SPECIFICATION

PART NO.: OEL9M1002-L4-E

This specification may be changed without any notice in order to improve performance or quality etc.

Please contact OLED R&D department TRULY Semiconductors LTD. for updated specification and product status before designing for this product or releasing the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRU	/LY®信利	Customer	
Written by	Zhang Jingang	App	roved by
Checked by	LI Liumin		
Approved by	ZhangWeicang		

TRULY[®]信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0

REVISION HISTORY

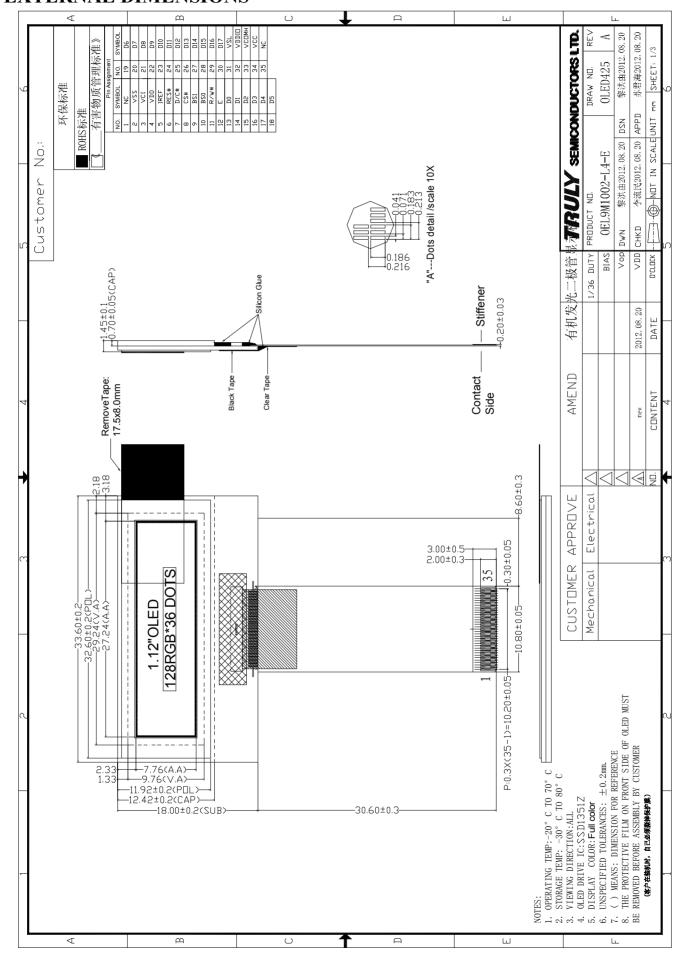
Rev.	Contents	Date
1.0	First release.	2012-09-18

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	1.12	Inch
2	Resolution	128(W)*RGB * 36(H)	Dots
3	Active Area	27.24(W) x 7.76(H)	mm ²
4	Outline Dimension (Panel)	33.36(W) x 18.00(H)	mm ²
5	Pixel Pitch	0.213(W) x 0.216(H)	mm ²
6	Pixel Size	0.183(W) x 0.186(H)	mm ²
7	Driver IC	SSD1351Z	-
8	Display Color	65K / 262K	-
9	Interface	8/16/18-bit Parallel / 3,4wire-SPI	-
10	IC package type	COG	-
11	Thickness	1.45 ± 0.1	mm
12	Weight	≦2.0	g
13	Duty	1/36	-

■ ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to VSS


Ite	ems	Symbol	Min	Тур.	Max	Unit
I/O Power		VDDIO	-0.5	-	V_{CI}	V
Supply Low Power		VCI	-0.3	-	4.0	V
Voltage Driving		VCC	-0.5	-	19.0	V
SEG Output Voltage		$ m V_{SEG}$	0	-	VCC	V
COM Outp	out Voltage	V_{COM}	0	-	0.9*V _{CC}	V
Operating Temperature		Тор	-20	-	70	$^{\circ}$
Storage Temperature		Tst	-30	-	80	$^{\circ}\!\mathbb{C}$
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSIONS

■ ELECTRICAL CHARACTERISTICS

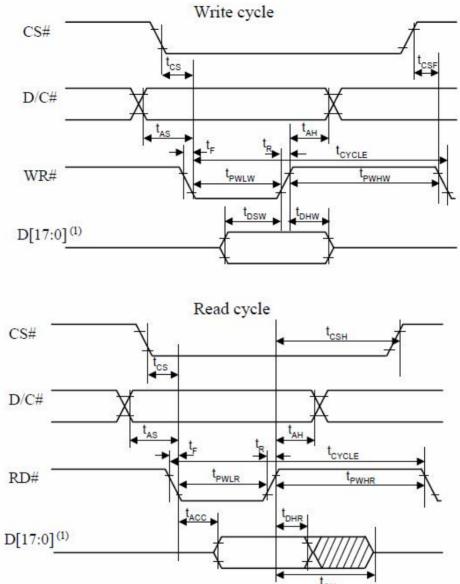
◆ DC Characteristics

Unless otherwise specified, $V_{SS} = 0V$, $V_{CI} = 2.4V$ to 3.5V

 $(Ta = 25^{\circ}C)$

-	Items	Symbol	Min	Тур.	Max	Unit
Cumply	Operating	VCC	10.0	12.0	18.0	V
Supply Voltage	I/O Power	VDDIO	1.65	ı	VCI	V
Voltage	Low Power	VCI	2.4	ı	3.5	V
Input	High Voltage	$V_{ m IH}$	0.8 x VDDIO	-	VDDIO	V
Voltage	Low Voltage	V _{IL}	0	-	0.2 x VDDIO	V
Output	High Voltage	V_{OH}	0.9 x VDDIO	-	VDDIO	V
Voltage	Low Voltage	V _{OL}	0	-	0.1 x VDDIO	V

