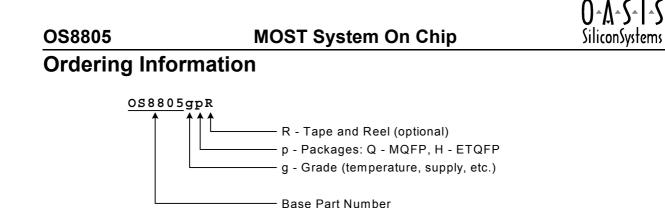
MOST System On Chip

Final Product Data Sheet

DS8805FP5

Apr. 2003


Media Oriented Systems Transport

Multimedia and Control Networking Technology

© Copyright 2001-2003 Oasis SiliconSystems

RESTRICTED ACCESS

Valid Part Numbers:

Order Number	Grade		Package
	Temperature	Supply	Fackaye
OS8805AQ	T _J = -40 to +150 °C	3.3 V ±5 %	128-pin MQFP
OS8805AQR	T _J = -40 to +150 °C	3.3 V ±5 %	128-pin MQFP, Tape and Reel
OS8805AH	T _J = -40 to +150 °C	3.3 V ±5 %	128-pin ETQFP
OS8805AHR	T _J = -40 to +150 °C	3.3 V ±5 %	128-pin ETQFP, Tape and Reel

This table represents valid part numbers at the time of printing and may not represent parts that are currently available. For the latest list of valid ordering numbers for this product, please contact the nearest sales office (as listed on back page).

Intellectual Property

© Copyright 2001-2003 Oasis SiliconSystems. The information within this document is Oasis SiliconSystems intellectual property. Duplication of this document without the expressed written permission from Oasis SiliconSystems is prohibited. The information in this document is considered "Restricted Access", and must not be sent to third parties without written permission from Oasis SiliconSystems.

Trademarks

MOST is a registered trademark of Oasis SiliconSystems. All other trademarks used in this document are proprietary of their respective owners.

Patents

There are a number of patents and patents pending on the MOST technology. The rights to these patents are not granted without any specific Agreement between the users and the patent owners.

Conventions

Within this manual, the following abbreviations and symbols are used to improve readability.

Example	Description
BIT	Name of a single bit within a register
REG.BIT	Name of a single bit (BIT) in register REG
ху	Range from x to y, inclusive
BITS[m:n]	Groups of bits (or pins) from m to n, inclusive
PIN	Pin Name
0xzzz	Hexadecimal number (value zzz)
zzh	Hexadecimal number (value zz)
rsvd	Reserved memory location. Must write 0, read value indeterminate
code	Instruciton code
Multi Word Name	Used for multiple words that are considered a single unit, such as: <i>Resource Allocate</i> message, or <i>Connection Label</i> , or <i>Decrement Stack Pointer</i> instruction.
Section Name	Section or Document name.
VAL	Over-bar indicates active low pin or register bit
bREG	Single byte MOST register
mBUF	Multi-byte MOST buffer
х	Don't care

Data Sheet Versions

Doc. Number	Date	Description
DS8805AP2	Aug. 2001	First released Data Sheet
DS8805AP3	Mar. 2002	Second released Data Sheet
DS8805AP4	July 2002	Third released Data Sheet
DS8805FP5	Apr. 2003	First Final Product Data Sheet

MOST System On Chip TABLE OF CONTENTS

LIST OF FIGURES	8
LIST OF TABLES	
1 OVERVIEW	15
1.1 Host Controller	
1.2 Control Bus and Peripherals	
1.3 MOST Processor and the Routing Bus	
1.3.1 Source Data Ports	
1.3.2 Source Data Converters	
1.4 DSP Processors	
1.5 MOST NetServices API	
2 HOST CONTROLLER AND CONTROL BUS PERIPHERALS	25
2.1 Architecture	25
2.1.1 Program Memory	27
2.1.1.1 Flash Memory	29
2.1.2 Data Memory	32
2.1.3 Program and Interrupt Controller	32
2.1.4 Execution Unit	
2.1.5 Address Generation Unit	
2.1.5.1 Immediate Data	
2.1.5.2 Inherent	
2.1.5.3 Register Addressing	
2.1.5.4 Direct Addressing	
2.1.5.5 Indirect Addressing	
2.1.5.6 Program Memory Indirect Addressing Mode	
2.1.6 Instruction Summary	
2.2 Inter-Processor Communications	
2.2.1 MOST Processor COM Port	
2.2.2 DSP0 COM Port	
2.2.3 DSP1 COM Port	
2.2.4 DSP Debug Interface	
2.3 Control Bus Peripherals	
2.3.1 Clock Manager	
2.3.1.1 Crystal Pins	
2.3.2 Global Timer 2.3.3 Control Port	
2.3.3 Control Port	
2.3.3.1 I2C Slave Format 2.3.3.2 Oasis-Specific Slave SPI Format	
2.3.3.3 Generic Slave SPI Format	
2.3.4 Debug Port	
2.3.5 USARTs	
2.3.6 GPIO Pins and GP Timer	
2.3.7 Global Control	
2.3.8 EGPIO	
2.3.9 DC Measurement ADC	
2.3.10 Source Converter Control	
2.3.10.1 MPX ADC	
2.3.10.2 Microphone ADC	
2.3.10.3 Stereo Audio ADCs	
2.3.10.4 Quad Audio DACs	
	-

MOST System On Chip

2.3.11 DSP Program Control	91
2.3.12 DSP0 External Memory Configuration	
2.3.13 Watchdog Timer	
2.3.13.1 Reset Generator	
2.3.14 Power Supply Monitor	
2.4 Control Bus I/O Register Summary	
3 MOST INTERFACE AND ROUTING BUS	103
3.1 Host Controller COM Port	
3.2 MOST Transceiver	
3.2.1 MOST Routing Table (MRT) and Routing Ports	
3.2.2 SPDIF Mode (SR0/SX0)	
3.2.3 MOST Configuration Registers	
3.2.4 MOST Control Message Registers	
3.2.4.1 System Control Messages	
3.2.5 Packet Data Transfer	
3.2.5.1 Packet Data Handling	
3.2.6 Configurable Routing Registers	
3.3 Source Ports	
3.4 MOST Register Summary	
4 DIGITAL SIGNAL PROCESSORS	
4.1 Architecture	
4.1.1 Program Memory	
4.1.2 Vector Memory	
4.1.3 Pointer Memory	
4.1.4 Program Controller	
4.1.5 Interrupt Controller	
4.1.6 Execution Unit	
4.1.7 Address Generation Unit	152
4.1.7.1 Register Addressing Mode	
4.1.7.2 Direct Addressing Mode	
4.1.7.3 Indirect Addressing Mode	
4.1.8 Instruction Summary	
4.2 Global Timer Peripheral	
4.3 Inter-Processor Communications	
4.3.1 MOST Routing Port	
4.3.2 Host Controller COM Port	
4.3.3 Host Controller Debug COM Port	
4.3.4 Inter-DSP FIFO Port 4.4 Asynchronous Source Ports	
4.4.1 Async. Source Port Timer	
4.4.1 Async. Source Port Timer	
4.4.2.1 S/PDIF Format	
4.5 Source Converter Volume Control	
4.6 Unique DSP Peripherals	
4.6.1 DSP0 External Data Memory Interface	
4.6.1.1 External Memory Addressing	
4.6.1.2 DSP0 External Memory Register Description	
4.6.1.3 Write Operation	
4.6.1.4 Read Operation	
4.6.1.5 Programming Examples	182

MOST System On Chip

-		
	3	
5.2 Microphone ADC		
5.4 Stereo Audio ADCs		
6 ELECTRICAL CHARAC	TERISTICS	199
6.1 Absolute Maximum Ratin	gs	
	Conditions	
	,	
6.5 Switching Characteristics		
-	y Interface	
-	erface	
6.8 Source Data Ports		
6.9 DSP Async. Source Ports	5	210
6.10 Control and Debug Ports	s - SPI Mode	211
6.11 Control and Debug Ports	s - I2C Mode	213
6.12 Control and Debug Ports	s - USART mode	215
6.13 Analog Performance		216
	NG	
7.2 Equivalent Schematics fo	r Pins	
7.4 Package Outline, 128-pin	MQFP	232
7.5 Package Outline, 128-pin	ETQFP	233
8 APPLICATION INFORM	ATION	
8.1 Power Supplies and Anal	og Components	
	-9	
	perature	
	n	
	. OS8804	
APPENDIX B: REVISION	HISTORY	
INDEX		
Final Product Data Sheet	© Copyright 2001-2003 Oasis SiliconSystems	DS8805FP5

MOST System On Chip

LIST OF FIGURES

Figure 1-1:	MOST Hardware/Software System Overview	
Figure 1-2:	OS8805 Block Diagram	17
Figure 1-3:	Host Controller and Control Bus	19
Figure 1-4:	MOST Processor Overview	21
Figure 1-5:	DSP Overview	23
Figure 2-1:	Control Bus	
Figure 2-2:	Host-Controller Opcode Architecture	26
Figure 2-3:	Host Controller External Program Memory Diagram	27
Figure 2-4:	User Interrupt Vector Table	29
Figure 2-5:	Host Controller Hardware Vector Table	35
Figure 2-6:	Generic COM Port	41
Figure 2-7:	Generic COM Port Write Sequence	42
-	Generic COM Port Read Sequence	43
	Clock Manager	
Figure 2-10:	Crystal Oscillator Input	49
	Global Timer	
-	Global Timer Timing	
-	Control Port	
•	Control Port I2C and OSPI Write Sequence	
	Control Port I2C and OSPI Read Sequence (slave)	
	Control Port I2C Slave Write Sequence	
	Control Port I2C Slave Read Sequence	
	Control Port I ² C Master Write Sequence	
	Control Port I ² C Master Read Sequence	
-	Control Port OSPI Write Sequence	
	Control Port OSPI Read Sequence	
	Control Port Generic SPI Sequence (CPHA set)	
	Control Port Generic SPI Sequence (CPHA clear)	
	Control Port Generic SPI SCLK Format	
	Debug Port	
Figure 2-26:	USART Asynchronous Format (UnC.SYEN = 0)	67
	USART Synchronous Format	
	GP Timer	
•	EGPIO Conceptual Logic	
	DC Measurement ADC	
Figure 2-31:	DC ADC Transfer Function (12-bits)	
	Source Converters	
Figure 2-33:	External Data Memory Port with 16-bit words (XMC.MWW set)	95
	External Data Memory Port with 8-bit words (XMC.MWW clear)	
	Routing Bus	
Figure 3-2:	MOST Routing Table (Destinations)	106
Figure 3-3:	MRA Routing Addresses (Sources)	106
Figure 3-4:	MRT Example - Step 1	107
Figure 3-5:	MRT Example - Source Port Routing	
Figure 3-6:	MRT Example - Finished Table	109
Figure 3-7:	MRT Power-Up Defaults	110
Figure 3-8:	MRT Addresses with respect to Source Port Timing	
Figure 3-9:		
	MOST Transceiver Errors and ERR Pin	
•	Control Message Buffers	
	Packet Data Transfer Polling	

MOST System On Chip

•	ReRoute Example - MRT	
	ReRoute Example - MRA	
	MOST Source Ports	
	Source-Port SCLK Output Timing (bSDC1.EDG = 0)	
	DSP0 I/O Bus	
Figure 4-2:	DSP1 I/O Bus	
Figure 4-3:	DSP Memory Architecture	143
	DSP Vector Table	
	DSP Source Data Alignment	
	DSP Destination Data Alignment	
	DSP ASP 64-bit Mode	
	DSP ASP 128-bit Mode	
Figure 4-9:	DSP Async. Source Port S/PDIF Alignment - 64 Bits/Interrupt	171
Figure 4-10:	DSP Async. Source Port S/PDIF Alignment - 128 Bits/Interrupt	172
Figure 4-11:	DSP0 External DRAM Interface	175
Figure 4-12:	DSP0 External SRAM Interface	175
Figure 4-13:	DSP0 External Memory Controller	176
Figure 4-14:	DSP0 PWM DACs	184
Figure 4-15:	DSP EGPIO Conceptual Logic	187
Figure 5-1:	DAC Block Diagram	195
Figure 5-2:	Mic ADC	196
Figure 5-3:	MPX ADC	197
Figure 5-4:	Stereo Audio ADCs	198
Figure 6-1:	Reset and Configuration Pins	202
	RX Pulse-Width Distortion Timing	
	RX Jitter Tolerance Timing	
Figure 6-4:	External Program Memory Timing (MMPC.PCSC = 0)	203
Figure 6-5:	External Program Memory Timing (MMPC.PCSC = 1)	204
Figure 6-6:	DRAM Refresh (CAS-before-RAS) Timing (XMC.MMS = 1)	206
	DRAM Timing (XMC.MMS = 1)	
	SRAM Timing (XMC.MMS = 0)	
-	Source Port Timing	
	DSP Async. Source Port Timing	
•	Control/Debug Port - SPI Timing	
	Control/Debug Port - I2C Timing	
	Control/Debug Port - USART Timing	
•	Pin-equivalent for Analog IO pin - AIO	
	Pin-equivalent for Analog Audio Input pin - AAI	
Figure 7-3:	Pin-equivalent for Analog Audio Output pin - AAO	
Figure 7-5:	Pin-equivalent for Digital Output pin - DOUT	
Figure 7-4:	Pin-equivalent for Digital Input pin - DIN	
Figure 7-6:	Pin-equivalent for Digital Output with high-Z control - DOUTZ	
Figure 7-7:	Pin-equivalent for Open-Drain Digital Output pin - DOUTD	
Figure 7-8:	Pin-equivalent for Digital I/O pin - DI/O	
Figure 7-9:	Pin-equivalent for Digital Input/Open-Drain Output pin - DI/OD	
•	OS8805 Functional Pinout	
•	OS8805 General Purpose I/O Pinout	
	Power Supply Overview Diagram	
Figure 8-2:	Detailed Power Supply Arrangement	
- igui 0 0-2.	Botaliou i ouch ouch i vitaligement	201

MOST System On Chip

LIST OF TABLES

Table 2-1:	Single-Operand Instructions	.26
Table 2-2:	Dual-Operand Instructions	.27
Table 2-3:	MMPC Register	.28
Table 2-4:	FMC Register	.30
Table 2-5:	Flash Memory Programming Times (in µs)	.30
Table 2-6:	FPBK Register	
Table 2-7:	FPB16 Register	
Table 2-8:	IO Write Locations for FPBK and FPB16 Bits	.32
Table 2-9:	SPC Register	.32
Table 2-10:	SPCH Register	
	DSPC Register	
	DSPCH Register	
	SR Register	
	IFL Register	
	IER Register	
	SP Register	
	PGMP Register	
	Host Controller Instruction Set Summary	
	RCS Register	
	RCF, RCM Registers	
	D0CS Register	
	D0CF, D0CM Registers	
	D1CS Register	
	D1CF, D1CM Registers	
Table 2-24.	DDOCS Register	45
	DD0CF, DD0CM Registers	
	DDUCF, DDUCM Registers DD1CS Register	
	DD1CF, DD1CM Registers	
	D0TSPC Register	
	D1TSPC Register	
	CMCS Register	
	CM4 Register	
	Crystal Oscillator Frequencies	
	GTR Register	
	CPS Register	
	CP Register	
	DCPS Register	
	DCP Register	
	U0C Register	
	U0DV Register	
	UnDV Values for Standard BAUD Rates	
	U0RX Register	
	U0TX Register	
	U1C Register	
	U1DV Register	
	U1RX Register	
	U1TX Register	
	CMP0 Register	
	CMP1 Register	
	CAP0 Register	
Table 2-51:	CAP0 Register	.74

MOST System On Chip

O-A-S-I-S SiliconSystems

		Jinconsystems
Table 2-52:	TMR Register	75
Table 2-53:	TMOD Register	75
Table 2-54:	GPIO Register	
	GPC Register	
	DDR Register	
Table 2-57:	GCTL Register	77
Table 2-58:	EGPIO Enable Summary	79
Table 2-59:	EGPD1 Register	80
Table 2-60:	EGPD2 Register	80
Table 2-61:	EGPD3 Register	80
	EDD1 Register	
	EDD2 Register	
	EDD3 Register	
	IPOT1 Register	
	IPOT2 Register	
	IPOT3 Register	
	ISOD1 Register	
	ISOD2 Register	
	ISOD3 Register	
	DCC Register	
	DCD Register	
	DC ADC Resolution	
	FPCR Register	
	ACR Register	
	ACR Register	
	GMPX Register	
	GMIC Register	
	GADL Register	
	GADR Register	
Table 2-81:	ADAC0 Register	
Table 2-82:	ADAC1 Register	
Table 2-83:	ADAC2 Register	
Table 2-84:	ADAC3 Register	
Table 2-85:	D0PCR Register	
Table 2-86:	D0PDL Register	
	D0PC Register	
	D1PCR Register	
	D1PDL Register	
	D1PC Register	
	XMC Register	
	WDT Register	
	RGEN Register	
	Control Bus Register Summary	
Table 3-1:	MOST Processor MRA and MRT	
Table 3-2:	Source Converter Routing MRA and MRT	
Table 3-3:	Source-Port MOST Routing Table for SX0, SX1	
Table 3-4:	Source-Port MOST Routing Addresses for SR0, SR1	
Table 3-5:	SPDIF Sub-frame Control Byte	
Table 3-6:	bXCR Register	
Table 3-7:	bXSR Register	
Table 3-8:	bNC Register	
Table 3-9:	bNPR Register	
	blE Register	
	bGA Register	
	Data Sheet © Convright 2001-2003 Qasis Silicon Systems	
Emai Product L	ISTA STREET IST CONVIONT 2001-2003 CASIS SILCONSVETAME	

