

SPECIFICATION

PART NO.: OEL9M5002-Y-E

This specification may be changed without any notice in order to improve performance or quality etc.

Please contact OLED R&D department TRULY Semiconductors LTD. For updated specification and product status before design for this product or release the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRU	/LY®信利	Customer	
Written by WangGui		App	roved by
Checked by	LiLiumin		
Approved by	ZhangWeicang		

REVISION HISTORY

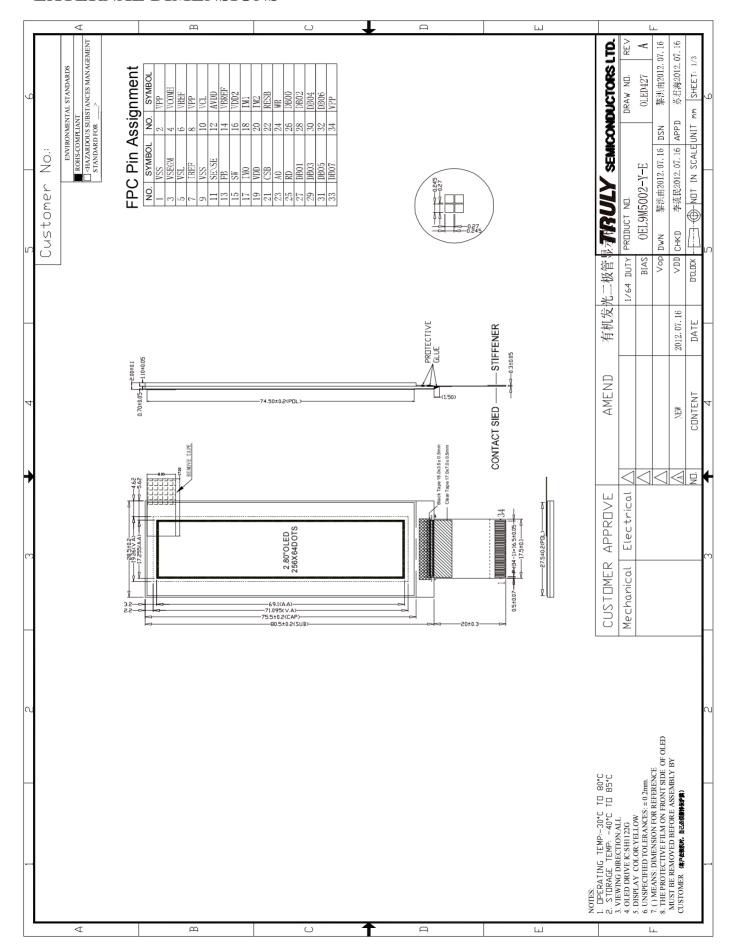
1.0 First Release 2012-10-0	Rev.	Contents	Date 2012-10-06
	1.0	First Release	2012-10-06

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	2.8	Inch
2	Resolution	256(H) x 64(V)	Dots
3	Active Area	17.255 (W) x 69.1(H)	mm ²
4	Outline Dimension (Panel)	28.5 (W) x 80.5(H)	mm ²
5	Pixel Pitch	0.27 (W) x 0.27(H)	mm ²
6	Pixel Size	0.245(W) x 0.245(H)	mm ²
7	Driver IC	SH1122G	-
8	Display Color	Yellow	-
9	Grayscale	4	Bit
10	Interface	8-bit 8080/6800 Parallel, SPI、IIC	-
11	IC package type	COG	-
12	Thickness	2.0±0.1	mm
13	Weight	TBD	g
14	Duty	1/64	-

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$


 $(Ta = 25^{\circ}C)$

Items		Symbol	Min	Тур.	Max	Unit
	I/O	VDD	-0.3	-	3.6	V
Supply Voltage	Logic	VDD2	-0.3	-	3.6	V
Voltage	Driving	VPP	-0.3	-	14.5	V
Operating '	Operating Temperature		-30	-	80	$^{\circ}$
Storage Temperature		Tst	-40	-	85	$^{\circ}$ C
Humidity		-	-	-	90	%RH