◆AC Characteristics


♦ 8080-Series MCU Parallel Interface Timing Characteristics

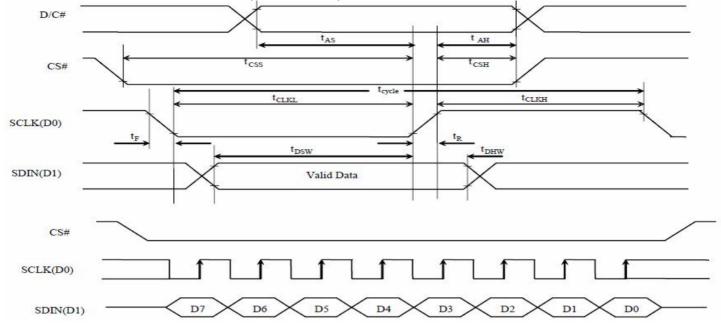
 $(V_{DDIO}-V_{SS}=1.65V-V_{CI}, V_{CI}-V_{SS}=2.4-3.5V, T_A=25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
tCYCLE	Clock Cycle Time	300	-	94	ns
tAS	Address Setup Time	10	355		ns
t _{AH}	Address Hold Time	0	12	i¥	ns
t _{DSW}	Write Data Setup Time	40	8		ns
t _{DHW}	Write Data Hold Time	7	9	14	ns
tDHR	Read Data Hold Time	20	- G	2	ns
toH	Output Disable Time	879	155	46	ns
tACC	Access Time	-	- E	140	ns
tpwlR	Read Low Time	150	-	12	ns
tpWLW	Write Low Time	60		14	ns
tpwhr	Read High Time	60			ns
tpwnw	Write High Time	60		-	ns
t _R	Rise Time		· ·	15	ns
t _F	Fall Time	-	-	15	ns
tcs	Chip select setup time	0	2	ä	ns
t _{CSH}	Chip select hold time to read signal	0		æ	ns
t _{CSF}	Chip select hold time	20	-	100	ns

8080-series parallel interface characteristics

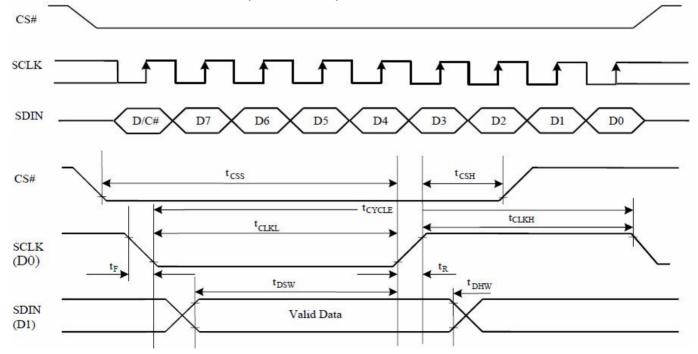
Note

(1) when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.


♦ Serial Interface Timing Characteristics(4-wire SPI)

 $(V_{DDIO}-V_{SS}=1.65V-V_{CI}, V_{CI}-V_{SS}=2.4-3.5V, T_{A}=25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	220	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t _{AH}	Address Hold Time	42	35	8.79	ns
tcss	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	· -	ns
t _{DHW}	Write Data Hold Time	20	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
tclkh	Clock High Time	20	-		ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time		-	15	ns



Serial Interface Timing Characteristics (3-wire SPI): $(V_{DDIO}\text{-}\ V_{SS}=1.65\text{V-}\ V_{CI},\ V_{CI}\text{-}\ V_{SS}=2.4\text{-}3.5\text{V},\ T_A=25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
tcycle	Clock Cycle Time	220		-	ns
t _{CSS}	Chip Select Setup Time	20	(15)	9574	ns
t _{CSH}	Chip Select Hold Time	44	7 <u>~</u>	W-1	ns
tosw	Write Data Setup Time	15	-	-	ns
t _{DHW}	Write Data Hold Time	20	(15)	9574	ns
tCLKL	Clock Low Time	20	1/2	1/2	ns
t _{CLKH}	Clock High Time	20		-	ns
t _R	Rise Time	-	(15)	15	ns
tF	Fall Time	-	1 12	15	ns

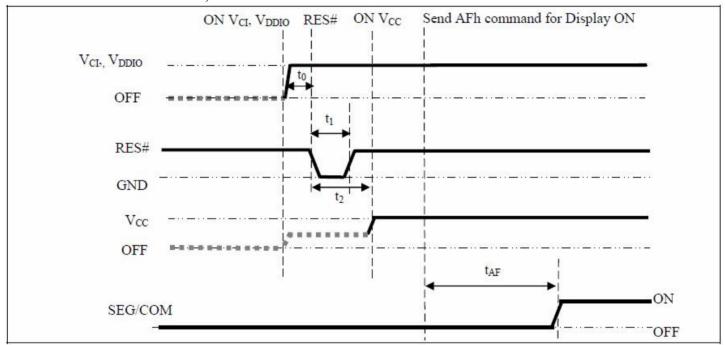
Serial interface characteristics(3-wire SPI)