Final Product Data Sheet Restricted Access

MOST System On Chip

O-A-S-I-S SiliconSystems

Table 3-12:	bNAH Register	117
Table 3-13:	bNAL Register	118
Table 3-14:	bCM2 Register	118
Table 3-15:	bNDR Register	118
Table 3-16:	bMPR Register	118
Table 3-17:	bMDR Register	118
Table 3-18:	bSBC Register	119
Table 3-19:	bXSR2 Register	119
Table 3-20:	mCRA Table	119
	bMSGC Register	
Table 3-22:	bMSGS Register	122
Table 3-23:	mRCMB Buffer	123
	bXTIM Register	
	bXRTY Register	
	mXCMB Buffer	
	bXTS Register	
	System Control Messages - mXCMB	
	Resource Allocate Responses	
	Resource De-allocate Responses	
	Remote GetSource Response	
	bAPAH Register	
	bAPAL Register	
	bPLDT Register	
	bPPI Register	
	bPCTC Register	
	bPSTX Register	
	bPCTS Register	
	mARP Buffer	
	mAXP Buffer	
	bSPAR Register	
	bFPR Register	
	bD0RP Register	
	bD0RS Register	
	bD1RP Register	
	bD1RS Register	
	bSDC1 Register	
	bSDC2 Register	
	MOST Routing Bus Register Summary	
Table 3-49.	MOST Hardware Control Registers - Bit Summary	
Table 3-30. Table 4-1:	PC Register	
Table 4-2:	PCI Register	
Table 4-2:	ISPC Register	
Table 4-3:	SSPC Register	
Table 4-4. Table 4-5:	CNT Register	
Table 4-6:	END Register	
Table 4-0. Table 4-7:	-	
Table 4-7. Table 4-8:	STRT Register	
Table 4-6. Table 4-9:		
	IER Register	
	•	
	SSR Register	
	SACCH Register	
	SACCH Register	
	TSSR Register	
1 able 4-15.	DSP Instruction Set	103

MOST System On Chip

O-A-S-I-S SiliconSystems

Table 4-16:	GTR Register	154
Table 4-17:	DR Register	154
Table 4-18:	DX Register	155
Table 4-19:	DR1 Register	155
Table 4-20:	DX1 Register	155
Table 4-21:	DCS Register	156
Table 4-22:	DCD Register	156
	DDCS Register	
	DDCD Register	
Table 4-25:	DFLS Register	157
	DFFS Register	
	DFSD Register	
	DFWD Register	
	DFWD Register	
	DSP Async. Source Port Pins	
	DDIV0 Register	
	DDIV1 Register	
	DCAP0 Register	
	DCAP1 Register	
	DTC Register	
	Valid Output Clocking Combinations for Async. Source Ports	
	DS0R0 Register	
	DS0R1 Register	
	DS0R2 Register	
	DS0R3 Register	
	DS1R0 Register	
	DS1R1 Register	
	DS1R2 Register	
	DS1R3 Register	
	DS0X0 Register	
	DS0X1 Register	
	DS0X2 Register	
	DS0X2 Register	
	DS0X5 Register	
	DS1X0 Register	
	DS1X1 Register	
	DS1X2 Register	
	DS0C Register	
	DS1C Register Valid S/PDIF Clocking Combinations for Async. Source Port 0	
	ADAC0 Register	
	5	
	ADAC1 Register	
	ADAC2 Register	
	ADAC3 Register	
	GMPX Register	
	GMIC Register	
	GADL Register	
	GADR Register	
	DSP Cycles for EMI Access	
	OFF0 Register	
	OFF0+- Register	
	OFF0++ Register	
	OFF1 Register	
i adle 4-69:	OFF1+- Register	1/8

Final Product Data Sheet Restricted Access

MOST System On Chip

O-A-S-I-S SiliconSystems

		· · · · · · · · · · · · · · · · · · ·
Table 4-70:	OFF1++ Register	
	RD0 Register	
	RD0+- Register	
	RD0++ Register	
Table 4-74:	RD1 Register	
	RD1+- Register	
	RD1++ Register	
	BSL0 Register	
Table 4-78:	BSH0 Register	
	BSL1 Register	
Table 4-80:	BSH1 Register	
	WR0+- Register	
	WR0++ Register	
	WR1+- Register	
Table 4-84:	WR1++ Register	
Table 4-85:	MOD0 Register	
Table 4-86:	MOD1 Register	
Table 4-87:	PWMD Register	
Table 4-88:	PWM1D Register	
Table 4-89:	EGPD Register	
Table 4-90:	EDD Register	
Table 4-91:	IPOT Register	
Table 4-92:	ISOD Register	
Table 4-93:	EGPD Register	
	EDD Register	
	IPOT Register	
Table 4-96:	ISOD Register	
	DSP0 Register Summary	
Table 4-98:	DSP1 Register Summary	193
Table 7-1:	Pinout List	221
Table 7-2:	Package Outline Dimensions (mm)	232
Table 7-3:	Package Outline Dimensions (mm)	
Table 8-1:	Power Supply Current Derating Factors	238
Table 8-2:	Crystal Oscillator Specifications	240
Table B-1:	Data Sheet Revision Summary	243

MOST System On Chip

1 Overview

The OS8805 is a flexible hardware platform that can be programmed for a wide variety of signal processing system solutions. Software is available from Oasis SiliconSystems for applications including a digital radio, amplifiers, and active speakers. Programming tools such as emulators, assemblers, and C compilers are available to support user-developed applications.

The OS8805 is a monolithic CMOS integrated circuit, which combines high-speed micro-controllers and digital signal processors, with high quality analog circuitry. The OS8805 has four processors, eleven ADCs and DACs, and a variety of digital I/O. The Host Controller has 128k bytes of on-chip Flash Program memory, supporting easy updates during the design process as well as in the field. The programmable Host Controller and fixed-point DSPs enable the OS8805 to be a cost-effective solution for a wide variety of applications.

The MOST Processor provides a standard interface to the MOST Network. It generates the timing for all components on the chip, allowing the entire chip to operate synchronously to the Network. Even when not connected to the Network, the MOST Processor efficiently routes real-time data between resources, such as the DSPs, Source Ports, and Source Converters.

The OS8805 is a complete MOST (Media Oriented Systems Transport) Network Transceiver device capable of more than 24 Mbit/s data throughput when interfacing to a MOST optical Network. All relevant Network management functions are handled on-chip providing a complete system interface to the Physical layer components. Minimal additional components are required due to the high-level of integration on chip. An ultra-low jitter on-chip PLL guarantees high-quality audio and video transmission, and clock recovery over a wide frequency range.


A typical MOST Network node would consist of the OS8805 and the Physical layer devices. The MOST transceiver handles the Data-Link layer protocols and the Host Controller handles the Network layer and higher. Oasis SiliconSystems also offers a NetServices software stack, written in ANSI C, to ease implementation of the MOST Specification software protocol; thereby, drastically shrinking development time. NetServices can be ported to the Host Controller, along with the application's code for the particular node. All Network management functions can be off-loaded from the programmer allowing full concentration on the application being developed. Figure 1-1 illustrates the OS8805, with the matching software-protocol stack implementation. This Figure illustrates the OS8805 streaming synchronous data between the MOST Network and the on-chip ADCs, and DACs, and DSPs. Source Ports even support streaming data to off-chip high-speed controllers.

To minimize costs, the MOST Network supports a peer-to-peer methodology, eliminating excessive hardware overhead such as a hub (although hub-based architectures can also be implemented). In addition to handling Network interface and communication management functions, the MOST transceiver also handles all of the important low-level Network management functions; such as node position sensing (Plugand-Play), network delay detection, start up and shut down, as well as error reporting, fail-safe operation, and channel allocation. Placing all these features in hardware, frees up much of the Host Controller MIPS to focus on higher-level Network functions.

The MOST Network actually consists of three simultaneous networks operating across a single low-cost plastic fiber:

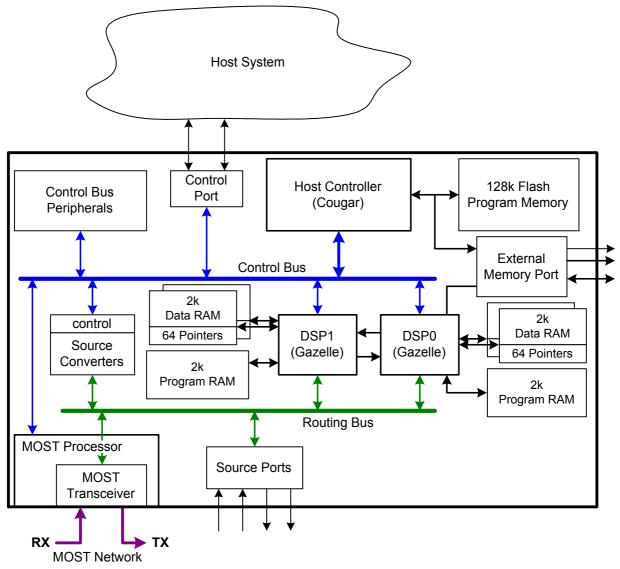
- a Control network to manage the Network and communicate control data across the network,
- a Packet-based network to support nodes that communicate data,
- and a Streaming network that supports high-speed synchronous data with extremely low overhead (such as audio and video).

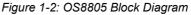
Each of these three networks, or *data transfer methods*, operates independently (not affecting the other two), providing a robust, dependable, and deterministic system architecture. The OS8805 supports the Control and Streaming portions of the MOST Network, by default. The OS8805 also supports Packet messages if enabled, otherwise it will not acknoledge reception of asynchronous Packets.

MOST System On Chip

O-A-S-I-S SiliconSystems

Figure 1-1: MOST Hardware/Software System Overview


Final Product Data Sheet Page 16


MOST System On Chip

As shown in Figure 1-2, the chip contains four main processors: the Host Controller, the MOST Processor, and two DSPs. The Host Controller operates on the Control bus and communicates with the external Host System. This Controller manages the peripherals on the Control Bus, loads programs into the DSP memories, and configures the MOST Processor and connection to the MOST Network. The data crossing the Control bus is generally low-speed data such as configuration information and messages to or from the MOST Network. The Controller interfaces to the external system through a Control Port. For external systems with intelligence, the Control Port (and the chip) can be configured as a serial device. For stand-alone applications, the Control Port can be configured as a master, wherein the Controller manages the external peripherals in a similar fashion as the peripherals on the Control bus.

The Host Controller generally operates out of on-chip Flash memory, but also supports operation from external memory through the external memory port. If the Controller uses external memory, then DSP0 is limited to the internal data memory. If the Controller runs out of internal Flash, DSP0 can use the external memory port for data-memory expansion.

MOST System On Chip

The MOST Processor manages real-time high-speed data traversing the Routing bus and includes a MOST Network transceiver. The high-speed data can be exchanged between the MOST Network and among the devices connected to the Routing bus; such as either DSP, the Source Ports, or the Source Converters (ADCs and DACs). The MOST Processor can transfer up to 15 high-fidelity stereo-audio streams onto or off of the MOST Network, per Fs period. The MOST Routing Table (MRT), programmed by the Host Controller, determines how the high-speed data is routed by the MOST Processor.

The two DSPs are Oasis SiliconSystem's *Gazelle* DSP cores and are identical, with the exception of extra peripherals on DSP0's I/O bus. Each DSP Program RAM must be loaded from the Host Controller. Each DSP can transfer up to 32-bytes per Fs onto and off of the Routing bus. The DSPs also have a FIFO port between them, allowing processing to be split between the DSPs without using Routing-bus bandwidth. Each DSP has an I/O bus with peripherals. Each DSP also has an Asynchronous Source Port with flexible clocking options. This port can be clocked asynchronously to the OS8805 and includes a timer that can reference the asynchronous clock to the internal chip timing and the MOST Network.

The Host Controller manages COM Ports that provide bi-directional communications to each DSP and the MOST Processor. Through the Control bus, the Host Controller also has access to the program controllers of each DSP. This enables the Host Controller to download programs to the DSPs.

Peripherals such as the GPIO pins, Clock Manager, a dual-USART, and the DC measurement ADC reside on the Control bus. The Control Port and Debug Port peripherals are also connected to the Control bus and allow the Host Controller to communicate with external devices. The Source Converters consist of ADCs and DACs that are connected to both the Control and Routing busses. The Host Controller can enable the Converters and adjust the volume, while the high-speed MOST Processor routes the Converter's data across the Routing bus. The Source Ports provide a gateway for high-speed data between the OS8805 and the external system.

Most digital pins that are not used for their primary function, may be configured as GPIO.

1.1 Host Controller

The Host Controller has multiple-byte instructions and a CISC architecture, which minimizes the amount of program code required to perform control applications. A byte/word-mode switch enables it to efficiently process byte and word variables without wasting data memory. The Controller operates at a maximum of 8.5 MIPS. Instructions can be one to four bytes long.

The Host Controller addresses 128k bytes of internal Flash or external Program memory, and 4k bytes of internal Data memory for variables. NetServices software is available from Oasis SiliconSystems which runs on the Host Controller and manages both the low- and high-level network protocol processing for the MOST Network.

The Host Controller is the main interface to the external system for control and configuration information. As illustrated in Figure 1-3, the external Host System communicates with the OS8805 through the Control Port. The Host Controller (Controller) reads the Control Port and reacts directly, or passes the information to one of the peripheral processors such as a DSP or the MOST Processor. The Controller also manages all the peripherals that reside on the Control bus.

In some systems, the OS8805 contains all the intelligence and the external Host System is only comprised of peripherals that are managed via the Control Port, in Master mode.

MOST System On Chip

O-A-S-I-S SiliconSystems

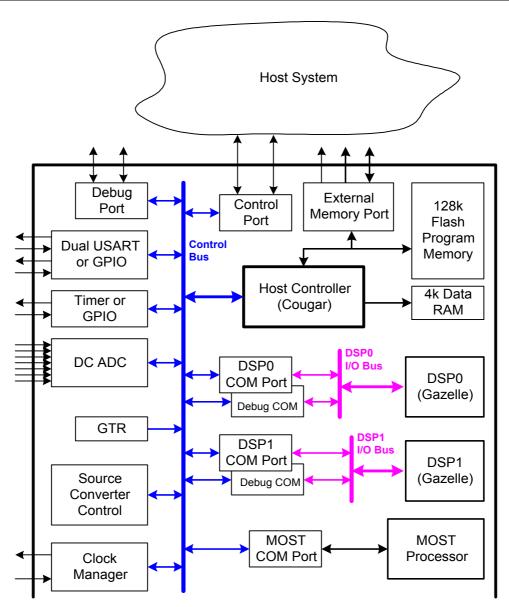


Figure 1-3: Host Controller and Control Bus

1.2 Control Bus and Peripherals

The Host Controller manages all Control bus peripherals. The Control Port can be a slave or a master and provides a serial interface between the Host Controller and the external system. The Control Port can operate in one of four formats: I²C, Oasis-specific SPI, generic SPI format, or USART format. In both I²C and Oasis-specific SPI (OSPI), the data exchange supports efficient transfer of blocks of data. The generic SPI (GSPI) format does not interpret the data, leaving the data format up to the user. The Control Port can be a master or slave in I²C or GSPI formats, and only a slave in the OSPI format.

The Debug Port is a second serial interface between the Host Controller and the external system. Although listed as a "Debug" Port, the port is generic and has a unique interrupt vector. The Debug Port shares pins with three of the GPIO pins and supports the same four formats that the Control Port supports. The Debug Port can also be a master in the l^2C or GSPI formats only.

MOST System On Chip

The Control bus also contains three COM Ports, which support inter-processor communications between the Host Controller and the two DSPs, as well as the MOST Processor. The MOST Processor communications utilize a format similar to the Control and Debug Ports in I^2C mode. The DSPs should be programmed to support the same format used by the MOST Processor to maximize code reuse. Through the MOST COM Port, the Host Controller can initialize the MOST Processor and transmit and receive messages across the MOST Network. The DSP COM Ports can be utilized in the same manner.

The Global Timer flag register is visible to all I/O busses and supplies timing flags, at up to 8xFs, for synchronized communications across the processors. The Global Timer also provides a periodic time interval, based on the sample frequency Fs.

The GPIO pins are multiplexed with the General Purpose Timer, Control Port and the Debug Port. The Timer is a 16-bit timer that counts up at a 64Fs rate and resets when the count reaches the modulo value. Two output-compare registers are provided that can toggle a pin when the Timer reaches a programmed value. Two capture registers save the timer value when a pin changes state and can generate an interrupt.

The Clock Manager peripheral contains a PLL and generates all the clocks needed by the OS8805. It also provides an external programmable clock (RMCK), to synchronize external system devices. When the OS8805 is configured as a MOST Network timing-slave device, the timing source is the MOST Network receive pin **RX**. When the OS8805 is configured as a MOST Network master, the timing source can be an external crystal, the external Source Port clock **SCK**, or the external Source Port data pin **SR0** when configured as an SPDIF input.

The DC Measurement ADC peripheral consists of an eight-to-one mux and an over-sampling ADC. The resolution is programmable from 5 to 12 bits. The conversion process takes approximately 1 ms to achieve 12-bit resolution, and 250 μ s to achieve 10-bit resolution. The POT[7:0] pins support up to eight analog inputs.

1.3 MOST Processor and the Routing Bus

The MOST Processor interfaces to the MOST optical Network and manages the transfer of real-time data between on-chip resources. Included in the MOST Processor is a MOST Network transmitter and receiver. The MOST receiver, in conjunction with the clock manager, recovers the clock, decodes the data, and passes the information to the MOST Processor. The MOST Processor sends data to the transmitter which, encodes the data, and transmits it on the MOST Network.

The MOST transceiver uses the TX and RX pins for transmitting and receiving MOST optical network data. The MOST Processor, Routing bus, and Routing bus peripherals are illustrated in Figure 1-4.

