[0x1]= data0

RDNI

Function : Read ROM data using the DPR (data

pointer) indexed by the CHNO($12)

register, and increase the DPR after data

reading.

Operation : ACC ← bit [3:0] of read data

ROD1($08) ← bit [7:4] of read data

ROD2($09) ← bit [11:8] of read data

Operand :None

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : MVLA 0x3

 MVAM CHNO

MVLR (LOW0 data0),RPT0

MVLR (LOW1 data0),RPT1

MVLR (MID0 data0),RPT2

MVLR (MID1 data0),RPT3

MVLR (HIGH0 data0),RPT4

MVLR (HIGH1 data0),RPT5

LDPR

RDNI

Before Instruction

data0 is 0x82B

After Instruction

ACC=0xB, ROD1=0x2, ROD2=0x8, and

DPR[0x3]= data0+1

NY7 User Manual

Ver. 1.5 2018/05/07 75

SNP

Function: Skip the next instruction if the channel (Head or

Tail) indexed by the CHNO($12) did not play.

Operation: Skip next if not play.

Operand: None

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: MVLA 0x1

 MVAM CHNO

 SNP

Inst1

Inst2

After Instruction

If CH1 play, `Inst1’ is executed. If CH1 not play,

`Inst1’ is discarded, and `Inst2’ is executed.

SP

Function: Skip the next instruction if the channel (Head

or Tail) indexed by the CHNO($12) register

play.

Operation: Skip next if play.

Operand: None

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: MVLA 0x1

 MVAM CHNO

 SP

Inst1

Inst2

After Instruction

If channel 1 not play, `Inst1’ is executed.

If channel 1 play, `Inst1’ is discarded, and

`Inst2’ is executed.

SANP

Function: Skip the next instruction if no channel isn’t

playing.

Operation: Skip next if All channel not play.

Operand: None

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: SANP

Inst1

Inst2

After Instruction

If all channel play, `Inst1’ is executed.

If all channel not play, `Inst1’ is discarded, and

`Inst2’ is executed.

STOP

Function : Stop voice (Head wave or Tail wave)

playing on the channel indexed by the

CHNO($12) register.

Operation : None

Operand :None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :MVLA 0x4

 MVAM CHNO

STOP

After Instruction

Voice playing on channel 4 will be stopped,

the channel data back to the middle.

NY7 User Manual

Ver. 1.5 2018/05/07 76

SNHP

Function: Skip the next instruction if the channel (Head

vice) indexed by the CHNO($12) register

did not play.

Operation: Skip next if Head waveform is not played.

Operand: None

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: MVLA 0x1

 MVAM CHNO

 SNHP

Inst1

Inst2

After Instruction

If channel 1 (Head vice) play, `Inst1’ is

executed.

If channel 1 (Head vice) not play, `Inst1’ is

discarded, and `Inst2’ is executed.

SHP

Function: Skip the next instruction if the channel (Head

vice) indexed by the CHNO($12) register is

playing.

Operation: Skip next if Head waveform is playing.

Operand: None

Words: 1

Cycles: 1, (2, 3, 4)

Operative Flags: None

Flags Affected: None

Example: MVLA 0x1

 MVAM CHNO

 SHP

Inst1

Inst2

After Instruction

If channel 1 (Head vice)not play, `Inst1’ is

executed.

If channel 1 (Head vice)play, `Inst1’ is

discarded, and `Inst2’ is executed.

NY7 User Manual

Ver. 1.5 2018/05/07 77

PLAYI a

Function : Play voice (Head wave) on the channel

indexed by the CHNO($12) register. The

voice (Head wave) address is specified by a.

Operation: HVPR[CHNO] ← a

Operand : a: 22-bit HVPR address to load for playing,

0x000000 to 0x3FFFFF

Words :3

Cycles :4

Operative Flags: None

Flags Affected: None

Example : MVLA 0x2

 MVAM CHNO

PLAYI 0x010234

Before Instruction

HVPR[0x2]= 0xXXXXX

After Instruction

HVPR[0x2]= 0x010234, PFLG[0x1]=1

LDSECI a

Function : Load immediate Tail wave address for the

channel indexed by the CHNO($12)

register. The voice (Tail wave) address is

specified by a.

Operation: TVPR[CHNO] ← a

Operand : a: 22-bit Tail wave address to load,

0x000000 to 0x3FFFFF

Words :3

Cycles :4

Operative Flags: None

Flags Affected: None

Example : MVLA 0x6

 MVAM CHNO

LDSECI 0x010C34

Before Instruction

TVPR[0x6]= 0xXXXXX

After Instruction

TVPR[0x6]= 0x10C34

Note : The LDSEC/LDSECI instruction will stop

playing current voice first. Therefore, please

always put the LDSCE/LDSECI instruction

before the PLAY/PLAYI instruction while

intending to start a new voice playing. Don’t use

LDSEC/LDSECI in ramp-up/ ramp-down.

NY7 User Manual

Ver. 1.5 2018/05/07 78

4.2.4 Other Instructions
RD d

Function : Read ROM data using the selected DPR

(data pointer)

Operand : ACC ← bit [3:0] of read data

ROD1($08) ← bit [7:4] of read data

ROD2($09) ← bit [11:8] of read data

Operand : d: 4-bit DPR number to select the DPR for

data reading, 0x0 to 0xF

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : LDPRI 0x1, TBLADR

RD 0x1

Before Instruction

TBLADR is 0x135

After Instruction

ACC=0x5, ROD1=0x3, ROD2=0x1, and

DPR[0x1]= TBLADR

RDI d

Function : Read ROM data using the selected DPR

(data pointer), and increase the DPR after

data reading.

