

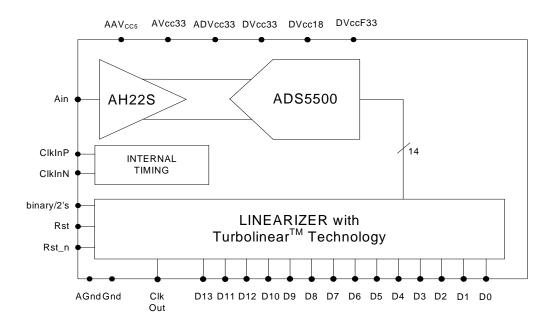
OM1400T-125

Preliminary Data Sheet

14-Bit Analog-to-Digital Converter Module with Turbolinear™ Technology

Description

The OM1400T-125 is a high-speed and high performance analog-to-digital converter module optimized to achieve an exceptionally high linearity when digitizing signals at very high IF. The module has a sampling rate of 125 MSPS and is primarily built around Optichron's Linearizer with Turbolinear[™] technology in addition to the 14-bit ADS5500 analog-to-digital converter, and the AH22S buffer amplifier which provides a buffered, single-ended, 50-ohm input. The module output is a digitized signal with up to 25 dB improvement in SFDR when sub-sampling signals in the 2nd, 3rd, and 4th Nyquist zones.


The OM1400T-125 is targeted at a wide variety of applications requiring high linearity.

Features

- 14-bit resolution, 125 MSPS sampling rate
- IF sampling to 244 MHz
- SFDR: 90 dBc typical for one-tone 130-180 MHz f_{IN} measured at –1 dBFS peak amplitude
- SNR: 71 dBFS typical for one-tone 130-180 MHz f_{IN} measured at –1 dBFS peak amplitude
- -2dBm full scale input power
- Single-ended, 50-Ohm analog input buffer
- Selectable 2s complement or binary outputs
- 3.3V CMOS compatible
- Output clock for data output latching
- Power dissipation: 3.2W

Applications

- Multi-channel, multi-mode receivers
- Base station infrastructure
- Communications instrumentation
- Test and measurement
- Radar, infrared imaging
- High-resolution medical imaging
- Power amplifier linearization

Module Block Diagram

Absolute Maximum Ratings

Absolute maximum ratings are over operating free-air temperature range unless otherwise noted.

Table 1: Absolute Maximum Ratings

Parameter	Min	Max	Units					
Electrical	Electrical							
Analog Input Voltage		6	V					
Digital Core Voltage		2	V					
Digital I/O		3.6	V					
Digital Output Current		30	mA					
Analog Core Voltage		6	V					
Environmental								
Junction Temperature		+125	°C					
Operating Temperature Range	-40	+85	°C					
Storage Temperature Range	- 50	+150	°C					

Caution: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only; functional operation of the device at these or other conditions beyond those in the operational section of this specification is not implied.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degree of functionality.

DC Specifications

(Typical, min, max values at T = 25°C, $AAV_{CC5} = 5V$, $AV_{CC33} = ADV_{CC33} = DV_{CC33} = DV_{CCF33} = 3.3V$, $DV_{CC18} = 1.8V$; sampling rate = 125 MSPS with 50% clock duty cycle unless otherwise noted.)

Table 2: DC Specifications

Parameter	Notes	Min	Typical	Max	Units
Resolution			14		Bits
Accuracy					
No Missing Codes			Guaranteed		
Offset Error		TBD	TBD	TBD	mV
Offset Error Drift			TBD		ppm/°C
Gain Error		TBD	TBD	TBD	% FS
Gain Error Drift			TBD		ppm/°C
Power Supply Rejection Ratio			TBD		1 mv/V
Analog Input					
Input Voltage Range Fullscale			1.0		Vp-p
Input Return Loss			16		dB
Analog 5.0 V Supply Voltage	AAV _{CC5}	4.75	5.00	5.25	V
Analog Supply Current					
	AAV _{CC5} Supply		320	380	mA
Digital 3.3V Supply Voltage	DV _{CC33} ,DV _{CCF33}	3.00	3.3	3.60	V
Digital 3.3V Supply Current	Total		32	63	mA
Turbolinear I/O	DV _{CC33} Supply		32	45	mA
Flash Read	DV _{CCF33} Supply		14	18	mA
Flash Quiesent	DV _{CCF33} Supply		0.025	0.05	mA
ADC 3.3 V Supply Voltage	ADV _{CC33}	3.0	3.3	3.6	V
ADC I/O Digital 3.3 V Supply Current	ADV _{CC33}		61	75	mA
ADC Analog 3.3 V Supply Current	AV _{CC33}		175	190	mA
Digital 1.8V Supply Voltage	DV _{CC18}	1.72	1.80	1.88	V
Digital 1.8V Supply Current			390	TBD	mA
Module					
Power Dissipation			3.2		W
Digital Core Power				700	mW

Digital Specifications

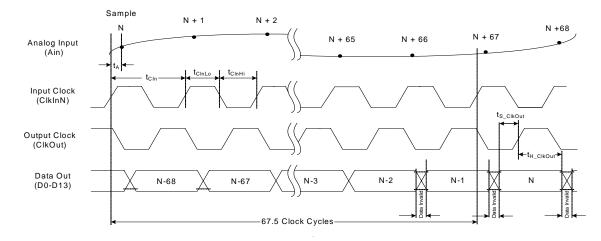
 $(AAV_{CC5} = 5V, AV_{CC33} = ADV_{CC33} = DV_{CC33} = DV_{CCF33} = 3.3V, DV_{CC18} = 1.8V$; TMIN and TMAX at rated speed grade unless otherwise noted.)