◆Data bus to Driver IC RAM mapping under different input mode

Write Data bus usage under different bus width and color depth mode:

	Write Data	o			Ye'					var III III	Data	bus					es III e			
Bus width	Color Depth	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	Dl	D 0
8 bits/Serial	65k	lst	X	X	X	X	X	X	X	X	X	X	C4	C ₃	C ₂	Cı	Co	B 5	B4	B ₃
o bits/ot mai	OUR	2nd	X	X	X	X	X	X	X	X	X	X	B 2	Bı	B ₀	A4	Аз	A ₂	Aı	Αo
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C ₄	C ₃	C ₂	Cı	C ₀
8 bits/Serial	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	B ₅	B4	B ₃	B ₂	Bı	B ₀
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A 5	A4	Аз	A ₂	Aı	Ao
16 bits	65k		X	X	C4	C ₃	C ₂	Cı	C ₀	B ₅	B ₄	B ₃	\mathbf{B}_2	B ₁	B ₀	A4	A3	A ₂	A_1	A_0
16 bits	262k	lst	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C ₄	C ₃	C ₂	Cı	C ₀
10 bits	format 1	2nd	X	X	X	X	B 5	B4	Вз	B 2	Bı	B ₀	X	X	A 5	A4	Аз	A ₂	Aı	Αo
		lst	X	X	X	X	C15	C14	C13	C12	C11	C10	X	X	B15	B14	B13	B12	B11	B10
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A12	A1 ₁	A10	X	X	C25	C24	C2 ₃	C22	C21	C20
		3rd	X	X	X	X	B25	B24	B2 ₃	B2 ₂	B21	B20	X	X	A25	A24	A23	A22	A21	A20
18 bits	262k		C5	C4	C ₃	C ₂	Cı	Co	Bs	B4	Вз	B ₂	Bı	Bo	A5	A4	Аз	A ₂	Aı	Αo

Read Data bus usage under different bus width and color depth mode:

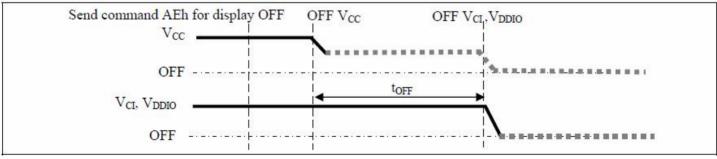

	Read Data	9									Data	bus								
Bus width	Color Deptl	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	Dl	D 0
8 bits	65k	1st	X	X	X	X	X	X	X	X	X	X	C4	C3	C2	Cı	Co	B 5	B4	Вз
o orts	USK	2nd	X	X	X	X	X	X	X	X	X	X	B ₂	Bı	B ₀	A ₄	A3	A ₂	A_1	A ₀
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C4	C3	C ₂	Cı	Co
8 bits	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	B 5	B4	Вз	B ₂	Bı	Bo
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A5	A ₄	A3	A ₂	A_1	A ₀
16 bits	65k		X	X	C ₄	C ₃	C ₂	Cı	C ₀	B ₅	B ₄	B ₃	B ₂	Bı	B ₀	A ₄	A ₃	A_2	A_1	A ₀
16 bits	262k	lst	X	X	X	X	X	X	X	X	X	X	X	X	C5	C4	C ₃	C ₂	Cı	Co
10 bits	format 1	2nd	X	X	X	X	B 5	B4	Вз	B 2	Bı	Bo	X	X	A 5	A4	Аз	A ₂	Aı	Ao
		lst	X	X	X	X	C15	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C10	X	X	B15	B14	B13	B12	B1 ₁	B10
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A 12	A11	A10	X	X	C25	C24	C23	C22	C21	C20
	3875 D. T. D. S.	3rd	X	X	X	X	B25	B24	B23	B22	B21	B20	X	X	A25	A24	A23	A22	A21	A20
18 bits	262k		C5	C4	C3	C ₂	Cı	Co	Bs	B4	Вз	B ₂	Bı	Bo	A5	A ₄	Аз	A ₂	Aı	Ao

■ TIMING OF POWER SUPPLY

The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume VCI and VDDIO are at the same voltage level).

♦ *Power ON sequence*:

- 1. Power ON VCI, VDDIO.
- 2. After VCI, VDDIO become stable, set wait time at least 1ms (t0) for internal VDD become stable. Then set RES# pin LOW (logic low) for at least 2us (t1) (4) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 2us (t2). Then Power ON VCC⁽¹⁾.
- 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (tAF).
 - 5. After VCI become stable, wait for at least 300ms to send command.



♦ *Power OFF sequence*:

- 1. Send command AEh for display OFF.
- 2. Power OFF VCC. (1), (2)
- 3. Wait for tOFF. Power OFF VCI, VDDIO.