The MOST Processor is a hard-coded RISC micro-controller, which is responsible for routing data internally as well as onto the optical Network. For high-speed source data, the MOST Processor acts like a cross-point switch using the MOST Routing Table (MRT) to connect sources and destinations across the Routing bus. For low speed data, such as control messages, the Processor communicates with the Host Controller through the COM port. This port enables the Host Controller to instruct the MOST Processor to send and receive messages and to route the appropriate source data between the MOST Network and the on-chip resources.

The MOST Network can communicate 60 bytes of synchronous data (Source data) at the audio sample rate (Fs). The MOST Processor can route the received data back onto the network, or (using the Routing bus) to the internal DSPs, Source Converters, or Source Ports. The transmitted MOST data can also come from the DSPs, Source Ports, and Source Converters. Each DSP can sink and source up to 32 bytes per Fs period (sixteen 16-bit channels in each direction). Each Source Port can sink and source up to 8 bytes per Fs period (four 16-bit channels).

The Source Converters consist of: the MPX ADC (16-bit samples at four times the audio sample rate), the stereo audio ADCs (two 16-bit samples at the audio sample rate), the microphone ADC (16-bit samples at ¼ the audio sample rate), and the audio DACs (four 16-bit samples at the audio sample rate).

MOST System On Chip

The Global Timer peripheral provides inter-processor synchronization. The MOST Processor uses the flags in this register to transfer data across the Routing bus. The DSPs can also use this register to synchronize with the MOST Processor when transferring data across the MOST Routing port.

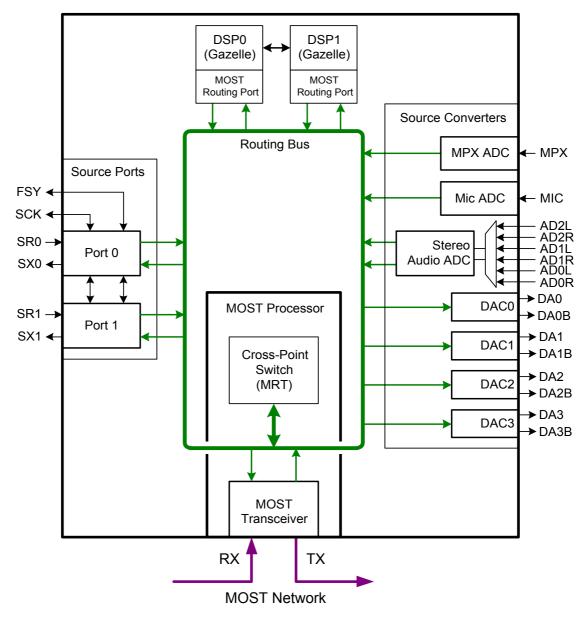


Figure 1-4: MOST Processor Overview

MOST System On Chip

1.3.1 Source Data Ports

OS8805

The Source Data Ports move high-speed data between the Routing bus and external devices. The external devices could be extra DACs, DSPs for further processing, or CD transports. Each Source Data Port can transfer up to eight bytes per sample frequency period. Therefore, a maximum of four 16-bit channels can be input to or sent out each Source Port.

Two serial-input and two serial-output ports communicate source data between internal and external components. The data format is programmable via the SDC1 register in the MOST Processor I/O space. Data is clocked through all four ports in the same data format with the same clock and frame sync.

Data is serially shifted into and out of the Source Ports through the serial receive SR[1:0] and the serial transmit SX[1:0] pins. Source port 0 can be configured to transmit and receive SPDIF data (SX0 and SR0). If the OS8805 is configured as a MOST Network master, then the PLL can recover a clock from the SR0 bit stream, when configured for SPDIF. If the chip is a timing-slave, which recovers the clock from the MOST Network RX pin, the SPDIF data and Source Port data must be entered synchronously to the Network RX pin. External synchronization can be achieved by using the OS8805 RMCK output as the master clock for the external system.

1.3.2 Source Data Converters

The Source Converters are high-speed ADCs and DACs that reside on the Routing bus. The Source Converters consists of four audio-band DACs, two audio-band ADCs, a 4x audio-bandwidth MPX ADC, and a ¹/₄x audio bandwidth microphone ADC. The MPX, audio, and microphone ADCs are over-sampling deltasigma converters which provide wide dynamic range and excellent linearity. An analog MUX, in front of the audio ADCs, selects one of three stereo input pairs. All ADCs have input gain stages and all DACs have output attenuators. The Host Controller controls the Audio ADC input MUX and the gain and attenuation settings through the Control bus. The Source Converter volume can also be set by either DSP.

The inputs to the ADCs are single-ended and must be AC coupled. The MPX pin is the input to the MPX ADC and the MIC pin is the input to the microphone ADC. The two audio ADC inputs are AD0L-AD0R, AD1L-AD1R, or AD2L-AD2R pins, depending on the state of the input multiplexer.

The ADCs output their data to the Routing bus and MOST Processor. The MOST Processor can then route the data to the MOST transmitter to go out on the Network, route the data to the DSPs for further processing, or route the data out the Source Data Port. Since the MPX ADC runs at 4xFs, the MOST Processor sends the 16-bit audio data to the MOST Network four times per frame. Since the Mic ADC runs at ¼xFs, the MOST Network sees the same copy of Mic data four times before new data is available.

The four DACs can be programmed for single-ended or differential outputs, which are available on the DA[3:0] and DA[3:0]B pins. The DACs are fed data across the Routing bus from the MOST Processor. The MOST Processor can get the data from the MOST Network receiver, the DSPs, or the Source Data Ports.

1.4 DSP Processors

The two DSPs have a RISC architecture, which provides the optimum cost performance trade-off for a wide variety of signal-processing applications. The RAM-based architecture allows software to be developed and downloaded for different system requirements. The DSP processor performs 18x14 bit operations with single-cycle instructions that produce 60 MIPs at 60 MHz. A combination hardware/software stack provides high-speed interrupt servicing for high-priority interrupts and die-area-efficient servicing for low priority interrupts. Special I/O instructions during high-priority interrupts provide low overhead I/O processing.

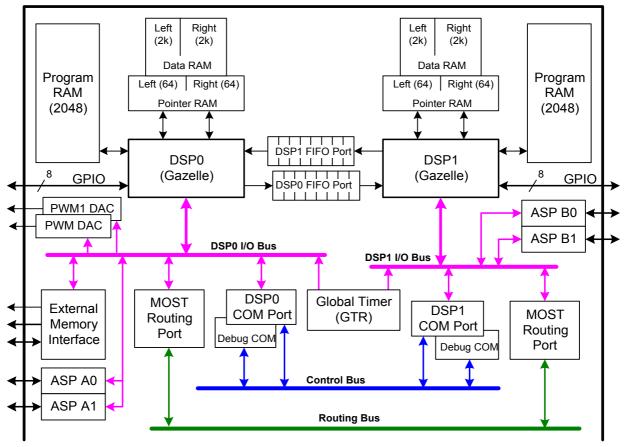


Figure 1-5: DSP Overview

The Host Controller connects to the DSP's program controller and has read/write access to the program counter, the program control register, and Program memory. This feature allows downloading programs as well as visibility of the DSP internal operation.

All the memories associated with the DSP processor are on-chip. The Program memory is 26 bits wide and 2048 locations deep. The Data memory section is divided into left and right sides with each side having a Pointer memory and a Vector memory. Each Pointer memory is 25 bits wide and both left and right Pointer memories are 64 locations deep. Left Vector memory is 14 bits wide and 2048 locations deep. Right Vector memory is 18 bits wide and 2048 locations deep.

The left and right Pointer memories store pointer values which consist of a 11-bit address, 6-bit update, and 8-bit modulo field. The accumulator consists of the low accumulator (14 bits), the high accumulator (18 bits), and the guard bits (4 bits).

Each DSP can control up to 8 GPIO pins that are multiplexed with the Asynchronous Source Ports. If the Async. Source Ports are not used, the DSP (or the Host Controller) can utilize the pins as GPIO.

MOST System On Chip

The MOST Routing Port peripheral supports the transfer of data between the DSP and the Routing bus. The MOST Processor can be programmed to transfer data (in either direction) between the Source Ports, Source Converters, or the MOST Network and the DSPs.

Each DSP has an Asynchronous Source Port (ASP) peripheral with flexible clocking options. ASP A is associated with DSP0 and ASP B is associated with DSP1. Each DSP Asynchronous Source Port is divided in two Source Ports: 0 and 1. Each Port (0 or 1) has a serial data in, serial data out, framing clock, and bit clock. The Async. Source Ports can be clocked off an internal reference or externally clocked, independent of the internal chip clock. A timer connected to each Async. Source Port can reference the external clock to the internal system clock.

The DSPs also have a FIFO Port between the two DSPs supporting the off-loading of tasks from one DSP to the other. The FIFO Port can support simultaneous transfers of 8 words in each direction or up to 16 words in a single direction or time-division multiplexed (not at the same time) scheme.

The DSP I/O bus contains the Global Timer flag register that provides periodic flags at up to 8xFs. These flags support inter-processor synchronization since the same Global Timer is available to the Host Controller and the MOST Processor. As an example, the MOST Processor reads and writes the DSP's MOST Routing port eight times per sample period. The DSPs can use the Global timer **GTR.FS8** flag to update the MOST Routing port. This process synchronizes data flow between the DSPs and the MOST Processor.

DSP0 has access to the external memory port, if not used by the Host Controller. The external memory port supports direct connection of DRAM or SRAM memory chips. This expands DSP0's data memory up to 512k 16-bit words, when using DRAM, and 64k 16-bit words, when using SRAM. External data communication occurs through 16-bit I/O registers and includes modulo and post-incrementing addressing.

DSP0's I/O bus also includes two pulse-width-modulation (PWM) DAC peripherals for sub-woofer applications or low frequency volume control.

1.5 MOST NetServices API

For accelerating development of applications using the OS8805, Oasis SiliconSystems offers the MOST NetServices API. The MOST NetServices API provides software access to the MOST Network. All services that are relevant for MOST Network are available as a software library. This includes basic services like initialization, up to high-level communication tasks. MOST NetServices is modular and can be customized for the OS8805. The MOST NetServices API is implemented in ANSI C, which can be adapted to individual requirements through configuration files.

The MOST NetServices API is organized into two layers: Basic Services (Layer 1) and the Applications Socket (Layer 2). The Basic Services provides low-level services such as network initialization, Control message management through the COM Port, Source Port configuration, and synchronous channel allocation on the network

The Applications Socket (Layer 2) operates on top of Layer 1 and provides a command interpreter and the NetBlock function required on all network devices. The command interpreter provides a simple API for developing new functions within a node. It also supports the MOST Specification Notification Services and functional addressing.

With respect to the ISO communications model, the OS8805 chip, with its on-chip Host Controller supports all network layers except the Physical layer, with MOST Network transceiver containing the Data-Link layer and the Host Controller managing all the upper layers. MOST NetServices Layer 1 supports the Network layer through the Session layer. MOST NetServices Layer 2 supports the Presentation and part of the Application layer. The ISO network model and MOST NetServices is depicted in Figure 1-1.

More information on MOST NetServices is available on the Oasis SiliconSystems web page:

http://www.oasis.com

The Host Controller (Controller) manages data movement across the Control bus. The Host Controller also handles internal and external communication and control between on-chip resources and the Control Port. When power is initially applied to the OS8805, the **CMCS.PD** bit is set, placing the OS8805 in power-down mode. A chip reset, **RST**, or a transition on **RX** or **GPA0-GPA2** is needed to clear **CMCS.PD** and place the Host Controller in normal operation. The Debug Port provides a second serial port that provides on-chip debug capability, with the appropriate debug code programmed into the Host Controller. Although listed as the Debug Port, it can be programmed to serve as an additional control port or as GPIOs. The Controller is also responsible for program downloading into the DSPs' memories. Figure 2-1 highlights the Control Bus section of the OS8805.

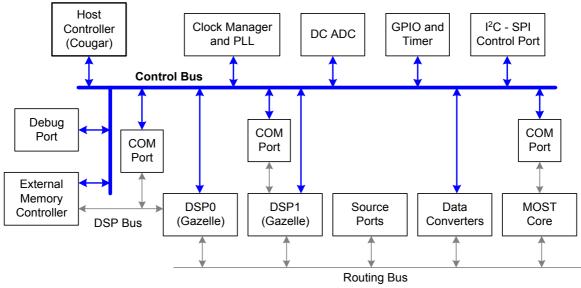


Figure 2-1: Control Bus

2.1 Architecture

The Host Controller conforms to the Oasis SiliconSystems Cougar 16-bit architecture and is a general purpose CISC architecture processor. The multiple-byte instructions and CISC architecture is optimized to reduce Program memory requirement of control applications. A byte/word mode switch enables it to efficiently process byte and word variables allowing optimal use of data memory. Special I/O instructions and a maximum performance of 8.5 MIPS (2 cycles/instruction at 384Fs) enable it to properly process real-time applications. For programming information on the Controller, see the *Cougar User's Manual*. The OS8805 has 128k bytes of on-chip Flash Program memory and 4k bytes of on-chip Data memory.

The Cougar Host Controller instructions can be one to four bytes in length. The first byte consists of the opcode, and indicates the addressing mode for the instruction. The following bytes provide an 8- to 16-bit direct memory address or immediate data, or up to an 17-bit jump address. The Controller can access one byte of Program memory every two clock cycles, and operates at a clock frequency of 384×Fs.

The addressing mode determines the number of bytes in the instruction. For a two-byte instruction, the second byte contains 8-bit immediate data or an 8-bit address. For a three-byte instruction, the second and third bytes together form 16-bit immediate data or a 16-bit address. Four-byte instructions are used in jump and jump to subroutine instructions as absolute addresses that span the entire Program memory space.

When an instruction is executed, the first byte of the instruction (the opcode) is loaded into the Instruction Register (IR). The lower three or four bits of the byte indicate the addressing mode to be used by the instruction. When an extended jump is fetched, its fourth byte is written into the M2 register.

MOST System On Chip

A three-byte instruction specifies the Data memory address (far-direct addressing mode), while a two-byte instruction specifies only the low 8 bits of the Data memory address (near-direct addressing mode). In near-direct addressing mode, the high bits of the Data memory address are specified by the Address Page (AP) bits in SR.

Jump instructions can be short, long, or extended. Short jumps are two-byte instructions. Long jumps are three-byte instructions. Extended jumps are four-byte instructions. With the exception of short subroutine jumps, a short jump instruction provides an 8-bit two's complement number that is added to the current Program Counter value. This provides PC-relative addressing to +127 and -128 Program memory locations. Short subroutine jumps are absolute jumps when the upper jump address bits A[16:8] are 0x000 (subroutines on first Program memory page). A long jump instruction specifies a 16-bit Program memory address and is a relative address. An extended jump instruction is the only four-byte instruction and specifies an absolute Program memory address.

Two- and three-byte instructions provide 8- and 16-bit immediate data, respectively. When immediate data is 16 bits, the Arithmetic Logic Unit (ALU) performs 16-bit operations. Eight-bit immediate data is zero-extended during arithmetic operations. During logical operations and moves, the 8-bit ALU result is stored in the low byte of the destination. The high byte is unaffected by the operation, except when ACC is the destination and a carry from an arithmetic operation occurs. Figure 2-2 shows how the opcode is constructed.

Figure 2-2: Host-Controller Opcode Architecture

Single-operand instructions use the 3-bit address field and dual-operand instructions use the 4-bit address field. For more information, see Section 2, in the *Cougar User's Manual*. Table 2-1 lists the instructions that use the 3-bit addressing field. The Bit Move instruction also uses a 3-bit address field; however, it doesn't support Register addressing, only Data memory direct or indirect.

Opcode (bits 7:0)	Instruction
1000 Оууу	Increment
1000 1ууу	Test
1001 Оууу	Shift right
1001 1ууу	Exchange
1010 Оууу	Decrement
1011 Оууу	Shift left

Table 2-	-1: Single-O	perand Ins	structions
----------	--------------	------------	------------

MOST System On Chip

In dual-operand instructions, the 4-bit addressing modes is used, where the added bit specifies whether the source or the destination is the ACC register. In dual-operand instructions, one of the operands must be the ACC register. Table 2-2 lists the instructions that use the 4-bit addressing field.

Opcode (bits 7:0)	Instruction
0000 xxxx	Add
0001 xxxx	Add with carry
0010 xxxx	Subtract
0011 xxxx	Subtract with carry
0100 xxxx	Exclusive or
0101 xxxx	Or
0110 xxxx	And
0111 xxxx	Move

Table 2-2: Dual-Operand Instructions

The Host Controller communicates with the DSPs and peripherals through the Control bus. Each processor and peripheral has registers mapped into the I/O space of the Controller. The processors and many of the peripherals can interrupt the Controller when service is required.

The Controller's Program memory contains programs that are downloaded into the Program RAM of the DSPs. The external Program memory can be Flash, EPROM, or SRAM (generally used for emulators in a debug environment).

2.1.1 Program Memory

The Host Controller can operate from internal or external Program memory. The external Program memory enable, **RGEN.XME** along with the **MMPC.XMQ** bits, select between the two options (see the description of the RGEN and MMPC registers for more details). Figure 2-3 illustrates the memory interface connected to the Controller's program memory interface. The **XME/PCS** pin is sampled at the rising edge of **RST** or power-up and the value is stored in the **RGEN.XME** bit. Changing the **RGEN.XME** bit causes an internal reset.