Table 3: Digital Specifications

Parameter (Conditions)	Notes	Minimum	Typical	Maximum	Units
Logic Inputs					
Logic 1 Voltage		2.2		3.6	V
Logic 0 Voltage		0.0		1.0	V
Logic Outputs					V
Logic Compatibility			CMOS		
Logic 1 Voltage (DV _{CC} = 3.3V)		2.7		3.6	V
Logic 0 Voltage (DV _{CC} = 3.3V)		0.0		0.5	V

Switching Specifications

$(AAV_{CC5} = 5V, DV_{CC}33 = ADVcc33 = AVcc33 = DVccF33 = 3.3V, DV_{CC18} = 1.8V; CLOAD 10 \text{ pF})$


Table 4: Switching Specification

Parameter (Conditions)	Name	Minimum	Typical	Maximum	Units
Conversion Rate ^a					MSPS
OM1400T-1250NZx		120		125	
OM1400T-1200NZx		115		120	
OM1400T-1150NZx		110		115	
OM1400T-1100NZx		105		110	
ClkInP, ClkInN Inputs					
Differential Input Voltage		0.4			Vp-р
Differential Input Resistance			10		kΩ (kOhm)
Differential Input Capacitance			2.5		pF
ClkInP, ClkInN Input Parameters					
Clock Period	t _{CIN}		8.0		ns
Clock Pulsewidth High	t _{CINHI}		4.0		ns
Clock Pulsewidth Low	t _{CINLO}		4.0		ns
50% duty cycle for optimum performance					
ClkOut/DATA (D13:0)					
ClkOut Rising to DATA (Hold Time)	t _{H_CLKOUT}	2.0			ns
ClkOut Rising to DATA (Setup Time)	t _{S_CLKOUT}	2.0			ns
Latency			67.5		Clock cycles
Aperture Delay t _A			1.0		ns
Aperture Jitter			0.3		pS rms

a. The 'x' in NZx refers to the Nyquist zone versions 2, 3, or 4 of the product. Each part number is calibrated at the maximum listed specification where the best performance is obtained. It is highly recommended that the module is operated at that rate. For a complete part number listing, see Ordering Guide on page 21.

Timing Diagram

Figure 1. Timing Diagram

AC Specifications

Table 5: Nyquist Zone 2 (62.5-125 MHz, Temp = 25°C, fs = 125 MSPS)

Parameter (Conditions)	Notes	Minimum	Typical	Maximum	Units
SNRFS (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs			72		dB
$f_{IN} = (fmax + fmin)/2$			72		dB
f _{IN} = fmax – 5%fs			72		dB
SINAD (input at -1 dBFS)					
f _{IN} = fmin + 5%fs			TBD		dB
$f_{IN} = (fmax + fmin)/2$			TBD		dB
f _{IN} = fmax – 5%fs			TBD		dB
THD					
f _{IN} = fmin + 5%fs		TBD	TBD		dB
$f_{IN} = (fmax + fmin)/2$		TBD	TBD		dB
f _{IN} = fmax – 5%fs		TBD	TBD		dB
SFDR (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs		TBD	90		dBc
$f_{IN} = (fmax + fmin)/2$		TBD	90		dBc
f _{IN} = fmax – 5%fs		TBD	90		dBc
Two Tone IMD (F1, F2 at -7 dBFS)					
f _{IN} = {(fmax + fmin)/2} – 4.9 MHz {(fmax + fmin)/2} + 6.1 MHz		TBD	TBD		dBFS
Analog Input Bandwidth			450		MHz

Note: 'fs' is the sampling rate. fmax=fs fmin=fs/2

Optichron Inc., Copyright 2005

Parameter (Conditions)	Notes	Minimum	Typical	Maximum	Units
SNRFS (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs			71		dB
$f_{IN} = (fmax + fmin)/2$			71		dB
f _{IN} = fmax - 5%fs			71		dB
SINAD (input at -1 dBFS)					
f _{IN} = fmin + 5%fs			TBD		dB
$f_{IN} = (fmax + fmin)/2$			TBD		dB
f _{IN} = fmax - 5%fs			TBD		dB
THD					
f _{IN} = fmin + 5%fs		TBD	TBD		dB
$f_{IN} = (fmax + fmin)/2$		TBD	TBD		dB
f _{IN} = fmax - 5%fs		TBD	TBD		dB
SFDR (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs		TBD	90		dBc
$f_{IN} = (fmax + fmin)/2$		TBD	90		dBc
f _{IN} = fmax - 5%fs		TBD	90		dBc
Two Tone IMD (F1, F2 at -7 dBFS)					
f _{IN} = {(fmax + fmin)/2} - 4.9 MHz {(fmax + fmin)/2} + 6.1 MHz		TBD	TBD		dBFS
Analog Input Bandwidth			450		MHz

Table 6: Nyquist Zone 3 (125-187.5 MHz, Temp = 25°C, fs = 125 MSPS)