Note:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSIONS

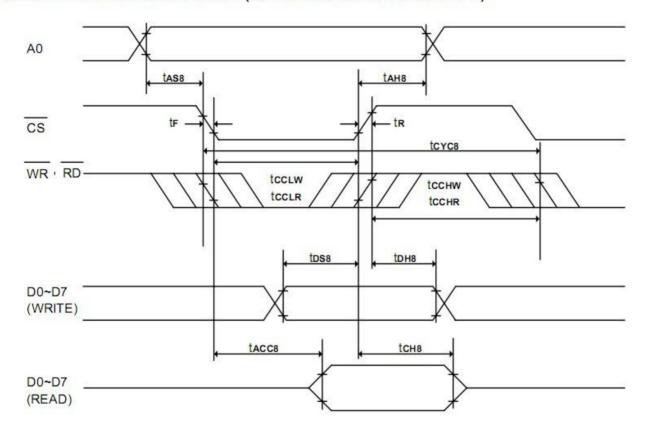
■ ELECTRICAL CHARACTERISTICS

◆DC Characteristics

Unless otherwise specified, $V_{SS} = 0V$, VDD1 = VDD2 = 1.65V to 3.5V. ($Ta = 25^{\circ}C$)

Items		Symbol	Min	Typ.	Max	Unit
I/O		VDD	1.65	-	3.5	V
Supply Voltage	Logic	VDD2	1.65	1	3.5	V
Voltage	Driving	VPP	7.0	-	14	V
Input	High Voltage	V _{IH}	0.8 x VDD	-	VDD	V
Voltage	Low Voltage	$V_{ m IL}$	VSS	1	0.2 x VDD	V
Output	High Voltage	V_{OH}	0.8x VDD	-	VDD	V
Voltage	Low Voltage	$V_{ m OL}$	VSS	-	0.2 x VDD	V

◆AC Characteristics


Use 8080/6800-Series MPU Parallel Interface or Serial Interface

1. 8080 Series MPU Parallel Interface

(VDD1 = VDD2 = 1.65 - 3.5V, TA = +25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	600	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	80	_	(*)	ns	
tDH8	Data hold time	30	_	-	ns	
tcH8	Output disable time	20	-	140	ns	CL = 100pF
tACC8	RD access time		-	280	ns	CL = 100pF
tccLw	Control L pulse width (WR)	200	_	()	ns	
tCCLR	Control L pulse width (RD)	240	-	-	ns	
tcchw	Control H pulse width (WR)	200	=		ns	
tcchr	Control H pulse width (RD)	200	-	-	ns	
tR	Rise time	-	_	30	ns	
tF	Fall time	-	_	30	ns	

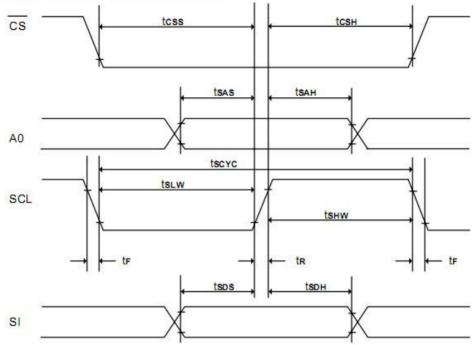
System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

2. 6800 Series MPU Parallel Interface

 $(VDD1 = VDD2 = 1.65 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc6	System cycle time	600	-		ns	
tAS6	Address setup time	0			ns	
tAH6	Address hold time	0			ns	
tDS6	Data setup time	80			ns	
tDH6	Data hold time	30			ns	
tOH6	Output disable time	20	173	140	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	200	173		ns	
tewhr	Enable H pulse width (Read)	240	17.3	(-	ns	
tewLw	Enable L pulse width (Write)	200	17.1		ns	
tEWLR	Enable L pulse width (Read)	200	-	8 S	ns	
tR	Rise time	-		30	ns	
tF	Fall time			30	ns	