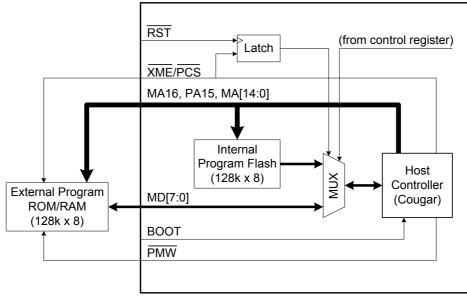


Figure 2-3: Host Controller External Program Memory Diagram

MOST System On Chip

37h	MMPC	Mode Control Register	Host
Bit	Label	Description	Default
1512	ID[3:0]	OS8805 part ID (read only)	0010
118	REV[3:0]	OS8805 part revision: D (read only)	0100
7	rsvd	Reserved, Write to 0	0
6	RFS1	MOST Processor High Frequency Select - bit 1	0
5	RSTD	Host Controller Reset Disable	0
4	rsvd	Reserved, Write to 0	0
3	XMQ	External program memory interface quiet mode	0
2	rsvd	Reserved, Write to 0	0
1	PCSC	PCS timing control	1
0	rsvd	Reserved, Write to 0	0

Table 2-3: MMPC Register

- ID[3:0]
 Part ID (read-only)

 0001 OS8804. See the OS8804 Data Sheet.

 0010 OS8805. This Data Sheet.
- REV[3:0] OS8805 Revision (read only) 0110 - F. 1000 - H. This Data Sheet reflects revision H silicon.
- RFS1 MOST Processor High Frequency Select. When set, operates the MOST Processor at a higher speed. **RFS1** must be set when Packet Data is supported (**bNC.APREN** set).
- RSTD Host Controller Reset Disable.
 - 0 The reset vector is loaded in the program counter when the RESET instruction is executed or when RGEN.XME is changed. All Host Controller registers are reset just like all the peripheral circuits/registers.
 - 1 The Host Controller is NOT reset when a RESET instruction is executed or when RGEN.XME is changed. In addition all Host Controller internal registers are NOT reset: PC (program counter) SPC, DSPC, SR IFL, IER, SP, SPCH, DSPCH, and PGMP. Peripheral registers/circuits are still reset.
- XMQ External Program Memory interface Quiet. This bit, in combination with the **RGEN.XME** bit, define how the external memory interface pins function:

RGEN.XME		E	xternal Memory Interfa	ce
RGEN.AWE		DSP0	Host Cont. Read	Host Cont. Write
1	0	* Data memory	[†] internal Flash	[‡] internal Flash
1	1	none	[†] internal Flash	[†] external memory
0	x	none	[†] external memory	[†] external memory

* DSP Data memory is only enabled when GCTL.EDMEN is set. Otherwise, the pins are EGPIO.

† Read or written a byte at a time, through ACCL (ACC[7:0]).

‡ Written a word at a time. ACCH to the lower address and ACCL to the higher address.

PCSC Controls the phase timing of the Host Controller clocks. Also affects the PCS pin timing when the external memory interface is enabled for the Host Controller. When PCSC is clear, the PCS high and low times are equivalent. When PCSC is set, the PCS low time is longer that the high time. See the *External Program Memory Interface* tables in the *Electrical Characteristics* section for more details.

MOST System On Chip

Internal Program memory is 128k bytes of Flash programmable memory. If all the DSPs programs are to be downloaded from the Host Controller, the Controller's Program memory must contain code to download these programs, along with the DSP's main code and the Controller's main code. The Host Controller executes out of internal Program memory whenever the RGEN.XME bit is set. The initial state of RGEN.XME is captured from the XME/PCS pin (same polarity) at the rising edge of RST or when power is initially applied to the device.

If external Program memory is enabled, the 17-bit address is output through the Memory Address pins MA[16:0]. The Memory Data pins are MD[7:0]. The Program Memory Chip Select (PCS) provides the read timing for the external SRAM, EEPROM or Flash. If the Host Controller uses internal memory, then DSP0 can use the external bus for data memory (configured through the XMC and GCTL registers).

2.1.1.1 Flash Memory

The 128k Flash memory is divided into 16 blocks and 128 partitions. Each block can be "protected" from direct reading and writing. Flash Block 16 is further divided into half-partition (512 bytes) segments for individual protection from reading and writing. Each Flash memory partition (1k bytes) can be erased and then written. Flash partitions are erased to all ones. Flash memory can be programmed on a word-by-word basis, through the ACC register, where ACCH (ACC[15:8]) is written to the lower address and ACCL (ACC[7:0]) is written to the upper address. Once a zero bit is programmed into a word, the only way to change it to a one, is to erase the entire partition.

A 256-byte separate Flash partition, designated *Info Block*, is used by the on-chip Flash Handler to manage the programming of the Flash memory. The Flash Handler resides in the lowest 8k Flash block, and the *Info Block* is addressed by setting the **PGMP.A17** bit and clearing the **PGMP.A16** bit. Then AR1 can indirectly access the lower 256 memory addresses for the *Info Block*. For more information on the Flash Handler, see the *OS8805 Flash Handler User's Manual*. Since the Flash Handler resided in the lowest 8k Flash memory block, all the interrupt vectors not used by the Flash Handler (all except **BOOT**), are redirected as illustrated in Figure 2-4.

	0x02001 0x02002 0x02003
0x02000	Reset vector (BOOT pin low - normal operation)
0x02004	Interrupt vector (IFR register bits)
0/02001	
0x00008	Flash Handler (BOOT pin high)
0x0200C	Debug Interrupt vector
	Figure 2-4: User Interrupt Vector Table

Internal Flash memory can only be written (a word at a time) when **RGEN.XME** is set and **MMPC.XMQ** is clear (DSP data memory selected for external memory port), and Flash protection for the particular memory location is disabled.

When Programming internal Flash, data is written a word at a time; therefore, the LSB in AR1 must be 0. ACCH is written to the lower byte of memory and ACCL is written to the upper byte. This byte-order is opposite to words written into Data memory.

MOST System On Chip

5Bh	FMC	Flash Memory Control	Host
Bit	Label	Description	Default
15	rsvd	Reserved. Write to 0.	00h, 0
6, 5	FCP[1:0]	Flash Clock Prescaler	00
4, 3	FPT[1:0]	Flash Program Time	00
1	PER	Partition Erase. 0 = write Program memory, 1 = erase partition	0
0	FPD	Flash Powerdown. 0 = enabled, 1 = standby mode	0

Table 2-4: FMC Register

FCP[1:0] Flash Clock Prescaler. Determines the prescaler for the Flash programming time (delay counter clock).

00 - Divide by 1.

01 - Divide by 2.

10 - Divide by 3.

- 11 Divide by 4.
- FPT[1:0] Flash Program Time. Programming Cycle time. The Flash programming time should be 20 μs minimum. See Table 2-5 for programming time details.
 - 00 384 cycles

01 - 272 cycles

10 - 156 cycles

11 - 116 cycles

FCP[1:0]	FPT[1:0] (Fs = 44.1 kHz)			FPT[1:0] (Fs = 48 kHz)			:)	
100[1.0]	384	272	156	116	384	272	156	116
1	22.6	16.0	9.2	6.8	20.8	14.6	8.5	6.3
2	45.3	32.1	18.4	13.7	41.7	29.5	16.9	12.6
3	68.0	48.2	27.6	20.5	62.5	44.3	25.4	18.9
4	90.7	64.2	36.8	27.4	83.3	59.0	33.9	25.2

Table 2-5: Flash Memory Programming Times (in µs)

- PER Partition Erase. When clear, Flash Program memory is written. When set, the Flash memory partition that is selected during a Program memory write instruction, (rom)*ar1 = acc;, is erased (data used in write instruction is ignored). Flash protection for the particular location or partition must be disabled in order to write to or erase internal Flash memory.
- FPD Flash Powerdown. When clear, Flash memory is powered up and operating normally. When set, the Flash memory is powered down and not accessible. Since this disables further instructions (halts Host Controller operation), it should only be set to minimize power when the Host Controller is operating out of external Program memory.

The Flash programming time must be kept greater than or equal to $20 \ \mu$ s and less than or equal to $40 \ \mu$ s. When the PLL is unlocked, the sample frequency can drift down to its minimum frequency. However, if the PLL unlocks during a Program memory write, the duration of the write is short enough that the PLL frequency will not drift too far from its nominal locked value. Therefore, software that writes to Program memory must check the state of the PLL and, if unlocked (**CMCS.LOCK** clear), software must either not initiate any more Program memory writes, or shorten the programming time through the **FMC.FPT[1:0]** bits.

OS8805		MOST System On Chip	SiliconSystems	
5Ch	FPBK	Flash Protection 8K Blocks	Host	
Bit	Label	Description	Default	
15	FB15	Address Range 0x1C000 - 0x1DFFF	0	
14	FB14	Address Range 0x1A000 - 0x1BFFF	0	
13	FB13	Address Range 0x18000 - 0x19FFF	0	
12	FB12	Address Range 0x16000 - 0x17FFF	0	
11	FB11	Address Range 0x14000 - 0x15FFF	0	
10	FB10	Address Range 0x12000 - 0x13FFF	0	
9	FB9	Address Range 0x10000 - 0x11FFF	0	
8	FB8	Address Range 0x0E000 - 0x0FFFF	0	
7	FB7	Address Range 0x0C000 - 0x0DFFF	0	
6	FB6	Address Range 0x0A000 - 0x0BFFF	0	
5	FB5	Address Range 0x08000 - 0x09FFF	0	
4	FB4	Address Range 0x06000 - 0x07FFF	0	
3	FB3	Address Range 0x04000 - 0x05FFF	0	
2	FB2	Address Range 0x02000 - 0x03FFF	0	
1	FB1	Address Range 0x00000 - 0x01FFF	0	
0	FBIB	Address Range 0x20000 - 0x200FF (Info Block)	0	

Table 2-6: FPBK Register

- FB[15:0] Flash Block protection. When a bit is set, the 8K Flash memory block cannot be read using the instruction acc = (rom) *ar1; or written/erased using (rom) *ar1 = acc;. The value read back will be indeterminate. When FBn is clear, the Program read instruction reads a byte constant from Program memory, and the Program write instruction either writes a word from ACC or erases a partition (based on FMC.PER). The Flash Handler resides in FB1.
- FBIB Info Block protection. When set, the Flash 256-byte *Info Block* cannot be read, written, or erased. The value read back will be indeterminate. When **FBIB** is clear, the Program read instruction reads a byte constant from the *Info Block*, and the Program write instruction either writes a word from ACC or erases a partition.

5Dh	FPB16	Flash Protection - Flash Block 16	Host
Bit	Label	Description	Default
15	FP7B	Address Range 0x1FE00 - 0x1FFFF; Flash Block 16, partition 7b	0
14	FP7A	Address Range 0x1FC00 - 0x1FDFF; Flash Block 16, partition 7a	0
13	FP6B	Address Range 0x1FA00 - 0x1FBFF; Flash Block 16, partition 6b	0
12	FP6A	Address Range 0x1F800 - 0x1F9FF; Flash Block 16, partition 6a	0
11	FP5B	Address Range 0x1F600 - 0x1F7FF; Flash Block 16, partition 5b	0
10	FP5A	Address Range 0x1F400 - 0x1F5FF; Flash Block 16, partition 5a	0
9	FP4B	Address Range 0x1F200 - 0x1F3FF; Flash Block 16, partition 4b	0
8	FP4A	Address Range 0x1F000 - 0x1F1FF; Flash Block 16, partition 4a	0
7	FP3B	Address Range 0x1EE00 - 0x1EFFF; Flash Block 16, partition 3b	0
6	FP3A	Address Range 0x1EC00 - 0x1EDFF; Flash Block 16, partition 3a	0
5	FP2B	Address Range 0x1EA00 - 0x1EBFF; Flash Block 16, partition 2b	0
4	FP2A	Address Range 0x1E800 - 0x1E9FF; Flash Block 16, partition 2a	0
3	FP1B	Address Range 0x1E600 - 0x1E7FF; Flash Block 16, partition 1b	0
2	FP1A	Address Range 0x1E400 - 0x1E5FF; Flash Block 16, partition 1a	0
1	FP0B	Address Range 0x1E200 - 0x1E3FF; Flash Block 16, partition 0b	0
0	FP0A	Address Range 0x1E000 - 0x1E1FF; Flash Block 16, partition 0a	0

Table 2-7: FPB16 Register

 $\int - \int - \int - \int$

MOST System On Chip

- FP[7:0]A Flash partition protection, lower-half of a partition. When set, the 512 byte Flash memory segment cannot be read using the instruction acc = (rom) *ar1; or written/erased using (rom) *ar1 = acc;. The value read back will be indeterminate. When FPnA is clear, the program read instruction reads a byte constant from Program memory. If Program memory in FPnA needs to be erase to re-program, FPnB will also be erased. Only whole partitions can be erased. If the write instruction is used to erase a partition and the address points to an unprotected memory location in FPnA, the FPnB portion will also be erased regardless of the FPnB setting.
- FP[7:0]B Flash partition protection, upper-half of a partition. When set, the 512 byte Flash memory segment cannot be read using the instruction acc = (rom) *ar1; or written/erased using (rom) *ar1 = acc;. The value read back will be indeterminate. When FPnB is clear, the program read instruction reads a byte constant from Program memory. If Program memory in FPnB needs to be erase to re-program, FPnA will also be erased. Only whole partitions can be erased. If the write instruction is used to erase a partition and the address points to an unprotected memory location in FPnB, the FPnA portion will also be erased regardless of the FPnA setting.

Bits in FPBK and FPB16 are protected from arbitrary writes by only allowing certain bits to be updated from certain Program memory locations. Therefore, an IO Write instruction from the following PC locations will allow the listed bits to be updated. **FB1** contains the Flash Handler and is always protected.

	PC location for IO Write Instruction		er bits that can be changed
Block	Block PC Address		Bits
FB2	0x03862	FPBK	FB[15:2]
FD2	0x03867	FPB16	FP[7:0]A, FP[7:0]B (all bits)
FB3	0x048DF	FPBK	FB[15:3]
FB3	0x048E4	FPB16	FP[5:0]A, FP[5:0]B
FB5	0x0996E	FPBK	FB[15:5]
FDU	0x09973	FPB16	FP[3:0]A, FP[3:0]B

Table 2-8: IO Write Locations for FPBK and FPB16 Bits

2.1.2 Data Memory

The Host Controller has 4096 bytes of internal Data memory. Byte and word variables can be stored in Data memory, the size indicated in the **sr.w** status flag (controlled via the **sb** and **sw** instructions). Up to 2048 sixteen-bit variables or 4096 byte variables can be stored.

2.1.3 Program and Interrupt Controller

The program controller maintains the Program Counter (PC) for sequential instruction fetching, change of flow instructions, and interrupts. A Shadow Program Counter (SPC and SPCH) speeds subroutine calls, and a dedicated Debug Shadow Program Counter (DSPC and DSPCH) handles the debug interrupt.

00h	SPC	Shadow Program Counter	Host
Bit	Label	Description	Default
150	SPC[15:0]	Lower 16 bits of the Shadow Program Counter. Used during interrupts and subroutine calls	0000h

Table 2-9: SPC Register

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

Host 58h SPCH Shadow Program Counter - High Description Bit Label Default 000h, 0 15. rsvd Reserved. Write to 0. Upper bit of the Shadow Program Counter. Used during interrupts and 0 SPC16 0 subroutine calls

Table 2-10: SPCH Register

01h	DSPC	Debug Shadow Program Counter	Host
Bit	Label	Description	Default
150	DSPC[15:0]	Lower 16 bits of the Debug Shadow Program Counter. Used during the Debug interrupt. Writing DSPC causes the next RET/RETI instruction to use the DSPC/DSPCH registers to retrieve the return address.	0000h

Table 2-11: DSPC Register

59h	DSPCH	Debug Shadow Program Counter - High	Host
Bit	Label	Description	Default
15	rsvd	Reserved. Write to 0.	000h, 0
0	DSPC16	Upper bit of the Debug Shadow Program Counter. Used during the Debug interrupt.	0

Table 2-12: DSPCH Register

02h	SR [†]	Status Register	Host
Bit	Label	Description	Default
1512	rsvd	Reserved. Write to 0.	0000
118	AP[3:0]	Address Page bits for direct Data memory access instructions	0000
7	AC	Auxiliary Carry flag	*
6, 5	rsvd	Reserved, Write to 0	00
4	GIE	Global Interrupt Enable Status (read-only)	0
3	W	Byte/word mode flag. Set is Word mode, clear is Byte mode	0
2	N	Negative flag	0
1	С	Carry flag	0
0	Z	Zero flag	0

 † The SR register must not be written when GIE is set. GIE is disabled by executing the <code>DISABLE</code> instruction.

Table 2-13: SR Register

03h	IFL [†]	Interrupt Flag Register	Host
Bit	Label	Description	Default
1512	rsvd	Reserved, Write to 0	0000
11	IPLL	PLL out of lock interrupt (CMCS.LOCK going low – edge sensitive)	0
10	rsvd	Reserved, Write to 0	0
9	IDSP1	DSP1 COM port (rising edge of D1CS.INT bit)	0
8	IDSP0	DSP0 COM port (rising edge of D0CS.INT bit)	0
7	IMST	MOST COM port (rising edge of RCS.INT bit)	0
6	ITMR0	Timer - CMP0 equals timer value (edge sensitive)	0
5	ICP	Control Port data ready – sending and receiving data (level sensitive)	0
4	IADC	DC Measurement ADC ready (edge sensitive)	0

[†] The IFL register should not be written when **SR.GIE** is set; otherwise edge-sensitive interrupts could be lost. * If programmed as level sensitive (**GPC.LVn**), then **IDn** bit is read-only – cannot clear by writing a 0 to it.

Table 2-14: IFL Register

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

3	ID3*	GPD3 pin, pos/neg edge/level triggered (GPC)	0
2	ID2*	GPD2 pin, pos/neg edge/level triggered (GPC)	0
1	ID1*	GPD1 pin, pos/neg edge/level triggered (GPC), CAP1 saves timer value	0
0	ID0*	GPD0 pin, pos/neg edge/level triggered (GPC), CAP0 saves timer value	0

[†] The IFL register should not be written when **SR.GIE** is set; otherwise edge-sensitive interrupts could be lost. * If programmed as level sensitive (**GPC.LVn**), then **IDn** bit is read-only – cannot clear by writing a 0 to it.

