

SBOS256 - AUGUST 2002

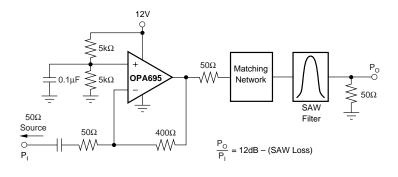
Ultra-Wideband, Current-Feedback OPERATIONAL AMPLIFIER With Disable

FEATURES

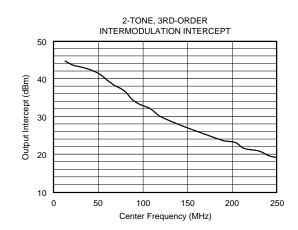
- GAIN = +2 BANDWIDTH (900MHz)
- GAIN = +8 BANDWIDTH (420MHz)
- OUTPUT VOLTAGE SWING: ±3.8V
 ULTRA-HIGH SLEW RATE: 4200V/µs
- 3RD-ORDER INTERCEPT: > 40dBm (f < 50MHz)
- LOW POWER: 130mW
- LOW DISABLED POWER: 3mW

DESCRIPTION

The OPA695 is a very high bandwidth, current-feedback op amp that combines exceptional 4200V/ μ s slew rate and low input voltage noise to deliver a precision low cost, high dynamic range Intermediate Frequency (IF) amplifier. Optimized for high gain operation, the OPA695 is ideally suited to buffering Surface Acoustic Wave (SAW) filters in an IF strip or delivering high output power at low distortion for cable modem upstream line drivers. Even higher bandwidth at lower gains gives a 900MHz video line driver for high resolution workstation graphics.


APPLICATIONS

- VERY WIDEBAND ADC DRIVER
- LOW-COST PRECISION IF AMPLIFIER
- BROADBAND VIDEO LINE DRIVER
- PORTABLE INSTRUMENTS
- ACTIVE FILTERS
- ARB WAVEFORM OUTPUT DRIVER
- **OPA685 PERFORMANCE UPGRADE**


The OPA695's low 13mA supply current is precisely trimmed at +25°C. This trim, along with a low temperature drift, gives low system power over temperature. System power may be further reduced using the optional disable control pin. Leaving this pin open, or holding it HIGH, gives normal operation. If pulled LOW, the OPA695 supply current drops to less than 150 μ A. This power-savings feature, along with exceptional single +5V operation, and ultra-small SOT23-6 packaging, make the OPA695 ideal for portable communications requirements.

OPA695 RELATED PRODUCTS

SINGLES	DUALS
OPA658	OPA2658
OPA691	OPA2691
OPA692	_

Low Distortion, 12dB Gain SAW Driver

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

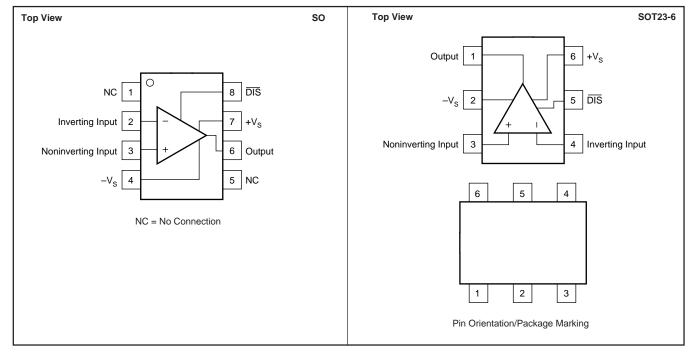
ABSOLUTE MAXIMUM RATINGS(1)

Power Supply	±6.5V _{DC}
Internal Power Dissipation	
Differential Input Voltage	±1.2V
Input Voltage Range	±V _S
Storage Temperature Range: U, N	40°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Junction Temperature (T _J)	+175°C

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
OPA695	SO-8	D	-40°C to +85°C	OPA695ID	OPA695ID	Rails, 100
"	"	II .	"	"	OPA695IDR	Tape and Reel, 2500
OPA695	SOT23-6	DBV	-40°C to +85°C		OPA695IDBVT	Tape and Reel, 250
"	п	II	"	"	OPA695IDBVR	Tape and Reel, 3000

NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: $V_S = \pm 5V$

Boldface limits are tested at +25°C.