System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

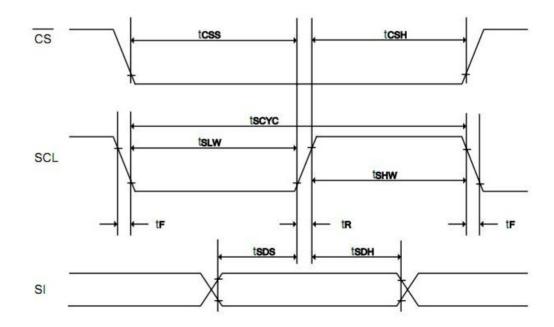


3. 4-Wire Serial Interface

(VDD1 = VDD2 = 1.65 - 3.5V, TA = +25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsas	Address setup time	300			ns	
tsah	Address hold time	300	-	-	ns	
tsps	Data setup time	200		-	ns	
tsdH	Data hold time	200		-	ns	
tcss	CS setup time	240	*	-	ns	
tcsH	CS hold time time	120	-	i e s	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tsLw	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-		30	ns	

System buses Write characteristics 3 (For 4 wire SPI)

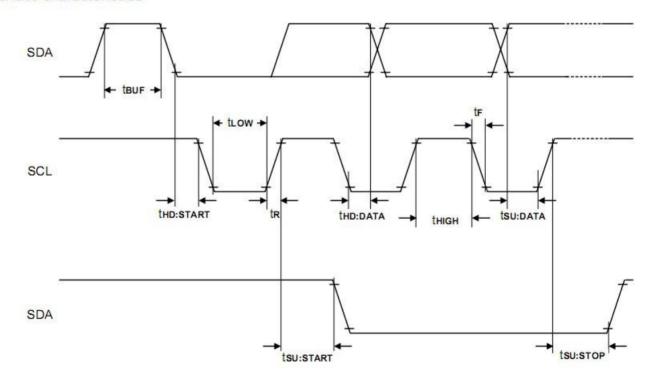


4. 3-Wire Serial Interface

(VDD1 = VDD2 = 1.65 - 3.5V, TA = +25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500		-	ns	
tsps	Data setup time	200	0.00		ns	
tsph	Data hold time	200	(0)	-	ns	
tcss	CS setup time	240		2	ns	
tcsH	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-		ns	
tsLw	Serial clock L pulse width	200	992		ns	
tR	Rise time	-	144	30	ns	
tF	Fall time	343	1985	30	ns	

System buses Write characteristics 4(For 3 wire SPI)



5. IIC Interface

 $(VDD1 = VDD2 = 1.65 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fscL	SCL clock frequency	DC	S#0	400	kHz	
TLOW	SCL clock Low pulse width	1.3	6 . 0	_	uS	
THIGH	SCL clock H pulse width	0.6	6.70	_	uS	
TSU:DATA	data setup time	100	6.70	_	nS	
THD:DATA	data hold time	0	6.70	0.9	uS	
TR	SCL , SDA rise time	20+0.1Cb	6.	300	nS	
TF	SCL , SDA fall time	20+0.1Cb	-	300	nS	
Cb	Capacity load on each bus line	-	-	400	pF	
TSU:START	Setup timefor re-START	0.6	-	-	uS	
THD:START	START Hold time	0.6	-	2	uS	
Tsu:stop	Setup time for STOP	0.6	-	2	uS	
TBUF	Bus free times between STOP and START condition	1.3	S	-	uS	

I²C interface characteristics

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items		Symbol	Min.	Тур.	Max.	Unit	Remark
Operating Lumi	nance	L	85	100*	-	cd/m ²	Yellow
Power Consum	ntion	Р		170	200	mW	30% pixels ON
Fower Consum	риоп	Г	-	170	200	111 VV	$L=100cd/m^2$
Frame Freque	ency	Fr	-	100	-	Hz	-
Color Coordinate	Yellow	CIE x	0.42	0.46	0.50	CIE1931	Darkroom
Color Coordinate	1 CHOW	CIE y	0.47	0.51	0.55	CIET931	Darkitotti
Dognongo Timo	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Ratio*		Cr	10000:1	-	-	-	Darkroom
Viewing Angle		Δθ	160	-	-	Degree	-
Operating Life	Γime*	Тор	30,000	-	-	Hours	$L=100cd/m^2$

Note:

- 1. 100cd/m^2 is based on $V_{DD}=3V$, $V_{PP}=12V$, contrast command setting 0x2F;
- 2. Contrast ratio is defined as follows:

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed) (The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	VSS	Ground
2	VPP	This is the most positive voltage supply pad of the chip
3	VSEGM	This is a pad for the voltage output level for segment pre-charge. A capacitor should be connected between this pad and VSS.
4	VCMOH	This is a pad for the voltage output high level for common signals A capacitor should be connected between this pad and VSS
5	VSL	This is a segment voltage reference pad A capacitor should be connected between this pad and VSS
6	VREF	This is a voltage reference pad for pre-charge voltage in driving OLED device. Voltage should be set to match with the OLED driving voltage in current drive phase. It can either be supplied externally or by connecting to VPP.
7	IREF	This is a segment current reference pad A resistor should be connected between this pad and VSS. Set the current at $15.625\mu A$
8	VPP	This is the most positive voltage supply pad of the chip
9	VSS	Ground
10	VCL	This is a common voltage reference pad This pad should be connected to VSS externally
11	SENSE	This is a source current pad of the external NMOS of the booster circuit
12	AVDD	2.4- 3.5V power supply pad for the internal buffer of the DC-DC voltage converter
13	FB	This is a feedback resistor input pad for the booster circuit It is used to adjust the booster output voltage level, VPP
14	VBREF	This is an internal voltage reference pad for booster circuit
15	SW	This is an output pad driving the gate of the external NMOS of the booster circuit
16	VDD2	1.65 - 3.5V power supply input pad for logic.VDD2 should be equal to VDD
17	IM0	These are the MPU interface mode select pads.
18	IM1	These are the MPU interface mode select pads.
19	VDD	1.65 - 3.5Vpower supply input pad
20	IM2	These are the MPU interface mode select pads.
21	CSB	This pad is the chip select input. When CS = "L", then the chip select becomes active, and data/command I/O is enabled.

22	RESB	This is a reset signal input pad. When RES is set to "L", the settings are initialized. The reset operation is performed by the RES signal level.						
23	A0	This is the Data/Command control pad that determines whether the data bits are data or a command A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver.						
24	WR	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When W R/ = "H": Read. When W R/ = "L": Write.						
25	RD	This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RD signal of the 8080 series MPU, and the SH1122 data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU.						
26		This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit						
27		standard MPU data bus. When the serial interface is selected, then DB0 serves as the serial clock						
28	DB0 DB7	input pad (SCL) and DB1 serves as the serial data input pad (SI). At this						
29		time, DB2 to DB7 are set to high impedance.						
30		When the I2C interface is selected, then DB0 serves as the serial clock input pad (SCL) and DB1 serves as the serial data input pad (SDA). At this time,						
32		DB2 to DB7 are set to high impedance.						
33		When the chip select is inactive, DB0 to DB7 are set to high impedance.						
34	VPP	This is the most positive voltage supply pad of the chip						

MCU Bus Interface Pin Selection

Pin Name	6800- parallel interface	8080- parallel Interface	4-SPI Interface	3-SPI Interface	IIC Interface
IM0	0	0	0	1	0
IM1	0	1	0	0	1
IM2	1	1	0	0	0

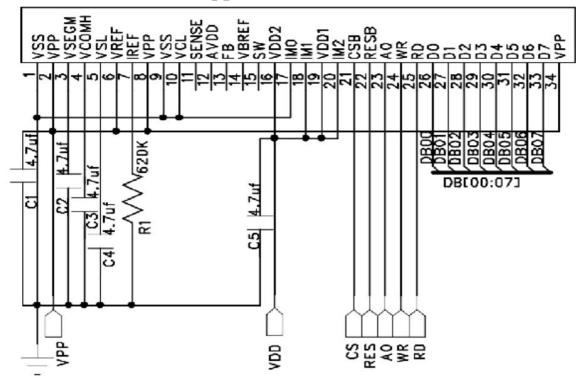
Note: 0 is connect to VSS, 1 is connect to VDD