(where Minimum tOFF=0ms (3), Typical tOFF=100ms)

Power off sequence

Note:

- (1) Since an ESD protection circuit is connected between VCI, VDDIO and VCC, VCC becomes lower than VCI whenever VCI,
- VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in Figure above.
- (2)VCC should be kept float (disable) when it is OFF.
- (3) VCI, VDDIO should not be Power OFF before VCC Power OFF.
- (4) The register values are reset after t1.
- (5) Power pins (VCI, VDDIO and VCC) can never be pulled to ground under any circumstance.

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Iten	ns	Symbol	Min.	Тур.	Max.	Unit	Remark
Lumin	ance	L	75	90*	-	cd/m ²	With Polarizer All pixels on
Power Consumption		P	ı	70	95	mW	40% pixels On
Frame Fre	equency	Fr	ı	120	-	Hz	-
		CIE x CIE y	0.26 0.29	0.30 0.33	0.34 0.37		White
Color Coo	andinata	CIE x CIE y	0.60 0.31	0.64 0.35	0.68 0.39	CIE1931	Red
Color Coo	ordinate	CIE x CIE y	0.27 0.56	0.31 0.60	0.35 0.64		Green
		CIE x CIE y	0.11 0.11	0.15 0.15	0.19 0.19		Blue
Response	Rise	Tr	-	-	0.02	ms	-
Time	Decay	Td	-	-	0.02	ms	-
Contrast Ratio*		Cr	5000:1	-	-	-	With Polarizer
Viewing	Angle	Δ θ	170	-	-	Degree	-
Operating Life Time*		Тор	10,000	-	-	Hours	-

Note:

1. 90cd/m² test condition:

Voltage driving: VCI=3.0V, VCC=12.0V;

Contrast Setting:

Master contrast register value is 0x02; Blue contrast register value is 0xA4; Green contrast register value is 0x71; Red contrast register value is 0x5F;

2. **Contrast ratio** is defined as follows:

Contrast ratio = Photo – detector output with OLED being "white" Photo – detector output with OLED being "black"

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternatively displayed) (The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	NC(GND)	No connection or connected to GND
2	VSS	Ground
3	VCI	Low voltage power supply VCI must always be equal to or higher than VDDIO.
4	VDD	Power supply for core logic operation. A capacitor is necessary to connected between
5	IREF	This pin is the segment output current reference pin. A resistor should be connected between this pin and VSS.
6	RES#	reset signal input, low active
7	D/C#	Data/Command control pin connecting to the MCU
8	CS#	The chip select pin. Active low.
9	BS1	MCU bus interface selection pins.
10	BS0	-
11	WR#	When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#)selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin R/W (WR#) must be connected to VSS.
12	RD#	When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin E(RD#) must be connected to VSS.
13- 30	D0-D17	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)
31	VSL	This is segment output current reference pin. A resistor should be connected between this pin and VSS to maintain the IREF current at 10uA.
32	VDDIO	Power supply for interface logic level. It should match with the MCU interface
33	VCOMH	COM signal deselected voltage level. A capacitor should be connected between this pin and VSS.
34	VCC	Power supply for panel driving voltage. This is also the most positive power voltage
35	VSS	Ground

MCU Bus Interface Pin Selection:

Select appropriate logic setting as described in the following table. BS3 and BS2 are command programmable (by command ABh). [reset = 00]. BS1 and BS0 are Pin select.

BS[3:0]	INTTERFACE
XX00	4 line SPI
XX01	3 line SPI
0011	8-bit 6800 parallel
0010	8-bit 8080 parallel
0111	16-bit 6800 parallel
0110	16-bit 8080 parallel
1111	18-bit 6800 parallel
1110	18-bit 8080 parallel

Note

- (1) 0 is connected to VSS
- (2) 1 is connected to VDDIO

■ COMMAND TABLE

	mental (1								
D/C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0 1 1	15 A[6:0] B[6:0]	0 *	0 A ₆ B ₆	0 A ₅ B ₅		0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Column Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0 1 1 1	75 A[6:0] B[6:0]	0 * *	1 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Row Address Write RAM	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127 Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Command Read RAM Command	Enable MCU to read Data from RAM
0 1	A0 A[7:0]	1 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	0 A ₀	Set Re-map / Color Depth (Display RAM to Panel)	A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment A[1]=0b, Column address 0 is mapped to SEG0 [reset] A[1]=1b, Column address 127 is mapped to SEG0 A[2]=0b, Color sequence: A → B → C [reset] A[2]=1b, Color sequence is swapped: C → B → A A[3]=0b, Reserved A[3]=1b, Reserved A[4]=0b, Scan from COM0 to COM[N −1] [reset] A[4]=1b, Scan from COM[N-1] to COM0. Where N is the Multiplex ratio. A[5]=0b, Disable COM Split Odd Even A[5]=1b, Enable COM Split Odd Even [reset] A[7:6] Set Color Depth, 00b / 01b: 65k color [reset] 10b: 262k color 11b 262k color, 16-bit format 2