 $R_F = 402\Omega$, $R_L = 100\Omega$, and G = +8, (see Figure 1 for AC performance only), unless otherwise noted.

		OPA695ID, IDBV						
		TYP	TYP MIN/MAX OV		VER TEMPERATURE]
PARAMETER	CONDITIONS	+25°C	+25°C ⁽¹⁾	0°C to 70°C ⁽²⁾	-40°C to +85°C ⁽²⁾	UNITS	MIN/ MAX	TEST LEVEL(3
AC PERFORMANCE (see Figure 1)								
Small-Signal Bandwidth ($V_0 = 0.5Vp-p$)	$G = +1, R_F = 523\Omega$	1200				MHz	typ	C
g(-0(-)	$G = +2$, $R_F = 511\Omega$	900				MHz	typ	Ċ
	$G = +8, R_F = 402\Omega$	420				MHz	min	В
	$G = +16, R_F = 249\Omega$	340				MHz	typ	С
Bandwidth for 0.1dB Gain Flatness	$G = +2, V_O = 0.5Vp-p, R_F = 523\Omega$	350				MHz	min	В
Peaking at a Gain of +1	$R_F = 523\Omega, V_O = 0.5Vp-p$	3 350				dB MHz	max	B C
Large-Signal Bandwidth Slew Rate	$G = +8, V_O = 4Vp-p$ $G = -8, V_O = 4V Step$	4200				V/μs	typ min	В
Cion Hato	$G = +8$, $V_O = 4V$ Step	2900				V/μs	min	В
Rise-and-Fall Time	$G = +8, V_O = 0.5V \text{ Step}$	0.7				ns	typ	c
	G = +8, V _O = 4V Step	1.0				ns	typ	С
Settling Time to 0.02%	$G = +8$, $V_O = 2V$ Step	4				ns	typ	C
0.1%	$G = +8$, $V_O = 2V$ Step	3				ns	typ	С
Harmonic Distortion	$G = +8$, $f = 10MHz$, $V_O = 2Vp-p$							
2nd-Harmonic	$R_L = 100\Omega$	-66 75				dBc	max	В
3rd-Harmonic	$R_{L} \ge 500\Omega$ $R_{L} = 100\Omega$	-75 -90				dBc dBc	max max	B B
Siu-i iaimonic	$R_{L} = 10002$ $R_{I} \ge 500\Omega$	-84				dBc	max	В
Input Voltage Noise	f > 1MHz	1.5				nV/√Hz	max	В
Noninverting Input Current Noise	f > 1MHz	11				pA/√ Hz	max	В
Inverting Input Current Noise	f > 1MHz	14				pA/√Hz	max	В
Differential Gain	$G = +2$, NTSC, $V_O = 1.4Vp$, $R_L = 150\Omega$	0.02				%	typ	С
Differential Phase	$G = +2$, NTSC, $V_O = 1.4Vp$, $R_L = 150\Omega$	0.01				deg	typ	С
DC PERFORMANCE ⁽⁴⁾	., ., .	l					١.	١.
Open-Loop Transimpedance Gain (Z _{OL})	$V_O = 0V, R_L = 100\Omega$	42	26	10.0		kΩ	min	A
Input Offset Voltage Average Offset Voltage Drift	$V_{CM} = 0V$ $V_{CM} = 0V$	±1.2	±2.5	±3.2	±4	mV μV/°C	max max	A B
Noninverting Input Bias Current	$V_{CM} = 0V$ $V_{CM} = 0V$	+56	+90			μΑ	max	A
Average Noninverting Input Bias Current		100	100			nA/°C	max	lя
Inverting Input Bias Current	$V_{CM} = 0V$	±10	±30			μΑ	max	A
Average Inverting Input Bias Current Dri						nA°/C	max	В
INPUT								
Common-Mode Input Range ⁽⁵⁾ (CMIR)		±3.4	±3.2			V	min	Α
Common-Mode Rejection Ratio (CMRR)	$V_{CM} = 0V$	54	49			dB	min	A
Noninverting Input Impedance Inverting Input Resistance (R _I)	Open-Loop	87 2 19				kΩ pF Ω	typ typ	C
OUTPUT	Орен-200р	13				32	тур	-
Voltage Output Swing	No Load	±4.1	±3.9			V	min	A
voltage output owing	100Ω Load	±3.6	±3.3			v	min	A
Current Output, Sourcing	$V_{O} = 0$	+130	+100	+85	+80	mA	min	A
Current Output, Sinking	$V_O = 0$	-120	-100	-85	-80	mA	min	A
Closed-Loop Output Impedance	G = +8, f = 100kHz	0.2				Ω	typ	С
DISABLE (Disabled LOW)								
Power-Down Supply Current (+V _S)	$V_{\overline{\rm DIS}} = 0$	-150				μΑ	typ	C
Disable Time Enable Time		100				ns	typ	C
Off Isolation	G = +8, 10MHz	100 70				ns dB	typ typ	C
Output Capacitance in Disable	0 = 10, 10WH2	3				pF	typ	ľč
Turn On Glitch	$G = +2$, $R_1 = 150\Omega$, $V_{1N} = 0$	±100				mV	typ	Č
Turn Off Glitch	$G = +2, R_L = 150\Omega, V_{IN} = 0$	±20				mV	typ	С
Enable Voltage		3.3	3.5	3.6	3.7	V	min	Α
Disable Voltage	., -	1.8	1.7	1.6	1.5	V	max	A
Control Pin Input Bias Current (DIS)	$V_{\overline{DIS}} = 0$	80				μΑ	max	A
POWER SUPPLY						.,	١.	_
Specified Operating Voltage Maximum Operating Voltage Range		±5	±6	±6	+6	V	typ max	C A
Max Quiescent Current	$V_{S} = \pm 5V$	13.0	±6 13.5	±6 13.5	±6 13.5	mA	max	A
Min Quiescent Current	$V_S = \pm 5V$ $V_S = \pm 5V$	13.0	12.5	11.9	11.2	mA	min	Â
Power-Supply Rejection Ratio (–PSRR)	Input Referred	55	49	47	46	dB	typ	A
TEMPERATURE RANGE							<u> </u>	
Specification: ID, IDBV		-40 to +85				°C	typ	С
Thermal Resistance, θ_{JA}	Junction-to-Ambient							
D SO-8		125				°C/W	typ	C
DBV SOT23-6	l	150				°C/W	typ	C