Note: 'fs' is the sampling rate. fmax=3fs/2 fmin=fs

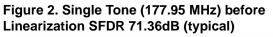

Parameter (Conditions)	Notes	Minimum	Typical	Maximum	Units
SNRFS (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs			70		dB
$f_{IN} = (fmax + fmin)/2$			70		dB
f _{IN} = fmax – 5%fs			70		dB
SINAD (input at -1 dBFS)					
f _{IN} = fmin + 5%fs			TBD		dB
$f_{IN} = (fmax + fmin)/2$			TBD		dB
f _{IN} = fmax – 5%fs			TBD		dB
THD					
f _{IN} = fmin + 5%fs		TBD	TBD		dB
$f_{IN} = (fmax + fmin)/2$		TBD	TBD		dB
f _{IN} = fmax – 5%fs		TBD	TBD		dB
SFDR (one-tone input at -1 dBFS)					
f _{IN} = fmin + 5%fs		TBD	90		dBc
$f_{IN} = (fmax + fmin)/2$		TBD	90		dBc
f _{IN} = fmax – 5%fs		TBD	90		dBc
Two Tone IMD (F1, F2 at -7 dBFS)					
f _{IN} = {(fmax + fmin)/2} - 4.9 MHz {(fmax + fmin)/2} + 6.1 MHz		TBD	TBD		dBFS
Analog Input Bandwidth			450		MHz

Table 7: Nyquist Zone 4 (187.5-250 MHz, Temp = 25°C, fs = 125 MSPS)

Note: 'fs' is the sampling rate.

fmax=2fs fmin=3fs/2

Typical Performance Characteristics (Nyquist Zone 3)

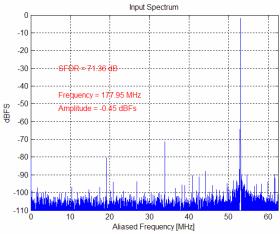


Figure 3. TwoTone (133.09, 151.50MHz) before Linearization SFDR 82.52dB (typical)

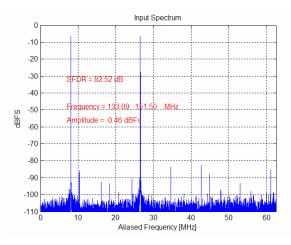
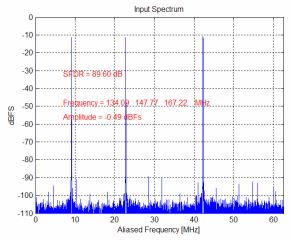



Figure 4. Three Tones (134.09, 147.77, 167.22MHz) before Linearization SFDR 89.60dB (typical)

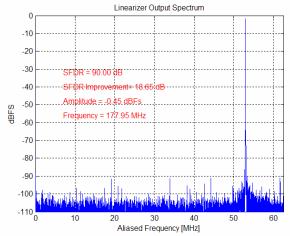


Figure 6. Two Tones (133.09, 151.50MHz) after Linearization SFDR 94.03dB (typical)

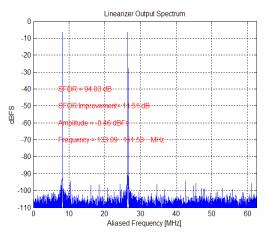
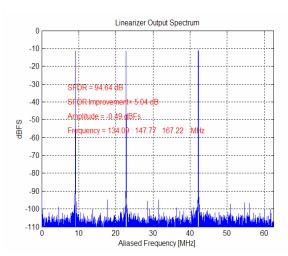



Figure 7. Three Tones (134.09, 147.77, 167.22MHz) after Linearization SFDR 94.64dB (typical)

Definition of Specifications

Analog Bandwidth

The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.

Aperture Delay

The delay in time between the falling edge of the input sampling clock and the actual time at which sampling occurs.

Aperture Uncertainty (Jitter)

The sample-to-sample variation in aperture delay.

Differential Input Voltage

The peak-to-peak differential voltage that must be applied to generate a full scale response. The peak differential voltage is calculated by measuring the voltage on one input pin and subtracting the voltage on the other input pin which is 180° out of phase. The peak to peak value is then calculated by obtaining the voltages of the input pins with the phases reverses and calculating the difference between the peak measurements.

Differential Non-linearity (DNL)

The deviation of any code width from an ideal 1 LSB step.

Effective Number of Bits (ENOB)

An indication of the quality of an analog-to-digital converter. ENOB can be calculated with the following formula:

Equation 1. ENOB = $\frac{\text{SINAD-1.76}}{6.02}$

Gain error

The amount of deviation between the ideal transfer function and the measured transfer function (with the offset error removed) when a full scale analog input is applied, resulting in all 1s in the digital code. Gain error is measured in LSBs or as a percentage of the full scale range (%FSR).

Integral Non-linearity (INL)

The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a linear least squares curves fit.

Maximum Conversion Rate

The clock rate at which parametric testing is performed.

Minimum Conversion Rate

The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

Nyquist Zone

The product performance is specified for input frequencies in three Nyquist zones. Typical performance is delivered over the middle 80% of each Nyquist zone.

Nyquist Zone 2: $f_{s/2} - f_s$ Nyquist Zone 3: $f_s - 3f_{s/2}$ Nyquist Zone 4: $3f_{s/2} - 2f_s$

Offset Error

Offset error is the deviation of output code from mid-code when both inputs are tied to common-mode.

Power Supply Rejection

The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit measured at the mid-band frequency of the Nyquist zone under test.

Propagation Delay

The delay between the input clock rising edge and the time when all data bits are within valid logic levels.