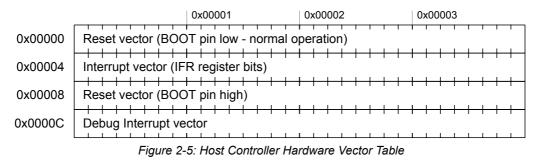
04h	IER	Interrupt Enable Register	Host
Bit	Label	Description	Default
15	DRI	Disable RETI Interrupt enable. When set, RETI instructions do NOT set SR.GIE . When clear, executing RETI causes SR.GIE to be set.	0
14, 13	rsvd	Reserved, Write to 0	00
12	DIEN	Debug Port Interrupt Enable. 0 is disabled, 1 is enabled.	0
11	IEPLL	When set, enables IFL.IPLL Interrupt (PLL out of lock)	0
10	rsvd	Reserved, Write to 0	0
9	IEDSP1	When set, enables IFL.IDSP1 Interrupt (DSP1 COM port)	0
8	IEDSP0	When set, enables IFL.IDSP0 Interrupt (DSP0 COM port)	0
7	IEMST	When set, enables IFL.IMST Interrupt (MOST COM port RCS.INT only)	0
6	IETMR0	When set, enables IFL.ITMR Interrupt (Timer from TMR0 compare)	0
5	IECP	When set, enables IFL.ICP Interrupt (Control Port)	0
4	IEADC	When set, enables IFL.IADC Interrupt (DC measurement ADC)	0
3	IED3	When set, enables IFL.ID3 Interrupt (GPD3 pin)	0
2	IED2	When set, enables IFL.ID2 Interrupt (GPD2 pin)	0
1	IED1	When set, enables IFL.ID1 Interrupt (GPD1 pin)	0
0	IED0	When set, enables IFL.ID0 Interrupt (GPD0 pin)	0

Table 2-15: IER Register

05h	SP	Stack Pointer	Host
Bit	Label	Description	Default
150	D[15:0]	Points to the next entry of the software stack	0000h

Table 2-16: SP Register

Program data is byte-wide, where an instruction is made up of one, two, three, or four program data bytes. The first byte of the instruction always contains the op-code and indicates the addressing mode for the instruction. For two-byte instructions, the second byte contains either immediate data or an 8-bit direct address. For three-byte instructions, the second and third bytes contain either 16-bit immediate data or a 16-bit direct address. The only four-byte instructions are absolute jumps, either conditional or bit-set/clear, that cover the entire Program memory space.


The interrupt controller handles eleven interrupt sources (IFL register bits), the Debug Port interrupt, and reset (start-up). Interrupts divert program flow to an interrupt vector address. The return-from-interrupt instruction returns execution back to the interrupted instruction, and execution continues as expected. The hardware registers associate with the interrupt controller are the interrupt flag register IFL, interrupt enable register IER, and the stack pointer SP.

The reset vector can be directed to two different locations, depending on the status of the **BOOT** pin. When the **BOOT** pin is high, the master reset initializes the host program counter to 0x00008, which is used by the Flash Handler. When the **BOOT** pin is low, the master reset initializes the host program counter to 0x00000 to start normal program execution. The Host Controller's Vector table is illustrated in Figure 2-5. The BOOT interrupt is used by the on-chip Flash Handler software which resides in the lowest 8k Flash

MOST System On Chip

memory block. Since the interrupt vectors are located in the Flash Handler's memory space, the other three interrupt vectors (not the BOOT vector) are redirected to the second 8k Flash memory block, as illustrated in Figure 2-4.

The Watchdog timer powers up enabled. Therefore, if its counter reaches the terminal count, it will reset the chip. If it is not used, it must be explicitly disabled by setting **RGEN.WDD**.

The Controller has 11 different interrupt sources generated from the two DSPs, the GPIO pins (configured as interrupts), the timer, the DC measurement ADC, and the Control Port. All IFL interrupts use the same interrupt vector location at Program memory address 0x00004. For interrupts to occur, the Global Interrupt Enable status bit **sR.GIE** must be high (using the ENABLE instruction) and the appropriate bit in IER must be set. The Interrupt Flag register IFL identifies the source of the interrupt. To clear an edge-sensitive interrupt, a zero must be written to the respective bit that is set in the IFL register. Level-sensitive interrupt bits in IFL are read-only and cannot be cleared through the IFL register. The Interrupt Enable register IER provides independent enables for each interrupt. Other than the Debug Port interrupt, which has the highest priority, the other 11 interrupts have the same priority. The interrupt priority and servicing must be handled through software. An interrupt can also be generated by writing a one to the corresponding bit in the interrupt flag register IFL, if the interrupt is enabled.

If an edge-trigger interrupt condition occurs while **sr.gie** is cleared, the interrupt remains pending until **sr.gie** is set. When **sr.gie** is set high, a pending interrupt will then set the corresponding bit in IFL bit. The IER bits can block a IFL bit from causing an interrupt; however, the IFL bit will still be set and can be polled, if desired.

The IFL register should not be written when the **sr.GIE** bit is set; otherwise, an edge-sensitive interrupt occurring during the I/O write instruction could be lost. The following code could lose an interrupt:

```
// assume SR.GIE set
acc = 0xFFFD;
ifl &= acc; // read-modify-write to IFL. Could lose an incoming interrupt
```

The following code will not miss an interrupt, since pending logic stores all incoming edge-sensitive interrupts when **SR.GIE** is clear:

	// assume SR.GIE set
disable;	<pre>// clear SR.GIE, any incoming interrupts will now be pending</pre>
acc = 0xFFFD;	
ifl &= acc;	<pre>// IFL can be written without concern for losing interrupts</pre>
enable;	<pre>// re-set SR.GIE, if any interrupts came in while it was clear, they</pre>
	// will happen now.

When an interrupt occurs, **sr.GIE** is cleared by hardware, and the Program Counter (PC) value is written to the Shadow Program Counter registers SPC/SPCH. SPC/SPCH must be stored on a software stack before the interrupt service routine calls any subroutines. If SPC/SPCH is not saved, its contents will be

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

lost. The ISR must restore SPC/SPCH from the stack, before leaving the interrupt service routine. Then, a return-from-interrupt instruction (RETI) copies the contents of the SPC/SPCH to the PC register, and if IER.DRI is clear, sets the global interrupt enable flag **SR.GIE** high.

The Debug Port interrupt vectors to location 0x0000C. The Debug Port interrupt is enabled by setting the **IER.DIEN** bit. The Debug Port interrupt can also be caused by one of the DSPs executing a TRAP instruction (which is not masked by **IER.DIEN**). The TRAP instruction also causes the particular DSP to vector to the Debug Interrupt vector.

When a debug interrupt occurs, the PC value is written to the Debug Shadow PC registers DSPC/DSPCH, and the Debug Interrupt Vector is loaded into the PC. The Debug Interrupt does not affect **sr.gle** and cannot be interrupted. The RET instruction is used to exit the Debug Interrupt since it does not affect **sr.gle**.

The first RET instruction inside the Debug ISR fetches the return address from DSPC/DSPCH; therefore, special attention is needed when using subroutines from within the Debug ISR. If this issue is not addressed, the first subroutine's RET instruction will exit the entire Debug ISR instead of returning to the calling routine. In addition, this first RET restores/unblocks **SR.GIE**, therefore, **SR.GIE** must be cleared before the first RET, and restored before exiting the debug ISR.

2.1.4 Execution Unit

The execution unit consists of the arithmetic logic unit, the shift unit, and the I/O unit. The condition code bits, stored in the Status Register are updated based on the value of the result. The type of operation is encoded in the instruction byte.

2.1.5 Address Generation Unit

The address generation unit calculates the addresses of the source and destination operands. The address generation unit supports five different operand addressing modes: immediate, register, direct, indirect and program memory indirect. Immediate addressing supports 8- and 16-bit immediate data, as one byte or two bytes, directly following the instruction. When the operand resides in the accumulator or one of the two address registers, the register identifier is encoded in the instruction. Memory operands can be either 1-byte or 2-bytes long. With near-direct addressing, the upper four bits of the memory operand address comes from the Address Page pointer **SR.AP[3:0]**, and the lower 8-bits of the memory operand address come from the instruction word (2-byte instruction). With far-direct addressing, the entire Data memory can be accessed using sixteen bits in the instruction word (3-bytes instruction) for the memory operand address for the data memory operand. Program Memory Indirect Addressing uses the address page register PGMP and address register AR1 for the Program memory operand address and supports efficient storage of constant tables.

Instructions support either zero, one, or two source operands where the destination operand is the same as one of the source operands. An operand can be an immediate value, a value stored in the accumulator, a value stored in an address register, a value stored in the Data memory, or a value stored in the Program memory.

An instruction is limited to one memory operand. For instructions requiring a source memory operand and a destination memory operand, the source memory operand and the destination memory operand must be the same. This reduces the size of the instruction, since a separate destination does not have to be explicitly specified in the instruction.

2.1.5.1 Immediate Data

Immediate data supports 8- and 16-bit immediate data, expressed as one byte or two bytes directly following the instruction. When an instruction utilizes immediate data, the byte or word decision is embedded in the instruction encoding, and the **sr.w** Word flag is ignored. The assembler uses the data size to deter-

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

mine which encoding to use. To force a constant to 16 bits, (int) should preface the constant. Byte constants affect only ACCL. The SR bits are affected only by ACCL. ACCH remains unchanged, unless a carry or borrow occurs because of an arithmetic operation.

acc = 0x12;	// ACCL loaded with 0x12, ACCH remains unchanged. The SR flags are
	// based on ACCL contents ONLY.
acc = (int)18;	// ACC = 0×0012 . The SR flags are affected by all of ACC.
acc += 0x1234;	// 0x1234 is added to ACC. The SR flags are affected by all of ACC.

2.1.5.2 Inherent

In Inherent mode, the instruction does not specify data or a data location. Instead, the opcode is explicitly stated by the instruction, and performs a discrete task. All Inherent mode instructions are 1-byte instructions.

```
reti; // Returns from an interrupt handling state.
enable; // Set SR.GIE
carry = 0;
nop;
```

2.1.5.3 Register Addressing

In Register Addressing Mode, operands are explicitly encoded within the instruction. The address registers and the I/O registers can be register operands. I/O registers are read and written using separate I/O read and I/O write instructions. In Register Addressing mode, the operand size is always 16-bits, and the **sr.w** Word flag is ignored. When ACC is used in all single-operand instructions (except Test), it is also considered a 16-bit register operand. In dual-operand instructions and the Test instruction, the other operand determines whether ACC or ACCL is used (word or byte operands).

```
acc += ar0; // Adds the address register AR0 to the accumulator ACC
io_reg &= acc; // io_reg is AND'd with ACC, with the result stored in io_reg
acc = io_reg; // ACC is loaded with 16-bit value from io_reg
acc++; // ACC is incremented
acc >>= 1; // ACC is shifted right by 1
*sp = acc; // push ACC onto stack
sp -= 2; // decrement the stack pointer
```

2.1.5.4 Direct Addressing

The Host Controller supports near-direct (NDIR) addressing and far-direct (FDIR) addressing of Data memory variables. With near-direct addressing, the upper bits of the Data memory operand address (memory page) come from the Address Page pointer **sr.AP[3:0]**, and the lower 8 bits of the memory operand address come from the instruction word (2-byte instruction). With far-direct addressing, the entire Data memory address is included in the instruction word (3-byte instruction). When accessing Data memory, the **sr.w** Word flag determines whether operands are bytes or words. When near or far are not explicitly stated, the compiler or assembler will determine the default usage.

sw;	// set word mode
(near)var += acc;	<pre>// Adds ACC to var, where the lower 8 addr. bits of var are in // the instruction & SR.AP[3:0] supplies the upper addr. bits.</pre>
<pre>(far)var += acc;</pre>	<pre>// Adds ACC to var, where the entire address of var is included // in the instruction. SR.AP[3:0] are not used.</pre>
sb;	// set byte mode
acc -= varl;	<pre>// Subtracts var1 byte from ACCL. The SR flags are updated // based on ACCL. ACCH is unaffected unless a carry or borrow // occurs</pre>
var1 &= acc;	<pre>// var1 byte is AND'd with ACCL, The SR flags are updated based // on the resultant var1 byte stored in memory.</pre>
Final Bradwat Data Chaot	

```
Final Product Data Sheet
Restricted Access
```

MOST System On Chip

2.1.5.5 Indirect Addressing

When using Indirect Addressing Mode, an instruction does not directly specify the address of the data memory operand. Instead, one of the address registers AR0 or AR1 provides the address. These instructions are one byte in length, since no address bits are needed with the instruction. Since this addressing mode accesses Data memory, the **sr.w** Word flag determines whether operands are bytes or words.

```
int var(0x100);
                  // word variables must start on a word boundary.
char var1;
                  // byte variables can start anywhere
acc = &var1;
                  // load AR0 with byte variable var1 address
ar0 = acc;
acc = &var;
                  // load AR1 with word variable var address.
ar1 = acc;
acc = 0xF234:
                  // set word mode
sw;
*ar1 = acc;
                  // Loads the variable pointed to by AR1 from ACC. The SR flags are
                       updated based on the word result stored at *AR1. Since var =
                  11
                       0xF234, SR.N would be set, and SR.Z would be clear.
                  11
acc -= *ar1;
                  // Subtracts variable pointed to by AR1 from ACC. The SR flags are
                  11
                       updated based on the entire ACC result. Since ACC is zero in
                  11
                       this example, SR.N would be clear, and SR.Z would be set.
sb;
                  // set byte mode
acc = 0x01FF;
                  // ACCL is loaded in var1. The SR flags are updated based on
*ar0 = acc;
                  11
                     byte var1. ACCH is unaffected unless a carry or borrow occurs.
                  11
                      Since var1 = 0xFF, SR.N is set and SR.Z is cleared.
acc--;
                  // ACC is decremented. ACC = 0x01FE
acc -= *ar1;
                  // var1 is subtracted from ACC, which makes ACC = 0x00FF. The SR bits
                  11
                       are updated on ACCL: SR.N set and SR.C clear. ACCH is affected
                  11
                       due to arithmetic borrow.
```

2.1.5.6 Program Memory Indirect Addressing Mode

The Program memory of the Controller can be the data operand. The Program memory is accessed through the program memory indirect addressing mode. The program memory indirect addressing mode uses the address register AR1 (and the PGMP page register) to indirectly point to the location in program memory where the data is stored. To access Flash memory, the Flash Protection for the particular memory location must be disabled (set to 0). The data read from a protected partition will be indeterminate. Internal Flash memory can only be written when **RGEN.XME** is set and **MMPC.XMQ** is clear (DSP data memory selected for external memory port), and Flash protection for the location is disabled. In addition, internal Flash memory is written a word (two bytes) at a time, from ACC, with ACCH going to the lower location and ACCL going to the upper location. Due to this constraint, AR1 must always point to even addresses (bit 0 = 0) when writing to Program memory.

// Example writes a word to the upper half of Program memory.
// Set Program memory page to upper half of program memory.
// Program memory address is 0x18002
// Data to write to Program memory: ACCH = 12h, and ACCL = $34h$.
// Moves the accumulator ACC value to Program memory location
<pre>// indirectly addressed by PGMP and AR1.</pre>
<pre>// Program location 0x18002 = 12h, and</pre>
<pre>// Program location 0x18003 = 34h. Protection for this location</pre>
// must be disabled.

MOST System On Chip

5Ah	PGMP	Program Memory Page register	
Bit	Label	Description	
15	rsvd	Reserved. Write to 0.	000h, 0
1	A17	256-byte Information block only. The lower 16 address bits are in AR1.	0
0	A16	Selects the upper or lower half of the 128k Program memory during Program memory reads and writes. The lower 16 address bits are in AR1.	0

Table 2-17: PGMP Register

- A17 17th address bit of Program memory. When set, the 256-byte information block of the Flash memory is selected. A16 must be clear when A17 is set.
- A16 16th address bit of Program memory. Selects either the upper (when set) or lower 64k of Program memory to read from or write to.

MOST System On Chip

2.1.6 Instruction Summary

Instruction	Opcode	Example	Bytes	[†] Cycles
Add	0000 xxxx	acc = acc + *ar0;	1/2/3	1/2/3
Add with Carry	0001 xxxx	acc = acc + *ar0 + carry;	1/2/3	1/2/3
And (logical)	0110 xxxx	acc = acc & var;	1/2/3	1/2/3
Bit move	1100 dzzz	<pre>var.4 = carry;</pre>	1/2/3	1/2/3
Clear ACC	1100 0000	clr acc;	1	1
Clear Carry	1011 1111	carry = 0;	1	1
Complement Carry	1010 1111	carry = !carry;	1	1
Decrement	1010 Оууу	var;	1/2/3	1/2/3
Decrement Stack Pointer	1010 1001	sp -= 2;	1	1
Disable interrupts	1011 1001	disable;	1	1
Enable interrupts	1011 1000	enable;	1	1
Exchange	1001 1yyy	<pre>xch(acc, var);</pre>	1/2/3	1/2/3
Exclusive OR (logical)	0100 xxxx	var = var acc;	1/2/3	1/2/3
Increment	1000 Оууу	var++;	1/2/3	1/2/3
Increment Stack Pointer	1010 1000	sp += 2;	1	1
I/O Access	0zzz 0111	ifl = ifl & acc;	2/3	
Jump on ACC bit set/clear	111c bbbb	if (3) jmp <label>;</label>	2	3
Jump on ACC bit set/clear - extended	1100 1110	if (!5) jmp <label>;</label>	4	4
Jump Conditional	1101 sccc	<pre>if (!N) jmp <label);< pre=""></label);<></pre>	2/3	3
Jump Conditional - extended	1100 1111	if (Z) jmp label;	4	4
Jump to Subroutine	1101 s100	<label>();</label>	2/3	3
Jump to Subroutine - extended	1100 1111	<label>();</label>	4	4
Move	0111 xxxx	ar1 = acc;	1/2/3	1/2/3
NOP	1010 1110	nop;	1	1
Or (logical)	0101 xxxx	var = var acc;	1/2/3	1/2/3
Рор	1010 1011	acc = *sp;	1	1
Push	1010 1010	*sp = acc;	1	1
Reset	1011 1011	reset;	1	1
Return	1010 1100	ret;	1	2
Return from interrupt	1010 1101	reti;	1	2
Set byte	1011 1101	sb;	1	1
Set carry	1011 1110	carry = 1;	1	1
Set word	1011 1100	sw;	1	1
Shift left	1011 Оууу	var = var << 1;	1/2/3	1/2/3
Shift right	1001 Оууу	var >>= 1;	1/2/3	1/2/3
Subtract	0010 xxxx	acc = acc - var;	1/2/3	1/2/3
Subtract with carry	0011 xxxx	var = var - acc - carry;	1/2/3	1/2/3
Test	1000 1zzz	dummy = acc - var;	1/2/3	1/2/3
Тгар	1011 1010	trap;	1	1
Write Program Memory	1001 1110	(rom) *ar1 = acc;	1	

 † One cycle is equal to two 384Fs Host Controller clocks.