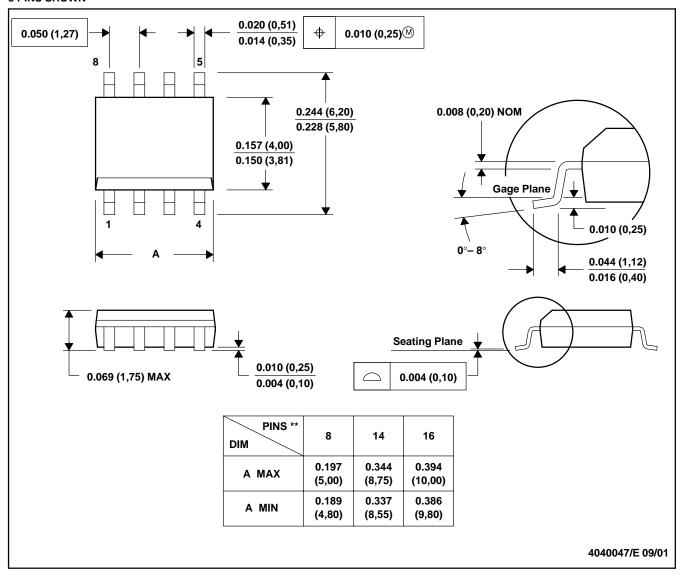
NOTES: (1) Junction temperature = ambient for 25°C specifications. (2) Junction temperature = ambient at low temperature limit: junction temperature = ambient +23°C at high temperature limit for over temperature specifications. (3) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (4) Current is considered positive out-of-node. V_{CM} is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ± CMIR limits.