Signal-to-Noise and Distortion (SINAD)

The ratio of the rms signal amplitude (set 1 dB below full scale) to the rms value of the sum of all other spectral components, including harmonics but excluding dc.

Signal-to-Noise Ratio (Without Harmonics)

The ratio of the rms signal amplitude (set at 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc.

Spurious-Free Dynamic Range (SFDR)

The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic.

Total Harmonic Distortion (THD)

The ratio of the rms signal amplitude of the input to the rms value of distortion appearing at multiples (harmonics) of the input.

Two-Tone Intermodulation Distortion Rejection

The ratio of the rms value of either input tone to the rms value of the worst third order inter modulation product; reported in dBc.

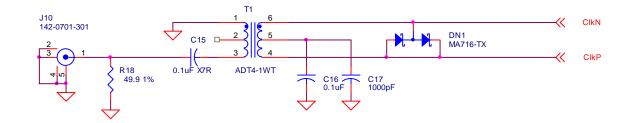
Temperature Drift

As measured for offset or gain error, it specifies the maximum change from the initial temperature value to the value at T_{Min} or $T_{Max}.$

Applications Information

Clock input

The clock input signal must be of high quality and therefore a low jitter, low phase noise source is required to ensure optimal performance. Additionally, in order to keep the accuracy of the 14-bit conversion, the clock inputs need to be driven differentially and the input signal needs to be AC coupled to the ClkInN and ClkInP clock inputs. For a single-ended sinusoidal reference signal, the conversion to differential signals can be done with a transformer like the ADT4-1WT.


Figure 8 shows a typical circuit where single-ended to differential transformation of the clock is done using an RF transformer. For best performance, the single-ended sinusoid should have a signal power of at least 13 dBm for best performance. Narrow band-pass filtering of this sinusoid will help reduce the jitter on this reference. The Schottky diodes across the secondary of the transformer limits the noise into the clock input pins and limits the voltage swing at the rails. It is important that the differential clock signal lines are placed close together and isolated from other analog inputs and digital outputs. Alternately, a low-jitter differential ECL/PECL clock signal may be AC coupled with series capacitors to the ClkInP and ClkInN inputs. This is the circuit used on the OM1400T-125 Evaluation Board.

Analog Input

The module provides a 50-Ohm AC input impedance, therefore the user needs to provide a single-ended analog import source capable of driving 50 Ohms at -2dBm to achieve full-scale.

Supplies and Bypassing

Linear power supplies should be used for best performance. However, if switching power supplies are used they need to be appropriately shielded and filtered to avoid introducing spurious signals into the ADC. The ADVcc33 supply must be at least 0.4V by the time the AVcc33 supply reaches 3.0V. Should both power supplies not be turned on simultaneously, the ADC may stay in the power down mode. Decoupling capacitors need to be positioned as close to each power pin as possible to minimize high frequency supply noise by satisfying local current demands. 10%, 16V X7R 0603 0.1 uF and 20%,10V X7R 1206 10 uF capacitors are recommended for optimal results with the 0.1uF being the closest to the pin.

Figure 8. Single-Ended to Differential Clock Input

Grounding

To minimize the possibility of digital switching creating current coupling into analog ground, it is recommended a multi-layer board with a single ground plane be used. It is necessary to ensure that the digital and analog sections are kept physically separated. Digital traces should not be routed near or under unshielded analog lines. The pin-out of the module allows for easy implementation of the above recommendation. The ball rows 1-19 on the top side of the module are allocated to analog functions, power and ground while the ball rows from 20-39 on the bottom side are all allocated to digital functions, power and ground.

Input/Output

The module supports the industry standard SPI (Serial Peripheral Interface) for interfacing to external memory and/or logic. During the first 10 ms, after reset, the coefficients are loaded and only after 10 ms does the module relinquish the bus master to external logic like an FPGA.

Support for JTAG is provided with the standard signals; TRST, TCK, TDO, TMS, TDI. While the JTAG coverage is only for the Linearizer, it does offer JTAG for the output data port, the binary/2s input and the ClkOut pins.

Digital Outputs

There are 13 data output pins that provide the digital output from the Linearizer. The format of that output (binary or 2s complement) is selected via the Binary/2s input. The port is a standard 8mA, 3.3V CMOS output. Therefore, the digital outputs should be routed to minimize capacitive loading and fanout (use only one gate on each output line). For instance, to maintain a 2ns edge, the total capacitance on a given output line should not exceed 5 pF. Digital output timing is maintained for loads up to 10 pF provided the capacitive loading on data and clock lines are well matched. External series resistors on the output lines are included inside the module and are not required on the board on which the module attaches.