Table 2-18: Host Controller Instruction Set Summary

2.2 Inter-Processor Communications

The inter-processor communication ports consist of the COM ports between the Host Controller and the slave processors: the two DSPs and MOST Processor. The MOST Processor's COM port is hard-coded to use the protocol described below. The DSPs should be programmed to match this protocol to maximize reusable code.

The COM ports from the MOST and each DSP consist of a status register and two one-way data registers. The status register contains the start (**STR**), read (**RD**), and write (**WR**) flags. It also contains the interrupt (**INT**) flag, which informs the Controller that the slave needs servicing. The DSP data registers are 16-bits wide and the MOST data register is 8-bits wide. The data registers transfer data in either direction.

The data registers are one-way (read-only and write-only), that share a common address. Since the data registers for each direction share the same I/O address, the value written cannot be read. The value read is from the other device.

For example, data written by the Host Controller to a DSP can be read by the DSP, but NOT by the Host Controller. When the Host Controller reads the register, the data read is the last data written by the DSP. On the Control bus, each data register has two I/O addresses. The Host Controller signifies the first and last word of a transfer by accessing one address. The Controller uses the other address to transfer all other data.

The **str**, **RD**, and **wR** flags are read-only. They support handshaking between the Controller and each slave during data transfers. They are set when the Controller accesses the data register and are cleared when the slave accesses the data register. A low-to-high transition of the **str**, **wR**, or **RD** flags can generate the COM port interrupt in the DSPs. A low-to-high transition of **INT** can generate the COM port interrupt in the Host Controller. Since the status flags have to cross clock boundaries, a one-cycle delay is incurred between when a status flag is changed, and when it becomes readable from the register. For example, if the DSP writes data into the COM data register, a NOP instruction should precede reading the **RD** bit low from the COM status register. Figure 2-6 is a block diagram of a generic COM port (although the DSP Slave Processor register names are shown for clarity).

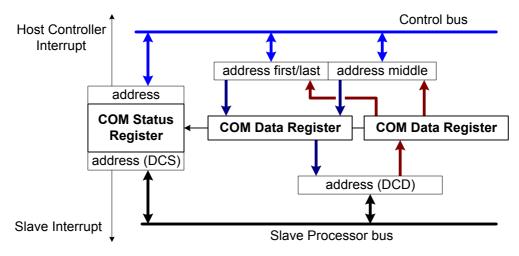


Figure 2-6: Generic COM Port

From the software's perspective, the transfer of data through the COM ports is much like that of the Control Port. The Host Controller operates as the master and the slave processor operates as the slave.

MOST System On Chip

The slave manages a memory address pointer (MAP) and a software control register. The first word of a write transfer is written to the MAP. The MAP should then be incremented. Successive words should then be written to the location pointed to by the MAP pointer. The MOST processor is hard-coded to operate in this fashion; however, the DSPs and Host Controller must be user-programmed for this protocol.

To write a message to a slave, the Host initiates the transfer by writing the first data word of the message to the data register address that indicates the first/last data word. This sets the **STR** and the **WR** flags in the COM status register. The COM status register can be polled by the DSP or the DSP can be interrupted. When a slave reads the data register (there is only one data register address on the slave bus), **WR** is cleared. The DSP should interpret the first transfer as a memory pointer and load the data register with the memory location pointed to by the memory pointer when the transfer is a read. The DSP should write (arbitrary) data to the data register to clear **STR**. In this way, the next time the DSP reads the COM status register, **STR** will be low indicating that the transfer is data and not the memory address pointer (MAP).

To write more than one word to a slave, the Host Controller monitors the **str** flag until it goes low. The Controller then writes the next word to the data register address specifying middle data words. This causes the WR flag to go high again. The DSP either monitors the **w**R flag or is interrupted when it goes high. When a slave reads the data register again, the WR flag is cleared.

Successive words can be transferred by the Controller by monitoring **w**R and writing new words when **w**R goes low (indicating the slave read the previous data). A message of any length can be transferred from the Controller to a slave. The Controller simply stops sending data when the message is complete. Figure 2-7 depicts a write transfer from the Controller to a slave (MOST Processor or a DSP).

For a DSP, the Controller's write transfers can be supported by copying the MAP data to a DSP pointer variable map_ptr, and using the following command when a byte is received:

*map_ptr++ = dcd;

This will store the DSP's DCD COM port register data at the address pointed to by map_ptr , and then post-increment the MAP pointer map_ptr to be ready for the next transfer.

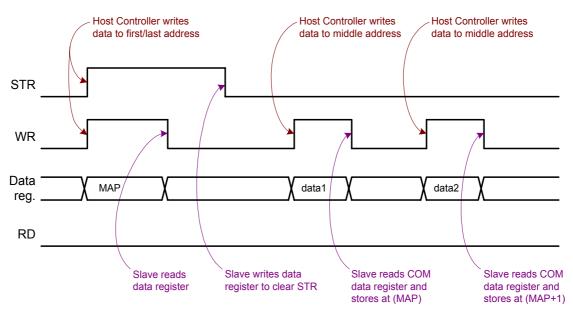


Figure 2-7: Generic COM Port Write Sequence

The Controller begins reading a message from a slave by writing the read address (MAP) to the data register that signifies the first/last data word. This sets the **STR** and **WR** flags in the status register. The DSP should read the address from the data register (which clears the **WR** bit), get the data pointed to by the MAP, and writes that data into the COM data register (which clears the **STR** bit).

Final Product Data Sheet Page 42

MOST System On Chip

To read additional words, the Controller should read the data register address that signifies middle data words. This read sets the **RD** flag. The DSP can either monitor this flag or be interrupted. The DSP then loads the data register with the memory location pointed to by the memory address pointer. This clears the **RD** flag. The Controller monitors the **RD** flag for this high-to-low transition. Then the Controller reads the data register.

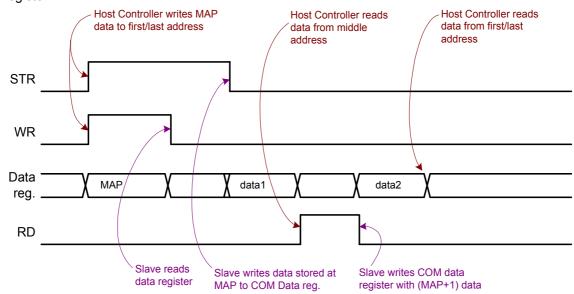


Figure 2-8: Generic COM Port Read Sequence

The Controller can terminate a read transfer by reading from the first/last data register address. A read from this address does not cause **RD** to go high. Figure 2-8 is a timing diagram illustrating a read transfer.

For a DSP, the Controller's read transfers can be supported by copying the MAP data to a DSP pointer variable map_ptr, and using the following command when a byte is received:

dcd = *map_ptr, map_ptr++;

This will store the data, pointed to by map_ptr, into the DSP's DCD COM Port register, and then postincrement the MAP pointer map_ptr to be ready for the next transfer.

The DSP can set the **INT** flag to inform the Controller that it requires servicing. This flag is read/writable by both the DSP and the Controller. Once the Controller services the slave, it should clear the **INT** flag.

2.2.1 MOST Processor COM Port

10h	RCS	MOST COM Status Register	Host
Bit	Label	Description	Default
155	rsvd	Reserved. Write to 0	00h, 000
4	AINT	Asynchronous (or Packet) Data Flag. Set whenever a Packet has been received or is finished being transmitted by the MOST Processor. This bit does not cause an interrupt to the Host Controller, so it must be polled. (read-only)	0
3	INT	Interrupt flag. Set based on the error bits active in the MOST register bMSGS, enabled by the corresponding bits in the MOST bIE register.	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 2-19: RCS Register

OS8805	1	MOST System On Chip	SiliconSystems
06h 07h	RCF RCM	MOST COM First/Last Data MOST COM Middle Data	Host
Bit	Label	Description	Default
158	rsvd	Reserved. Write to 0	00h
70	D[7:0]	bit 7 is MSB. Data written to the MOST Processor (write only) Data read from the MOST Processor (read only)	00h

Table 2-20: RCF, RCM Registers

The MAP value is 8 bits, which spans 256 bytes of the MOST Processor register space. The MOST Processor register space spans 1024 bytes, or four pages of 256 bytes each. The last byte in each page is reserved for switching pages. Therefore, if the Host Controller writes the MAP to FFh (RCF = FFh), and then writes RCM to 0, 1, or 3 (page 2 is reserved); then the MOST Processor switches to the respective memory page. When the MAP is auto-incrementing and reaches the end of a page, it wraps to the beginning of the same page.

2.2.2 DSP0 COM Port

11h	D0CS	DSP0 COM Status Register	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0	000h
3	INT	Interrupt flag	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 2-21: D0CS Register

08h 09h	D0CF D0CM	DSP0 COM First/Last Data DSP0 COM Middle Data		Host
Bit	Label		Description	Default
150	D[15:0]	bit 15 is MSB.	Data written to DSP0 (write only) Data read from DSP0 (read only)	0000h

Table 2-22: D0CF, D0CM Registers

2.2.3 DSP1 COM Port

12h	D1CS	DSP1 COM Status Register	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0	000h
3	INT	Interrupt flag	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 2-23: D1CS Register

0.1.2.1.0

OS8805		MOST System On Chip	U^A^ S^ I^S SiliconSystems
0Ah 0Bh	D1CF D1CM	DSP1 COM First/Last Data DSP1 COM Middle Data	Host
Bit	Label	Description	Default
150	D[15:0]	bit 15 is MSB. Data written to DSP1 (write only) Data read from DSP1 (read only)	0000h

Table 2-24: D1CF, D1CM Registers

2.2.4 DSP Debug Interface

The DSP debug interface consists of debug COM Ports and a DSP Trap Shadow Program Counter registers.

The debug COM port is identical to the regular COM ports between the DSPs and the Host Controller, except that the DSPs do not have the capability to interrupt the Host Controller through this interface. The data register can be read or written by the Host Controller using DD0CF for the first or last transfer and DD0CM for middle word transfer to DSP0. Similarly, DD1CF and DD1CM are for DSP1. The Host Controller can read the status register using DD0CS and DD1CS for DSP0 and DSP1 respectively.

1Eh	DD0CS	DSP0 Debug COM Status Register	Host
Bit	Label	Description	Default
156	rsvd	Reserved. Write to 0	00h, 00
5	TIP	Trap In Progress status (read only)	0
4	TRINT	Trap Interrupt	0
3	rsvd	Reserved, Write to 0	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 2-25: DD0CS Register

13h 14h	DD0CF DD0CM	DSP0 Debug COM First/Last Data DSP0 Debug COM Middle Data	Host
Bit	Label	Description	Default
150	D[15:0]	bit 15 is MSB. Data written to DSP0 (write only) Data read from DSP0 (read only)	' 1 0000n

Table 2-26: DD0CF, DD0CM Registers

1Fh	DD1CS	DSP1 Debug COM Status Register	Host
Bit	Label	Description	Default
156	rsvd	Reserved. Write to 0	00h, 00
5	TIP	Trap In Progress status (read only)	0
4	TRINT	Trap Interrupt	0
3	rsvd	Reserved, Write to 0	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 2-27: DD1CS Register

 Λ Λ Λ Λ

MOST System On Chip

Host

15h 16h	DD1CF DD1CM	•	g COM First/Last Data g COM Middle Data	Host
Bit	Label		Description	Default
150	D[15:0]	bit 15 is MSB.	Data written to DSP1 (write only) Data read from DSP1 (read only)	0000h

Table 2-28: DD1CF, DD1CM Registers

48h	DOTSPC	DSP0 Trap Shadow Program Counter (read-only)	Host
-----	--------	--	------

Bit	Label	Description	Default
1511	rsvd	Reserved. Write to 0	00000
100	D[10:0]	Program Counter Copy. Loaded when the DSP0 executes a TRAP instruction or when the Host Controller sets DD0CS.TRINT .	00h, 000

Table 2-29: D0TSPC Register

49h D1TSPC DSP1 Trap Shadow Program Counter (read-only)

Bit	Label	Description	Default
1511	rsvd	Reserved. Write to 0	00000
100	D[10:0]	Program Counter Copy. Loaded when the DSP1 executes a TRAP instruction or when the Host Controller sets DD1CS.TRINT.	00h, 000

Table 2-30: D1TSPC Register

2.3 Control Bus Peripherals

The Control Bus peripherals consist of peripherals managed by the Host Controller; as well as enables and volume controls for peripherals controlled by other processors. The data for the PWM DACs come from DSP0, but the enable is controlled by the Host Controller. The data for the Source Converters (MPX, MIC, Audio ADCs and Quad DACs) is transferred by the MOST Processor; whereas, the enables and volume controls are in the Controller's I/O space. Volume controls are also in the DSP's I/O space.

2.3.1 Clock Manager

The Clock Manager generates all the clocks required by the chip and outputs a clock (RMCK) to support synchronizing external devices. As shown in Figure 2-9, the Clock Manager consists of an input multiplexer, an analog PLL, and output dividers. The input multiplexer allows the chip to be configured as a network timing-master or timing-slave device. As a network timing-slave device, the PLL is clocked from the network receiver interface, **RX**. As a network timing-master device, the PLL is clocked from a crystal, the source data port clock, or **SR0** (configured as an SPDIF input). The analog PLL generates a 3072×Fs clock which is then divided down to create all the necessary internal clocks.

While reset is asserted, the crystal oscillator is disabled and the PLL is pulled to a frequency below the normal operating frequency. When reset goes away, the crystal is automatically enabled and the PLL begins to lock to the crystal. If the external crystal is actually $512 \times Fs$, the PLL will lock and the **CMCS.LOCK** bit will go high. If the crystal is actually $384 \times Fs$ or $256 \times Fs$, the PLL may not be able to lock depending on the pull range of the PLL. In either case, the Control Port will still operate, thereby allowing the Clock Manager parameters to be changed from the external system.

The external system should first load the proper CMCS.XTL[1:0] value. Then the PLL should lock, indicated via the CMCS.LOCK bit, and the PLL input mux. select bits can be changed so the PLL locks to SCK, SRO (SPDIF), or RX data.

MOST System On Chip

O-A-S-I-S SiliconSystems

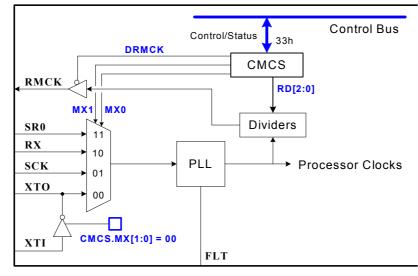


Figure 2-9: Clock Manager

33h	CMCS	Clock Manager Control/Status	Host
Bit	Label	Description	Default
15	LOCK	PLL lock status (read only)	0
14	ASC	Automatic switch to crystal	0
13	rsvd	Reserved, Write to 0.	0
12	rsvd	Reserved, Write to 0	0
11	rsvd	Reserved, Write to 0.	0
10	rsvd	Reserved, Write to 0	0
9	PLD	PLL disable	0
8	PD	Power down	1
7	DRMCK	When set, RMCK output is disabled and can be used as IOG0	0
64	RD[2:0]	RMCK divider	000
32	XTL[1:0]	Crystal oscillator divider	00
10	MX[1:0]	PLL input multiplexer select	00

Table 2-31: CMCS Register

- LOCK PLL Locked. When set, indicates that the PLL is properly locked onto the source. LOCK will go low immediately when the source stops toggling. LOCK will also go low if an out-of-lock condition is detected on the source. When out of lock, the Control Port still operates; however, Source data is not transferred. Once lock is reestablished, three frames are required for Source data to be transferred properly.
- ASC Automatic Switch. When set and the PLL source is not the crystal, causes the **Mx[1:0]** bits to change to the crystal (00) when the PLL loses lock (LOCK = 0). When **Mx[1:0]** are changed to 00, the crystal starts to oscillate. The crystal start-up time can be quite long and will cause the PLL to drop in frequency until the oscillator stabilizes.
- PLD PLL Disable. When set, the PLL is pulled to its nominal low frequency.