ELECTRICAL CHARACTERISTICS: V_S = +5V

Boldface limits are tested at +25°C.

 $R_F = 348\Omega$, $R_L = 100\Omega$ to $V_S/2$, and G = +8, (see Figure 3 for AC performance only), unless otherwise noted.

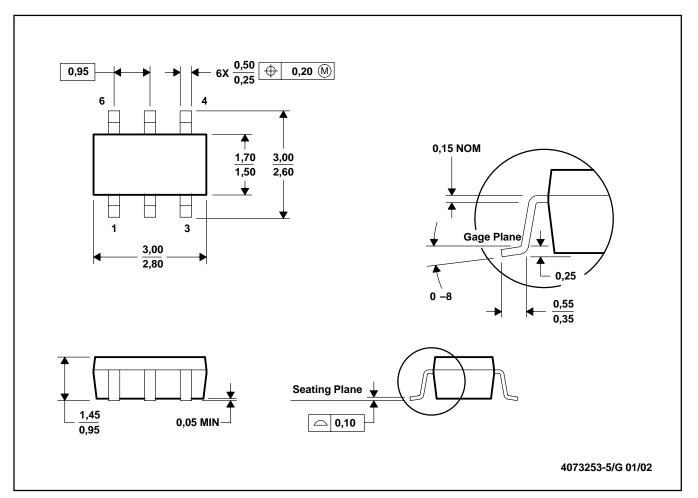
		OPA695ID, IDBV						
		TYP	MIN/MAX OVER TEMPERATURE					
DADAMETED	CONDITIONS	.25°C	.25°C(1)	0°C to 70°C ⁽²⁾	-40°C to +85°C ⁽²⁾	LIMITE	MIN/	TEST
PARAMETER	CONDITIONS	+25°C	+25°C ⁽¹⁾	70 C(2)	+65 (-)	UNITS	MAX	LEVEL ⁽³⁾
AC PERFORMANCE (see Figure 3) Small-Signal Bandwidth ($V_O = 0.5Vp-p$)	$G = +1, R_F = 511Ω$ $G = +2, R_F = 487Ω$	600 450				MHz MHz	typ min	C B
Bandwidth for 0.1dB Gain Flatness Peaking at a Gain of +1	$G = +8, R_F = 348\Omega$ $G = +16, R_F = 162\Omega$ $G = +2, V_O < 0.5Vp-p, R_F = 487\Omega$	350 250 140 0.4				MHz MHz MHz dB	typ typ min max	C C B
Large-Signal Bandwidth Slew Rate	$R_F = 511\Omega$, $V_O < 0.5Vp-p$ $G = +8$, $V_O = 2Vp-p$ G = +8, 2V Step	350 1900				MHz V/μs	typ min	C B
Rise-and-Fall Time Settling Time to 0.02%	$G = +8, V_O = 0.5V \text{ Step}$ $G = +8, V_O = 2V \text{ Step}$ $G = +8, V_O = 2V \text{ Step}$	0.8 1.0 9				ns ns ns	typ typ typ	CCC
0.1% Harmonic Distortion	$G = +8, V_O = 2V \text{ Step}$ $G = +8, f = 10MHz, V_O = 2Vp-p$	7				ns	typ	С
2nd-Harmonic 3rd-Harmonic	$\begin{array}{l} R_L = 100\Omega \text{ to V}_S/2 \\ R_L \geq 500\Omega \text{ to V}_S/2 \\ R_L = 100\Omega \text{ to V}_S/2 \\ R_L \geq 500\Omega \text{ to V}_S/2 \end{array}$	-60 -68 -58 -60				dBc dBc dBc dBc	max max max max	B B B
Input Voltage Noise Noninverting Input Current Noise Inverting Input Current Noise	f > 1MHz f > 1MHz f > 1MHz	1.5 11 15				nV/√Hz pA/√Hz pA/√Hz	max max max	B B B
DC PERFORMANCE ⁽⁴⁾ Open-Loop Transimpedance Gain (Z _{OL}) Input Offset Voltage	$V_{O} = V_{S}/2$, $R_{L} = 100\Omega$ to $V_{S}/2$ $V_{CM} = V_{S}/2$	40 ±1	25 ±3	±3.5	±4.0	kΩ mV	min max	A A
Average Offset Voltage Drift Noninverting Input Bias Current Average Noninverting Input Bias Current		+40	+110			μV/°C μA nA/°C	max max max	B A B
Inverting Input Bias Current Average Inverting Input Bias Current Drif INPUT	$V_{CM} = V_S/2$ ft $V_{CM} = V_S/2$	±50	±100			μA nA/°C	max max	A B