Funda D/C#	Hex	D7	D6	D5	D4	D3	D2	Da	Do	Command	Description	
THE PERSON OF	5 8	1	0		-	0	0	0	3	Command	Set vertical scroll by RAM from 0~127. [reset=00h]	
0	A1 A[6:0]	*	A ₆	1 A ₅	0 A ₄	A ₃	A ₂	-	1 A ₀	Set Display Start Line	Set vertical seron by RAIVI from 0~127. [reset=00ff]	
0	A2	1	0	1	0	0	0	1	0		Set vertical scroll by Row from 0-127. [reset=60h]	
1	A[6:0]	*	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Set Display Offset	Note (1) This command is locked by Command FDh by default. Tunlock it, please refer to Command FDh.	
0	A4~A7	1	0	1	0	0	1	X_1	X_0		A4h: All OFF	
										Set Display Mode	A5h: All ON (All pixels have GS63) A6h: Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62,)	
0	AB A[7:0]	1 A ₇	0 A ₆	1 0	0	1 0	0 0	1 0	1 A ₀	Function Selection	A[0]=0b, Disable internal V _{DD} regulator (for power save during sleep mode only) A[0]=1b, Enable internal V _{DD} regulator [reset] A[7:6]=00b, Select 8-bit parallel interface [reset] A[7:6]=01b, Select 16-bit parallel interface A[7:6]=11b, Select 18-bit parallel interface	
0	AD	1	0	1	0	1	1	0	1	NOP	Command for no operation.	
0	AE~AF	1	0	1	0	1	1	1	X_0	Set Sleep mode ON/OFF	AEh = Sleep mode On (Display OFF) AFh = Sleep mode OFF (Display ON)	
0	B1	1	0	1	1	0	0	0	1		A[3:0] Phase 1 period of 5~31 DCLK(s) clocks	
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A_1	9295	Set Reset (Phase 1) / Pre-charge (Phase 2) period	[reset=0010b] A[3:0]: 0-1 invalid 2 = 5 DCLKs 3 = 7 DCLKs : 15 = 31DCLKs A[7:4] Phase 2 period of 3~15 DCLK(s) clocks [reset=1000b] A[7:4]: 0-2 invalid 3 = 3 DCLKs 4 = 4 DCLKs : 15 =15DCLKs Note (1) 0 DCLK is invalid in phase 1 & phase 2 (2) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh.	

Funda	mental (Com	man	d Ta	ble	A 55	A	A 5					
D/C#	Hex	D 7	D 6	D5	D4	D3	D2	D2	D0	Command	Description		
0 1 1 1	B2 A[7:0] B[7:0] C[7:0]	1 A ₇ 0 0	0 A ₆ 0	1 A ₅ 0 0	1 A ₄ 0 0	0 A ₃ 0 0	0 A ₂ 0 0	1 A ₁ 0 0	0 A ₀ 0 0	Display Enhancement	A[7:0] = 00h, B[7:0] = 00h, C[7:0] = 00h normal [reset] A[7:0] = A4h, B[7:0] = 00h, C[7:0] = 00h enhance display performance		
0 1	B3 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Front Clock Divider (DivSet)/ Oscillator Frequency	A[3:0] [reset=0001], divide by DIVSET where A[3:0] DIVSET 0000 divide by 1 0001 divide by 2 0010 divide by 4 0011 divide by 8 0100 divide by 16 0101 divide by 32 0110 divide by 42 1000 divide by 512 1000 divide by 512 1010 divide by 512 1010 divide by 1024 >=1011 invalid A[7:4] Oscillator frequency, frequency increases as level increases [reset=1101b] Note (1) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh.		
0 1 1 1	B4 A[7:0] B[7:0] C[7:0]	1 1 1 0	0 0 0 1	1 1 1 0	1 0 1	0 0 0	1 0 1	0 A ₁ 0 0	0 A ₀ 1 1	Set Segment Low Voltage (VSL)	A[1:0]=00 External VSL [reset] A[1:0]=01,10,11 are invalid Note (1) When external VSL is enabled, in order to avoid distortion in display pattern, an external circuit is needed to connect between VSL and V _{SS} as shown in Figure 14-1		
0 1	B5 A[3:0]	1 *	0 *	1 *	1 *	0 A ₃	1 A ₂	0 A ₁	1 A ₀	Set GPIO	A[1:0] GPIO0: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH		
0	B6 A[3:0]	1 *	0 *	1 *	1 *	0 A ₃	1 A ₂	0 A ₁	0 A ₀	Set Second Pre- charge Period	A[3:0] Set Second Pre-charge Period 0000b invalid 0001b 1 DCLKS 0010b 2 DCLKS 1000 8 DCLKS [reset] 1111 15 DCLKS		