MOST System On Chip

- PD Power Down. When set, powers down the entire chip by turning off all clocks to the digital section, placing the FLASH memory in standby mode, and shutting down all analog bias currents. Before setting PD, the PLL input mux should be set to any setting except the crystal (XTL[1:0] = 00) to insure that power through the crystal oscillator is minimized. RAM contents are preserved while PD is set. PD is cleared through a hardware reset or any of the conditions enabled through the RGEN register. The part goes through an under-voltage condition on initial powerup causing the PD bit to be set at power-up. The chip is brought out of power-down by a low-tohigh edge on RST, or toggling RX, GPA0-GPA2; as configured through the RGEN register.
- DRMCK Disable RMCK. When clear, RMCK is enabled and has a frequency based on RD[2:0]. When set, RMCK output can be used as GPIO pin IOG0.
- RD[2:0] **RMCK** Divider. When **RMCK** is enabled (**DRMCK** = 0), these bits determine the output frequency as a ratio to the locked sample frequency.
 - 000 384×Fs 001 – 256×Fs 010 – 128×Fs 011 – 64×Fs 100 – 1536×Fs 101 – 1024×Fs (33 % duty cycle) 110 – 768×Fs 111 – 512×Fs
- XTL[1:0] Crystal oscillator divider. These bits allow the crystal oscillator to be one of three frequencies for a given network sample frequency (Fs).
 - 00 512×Fs
 - 01 384×Fs
 - 10 256×Fs
 - 11 Reserved
- MX[1:0] PLL Multiplexer input select. Selects the source to the PLL. When using NetServices software, a crystal is required even in timing-slave nodes since the node can be set as a timing-master for diagnostics if the ring goes down.
 - 00 Crystal oscillator. If not selected, the oscillator is automatically disabled to save power.
 - 01 SCK (Source Port serial bit clock)
 - 10 RX (network receiver timing-slave device)
 - 11 SR0 (SPDIF Source Port input)

Power can be minimized during normal operation by turning off the chip resources that are not being used. The DSP processor has a run bit which, when cleared, turns off the DSP processor's clock. This reduces the power consumption of the processor to the DC power of the memories. Each data converter has an enable bit. When not enabled, the converter is in a low-power state.

38h	CM4	Clock Manager 4	Host
Bit	Label	Description	Default
158	rsvd	Reserved. Write to 0.	00h
70	D[7:0]	Affects the PWD tolerance. Must be set to C3h for proper operation.	C3h

Table 2-32: CM4 Register

2.3.1.1 Crystal Pins

The crystal oscillator is used by the timing-master node to set the timing for the entire ring. Timing-slave nodes generally have a crystal oscillator to allow the node to run diagnostics when the ring is down.

The crystal oscillator should be fundamental mode, parallel resonant with a load capacitor specified as mentioned below. Figure 2-10 depicts the nominal oscillator circuit, where the left side illustrates the amplifier's small-signal output impedance and the right side illustrates the amplifier's large-signal output impedance. Since the internal inverter/amplifier is operated in its linear region, external series resistors should not be used, as they will lower the gain and could cause start-up problems.

When the crystal oscillator is not selected as the timing source for the node (**CMCS.MX[1:0]** not equal to 00), the oscillator is powered down to minimize noise and power consumption. If an external signal or a crystal is not used, **XTI** should be grounded to minimize current draw.

If an external clock is used in lieu of a crystal oscillator, it must support CMOS drive levels and be connected to XTI (see Figure 2-10), and XTO must have a total capacitance of less than 10 pF. For the timingmaster node, this clock must be jitter free. For a timing-slave node, the clock must also be jitter free to support ring-down diagnostics where the timing-slave might be the timing-master for the rest of a broken ring.

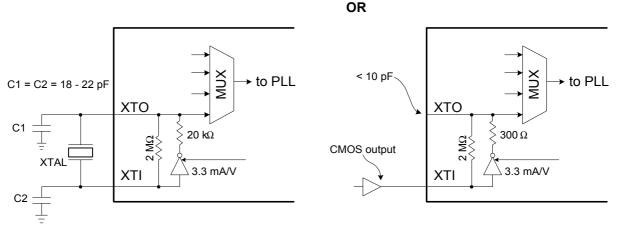


Figure 2-10: Crystal Oscillator Input

The crystal frequency can be 256xFs, 384xFs, or 512xFs; selected via the **CMCS.XTL[1:0]** bits. The load capacitors should typically be in the range of 18 pF to 22 pF. For more information on crystals, see Section 8.4.

CMCS.XTL[1:0]	10	01	00	Units	
Fs	256x	384x	512x	Units	
38 kHz	9.728	14.592	19.456	MHz	
44.1kHz	11.2896	16.9344	22.5792	MHz	
48 kHz	12.288	18.432	24.576	MHz	

Table 2-33: Crystal Oscillator Frequencies

MOST System On Chip

2.3.2 Global Timer

The Global Timer consists of an 8-bit counter clocked off of SCK at 16xFs, and can be read by the Controller, DSPs, and MOST Processor. Even if the Source Ports are not used, SCK must be configured (set as an output, or an input with the proper external clock applied) through bSDC1 for GTR to operate. Each bit of the counter oscillates at different rates which are used for inter-processor synchronization. The rates available are 8, 4, 2, 1, 1/2, 1/4, 1/8, and 1/16xFs. Some of the bits of the Global Timer can generate periodic interrupts on the rising edge in various processors. The rising edge of bits FS1 through FS8 are aligned; however, the other bits have skewed rising edges as depicted in Figure 2-12.

36h	GTR	Global Timer (read-only)	Host
Bit	Label	Description	Default
158	rsvd	Reserved, Write to 0	00h
7	FS16TH	one rising edge every 16 Fs periods	0
6	FS8TH	one rising edge every 8 Fs periods	0
5	FS4TH	one rising edge every 4 Fs periods	0
4	FSHALF	one rising edge every other Fs period	0
3	FS1	1 rising edge every Fs period	0
2	FS2	2 rising edges every Fs period	0
1	FS4	4 rising edges every Fs period	0
0	FS8	8 rising edges every Fs period	0

Table 2-34: GTR Register

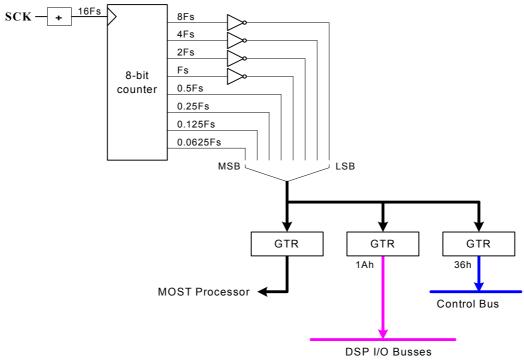


Figure 2-11: Global Timer

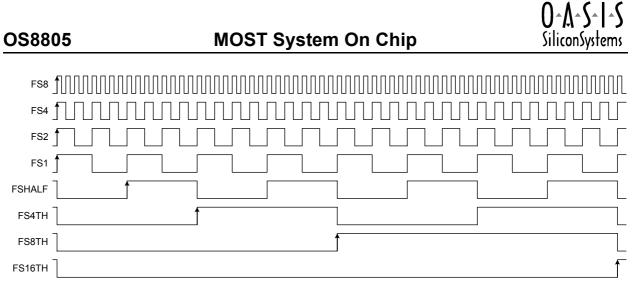


Figure 2-12: Global Timer Timing

2.3.3 Control Port

The Control Port is the interface between the external system and the OS8805, and provides an access portal to the Controller's RAM and I/O registers. The Control Port operates in an I²C-compatible, a USART, or an SPI format. The Control Port hardware supports an I²C data format (even in SPI mode) where the first byte contains the address and read/write bit, followed by the rest of the data. A generic SPI mode is available (**CPS.GSPI** set) where no interpretation of the data is performed; however, the standard I²C data format is preferred as it is similar, in format, to the internal COM Port formats (allowing sharing of code), and is the standard format used by Oasis SiliconSystem's design tools. In USART mode, the Control Port interface is through the USART0 registers. The Control Port can operate the serial port as a master or slave device for all formats except OSPI, which is slave only. The USART format and register interface are described in the separate *USARTs* Section.

When $\overline{\text{RST}}$ is de-asserted or at initial power-up, the initial Control Port format is selected by a pull-up (I²C format) or pull-down (OSPI format) on the SCL/SCLK pin. The Control Port format can also be changed after power-up via the CPS.I2CF bit. When the SCL/SCLK pin is pulled high at startup (default I²C format), the SDA pin will be driven low for one 128Fs period immediately on exiting the reset condition. This produces a start/stop condition on the bus; however, no address is output.

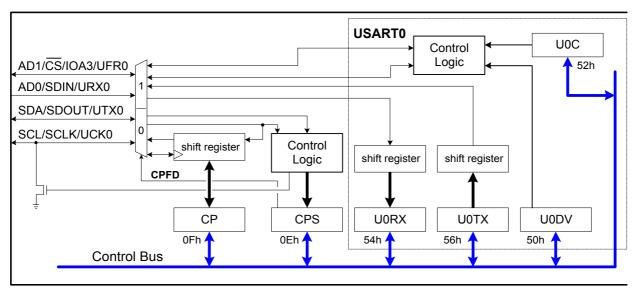


Figure 2-13: Control Port

Final Product Data Sheet Restricted Access

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

The Control Port, when not in USART mode, is accessed by the Host Controller through the Control Port Status register and the Control Port data register. The Status register also includes configuration options. The Control Port interrupt bit IFL.ICP goes high whenever a rising edge occurs of any of the CPS status bits: **STOP** (not in OSPI mode), **STR**, **WR**, **NACK**, **RD**. Since IFL.ICP is level-sensitive, the interrupt service routine must clear the condition causing the interrupt (clear the CPS bit as described below).

0Eh	CPS	Control Port Status	Host
Bit	Label	Description	Default
1512	rsvd	Reserved, Write to 0	0000
11	CPFD	Control Port Formats Disable	0
10	FAST	Fast Mode enable	0
9	NACK	No Acknowledge	0
8	CPMM	Control Port Master Mode. (must be clear in OSPI format)	0
7	STOP	Stop Condition (not valid in OSPI mode)	0
6	I2CF	0 is SPI mode, 1 is I ² C mode	*
5	GSPI	0 is Oasis-specific SPI mode (OSPI), 1 is generic SPI mode (GSPI)	0
4	CPOL	For generic SPI mode, polarity of clock	0
3	CPHA	For generic SPI mode, phase of clock to data	0
2	STR	Start transfer (read-only when CPMM clear)	0
1	WR	Write data available	0
0	RD	Read data request	0

* Initial state determined by state of SCL/SCLK pin at power-up.

- CPFD Control Port Format Disable. When clear, the Control Port formats listed in this section are enabled. If set, the Control Port formats are disabled and the Control Port can be configured for USART0 (**uoc.usen** set) or the four pins can be used as EGPIO port **IOA**[3:0] (**uoc.usen** clear)
- FAST Fast mode enable. When the Control Port is a master (**CPMM** set), **FAST** determines the clocking serial port clocking frequency as shown below:
 - With FAST clear the approximate clocking frequency is 88.2 kHz when Fs = 44.1 kHz, and 96 kHz when Fs = 48 kHz.
 - With **FAST** set, the approximate clocking frequency is 295.8 kHz when Fs = 44.1 kHz, and 310.6 kHz when Fs = 48 kHz.
- NACK No Acknowledge. Reading this bit does not read what was written. The read bit going high can generate an interrupt, if enabled. Writing **NACK** to zero clears the interrupt condition. When the Control Port is configured as a slave port (**CPMM** clear):

NACK is set when the external master device is performing a read operation and does not acknowledge the transfer. Software can write this bit to zero **after** reading CP. When configured as a slave port, software should never write **NACK** to one.

When the Control Port is configured as a master port (**CPMM** set):

NACK is set when writing an external device and it does not acknowledge the transfer. In I^2C format, software should set **NACK** to one to keep the Control Port from acknowledging the next (last) transfer. Once the "no acknowledge" is transmitted, **NACK** will read back one and must be cleared in software. The data in CP must be read before clearing **NACK** or another eight clocks will be sent out. In GSPI format, **NACK** should be set for full-duplex communications, since it will keep CP reads from generating 8 clocks (only writes will generate 8 clocks). When using GSPI in one direction, **NACK** is used to stop the last transfer from generating clocks.

Table 2-35: CPS Register

OS8805	۵ MOST System On Chip SiliconSystem
СРММ	Control Port Master Mode enable. When clear, the Control Port is a slave serial device. Whe set, the Control Port is a master port and FAST sets the clocking speed used. OSPI master mode is not supported. In addition, I ² C multi-master mode is not supported.
STOP	When reading, STOP set indicates a stop condition has been detected on the bus. Writing to clears the bit and writing to 1 (when in I ² C master mode) causes a Stop condition. If a STOP condition is detected on the bus, an interrupt can be generated. The STOP bit is set at power-up and when switching to master mode, and should be cleared before enabling the port. The STOP bit also respond to any bus stop bits until the first start bit and address is sent. Then the STOP bit only responds after the correct address is sent. When the Control Port is configured as a slave port (CPMM clear): In I ² C format, STOP is set when an I ² C Stop bit is detected on the bus. In either SPI format, STOP high indicates that the C S pin rose. STOP is cleared by writing STOP to zero. When configured as a slave port, software should never write STOP to one. When the Control Port is configured as a master port (CPMM set): In I ² C format, STOP is set only after an I ² C Stop bit is detected on the bus. In GSPI format STOP is always low. STOP is cleared by writing STOP to zero. In I ² C format, STOP is cleared by writing STOP to zero. In I ² C format, STOP is cleared by writing STOP to zero. In I ² C format, STOP is cleared by writing STOP to zero. In I ² C format, STOP is cleared by writing STOP to zero. In I ² C format, writing STOP to be transmitted onto the bus. In GSPI format one causes a Stop bit to be transmitted onto the bus. Once the bit is transmitted, STOP with be read as one, indicating a Stop condition was seen on the bus.
I2CF	SPI or I^2C format. When set, the Control Port uses the I^2C format. When clear, the Control Port uses the SPI format indicated by the GSPI bit. I2CF is initially set by the value of the SCL/SCLK pin when RST is de-asserted or at initial power-up.
GSPI	Generic SPI. When set, and I2CF is clear, the Control Port interface uses a generic SPI format (GSPI). When GSPI is clear (Oasis-specific SPI, OSPI), the data format matches the I^2C format and the wr and rd bits work as in I^2C format. The Control Port must be a slave in OSPI mod
CPOL	Clock Polarity, in generic SPI format only. When GSPI is set and I2CF is clear, this bit deter- mines the SCLK clock polarity as indicated in Figure 2-24.
CPHA	Clock Phase, in generic SPI format only. When GSPI is set and I2CF is clear, this bit determine the SCLK clock phase as indicated in Figure 2-24. When in slave mode and CPHA is clear, \overline{CS} must be brought high between each data byte transferred.
STR	 Start. Reading indicates if a start condition has been detected on the bus. In master mode, writing to 0 clears the bit and writing to 1 causes a Start condition to be transmitted. If a STR condition is detected on the bus, an interrupt can be generated in I²C and GSPI-slave formats. When the Control Port is configured as a slave port (CPMM clear): In I²C format, STR is set when an I²C Start bit is detected on the bus followed by an address matching 01000xy, where xy is set via the AD1 and AD0 pins, respectively. In both SPI formats, STR going high indicates that the CS pin fell. STR is cleared by writing the CP register (STR is read-only and cannot be cleared by writing to 0). Writing STR to 7 has no effect. When the Control Port is configured as a master port (CPMM set): In I²C format, STR is set only after an I²C Start bit is detected on the bus. In GSPI format start is always low. STR is cleared by writing STR to zero. In I²C format, writing STR to one causes a Start bit to be transmitted onto the bus. Once the bit is transmitted, STR will be read as one, indicating a Start condition was seen on the bus.
WR	 Write data bit. When the Control Port is not in generic SPI mode (GSPI clear): When in slave mode, wr is set when data is transferred from the serial input shift register to the CP register; and wr is cleared when the Controller reads the CP register or explicitl writes wr to 0. Writing wr to 1 has no effect.

MOST System On Chip

When in master mode, **wR** is set when data is transferred from CP to the serial shift register, to be shifted out; and **wR** is cleared when the Controller writes CP with the next word, or explicitly writes **wR** to 0.

RDRead data bit. When the Control Port is not in generic SPI mode (GSPI clear):When in slave mode, RD is set when data is transferred from the CP register to the shift register, to be shifted out of the chip; and RD is cleared when the Controller writes the CP reg-

ister or explicitly writes **RD** to 0. Writing **RD** to 1 has no effect. When in master mode, **RD** is set when data is transferred from the shift register to the CP register, and **RD** is cleared when the Controller reads CP or explicitly writes **RD** to 0.

0Fh	СР	Control Port Data	Host
Bit	Label	Description	Default
158	rsvd	Reserved, Write to 0	00h
70	D[7:0]	data, bit 7 is MSB	00h

Table 2-36: CP Register

D[7:0] Control Port bi-directional data register when the Control Port is enabled and in any format except USART0.

When the Control Port is configured as a slave port (CPS.CPMM clear):

Reading or writing the CP register after CPS.WR or CPS.RD is set, clears the particular status bit, clearing the interrupt condition.

When the Control Port is configured as a master port (CPS.CPMM set):

Writing the CP register causes 8 clocks to be transmitted in GSPI and 9 clocks in I²C. Reading the CP register also causes 8 clocks to be transmitted in GSPI and 9 clocks in I²C format. However in I²C format, **CPS.NACK** should be written immediately after reading the second to last transfer from CP. This will cause the part to not-acknowledge the last transfer. Once the last byte is in CP, it must be read BEFORE clearing **CPS.NACK** (or another 9 clocks will be transmitted). For GSPI format, if **CPS.NACK** is set before reading the last word in CP, no more clocks will be generated. Then CP should be read, followed by clearing **CPS.NACK**.

The following slave protocol is recommended for data transfers in the I²C and Oasis-specific SPI (OSPI) formats, as the Control Port hardware is optimized to support this protocol. A generic SPI format is also provided to allow custom data formats.

When the part is a Control Port slave device (**CPS.CPMM** clear), the first data word written by the external system (after the chip address byte) is a Memory Address Pointer (MAP), which determines where the second data byte is to be stored/retrieved. The MAP should be incremented after the second-byte data transfer to be ready for the next byte. If more data is to be transferred, the bytes are transferred to/from memory sequentially with the MAP being incremented after every transfer. This scenario provides efficient transfer of a byte, or a block of bytes by only providing the MAP once, initially.