n	
\geq	
ш	
_	

	-	2	3	4	5	9	7	8	6	6	Ŧ	12	13	₽	15	16	11	8	19	5 0	21	22	23	24	25	26	11	28	Z 9	8	3	32	33	34	35	36	37	88	39	
AF	AVcc33	AVcc33	AGnd	AGnd	AGnd	AVcc33	AVcc33	AGnd	AGnd	AGnd	AGnd	DVcc33	DVcc33	AGnd	AGnd	DVcc33	DVcc33	DVcc33	Gnd	Gnd	VccFP12	VccF33	SCs_n	MOSI	MISO	MCs_n	SCIK	Gnd	DVcc18	DVcc18	DVcc33	Gnd	DVcc18	DVcc18	DVcc18	Gnd	DVcc18	DVcc18	DVcc18	AF
AE	AVcc33 /	AVcc33 /	AGnd	AGnd	AGnd	AVcc33 /	AVcc33 /	AGnd	AGnd	AGnd	AGnd	ADVcc33 ADVcc3	ADVcc33 ADVcc33		AGnd	ADVcc33 ADVcc35	ADVcc33 ADVcc3	ADVcc33 ADVcc3	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Be	Gnd	DVcc18 [0	Gnd	DVcc18 1	DVcc18 [DVcc18 [Gnd	DVcc33 [DVcc33 [DVcc33	AE
AD	AGnd /	AGnd /	AGnd	AGnd	AGnd	AGnd /	AGnd ,	AGnd	AGnd	AGnd	AGnd		AGnd A		_	er Be		Gnd A	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Be	Be	Gnd	Gnd			Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	AD
AC	AGnd	AGnd	AGnd													1																					Gnd	Gnd	clkout	AC
AB	AGnd	AGnd	AGnd																																		Gnd	Gnd	Gnd	AB
AA	AGnd	AGnd	AGnd																																		Gnd	Gnd	D13	AA
٢	AGnd	AGnd	AGnd																																		Gnd	Gnd	Gnd	γ
м	CIKINP	AGnd	AGnd																																		Gnd	Gnd	D12	Μ
>	CIkInN	AGnd	AGnd																																		Gnd	Gnd	D11	٨
-	AGnd	AGnd	AGnd																																		Gnd	Gnd	DVcc33	n
Г	AVcc33	AVcc33	AGnd																																		Gnd	Gnd	D10	⊢
ч	AVcc33	AVcc33	AGnd																																		Gnd	Gnd	60	~
٩	AGnd	AGnd	AGnd																																		Gnd	Gnd	DVcc33	٩
z	AA\\cc5	AA\/cc5	AGnd																																		Gnd	Gnd	8	z
M	AAVcc5	AAVcc5	AGnd																																		Gnd	Gnd	20	M
_	AGnd	AGnd	AGnd																																		Gnd	Gnd	8	
¥	Ain	AGnd	AGnd																																		Gnd	Gnd	DVcc33	Х
~	AGnd	AGnd	AGnd																																		Gnd	Gnd	8	~
Ŧ	AGnd	AGnd	AGnd																																		Gnd	Gnd	2	Ŧ
9	AGnd	AGnd	AGnd																																		Gnd	Gnd		9
ш	AAVccN AAVccN	AAVccN AAVccN	AGnd																																		Gnd	Gnd	DVcc33	ц
ш	AAVccN	AAVccN	AGnd																																		Gnd	Gnd	20	ш
-	AGnd	AGnd	AGnd																																	_	Gnd	Gnd	ы	-
J	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd	AGnd		AGnd		AGnd	AGnd	AGnd	AGnd	AGnd	Gnd	Gnd	Gnd	Gnd	Gnd	Gnd	Be	Be	Gnd	Gnd	Bad	B	Gnd	Gnd	Gnd	Gnd	Gnd		Gnd	8	J
8	AGnd	AGnd	AGnd	AGnd	AVcc33	AVcc33	AGnd	AGnd	AVcc33	AVcc33	AGmd		AVcc33	-	AGnd	AGnd	AGnd	AGnd	AGnd	Gnd	Gnd	Gnd	DVcc33	lbmon	Gnd	DVcc18	DVcc18	DVcc18	Gnd	TRST	Be	₽		Rst_n	Gnd	DVcc18	DVcc18		ð	8
A	AGnd	AGnd	AGnd	AGnd	AVcc33	AVcc33	AGnd	AGnd	AVcc33	AVcc33	AGmd	AGnd	AVcc33	AVcc33	AGnd	AGnd	AGnd	AGnd	AGnd	Gnd	Gnd	Gnd	DVcc33	TsensP	TsensN	DVcc18	DVcc18	DVcc18	Gnd	ğ	ê	IMS	binary/2's	Rst	Gnd	DVcc18	DVcc18	DVcc33	DVcc33	A
	-	2	ŝ	4	ŝ	9	7	~	6	e	₽	4	9	\$	÷	9	Ļ	8	6	50	21	22	23	24	25	26	27	28	50	8	<u></u>	32	33	₹	35	98	37	8	39	