)/C#	Hex	D 7	D 6	D5	D4	D3	D2	D2	D0	Command	Description		
0	B8	1	0	1	1	1	0	0	0		The next 63 data bytes define Gray Scale (GS) Table by		
1		A 17	A16	A15	A14	A 12	A12	A1,	A 1 o		setting the gray scale pulse width in unit of DCLK's		
1	A2[7:0]							100	1 1 1 1		(ranges from 0d ~ 180d)		
1	riz[/.u]	A2/	7120	923	A24	7425	142	A21	A20		1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	**	59	394	315	315	S-	3.0	33-17			A1[7:0]: Gamma Setting for GS1,		
1	18	59	336	315	335	5-	3.4		•		A2[7:0]: Gamma Setting for GS2,		
1	134 A 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	59 Marketta	394 2474-0000	PER VOLUMEN	PE Secretaria	55	25-7 (24-52)	35-7	100		1 (2)[7,0] (3 (2) (2) (3 (2) (2) (3 (2) (2) (3 (2) (2) (3 (2) (2) (2) (3 (2) (2) (2) (2) (3 (2) (2) (2) (2) (3 (2) (2) (2) (2) (3 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		
1	A62[7:0]									Look Un Table	A62[7:0]: Gamma Setting for GS62, A63[7:0]: Gamma Setting for GS63		
1	A63[7:0]	A637	A636	A635	A634	A633	A63 ₂	A631	A63 ₀	for Gray Scale	A05[7.0]. Gainina Setting for G505		
										Pulse width			
											Note		
											(1) 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3.		
											< Setting of GS62 < Setting of GS63		
											(2) GS0 has only pre-charge but no current drive stages.		
											(3) GS1 can be set as only pre-charge but no current drive		
											stage by input gamma setting for GS1 equals 0.		
0	B 9	1	0	1	1	1	0	0	1	9	Reset to default Look Up Table:		
U	В9	1	U	1	1	1	U	U	1		GS1 = 0 DCLK		
											GS2 = 2 DCLK		
											GS3 = 4 DCLK		
										Use Built-in	GS4 = 6 DCLK GS62 = 122 DCLK		
										Linear LUT			
										[reset= linear]			
											GS63 = 124 DCLK		
0	BB	1	0	1	1	1	0	1	1	9	Set pre-charge voltage level.[reset = 17h]		
1	A[4:0]	0	0	0	A_4	1,500	0.58	2070	A_0		set pre emage voltage reven[reset 17.11]		
-	11[110]				4	5	112	1	110		A[4:0] Hex code pre-charge voltage		
											00000 00h 0.20 x V _{CC}		
										0.5.1	: : :		
										Set Pre-charge	11111 1Fh 0.60 x V _{CC}		
										voltage			
											Note		
											(1) This command is locked by Command FDh by default.		
											unlock it, please refer to Command FDh.		
											5. 4		
0	BE	1	0	1	1	1	1	1	0		Set COM deselect voltage level [reset = 05h]		
1	A[2:0]	0	0	0	0	0	A_2	A_1	A ₀		A[2,0] H		
											A[2:0] Hex code V_COMH		
											: : : :		
											101 05h 0.82 x V _{CC} [reset]		
										Set V _{COMH}			
										Voltage	111 07h 0.86 x V _{CC}		
											Note		
											(1) This command is locked by Command FDh by default.		
											unlock it, please refer to Command FDh.		
		1			1		1				THE PROPERTY OF THE PROPERTY		

TRULY®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Sept.18, 2012

Funda	mental (Com	man	d Ta	ble							
D / C #	Hex	D 7	D 6	D5	D4	D3	D2	D2	D0	Command	Description	
0 1 1 1	C1 A[7:0] B[7:0] C[7:0]	B ₇	1 A ₆ B ₆ C ₆	B ₅	0 A ₄ B ₄ C ₄	0 A ₃ B ₃ C ₃	0 A ₂ B ₂ C ₂	0 A ₁ B ₁ C ₁	1 A ₀ B ₀ C ₀	Set Contrast Current for Color A,B,C	A[7:0] Contrast Value Color A [reset=10001010b] B[7:0] Contrast Value Color B [reset=01010001b] C[7:0] Contrast Value Color C [reset=10001010b]	
0 1	C7 A[3:0]	1 *	1 *	0 *	0 *	0 A ₃	1 A ₂	1 A ₁	1 A ₀	Master Contrast Current Control	â.	
0	CA A[6:0]	1 0	1 A ₆	0 A ₅	0 A ₄	1 A ₃	0 A ₂	1 A ₁	0 A ₀	Set MUX Ratio	A[6:0] MUX ratio 16MUX ~ 128MUX, [reset=127], (Range from 15 to 127)	
0	D1	1	0	1	0	1	1	0	1	NOP	Command for No Operation	
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation	
0 1	FD A[7:0]	1 A ₇	1 A ₆	1 A ₅	1 A ₄	1 A ₃	1 A ₂	0 A ₁	1 A ₀	Set Command Lock	A[7:0]: MCU protection status [reset = 12h] A[7:0] = 12b, Unlock OLED driver IC MCU interface from entering command [reset] A[7:0] = 16b, Lock OLED driver IC MCU interface from entering command	

Graphic Acceleration Command List

Grap	hic acc	eler	ation	ı cor	nma	nd	86		8	8	*
D/C#	Hex	D 7	D 6	D5	D4	D3	D2	D2	D0	Command	Description
0 1 1 1 1	96 A[7:0] B[6:0] C[7:0] D[6:0] E[1:0]	1 A ₇ 0 C ₇	0	0 A ₅ B ₅ C ₅	1 A ₄ B ₄ C ₄	0 A ₃ B ₃ C ₃	1	1 A ₁ B ₁ C ₁	0 A ₀ B ₀ C ₀ D ₀ E ₀	Horizontal Scroll	A[7:0] = 00000000b No scrolling A[7:0] = 00000001b to 00111111b Scroll towards SEG127 with 1 column offset A[7:0] = 01000000b to 11111111b Scroll towards SEG0 with 1 column offset B[6:0]: start row address C[7:0]: number of rows to be H-scrolled B+C <= 128 D[6:0]: Reserved (reset=00h) E[1:0]: scrolling time interval 00b test mode 01b normal 10b slow 11b slowest Note (1) Operates during display ON.
0	9E	1	0	0	1	1	1	1	0	Stop Moving	Stop horizontal scroll Note (1) After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten
0	9F	1	0	0	1	1	1	1	1	Start Moving	Start horizontal scroll