Command						Code						Function	
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Punction	
Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lo	Lower column address			Sets 4 lower bits of column address of display RAM in register. (POR = 00H)	
Set Column Address 3 higher bits	0	1	0	0	0	0	1	0	0 Higher column address			Sets 3 higher bits of column address of display RAM in register. (POR = 10H)	
3. Reserved Command	0	1	0	0	0	1	0	0	1	0	0	Reserved	
4. Reserved Command	0	1	0	0	0	1	0	0	1	1	0	Reserved	
5. Reserved Command	0	1	0	0	0	1	0	1	1	1	D	Reserved	
6. Set Display Start Line	0	1	0	0	1		Star	t Line	add	ress		Specifies RAM display line for COM0. (POR = 40H)	
7. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contrast Setting of the display.	
Contrast Data Register Set	0	1	0			C	ontra	st Da	ta	*		The chip has 256 contrast steps from 00 to FF. (POR = 80H)	
8. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)	
Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) or Entire Display ON (1). (POR = A4H)	
10. Set Normal/Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)	
11. Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 63 multiplex mode to any multiplex ratio	
Multiplex Ration Data Set	0	1	0	•	٠	Multiplex Ratio			tio	38	from 1 to 64. (POR = 3FH)		
12. DC-DC Control Mode Set	0	1	0	12	0	1	0	1	×12	0	1	This command is to control the DC-DC voltage and the switch frequency.	
DC-DC ON/OFF Mode Set	0	1	0	1	0	0	0	F2	F1	F0	D	(POR = 81H)	
13. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0 (POR = AEH)	
14. Row Address Set	0	1	0	1	0	1	1	0	0	0	0	Specifies Row address to load display	
Row Address	0	1	0		*	Row Address					10	RAM data to Row address register. (POR = 00H)	
15. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	٠	*	٠	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N - 1] to COM0 (1). (POR = C0H)	
16. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command that	
Display Offset Data Set	0	1	0	٠	*	COMx					specifies the mapping of display start line to one of COM0-63. (POR = 00H)		
17. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks.	
Divide Ratio/Oscillator Frequency Data Set	0	1	0	1						Rat	0.000	(POR = 50H)	

Command						Code						Function	
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
 Dis-charge/Pre-charge Period Mode Set 	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and	
Dis-charge/Pre-charge Period Data Set	0	1	0	Dis-charge Period Pre-charge Period					char	ge Pe	pre-charge period. (POR = 22H)		
19. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage level at deselect	
VCOM Deselect Level Data Set	0	1	0		١	/CON	ЛН=	(β1 X	VRE	=)		stage. (POR = 35H)	
20. VSEGM Level Mode Set	0	1	0	1	1	0	1	1	1	0	0	This command is to set the segment pad output voltage level at pre-charge	
VSEGM Level Data Set	0	1	0	VSEGM= (β2 X VREF)							stage. (POR = 35H)		
21. Discharge voltage VSL level setting	0	1	0	0	0	1	1	D3	D2	D1	D0	Set the discharge voltage level.	
22. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.	
23. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.	
24. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command	
25. Write Display Data	1	1	0	Write RAM data				ata	YIP 00				
26. Read Status	0	0	1	BUSY ON/OFF		*		0	0 0				
27. Read Display Data	1	0	1	Read RAM data					lata	171: SO			