Pin Configuration Top View

Pin Assignments

Table 8: Pin Assignments by function

Function	Ball Number	Signal Name			
Active High Reset	B34	RST			
Active Low Reset	A34	RST_N			
Amplifier Positive Supply Voltage	M1, M2, N1, N2	AAV _{CC5}			
Amplifier Negative Supply Voltage (Linearized ADC Module standard family pinout; not required for the OM1400T-125)	E1, E2, F1, F2,	AAV _{CCN}			
Analog Ground	A1-4, A7-8, A11-12, A15-19, B1-4, B7-8, B11-12, B15- 19, C1-19, D1-3, E3, F3, G1-3, H1-3, J1-3, K2-3, L1-3, M3, N3, P1-3, R3, T3, U1-3, V2-3, W2-3, Y1-3, AA1-3, AB1-3, AC1-3, AD1-15, AE3-6, AE8-11, AE14-15, AF3-6, AF8-11, AF14-15	AGND			
Analog Input Signal	К1	AIN			
Clock Input Negative. Complement of ClkInP, Dif- ferential Input.	W1	CLKINN			
Clock Input Positive. Conversion on rising edge.	V1	CLKINP			
Clock Output of Linearizer	AC39	CLKOUT			
Core Analog Supply for ADC	A5-6, A9-10, A13-14, B5-6, B9-10, B13-14, R1-2, T1- 2, AE1-2, AE6-7, AF1-2, AF6-7	AV _{CC33}			
Core Supply for Linearizer	A26-28, A36-37, B26-28, B36-37, AE29-30, AE33-35, AF29-30, AF33-35, AF37-39	DV _{CC18}			
Data Output of Linearizer in 2s Complement if binary/2s is set.	C39, D39, E39, G39, H39, J39, L39, M39, N39, R39, T39, V39, W39, AA39	D(0-13)			
Digital Ground	A20-22, A29, A35, B20-22, B29, B35, B38, C20-38, D37-38, E37-38, F37-38, G37-38, H37-38, J37-38, K37-38, L37-38, M37-38, N37-38, P37-38, R37-38, T37-38, U37-38, V37-38, W37-38, Y37-39, AA37-38, AB37-39, AC37-38, AD16-39, AF19-28, AF32, AF36	GND			
Digital I/O Supply for ADC	AE12-13, AE16-18, AF12-13, AF16-18	ADV _{CC33}			
Flash Memory Supply Voltage	AF22	V _{CCF33}			
I/O Supply for Linearizer	A23, A38-39, B23, F39, K39, P39, U39, AE31, AE37- 39, AF31	DV _{CC33}			
JTAG	B30	TRST			
JTAG	A30	тск			
JTAG	A31	TDO			
JTAG	A32	TMS			
JTAG	B32	TDI			
No Connect	A24, A25, B24, E5, E35, AB5, AB35, AF21, AF23-27	NC			
Set 2s Complement Output. Reset Binary Output.	A33	Binary/2s			
Serial Peripheral Interface	AF23	SCS_N			

Table 8: Pin Assignments by function (Continued)

Function	Ball Number	Signal Name
Serial Peripheral Interface	AF24	MOSI
Serial Peripheral Interface	AF25	MISO
Serial Peripheral Interface	AF26	MCS_N
Serial Peripheral Interface	AF27	SCLK

Table 9: Pin Assignments by Pin Number

Pin Number	Signal							
A1	AGND							
A2	AGND							
A3	AGND							
A4	AGND							
A5	AVCC33							
A6	AVcc33							
A7	AGND							
A8	AGND							
A9	AVcc33							
A10	AVcc33							
A11	AGND							
A12	AGND							
A13	AVcc33							
A14	AVcc33							
A15	AGND							
A16	AGND							
A17	AGND							
A18	AGND							
A19	AGND							
A20	GND							
A21	GND							
A22	GND							
A23	DVCC33							
A24	NC							
A25	NC							
A26	DVCC18							
A27	DVCC18							
A28	DVCC18							

Table 9: Pin Assignments by PinNumber (Continued)

Number (Continued)			
Pin Number	Signal		
A29	GND		
A30	тск		
A31	TDO		
A32	TMS		
A33	BINARY 2S		
A34	RST		
A35	GND		
A36	DVCC18		
A37	DVCC18		
A38	DVCC33		
A39	DVCC33		
B1	AGND		
B2	AGND		
B3	AGND		
B4	AGND		
B5	AVcc33		
B6	AVcc33		
B7	AGND		
B8	AGND		
B9	AVcc33		
B10	AVcc33		
B11	AGND		
B12	AGND		
B13	AVcc33		
B14	AVcc33		
B15	AGND		
B16	AGND		
B17	AGND		

Revision 0.1 July 2005

Pin Number	Signal			
B18	AGND			
B19	AGND			
B20	GND			
B21	GND			
B22	GND			
B23	DVCC33			
B24	NC			
B25	GND			
B26	DVCC18			
B27	DVCC18			
B281	DVCC18			
B29	GND			
B30	TRST			
B31	GND			
B32	TDI			
B33	GND			
B34	RST_N			
B35	GND			
B36	DVCC18			
B37	DVCC18			
B38	GND			
B39	NC			
C1	AGND			
C2	AGND			
C3	AGND			
C4	AGND			
C5	AGND			
C6	AGND			

Table 9: Pin Assignments by PinNumber (Continued)

Pin Number	Signal
C7	AGND
C8	AGND
C9	AGND
C10	AGND
C11	AGND
C12	AGND
C13	AGND
C14	AGND
C15	AGND
C16	AGND
C17	AGND
C18	AGND
C19	AGND
C20	GND
C21	GND
C22	GND
C23	GND
C24	GND
C25	GND
C26	GND
C27	GND
C28	GND
C29	GND
C30	GND
C31	GND
C32	GND
C33	GND
C34	GND
C35	GND
C36	GND
C37	GND
C38	GND
C39	D0
D1	AGND
D2	AGND
D3	AGND

Pin Number	Signal	
D37	GND	
D38	GND	
D39	D1	
E1	AAVCCN	
E2	AAVCCN	
E3	AGND	
E37	GND	
E38	GND	
E39	D2	
F1	AAVCCN	
F2	AAVCCN	
F3	AGND	
F37	GND	
F38	GND	
F39	DVCC33	
G1	AGND	
G2	AGND	
G3	AGND	
G37	GND	
G38	GND	
G39	D3	
H1	AGND	
H2	AGND	
H3	AGND	
H37	GND	
H38	GND	
H39	D4	
J1	AGND	
J2	AGND	
J3	AGND	
J37	GND	
J38	GND	
J39	D5	
K1	AIN	
K2	AGND	
K3	AGND	

