

General Description

The OCH2987 is an integrated Hall sensor with H-Bridged output driver designed for brushless DC motor applications. The device is using HV process includes an on-chip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a comparator to provide switching hysteresis for noise rejection, a bi-directional drivers for sinking and driving large current load.

OCS Confidential DO NOT COPY

Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold BOP, the DO is turned to sink and DOB is turned to drive. This output state is held until the magnetic flux density reverses and falls below BRP, then causes DO to be turned to drive and DOB turned to sink.

OCH2987 is available in SIP-4L package and is rated over the -40°C to 125°C.

Features

- One-chip Solution (Hall Element + Driver)
- Input Voltage Range : 3V to 24V
- Low Output Switching Current Noise
- Built-in VCC To GND reverse voltage protection
 Rotor Lock Protection (Lock detection, output
- Notor Lock Protection (Lock detection, output shutdown and automatic re-start)
 High Sensitivity Hall Sensor
- High Sensitivity Hall Sensor BOP(25GS),BRP(-25GS)
- Thermal Shutdown Protection
- -40[°]C to +125 [°]C Temperature Range
- RoHS Compliant
- Available in SIP-4L(TO94) package

Applications

- Single Coil Design Cooling Fans
- Single Coil DC Brushless Fan
- Single Coil DC Brushless Motor
- Office Automated Equipment
- Brown-Goods
- Home Applications
- Car Audio Cooling Fan

Pin Configuration

(Top View)

	2	4	GND
	298	<u></u>	DOB
	H		DO
	ŏ		VDD
-			

SIP-4L SOP-8F Figure 1, Pin Assignments of OCH2987

Din Nomo	Pin N	umber	Din Function	
Pin Name	SIP-4L SOP-8F		FinFunction	
VDD	1	2	Positive Power Supply	
DO	2	6	Output 1	
DOB	3	7	Output 2	
GND	4	3	Ground	
NC	-	1、4、5、8	NC	

Typical Application Circuit

Note1: When the power pulse is relatively large \cdot Must use least C1=4.7µF(ceramic capacitor) capacitor & R1=4.7~10\Omega for the decoupling between VDD and GND and place the capacitor as close to the IC as Possible.

Figure 2, Typical Application Circuit Of OCH2987

Ordering Information

Part Number	Output Current	Package Type	Packing Qty	B _{OP} (Gauss)	B _{RP} (Gauss)	Temperature	Eco Plan	Lead
OCH2987MD	350mA	SIP-4L	1000pcs /Bag	25(Typ.)	-25(Typ.)	-40 ~ 125℃	ROHS	Cu

Block Diagram

Figure 3, Block Diagram Of OCH2987

Absolute Maximum Ratings ¹ (T _A =25°C, unless otherwise noted)							
Parameter	Symbol	Rating	Unit				
V _{DD} Pin to GND	V _{DD}	-30 to +30	V				
Continuous Output Current	I _{O(CONT)}	350	mA				
Hold Output Current	I _{O(HOLD)}	700	mA				
Peak Output Current	I _{O(PEAK)}	1000	mA				
Junction temperature	TJ	160	°C				
Storage Temperature Range	Ts	-55 to +150	°C				
Maximum Soldering Temperature (at leads, 10 sec)	TLEAD	300	°C				

Recommended Operating Conditions²

Parameter		Symbol	Rating	Unit
V _{DD} Pin Voltage to G	V _{DD}	3 to 24	V	
Operating Temperature Bange	I _{O(CONT)} <250mA	T _{OP}	-40 to +125	°C
Operating remperature Range	IO(CONT)>250mA	T _{OP1}	-40 to +85	°C

Note2: Stresses above those listed in absolute maximum ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one absolute maximum rating should be applied at any one time.

3: The device is not guaranteed to function outside of its operating conditions.

Electrical Characteristics

Typical values are at T_A = +25 °C, V_{DD} =12V, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Supply						
V _{DD}	Input Voltage		3	-	24	V
IDD	Supply Current	Output Open	-	2.45	5	mA
Output					_	_
R _{DS(ON)}	Output On-Resistance	I ₀ =0.3A	-	2.7	-	Ω
Protection						
Ton	Locked Protection On Time		-	0.3	-	Sec
TOFF	Locked Protection Off Time		-	3	-	Sec
R _{duty}	Locked Protection Duty Ratio	T _{OFF} /T _{ON}	-	10	-	-
TSD	Thermal Shutdown Temperature		150	160	-	°C
TSH	Thermal Shutdown Hystersis		-	30	-	°C
Magnetic Characteristics						
BOP	Operating Point		5	25	45	Gauss
BRP Release Point			-45	-25	-5	Gauss
BHYS	Hysteresis		-	50	-	Gauss

Driver Output VS Magnetic Pole

Parameter	Test Conditions	DO	DOB
South Pole	B > BOP	Low	High
North Pole	B < BRP	High	Low

Operating Characteristics

Output Switch Principle

The OCH2987 built in a Hall-effect sensor plane to sense the vertical magnetic flux density (B). There are two output drivers in OCH2987 to drive Single-phase DC brushless fan or motor. When the South pole magnetic field is close to the IC marking surface and the magnetic flux density higher than operate point (B_{OP}), the DO pin output will turned to Low and the DOB pin output will turned to High. When the South pole magnetic field far away the IC marking surface and North pole magnetic field close to the IC marking surface until the magnetic flux density higher than release point (B_{RP}), the DO pin output will turned to High and the DOB pin output will turned to low.

Hall Sensor Location

Orientation	Value	Unit
Х	1.85	mm
Y	1.35	mm

SOP-8F The Figure 5, hall sensor location, where marks the IC number.

Marking Information

 Package Information
 (1) SIP-4L (Unit: mm)

(2) SOP-8F

Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	Min.	Norm.	Max.	Min.	Norm.	Max.
Α	1.350	1.550	1.750	0.053	0.061	0.069
A1	0.100	0.175	0.250	0.004	0.007	0.010
A2	1.350	1.450	1.550	0.053	0.057	0.061
b	0.330	0.420	0.510	0.013	0.017	0.020
С	0.170	0.210	0.250	0.006	0.008	0.010
D	4.700	4.900	5.100	0.185	0.192	0.200
E	3.800	3.900	4.000	0.150	0.154	0.157
E1	5.800	6.000	6.200	0.228	0.236	0.244
е	1.270 (BSC)			0.050 (BSC)		

Packing Information

(1) SIP-4L

- 1. Packing type: Bag
- 2. Packing minimum: 1000pcs/Bag

(2) SOP-8F

Package Type	Carrier Width(W)	Pitch(P)	Reel Size(D)	Packing Minimum
SOP-8L/SOP-8F	12.0±0.1 mm	4.0±0.1 mm	330±1 mm	3500 Pcs

Note: Carrier Tape Dimension, Reel Size and Packing Minimum

IMPORTANT NOTICE

Orient-Chip Semiconductor Co., Ltd (OCS) and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. These separate provision won't be provided.