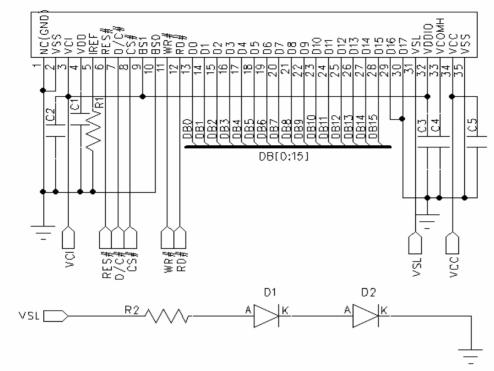
Note

⁽¹⁾ After executed the graphic command, waiting time is required for update GDDRAM content.

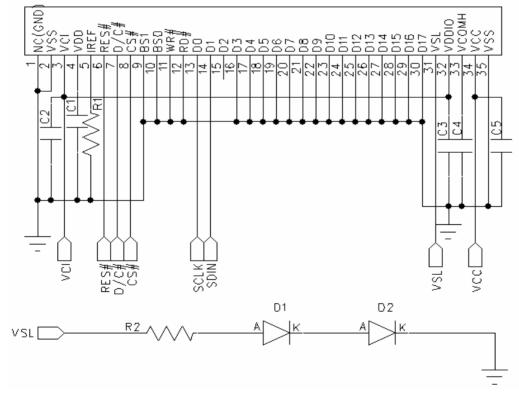
VCI =2.4~3.5V, waiting time = 500ns/pixel. (2) "*" stands for "Don't care".

■ INITIALIZATION CODE

```
void InitOLED SSD1351()
WMOLED COM(0xFD); WMOLED DATA(0xB1); //SET COMMAND LOCK
                                         //SET DISPLAY OFF
WMOLED COM(0xAE);
WMOLED COM(0x15); WMOLED DATA(0x00); // Set column address
                   WMOLED DATA(0x7F);
WMOLED_COM(0x75); WMOLED_DATA(0x00); // Set row address
                   WMOLED DATA(0x23);
WMOLED COM(0xA0); WMOLED DATA(0x20); // Re map&Depth color
WMOLED COM(0xA1); WMOLED DATA(0x00); // Set display start line
WMOLED COM(0xA2); WMOLED DATA(0x00); // Set display offset
WMOLED COM(0xA6);
                                         // Set display mode
WMOLED COM(0xCA); WMOLED DATA(0x23); // Set multiplex ratio
WMOLED COM(0xB2); WMOLED DATA(0x00); //Display Enhancement
                    WMOLED DATA(0x00);
                    WMOLED DATA(0x00);
WMOLED COM(0xC7); WMOLED DATA(0x02); //Master ContrastCurrent Control
WMOLED COM(0xC1); WMOLED DATA(0xA4); //Contrast Current for Color A,B,C
                    WMOLED DATA(0x71);
                    WMOLED DATA(0x5F);
WMOLED COM(0xAB); WMOLED DATA(0x41); //Function selection:VDD mode(Internal VDD)&
                                         //Interface select(16 Bit Parallel)
WMOLED COM(0xB1); WMOLED DATA(0x82); // Set phase 1 and 2 preiod
WMOLED COM(0xB6); WMOLED DATA(0x06); // Set Second Pre charge Period
WMOLED COM(0xB3); WMOLED DATA(0x11); // Clock divider/ Oscilator Frequency
WMOLED COM(0xB4); WMOLED DATA(0xA0); //Set Segment Low Voltage (VSL)
                    WMOLED DATA(0xE5);
                    WMOLED DATA(0x55);
WMOLED COM(0xBE); WMOLED DATA(0x05); //Set VCOMH=0.82 x VCC
WMOLED COM(0xBB); WMOLED DATA(0x13); // Set Pre-charge voltage
//WMOLED COM(0xB9);
                                          //Enable liner gray scale table
       WMOLED COM(0xB8);
                                         //Set gray scale table
       WMOLED DATA(0x00);
       WMOLED DATA(0x01);
       WMOLED DATA(0x03);
       WMOLED DATA(0x05);
       WMOLED DATA(0x07);
       WMOLED DATA(0x09);
       WMOLED DATA(0x0B);
       WMOLED DATA(0x0D);
       WMOLED DATA(0x0F);
       WMOLED DATA(0x11);
       WMOLED DATA(0x13);
       WMOLED DATA(0x15):
       WMOLED DATA(0x17);
       WMOLED DATA(0x19);
```




```
WMOLED DATA(0x1B);
       WMOLED DATA(0x1D);
       WMOLED DATA(0x1F);
       WMOLED DATA(0x21);
       WMOLED DATA(0x23);
       WMOLED DATA(0x25);
       WMOLED DATA(0x27);
       WMOLED DATA(0x29);
       WMOLED DATA(0x2B);
       WMOLED DATA(0x2D);
       WMOLED DATA(0x2F);
       WMOLED DATA(0x31):
       WMOLED DATA(0x33);
       WMOLED DATA(0x33);
       WMOLED DATA(0x35);
       WMOLED DATA(0x37);
       WMOLED DATA(0x39);
       WMOLED DATA(0x3A);
       WMOLED DATA(0x3C);
       WMOLED DATA(0x3E);
       WMOLED DATA(0x41);
       WMOLED DATA(0x43);
       WMOLED DATA(0x45);
       WMOLED DATA(0x47);
       WMOLED DATA(0x49);
       WMOLED DATA(0x4B);
       WMOLED DATA(0x4D);
       WMOLED DATA(0x4F);
       WMOLED DATA(0x51);
       WMOLED DATA(0x53);
       WMOLED DATA(0x55);
       WMOLED DATA(0x57);
       WMOLED DATA(0x59);
       WMOLED DATA(0x5B);
       WMOLED DATA(0x5D);
       WMOLED DATA(0x5F);
       WMOLED DATA(0x61);
       WMOLED DATA(0x63);
       WMOLED DATA(0x65);
       WMOLED DATA(0x67);
       WMOLED DATA(0x69);
       WMOLED DATA(0x6B);
       WMOLED DATA(0x6D);
       WMOLED DATA(0x6F);
       WMOLED DATA(0x71);
       WMOLED DATA(0x73);
       WMOLED DATA(0x75);
       WMOLED DATA(0x77);
       WMOLED DATA(0x79);
       WMOLED DATA(0x7C);
WMOLED COM(0xAF);
                          //SET DISPLAY ON
Delayms(5);
```