Table 9: Pin Assignments by Pin Number (Continued)

Pin Number	Signal
K37	GND
K38	GND
K39	DVCC33
L1	AGND
L2	AGND
L3	AGND
L37	GND
L38	GND
L39	D6
M1	AAVCC5
M2	AAVCC5
M3	AGND
M37	GND
M38	GND
M39	D7
N1	AAVCC5
N2	AAVCC5
N3	AGND
N37	GND
N38	GND
N39	D8
P1	AGND
P2	AGND
P3	AGND
P37	GND
P38	GND
P39	DVCC33
R1	AVcc33
R2	AVcc33
R3	AGND
R37	GND
R38	GND
R39	D9
T1	AVcc33
T2	AVcc33
Т3	AGND
	1

Table 9: Pin Assignments by PinNumber (Continued)

Pin Number	Signal
T37	GND
T38	GND
T39	D10
U1	AGND
U2	AGND
U3	AGND
U37	GND
U38	GND
U39	DVCC33
V1	CLKINN
V2	AVcc33
V3	AGND
V37	GND
V38	GND
V39	D11
W1	CLKINN
W2	AVcc33
W3	AGND
W37	GND
W38	GND
W39	D12
Y1	AGND
Y2	AGND
Y3	AGND
Y37	GND
Y38	GND
Y39	GND
AA1	AGND
AA2	AGND
AA3	AGND
AA37	GND
AA38	GND
AA39	D13
AB1	AGND
AB2	AGND
AB3	AGND

Table 9: Pin Assignments by PinNumber (Continued)

Pin Number	Signal
AB37	GND
AB38	GND
AB39	GND
AC1	AGND
AC2	AGND
AC3	AGND
AC37	GND
AC38	GND
AC39	CLKOUT
AD1	AGND
AD2	AGND
AD3	AGND
AD4	AGND
AD5	AGND
AD6	AGND
AD7	AGND
AD8	AGND
AD9	AGND
AD10	AGND
AD11	AGND
AD12	AGND
AD13	AGND
AD14	AGND
AD15	AGND
AD16	GND
AD17	GND
AD18	GND
AD19	GND
AD20	GND
AD21	GND
AD22	GND
AD23	GND
AD24	GND
AD25	GND
AD26	GND
AD27	GND

Pin NumberSignalAD28GNDAD29GNDAD30GNDAD31GNDAD32GNDAD33GNDAD33GNDAD34GNDAD35GNDAD36GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AVcc33AE5AGNDAE4AGNDAE5AGNDAE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE24GND	Number (Continued)			
AD29GNDAD30GNDAD31GNDAD32GNDAD33GNDAD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AVcc33AE7AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	Pin Number	Signal		
AD30GNDAD31GNDAD32GNDAD33GNDAD33GNDAD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD28	GND		
AD31GNDAD32GNDAD33GNDAD33GNDAD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AQNDAE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE14AGNDAE15AGNDAE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD29	GND		
AD32GNDAD33GNDAD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AVcc33AE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD30	GND		
AD33GNDAD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD31	GND		
AD34GNDAD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD32	GND		
AD35GNDAD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AGNDAE10AGNDAE11AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD33	GND		
AD36GNDAD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE12ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD34	GND		
AD37GNDAD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE17ADVCC33AE14AGNDAE15AGNDAE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD35	GND		
AD38GNDAD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE14AGNDAE19GNDAE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD36	GND		
AD39GNDAE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE19GNDAE14AGNDAE15AGNDAE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD37	GND		
AE1AVcc33AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE19GNDAE10ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD38	GND		
AE2AVcc33AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AD39	GND		
AE3AGNDAE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE12ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE1	AVcc33		
AE4AGNDAE5AGNDAE6AVcc33AE7AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE23GND	AE2	AVcc33		
AE5AGNDAE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE11AGND	AE3	AGND		
AE6AVcc33AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE4	AGND		
AE7AVcc33AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE23GND	AE5	AGND		
AE8AGNDAE9AGNDAE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE23GND	AE6	AVcc33		
AE9AGNDAE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE7	AVcc33		
AE10AGNDAE11AGNDAE11AGNDAE12ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE8	AGND		
AE11AGNDAE12ADVCC33AE13ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE9	AGND		
AE12ADVCC33AE13ADVCC33AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE10	AGND		
AE13ADVCC33AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE11	AGND		
AE14AGNDAE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE12	ADVCC33		
AE15AGNDAE16ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE13	ADVCC33		
AE16ADVCC33AE17ADVCC33AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE14	AGND		
AE17ADVCC33AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE15	AGND		
AE18ADVCC33AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE16	ADVCC33		
AE19GNDAE20GNDAE21GNDAE22GNDAE23GND	AE17	ADVCC33		
AE20GNDAE21GNDAE22GNDAE23GND	AE18	ADVCC33		
AE21GNDAE22GNDAE23GND	AE19	GND		
AE22 GND AE23 GND	AE20	GND		
AE23 GND	AE21	GND		
	AE22	GND		
AE24 GND	AE23	GND		
	AE24	GND		

Table 9: Pin Assignments by PinNumber (Continued)