Least Positive Input Voltage ⁽⁵⁾ Most Positive Input Voltage ⁽⁵⁾ Common-Mode Rejection Ratio (CMRR) Noninverting Input Impedance Inverting Input Resistance (R _I)	V _{CM} = V _S /2 Open-Loop	1.7 3.3 54 87 2 23	1.8 3.2 48			V V dB kΩ pF	max min min typ typ	A A C C
OUTPUT Most Positive Output Voltage	No Load $R_L = 100\Omega$ to $V_S/2$	4.1 4.0	3.9 3.8			V	min min	A A
Least Positive Output Voltage Current Output, Sourcing	No Load $R_{L} = 100\Omega \text{ to } V_{S}/2$ $V_{O} = V_{S}/2$	0.9 1.0 90	1.1 1.2 62			V V mA	max max min	A A A
Current Output, Sinking Closed-Loop Output Impedance	$V_O = V_S/2$ G = +2, f = 100kHz	-70 0.3	-45			mA Ω	min typ	A C
DISABLE (Disabled LOW) Power Down Supply Current (+V _S) Disable Time Enable Time	$V_{\overline{DIS}} = 0$	-150 150 150				μA ns ns	typ typ typ	CCC
Off Isolation Output Capacitance in Disable Turn On Glitch Turn Off Glitch	G = +8, 10MHz $G = +2, R_L = 150\Omega, V_{IN} = V_S/2$ $G = +2, R_L = 150\Omega, V_{IN} = V_S/2$	70 3 ±100 ±20				dB pF mV mV	typ typ typ typ	0000
Enable Voltage Disable Voltage Control Pin Input Bias Current (DIS)	V _{DIS} = 0	3.3 1.8 75	3.5 1.7	3.6 1.6	3.7 1.5	V V μA	min max typ	A A C
POWER SUPPLY Specified Single-Supply Operating Voltage Max Single-Supply Operating Voltage Max Quiescent Current	V _S = +5V	5	12 11.3	12 11.3	12 11.3	V V mA	typ max max	C A A
Min Quiescent Current Power-Supply Rejection Ratio (–PSRR) TEMPERATURE RANGE	V _S = +5V Input Referred	10.7 54	9.0 51	8.3 49	8.1 48	mA dB	min min	A A
Specification: ID, IDBV Thermal Resistance, $\theta_{\rm JA}$	Junction-to-Ambient	-40 to +85				°C	typ	С
D SO-8 DBV SOT23-6		125 150				°C/W	typ typ	C


NOTES: (1) Junction temperature = ambient for 25°C specifications. (2) Junction temperature = ambient at low temperature limit: junction temperature = ambient +23°C at high temperature limit for over temperature specifications. (3) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (4) Current is considered positive out-of-node. V_{CM} is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ±CMIR limits.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Leads 1, 2, 3 may be wider than leads 4, 5, 6 for package orientation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated