

P.O. BOX 3389

CHARLOTTESVILLE, VIRGINIA 22903

PHONE: (804) 295-3101 FAX: (804) 977-1849

www.isotemp.com

CRYSTAL OSCILLATOR SPECIFICATION

This specification defines the operating characteristics of an ovenized crystal oscillator. Long term stability is assured through use of premium components.

REV.	DESCRIPTION OF REVISION	REQ. BY	DWN. BY	DATE
_		TST	DWR	11-27-96
A	Updated specification to ISOTEMP catalogue OCXO 143-1, except Rectangular output.	TST	TST	05-08-98
В	Changed PPM values to scientific notation. 2.5. was < ±0.1 PPM in 3 minutes @ +25°C (referenced to 4 hours), 2.6. was < -90 dBc @ 10 Hz		TST	07-24-00
С	Added pin information to 3. 4. and 5. Added Notes 1 & 2.	TST	TST	12-11-00

ISOTEMP RESEARCH INC.	CODE ID.	PART NO.	PAGE OF	' TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, VA. USA	31785	OCXO 143-11	1	3	114-703	С

OCXO 143-11

1.	OUTPUT 1.1. Frequency 1.2. Waveform 1.3. Level 1.4. Load 1.5. Duty cycle 1.6. Spurious	10.000 MHz Rectangular HCMOS 20 pF 40% to 60% @ +2.5 VDC < -60 dBc
2.	FREQUENCY STABILITY 2.1. Ambient 2.2. Aging a. At time of shipment b. After indefinite storage i. Daily ii. Yearly iii. 10 years 2.3. Voltage 2.4. Short term 2.5. Warm-up 2.6. Phase noise	<pre>< $\pm 1 \times 10^{-7}$ from 0°C to +70°C (referenced to +25°C) < $\pm 1 \times 10^{-8}$/day < $\pm 1 \times 10^{-8}$ after 30 days < $\pm 1 \times 10^{-6}$ < $\pm 4 \times 10^{-6}$ < $\pm 3 \times 10^{-8} / \pm 5 \%$ change < $1 \times 10^{-9} / 1$ second root Allan variance < $\pm 1 \times 10^{-7}$ in 3 minutes @ +25°C (referenced to 1 hour)</pre>
	a. @ 10 Hz b. @ 100 Hz c. @ 1 kHz d. @ 10 kHz	< -95 dBc < -120 dBc < -145 dBc < -150 dBc
3.	ELECTRICAL FREQUENCY ADJUSTMENT (PIN 3.1. Range 3.2. Control	= "VCO INPUT") > $\pm 10 \times 10^{-6}$ < $\pm 20 \times 10^{-6}$ 0 VDC to Vref (+4 VDC) or a 10 k Ω potentiometer connected between the "REFERENCE VOLTAGE" pin and "0 VOLTS & CASE" pin with wiper connected to "VCO INPUT" pin.
	3.3. Slope3.4. Center 3.5. Linearity3.6. Input impedance3.6. Input impedance3.7. Input impedance3.8. Input impedance3.9. Input impedance3.9	Positive +2 VDC ±0.4 VDC (control voltage at which nominal frequency occurs at time of shipment) < $\pm 10\%$ > 50 k Ω

	CODE ID.	PART NO.	PAGE OF	TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, VA. USA	31785	OCXO 143-11	2	3	114-703	С

OCXO 143-11

4. INPUT POWER (PIN = "+VDC")

4.1. Voltage +5 VDC ±5%

4.2. Current < 700 mA @ turn on 4.3. Steady state < 1.5 Watts @ +25°C

5. REFERENCE VOLTAGE (PIN = "REFERENCE VOLTAGE"), an output

5.1. Voltage +4 VDC ±5%

5.2. Available current ≤ 1 mA

5.3. Temperature stability $< \pm 0.010 \text{ VDC}$

(Over temperature range in 2.1.)

6. ENVIRONMENTAL

6.1. Storage temperature -55°C to +85°C

6.2. Vibration (non-operating) MIL-STD-202F Method 201A. (0.06"

Total p-p, 10 to 55 Hz)

6.3. Shock (non-operating) MIL-STD-202F, Method 213B, Test

Condition J.

(30 g, 11 ms half-sine)

6.4. Seal MIL-STD-202F, Method 112C, Test

Condition D.

7. MECHANICAL

7.1. Applicable series OCXO 143 series

7.2. Model number OCXO 143-11

7.3. Outline drawing 125-502

NOTES:

1. This unit is available with Sine wave output as OCXO 143-1.

2. The original package height was nominally 0.400 inches tall. All units manufactured after 12-11-2000 will nominally be 0.460 inches tall. This new height is within the maximum package height of 0.500 inches called out on outline drawing 125-502.

ISOTEMP RESEARCH INC.	CODE ID.	PART NO.	PAGE OF	TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, VA. USA	31785	OCXO 143-11	3	3	114-703	С

(VIEW FROM TOP)

PIN CONNECTIONS				
PIN	FUNCTION			
1	VCO INPUT			
(See Note 1)	NOT CONNECTED			
2	REFERENCE VOLTAGE			
(See Note 1)	NOT CONNECTED			
3	+VDC			
4	R.F. OUTPUT			
5	0 VOLTS & CASE			

Note 1. If the specification does not specify parameters for PIN1 and/or PIN2 then that respective PIN is NOT internally CONNECTED.

INCH mm (REFERENCE ONLY)

DWG: REV: E SHT: 1 C SOTEMP RESEARCH INC. **OSCILLATORS** Charlottesville, Virgina USA CODE I.D. NO. SCALE: 1.5:1 NAME: OUTLINE DRAWING DATE: 10-31-1996 읶 31785 (TCXO 65/OCXO 143 SERIES) DWN. BY: JAC APPR'D. BY: DAG Е **TOLERANCES** LRB ADDED METRIC DIMENSIONING. DAG 12-03-01 UNLESS OTHERWISE SPECIFIED: ANGES: ±1 DEGREE FRACTIONS: ±1/32 INCH DECIMALS: .XX \pm .015, .XXX \pm .010 INCH MATERIAL: COLD ROLLED STEEL FINISH: BRIGHT NICKEL MARK: LABEL LET **REVISION** APP DATE