Operand :ACC ← bit [3:0] of read data

ROD1 ($08) ← bit [7:4] of read data

ROD2 ($09) ← bit [11:8] of read data

Operand : d: 4-bit DPR number to select the DPR for

data reading, 0x0 to 0xF

Words :1

Cycles :3

Operative Flags: None

Flags Affected: None

Example : LDPRI 0x3, TBLADR

RDI 0x3

Before Instruction

TBLADR is 0x135

After Instruction

ACC=0x5, ROD1=0x3, ROD2=0x1, and

DPR[0x3]= TBLADR+1

NY7 User Manual

Ver. 1.5 2018/05/07 79

LDPRI d, a

Function : Load immediate ROM address to the

selected DPR (data pointer).

Operation: DPR[d] ← a

Operand : d: 4-bit DPR number to load the ROM

address, 0x0 to 0xF

a: 20-bit ROM address to load into the

selected DPR, 0x00000 to 0xFFFFF

Words :3

Cycles :4

Operative Flags: None

Flags Affected: None

Example : LDPRI 0x7, 0x20D39

After executing the LDPRI instruction:

DPR7=0x20D39

CALL a

Function :Call subroutine by direct address

Operation: STK ← PC+2

PC ← {BANK, a}

Operand : a: 16-bit program address to call, 0x0000

to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :CALL a1

Before Instruction

PC=a0

After Instruction

PC={BANK, a1}, STK =a0+2

Note: PC[21:20] will not be changed.

JMP a

Function :Unconditional jump by direct address

Operation: PC ← {BANK, a}

Operand : a: 16-bit program address to jump, 0x0000

to 0xFFFF

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :JMP a1

Before Instruction

PC=a0

After Instruction

PC={BANK, a1}

Note: PC[21:20] will not be changed.

NY7 User Manual

Ver. 1.5 2018/05/07 80

RCALL

Function : Call subroutine by indirect address. The

call address should be loaded in RPT

firstly.

Operation: STK ← PC+2

PC ← RPT

Operand :None

Words :1

Cycles :2

Operative Flags: None

Flags Affected: None

Example : MVLR (LOW0 data0),RPT0

MVLR(LOW1 data0),RPT1

MVLR(MID0 data0),RPT2

MVLR(MID1 data0),RPT3

MVLR(HIGH0 data0),RPT4

MVLR(HIGH1 data0),RPT5

RCALL

Before Instruction

PC=a0, RPT= ADR[data0]

After Instruction

PC=RPT, STK =a0+2

RJMP

Function :Unconditional jump by indirect address.

The jump address should be loaded in RPT

firstly.

Operation: PC ← RPT

Operand :None

Words :1

Cycles :2

Operative Flags: None

Flags Affected: None

Example : MVLR(LOW0 data0),RPT0

MVLR(LOW1 data0),RPT1

MVLR(MID0 data0),RPT2

MVLR(MID1 data0),RPT3

MVLR(HIGH0 data0),RPT4

MVLR(HIGH1 data0),RPT5

RJMP

Before Instruction

PC=a0, RPT= ADR[data0]

After Instruction

PC=RPT

NY7 User Manual

Ver. 1.5 2018/05/07 81

RET

Function :Return from subroutine

Operation: PC ← STK

Operand: None

Words: 2

Cycles: 2

Example: RET

After Instruction

PC)← STK

IRET

Function :Return from interrupt routine

Operation: PC← STK

Operand :None

Words :2

Cycles :2

Operative Flags: None

Flags Affected: None

Example :IRET

After Instruction

PC← STK, and

ACC, SRAM Page, Zero and Carry bit

will be restored to those values backup

at the moment when entering the

interrupt routine

HALT

Function: Enter the halt (sleep) mode.

Operation: Stop system clock

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: HALT

After Instruction

The system enters the halt mode and the

system clock is halted.

SLOW

Function: Enter the slow mode.

Operation: Slow down the system clock

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: SLOW

After Instruction

The system enters the slow mode and the

system clock slows down, about 16 times.

NY7 User Manual

Ver. 1.5 2018/05/07 82

CWDT

Function: Clear Watch Dog Timer.

Operation: Watch dog counter ← 0x0

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: CWDT

Before Instruction

WDT counter = ???

After Instruction

WDT counter = 0x0

PAGE0

Function :Set SRAM page to 0

Operation:

Operand :None

Words :1

Cycles :1

Operative Flags: None

Flags Affected: None

Example :PAGE0

Before Instruction

PAGE = 0x1

After Instruction

PAGE = 0x0

PAGE1

Function: Set SRAM page to 1

Operation:

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: PAGE1

Before Instruction

PAGE = 0x0

After Instruction

PAGE = 0x1

RBDA

Function: Read Mixer data to RPT.

Operation: RPT[12:0] ← Mixer data

Operand: Mixer data : 13-bit

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example:RBDA

Before Instruction

Mixer data =0x01234

After Instruction

RPT=0x01234

NY7 User Manual

Ver. 1.5 2018/05/07 83

LDDA

Function: Load RPT to Mixer data.

Operation: Mixer data ← RPT

Operand: Mixer data: 13-bit

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: LDDA

Before Instruction

RPT[12:0]=0x321

After Instruction

Mixer data =0x321

MPG

Function: Set 1-bit value to SRAM page.

Operation:

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: MPG 0x1

Before Instruction

PAGE = 0x0

After Instruction

PAGE = 0x1

NOP

Function: No operation.

Operation: None

Operand: None

Words: 1

Cycles: 1

Operative Flags: None

Flags Affected: None

Example: NOP

After Instruction

No operation for 1 cycle.