■ SCHEMATIC EXAMPLE

♦16-bit 8080 parallel Interface Application Circuit:

4-wire SPI Application Circuit:

C1, C2, C3:1uF/6V;

C4, C5: 4.7 uF / 25V, tantalum type recommended;

R2: 50ohm/ 1% R1:560Kohm/ 1%;

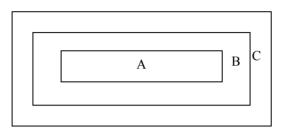
D1, D2: MBR0530T1G

■ RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 			
High Ter	nperature Operating (HTO)	70±2°C, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.			
Low Te	mperature Storage (LTS)	-30±2°C, 200 hours	4. After testing, the change for the mono and area color must be within (+/-0.02, +/-			
Low Ten	nperature Operating (LTO)	-20±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on			
High Tempe	erature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	1931 CIE coordinates. 5. After testing, the change of total current consumption should be			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.				
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic and the electrical defect				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF, 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance> $10M\Omega$).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

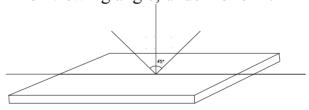
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25±5°C.

♦Inspection Criteria

1 Major defect: AOL= 0.65

Item	Criterion					
E mation De Cont	1. No display or abnormal display is not accepted					
Function Defect	2. Open or short is not accepted.					
	3. Power consumption exceeding the spec is not accepted.					
Outline Dimension	Outline dimension exceeding the spec is not accepted.					
Glass Crack	Glass crack tends to enlarge is not accepted.					

2 Minor Defect : AQL= 1.5

Item	-	Criterion					
	Size ((mm)	Accepted Q	ty			
Spot			Area A + Area B	Area C			
Defect (dimming		Φ≦0.07	Ignored				
and	Y	$0.07 < \Phi \le 0.10$	3				
lighting	X	0.10<Φ≦0.15	1	Ignored			
spot)	 	0.15<Ф	0				
	Note: $\Phi = (x + y) /$	2					
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
Defect	/	W ≤ 0.02	Ignored				
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2				
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored			
line)	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect				
Polarizer Stain	Stain which can be wiped off lightly with a soft cloth or similar cleaning is accepted, otherwise, according to the Spot Defect and the Line Defect.						
	1. If scratch can be s of the Spot Defect ar	een only under non-o					
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
Scratch	/	W ≤ 0.02	Ignore				
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2				
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore			
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0				
	Si	ze	Area A + Area B	Area C			
D 1 .		Φ≦0.20	Ignored				
Polarizer Air Bubble	Y	$0.20 < \Phi \le 0.30$	2				
7 III Duoole	X	$0.30 < \Phi \le 0.50$	1	Ignored			
	**	0.50<Φ	0				

	1 0 1		
	1. On the corner	(mm)	
		X	≤ 1.5
		y	≤ 1.5
		Z	≤ t
	z		
Glass	2. On the bonding edge		
Defect (Glass Chiped)		(mm)	
Cimped)	12	X	≤ a / 4
		y	\leq s / 3 & \leq 0.7
	The state of the s	Z	≤ t
	3. On the other edges		
		(mm)	
		X	≤ a / 8
		y	≤ 0.7
		Z	≤ t
	Note: t: glass thickness; s: pad width; a: the	length of	the edge
TCP Defect	Crack, deep fold and deep pressure mark on		
Pixel Size	The tolerance of display pixel dimension sl the spec	hould be	within ±20% of
Luminance	Refer to the spec or the reference sample		
Color	Refer to the spec or the reference sample		

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

TRULY[®]信利 TRULY SEMICONDUCTORS LTD. Rev : 1.0

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.

2. Soldering time: 3-4 sec.

3. Repeating time: no more than 3 times.

4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material, process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.