Signal

GND

GND

GND

GND

DVCC18

DVCC18

DVCC33

DVCC18

DVCC18

DVCC18

DVCC33

DVCC33

DVCC33

AVcc33

AVcc33

AGND

AGND

AGND

AVcc33

AVcc33

AGND

AGND

AGND

AGND

AGND

AGND

ADVCC33

ADVCC33

ADVCC33

ADVCC33

ADVCC33

GND

GND

GND

GND

Pin Number

AE25

AE26

AE27

AE28

AE29

AE30

AE31

AE32

AE33

AE34

AE5

AE36

AE37

AE38

AE39

AF1

AF2

AF3

AF4

AF5

AF6

AF7

AF8

A9

AF10

AF11

AF12

AF13

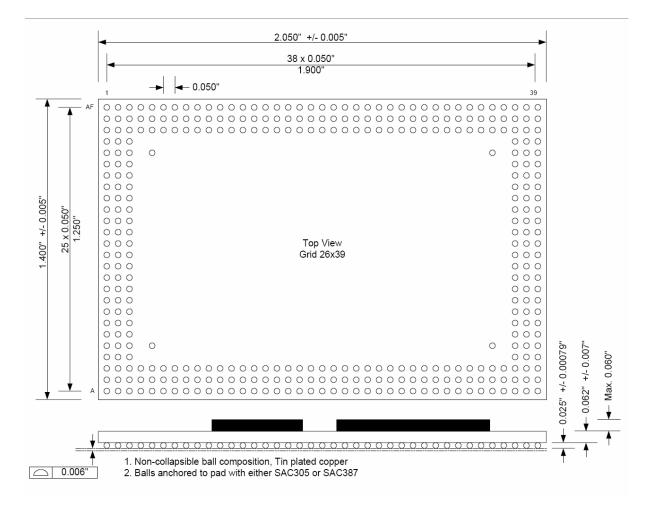
AF14

AF15

AF16

AF17

AF18


A19

AF20

AF21

Pin Number	Signal		
AF22	VCCF33		
AF23	SCS_N		
AF24	MOSI		
AF25	MISO		
AF26	MCS_N		
AF27	SCLK		
AF28	GND		
AF29	DVCC18		
AF30	DVCC18		
AF31	DVCC33		
AF32	GND		
AF33	DVCC18		
AF34	DVCC18		
AF35	DVCC18		
AF36	GND		
AF37	DVCC18		
AF38	DVCC18		
AF39	DVCC18		

Mechanical Dimensions

Ordering Guide

Table 10: Ordering Guide

Product	Ordering Number	Sampling rate (MSPS)	Nyquist Zone
Linearized ADC M	odule		
OM1400T-125	OM1400T-1250NZ2	125.0	2
OM1400T-125	OM1400T-1250NZ3	125.0	3
OM1400T-125	OM1400T-1250NZ4	125.0	4
OM1400T-125	OM1400T-1200NZ2	120.0	2
OM1400T-125	OM1400T-1200NZ3	120.0	3
OM1400T-125	OM1400T-1200NZ4	120.0	4
OM1400T-125	OM1400T-1150NZ2	115.0	2
OM1400T-125	OM1400T-1150NZ3	115.0	3
OM1400T-125	OM1400T-1150NZ4	115.0	4
OM1400T-125	OM1400T-1100NZ2	110.0	2
OM1400T-125	OM1400T-1100NZ3	110.0	3
OM1400T-125	OM1400T-1100NZ4	110.0	4
Evaluation Board			
	OM1400T-1250NZ2EVAL	125.0	2
	OM1400T-1250NZ3EVAL	125.0	3
	OM1400T-1250NZ4EVAL	125.0	4
	OM1400T-1200NZ2EVAL	120.0	2
	OM1400T-1200NZ3EVAL	120.0	3
	OM1400T-1200NZ4EVAL	120.0	4
	OM1400T-1150NZ2EVAL	115.0	2
	OM1400T-1150NZ3EVAL	115.0	3
	OM1400T-1150NZ4EVAL	115.0	4
	OM1400T-1100NZ2EVAL	110.0	2
	OM1400T-1100NZ3EVAL	110.0	3
	OM1400T-1100NZ4EVAL	110.0	4

Parts with other sample rates are available on request.

Please contact Optichron Sales at (510) 249-5230.

Contact Information

Optichron, Inc.

4221 Technology Drive Fremont, California 94538, U.S.A. Sales:(510) 249-5230 Sales Fax:(510) 249-5231 E-mail: sales@optichron.com www.optichron.com

Disclaimer

This product is not designed, intended or authorized for use as critical components in life support or safety devices or systems, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Buyer agrees to indemnify and hold Optichron, its officers, employees, subsidiaries, affiliates and distributors harmless against all claims of personal injury or death associated with such unauthorized use, even if such claim alleges that Optichron was negligent regarding the design or manufacture of the part.

Information furnished by Optichron is believed to be accurate; however, no responsibility is assumed by Optichron for its use. No patent licenses are implied and Optichron reserves the right at any time to change said circuitry and specifications. Turbolinear[™] is a trademark of Optichron, Inc. All other trademarks mentioned are the property of their respective owners.

Customers need to use the latest published information before placing an order. All products are sold subject to Optichron's terms and conditions of sale supplied at the time of order.

Revision History

Revision	Change	Page Number	Date
OM1400T-125 rev0.1	Initial Publication	22	7/18/05