Rev: 1.0 Oct. 06. 2012

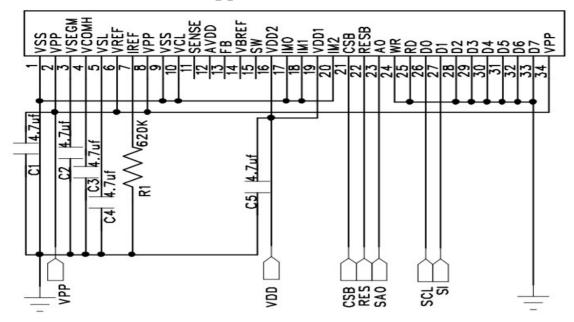
■ INITIALIZATION CODE

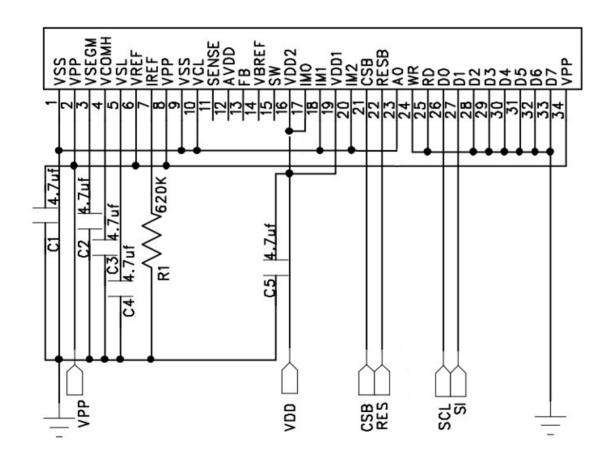

```
void Inital SH1122G()
 MainOLED WCom(0xAE); //DOT MARTIX DISPLAY OFF
 MainOLED WCom(0x00); //SET COLUMN LOW ADDRESS
 MainOLED WCom(0x10); //SET COLUMN HIGHER ADDRESS
 MainOLED WCom(0x40); //SET DISPLAY START LINE(40H-7FH)
 MainOLED WCom(0x81); //CONTARST CONTROL(00H-FFH)
 MainOLED WCom(0x2F);
 MainOLED WCom(0xA0); //SET SEGMENT RE-MAP(0A0H-0A1H)
 MainOLED WCom(0xA4); //ENTIRE DISPLAY OFF(0A4H-0A5H)
 MainOLED WCom(0xA6); //SET NORMAL DISPLAY(0A6H-0A7H)
 MainOLED WCom(0xA8); //SET MULTIPLEX RATIO 64
 MainOLED WCom(0x3F);
 MainOLED WCom(0xAD); //SET DC/DC BOOSTER
 MainOLED WCom(0x80);
 MainOLED WCom(0xB0); //Set Row Address of Display RAM
 MainOLED WCom(0x00);
 MainOLED WCom(0xC0); //COM SCAN COM1-COM64(0C8H, 0C0H)
 MainOLED WCom(0xD3); //SET DISPLAY OFFSET(OOH-3FH)
 MainOLED WCom(0x00);
 MainOLED WCom(0xD5); //SET FRAME FREQUENCY
 MainOLED WCom(0x80);
 MainOLED WCom(0xD9); //SET DIS-/PRE- CHARGE PERIOD
 MainOLED WCom(0x22);
 MainOLED WCom(0xDB); //SET VCOM DESELECT LEVEL(035H)
 MainOLED WCom(0x35);
 MainOLED WCom(0xDC); //Set VSEGM Level
 MainOLED WCom(0x35);
 MainOLED WCom(0x3A); //Set Discharge VSL Level
 MainOLED WCom(0xAF); //DSPLAY ON
```

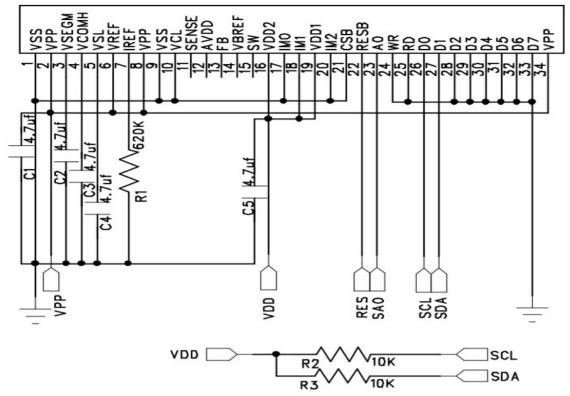
Note:

Please set appropriate parameters of initialization base on actual application.

■ SCHEMATIC EXAMPLE


♦8080 Series Interface Application Circuit:


♦6800 Series Interface Application Circuit:


♦4-wire SPI Interface Application Circuit:

◆3-wire SPI Interface Application Circuit:

♦IIC Interface Application Circuit:

For Above Circuits:

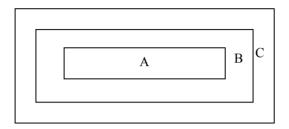
- 1.R1≈620K, R2=R3=10K,C1=C2=C3=C4=C5=4.7uF;
- 2. The V_{PP} should connect a external voltage; (1) The value of components is recommended value. Select appropriate value against module application.

■ RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	85±2°€, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. After testing, the change of luminance should be within +/- 50% of initial value. After testing, the change for the mono and area color must be within (+/-0.02, +/- 			
High Ter	nperature Operating (HTO)	80±2°C, 96 hours				
Low Te	emperature Storage (LTS)	-40±2°C, 200 hours				
Low Ten	nperature Operating (LTO)	-30±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on			
High Temperature / High Humidity Storage (HTHHS)		50±3℃, 90%±3%RH, 120 hours	1931 CIE coordinates.5. After testing, the change of total current consumption should be			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.				
Drop (Packing) Height: 1 m, each time for 6 sides, 3 edges, 1 angle		2. No addition to the cosmetic	e and the electrical defects.			
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF, 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance> $10M\Omega$).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

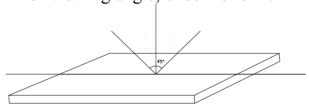
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

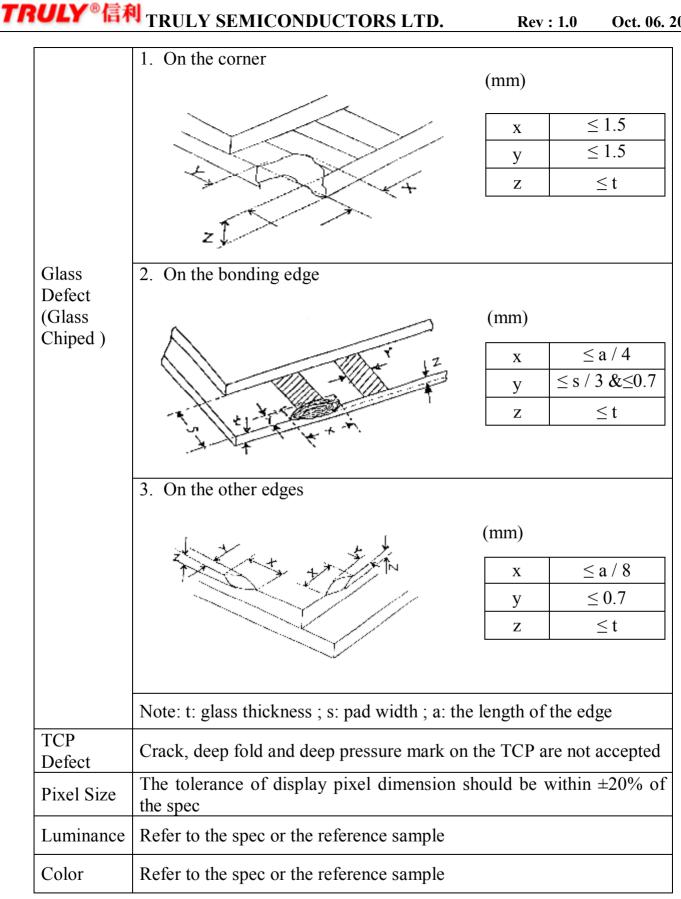
Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25±5°C.


◆Inspection Criteria

1 Major defect : AQL= 0.65

Jor Goroco . 11QE o.					
Item	Criterion				
	1. No display or abnormal display is not accepted				
Function Defect	2. Open or short is not accepted.				
	3. Power consumption exceeding the spec is not accepted.				
Outline Dimension	Outline dimension exceeding the spec is not accepted.				
Glass Crack	Glass crack tends to enlarge is not accepted.				

2 Minor Defect : AQL= 1.5

Item								
	Size	Accepted Qty						
Spot			Area A + Area B	Area C				
Defect (dimming		Φ≦0.07	Ignored					
and	Y	$0.07 < \Phi \le 0.10$	3	_				
lighting	X	0.10<Φ≦0.15	1	Ignored				
spot)	 	0.15<Ф	0					
	Note: $\Phi = (x + y) /$	2						
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C				
Defect	/	W ≤ 0.02	Ignored					
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2					
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored				
line)	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect					
Polarizer Stain	cleaning is accepted	wiped off lightly with , otherwise, according						
	Line Defect. 1. If scratch can be s of the Spot Defect ar	een during operation, nd the Line Defect.	, according to the cr	iterions				
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:							
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C				
Scratch	/	W ≦ 0.02	Ignore					
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2					
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore				
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0					
	Si	ze	Area A + Area B	Area C				
Dalaninan		Φ≦0.20	Ignored					
Polarizer Air Bubble	Y	$0.20 < \Phi \le 0.30$	2					
	X	$0.30 < \Phi \le 0.50$	1	Ignored				
		0.50<Ф	0					

Rev: 1.0

Oct. 06. 2012

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

Rev: 1.0 Oct. 06. 2012

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.

2. Soldering time: 3-4 sec.

3. Repeating time: no more than 3 times.

4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material ,process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.