Figure 2-14 illustrates an external system write sequence that writes data to the Controller's memory. Using this protocol, the external system (System) first writes the address byte where the LSB indicates a read or a write sequence. For the I²C format the 7-bit address must match the Control Port address for the **CPS.STR** bit to go high. For the OSPI format, the address is ignored and **CPS.STR** goes high when the \overline{CS} pin goes low. The Controller, through either polling the CPS register or through the Control Port interrupt, reads CPS. Since **STR** is high, the Controller knows that the System is accessing the Control Port but doesn't know yet whether it's a read or a write sequence. In case it's a read sequence, the Controller takes the data stored at the previous MAP and stores it in the CP register. Writing CP causes the **CPS.STR** bit to fall. When the System writes the next byte, the **CPS.WR** bit goes high, and the controller should interpret this first byte to be a new MAP byte, and store the data as the new Memory Address Pointer. When CP is read

OS8805

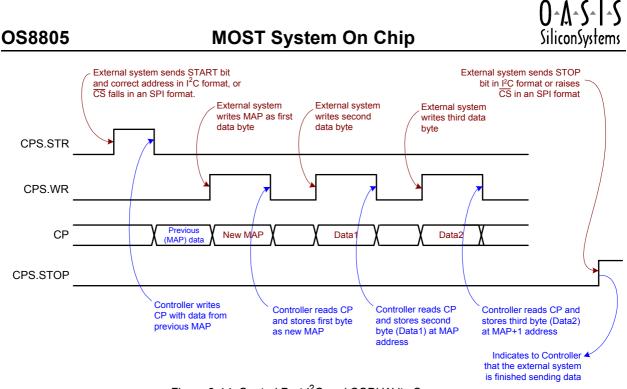


Figure 2-14: Control Port I²C and OSPI Write Sequence

by the Controller, **CPS.WR** is cleared. When the System writes the next byte, **CPS.WR** goes high again and the Controller should interpret this new byte as actual data and store it at the location pointed to by the MAP byte. The Controller should then increment the MAP byte to be ready for the next byte received. When the System finishes writing all the data, it sends a **STOP** bit for the l^2C format, or raises the <u>CS</u> pin for the OSPI format. This causes the **CPS.STOP** bit to go high signaling the Controller that this sequence is over. The Controller should write the **CPS.STOP** bit to zero clearing it.

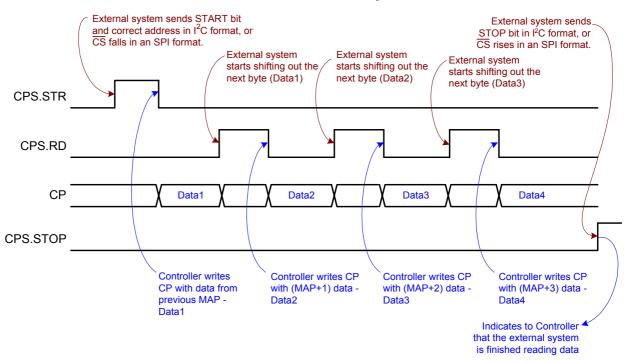


Figure 2-15: Control Port I²C and OSPI Read Sequence (slave)

MOST System On Chip

For a read sequence (illustrated in Figure 2-15), the System should always precede the read by a write to the memory address pointer. This write is accomplished as describe above, but without the actual data bytes (just the MAP byte). Then the System sends another **START** bit for the I^2C format, or cycles the \overline{CS} pin for the OSPI format, either of which causes the CPS.STR bit to go high again. The Controller should respond to this as a new sequence. The System then sends the address byte again, but this time the LSB is a 1, indicating a read sequence. As with the write sequence, the Controller does not know yet whether this sequence is a write or a read, so the Controller should get the data pointed to by the previously written MAP, and store that data into the Control Port data register CP. The Controller should then increment MAP to be ready for another read request. After sending the address byte with R/W bit, the System starts shifting out the next byte. This causes the CP register to be loaded into the Control Port shift register, to be shifted out of the chip. This transfer between the CP and the shift register, causes the CPS.RD bit to go high again, which tells the Controller that CP is ready for another byte. The Controller then reads the (MAP+1) location and stores it in CP. Then the Controller should increment MAP. This sequence continues as long as CPS.RD goes high. When the System finishes getting all the data it needs, it sends a STOP bit for the I^2C format, or raises the \overline{CS} pin for the OSPI format. This causes **CPS.STOP** bit to go high signaling the Controller that this sequence is over. The Controller should write CPS.STOP = 0 to clear it for the next transfer.

2.3.3.1 I²C Slave Format

When the l²C format is selected (**CPS.I2CF** set or pull-up on SCL/SCLK pin), the **AD1** and **AD0** pins select the lower two address bits for the l²C port with the upper five bits hard-coded to 01000. If configured as a slave device and the external system sends an address that matches the programmed chip address, the **CPS.STR** bit goes high (which can interrupt the Controller) indicating that a correct address has been received. The R/W bit, in the address byte, indicates to the Control Port hardware how the **CPS.RD** and **CPS.WR** should respond. Figure 2-16 illustrates the write sequence for data transferred across the **SDA** pin.

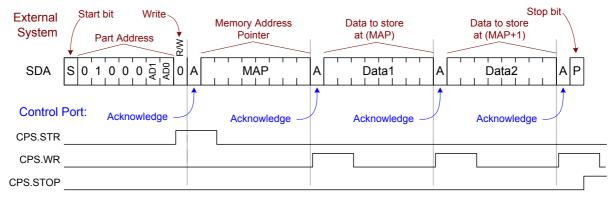


Figure 2-16: Control Port I²C Slave Write Sequence

If the external system is clocking the data too fast, the Control Port hardware will stretch the clock (SCL pin) while **CPS.STR** is high, or if **CPS.WR** remains high and a new byte is in the shift register waiting to be transferred to the CP register. This prevents the external system I^2C master from continuing until SCL is

MOST System On Chip

released. Prior to an initial start bit and address byte, the **CPS.STOP** bit will be set when a stop bit is seen on the bus (even though the chip has not been addressed yet). Once a start bit and address byte is seen by the chip, the **CPS.STOP** bit will only respond after the address byte matches the chip address.

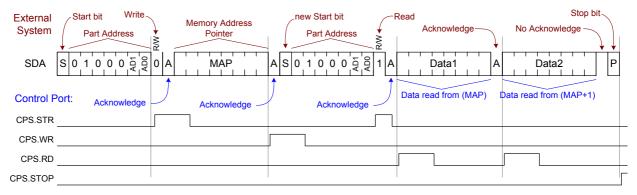
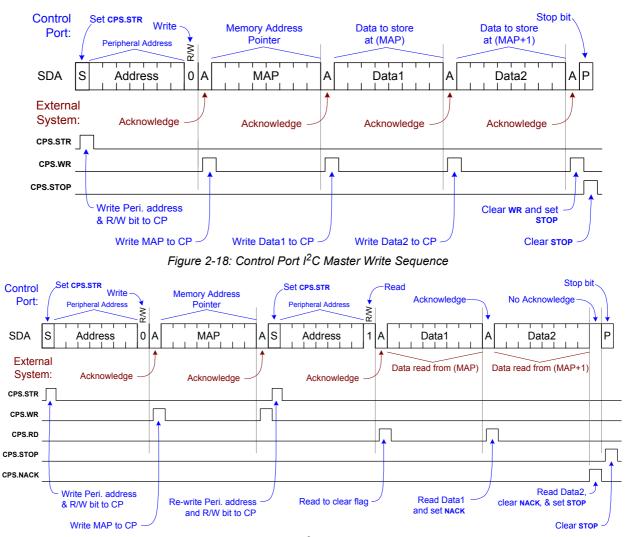
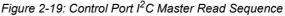


Figure 2-17: Control Port I²C Slave Read Sequence

2.3.3.1.1 I²C Master Mode

The Control Port is a serial port master when **CPS.CPMM** is set. Multi-master I^2C format is not supported. As the serial port master, clock generation is controlled by the OS8805 (although slave peripherals can stretch the clock if needed). Once in master mode, **CPS.FAST** determines the Ports clocking frequency. When in master mode, an additional clock pulse on SCL can occur before the start bit is generated. Since slave devices are looking for a start bit, this extra clock should have no adverse effect.


The following is a brief description of how the Host Controller software interacts with the Control Port in I^2C master mode:


- To start a transfer, the CPS.STR bit is set, causing the hardware to generate an I²C start bit on the bus.
- When the start condition is actually generated on the bus, **CPS.STR** will be set; thereby generating an interrupt.
- In the ISR, **CPS.STR** is written to zero, and the first byte (containing the I²C peripheral address and read/write bit) is written to the CP register. A write to the CP register causes the generation of 9 SCL clock pulses and the first byte will be shifted out on the **SDA** line.
- A CPS.RD, CPS.WR, or CPS.NACK interrupt (depending on the read/write bit in the first byte and whether the slave acknowledges the transfer or not) will occur after the 9 SCL clock cycles. Additional read/write operations can occur by reading or writing the CP register, which clears the CPS.RD or CPS.WR bits, thereby clearing the interrupt condition.
- To terminate a write transfer, writing **CPS.WR** to zero without writing the CP register clears the interrupt condition.
- To generate a Stop bit on the bus, **CPS.STOP** should be set. When the stop bit is actually driven on the bus, a stop interrupt will occur and the software should clear the **CPS.STOP** bit.
- To terminate a read transfer, the **CPS.NACK** bit should be set immediately after the reading of the second to last byte to stop the Control Port hardware from generating an acknowledge bit.
- When the last byte is shifted in, the read flag will not be set (CPS.RD = 0) and a no-acknowledge interrupt (CPS.NACK) will occur. The CP register must be read before the CPS.NACK bit is cleared, to prevent the generation of another 9 SCL clock pulses.
- To generate a Stop bit on the bus, **CPS.STOP** should be set. When the stop bit is actually driven on the bus, a stop interrupt will occur and the software should clear the **CPS.STOP** bit

MOST System On Chip

In I²C master mode, the status bits **STR**, **STOP**, and **NACK** are NOT the same bits when read and written. Therefore, reading, masking, and writing should be done with extreme caution. Writing these bits control the master-mode port operation; whereas, reading these bits indicate the status on the I²C bus. For example, writing **NACK** to one causes the Control Port to NOT generate clocks when reading CP. But reading **NACK** = 1, indicates that a "no-acknowledge" condition occurred on the bus.

2.3.3.2 Oasis-Specific Slave SPI Format

The Oasis-specific SPI format (OSPI) follows the same data format as the I^2C format, where a 7-bit address is sent (actual address is arbitrary) followed by a R/W bit. Then the data should continue to follow the I^2C format of MAP followed by write data, if any. However, the hardware pins used follow standard SPI conventions, with a chip select \overline{CS} , serial data in SDIN, separate serial data out SDOUT, and a serial clock SCLK. The OSPI format is selected at start-up by placing a pull-down on the SCL/SCLK pin. The Control Port can also be configured after start-up for OSPI by clearing CPS.I2CF and clearing CPS.GSPI. The advantage of OSPI over the generic SPI (GSPI) is that the CPS.RD and CPS.WR bits work properly in OSPI mode, and the MAP followed by data format is similar to the COM Port format used for inter-processor communica-

MOST System On Chip

tions (allowing the sharing of code). Master mode is not supported for this format (**CPS.CPMM** clear). When the Control Port is operating in an SPI slave format, **IOA3** must be configured as an input (**EDD1.GPOA3** clear).

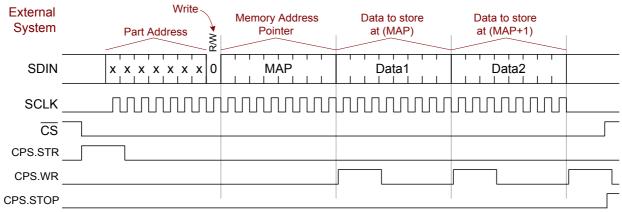


Figure 2-20: Control Port OSPI Write Sequence

The **CPS.STR** bit is set when the \overline{CS} pin goes low, and is cleared when the Controller writes the CP register. The address, in the first byte sent by the external system, is arbitrary and not checked by the Control Port hardware. In the address byte, only the R/W bit has any significance, and determines how the Control Port **RD** and **WR** bits respond. If the OSPI slave device does not have enough time (or does not respond) between \overline{CS} going low and the first byte shifting out, the first byte received by the OSPI master will be old data. Since the SPI format has no provision for stretching the clock, interrupt latencies should be minimized, and external system code should be written with this issue in mind. When the external System drives \overline{CS} high, the **CPS.STOP** bit rises indicating the end of a transfer. An OSPI write sequence is illustrated in Figure 2-20. The SCLK polarity and phase are fixed as depicted in the Figure (in the GSPI format, SCLK is configurable). An OSPI read sequence is illustrated in Figure 2-21.

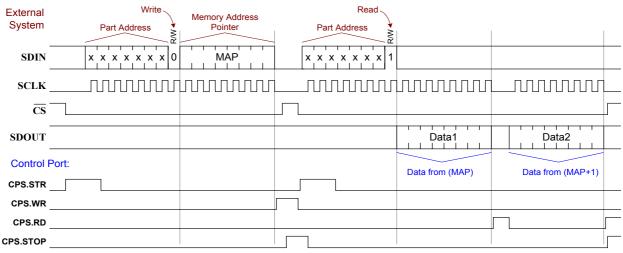


Figure 2-21: Control Port OSPI Read Sequence

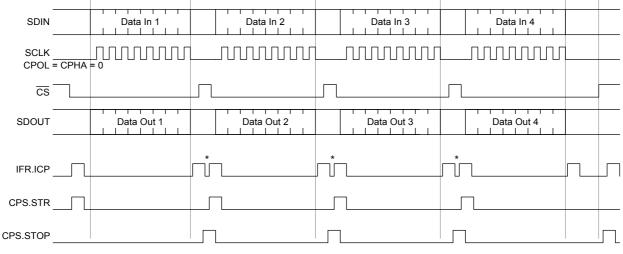
OS8805 MOST System On Chip

2.3.3.3 Generic Slave SPI Format

In the Generic SPI format (GSPI), no interpretation of the data is made (no R/W bit); therefore, the **CPS.WR** and **CPS.RD** bits are not useful. The GSPI format can only be selected after start-up by clearing the **CPS.I2CF** bit and setting the **CPS.GSPI** bit. The Control Port can be configured at startup for the OSPI format by placing a pull-down on the SCL/SCLK pin.

When configured as a slave device (**CPS.CPMM** clear) and the \overline{CS} pin goes low, the **CPS.STR** bit is set, and is cleared when the Controller writes the CP register. The **CPS.STOP** bit is set when the \overline{CS} pin goes high and is cleared when the Controller writes the **STOP** bit to zero. If **CPS.CPHA** is clear, then \overline{CS} must be brought high between each byte transferred. Since the SPI format has no provision for stretching the clock, interrupt latencies should be minimized, and external system code should be written with this issue in mind. A GSPI data transfer is illustrated in Figure 2-22. Since **CPS.CPHA** is set in this figure, \overline{CS} can remain low for the duration of the transfer. When the Control Port is operating in an SPI slave format, IOA3 must be configured as an input (**EDD1.GPOA3** clear).




Figure 2-22: Control Port Generic SPI Sequence (CPHA set)

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

Figure 2-23 illustrates a transfer where **CPS.CPHA** is clear, and \overline{CS} must be toggled between each byte transferred. One to three interrupts can occur after each byte transferred, based on how fast the external system raises and lowers \overline{CS} , relative to the last bit clocked in.

 * One to three interrupts can occur, caused by: 8 clock cycles, STOP, STR

Figure 2-23: Control Port Generic SPI Sequence (CPHA clear)

The relationship between SCLK and the data can be programmed using two bits in the CPS register: **CPOL** and **CPHA**. SCLK must be stable and the correct polarity, as illustrated in Figure 2-24, when \overline{CS} transitions.

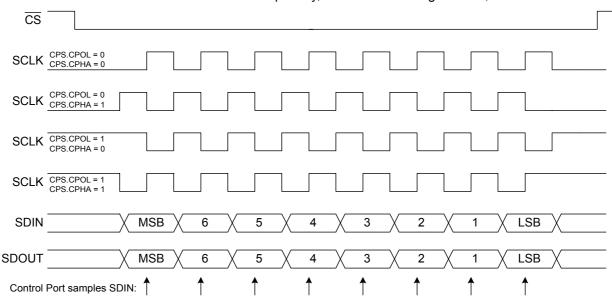


Figure 2-24: Control Port Generic SPI SCLK Format

In GSPI format, an internal counter counts 8 SCLK bit periods and then sets the Control Port interrupt bit IFL.ICP. Reading or writing CP clears this interrupt. The counter is reset when \overline{CS} is high. The Controller can use IFL.ICP to service the Control Port. The data protocol for this format is left entirely to the user. If polling is desired, Controller software can be written to logically OR the STR, RD and WR bits in the CPS register, and when found high, the Control port needs servicing. Using the RD and WR bits in this manner requires the Controller write CP each time the Control Port is serviced.

MOST System On Chip

2.3.3.3.1 GSPI Master Mode

The Control Port is a serial port master when **CPS.CPMM** is set. As the serial port master, clock generation is controlled by the OS8805. Once in master mode, **CPS.FAST** determines the Ports clocking frequency. The \overline{CS} pin is not used and is available, as EGPIO, for chip select signal of the external device, if desired. To support single devices, the IOA3 pin (same pin as \overline{CS}) can be configured as an output to drive the external device. The IOA3 pin is configured as an output by setting EDD1.GPOA3. Then EGPD1.GPDA3 controls the IOA3/ \overline{CS} output pin. If multiple external peripheral devices exist (multiple GPIOs).

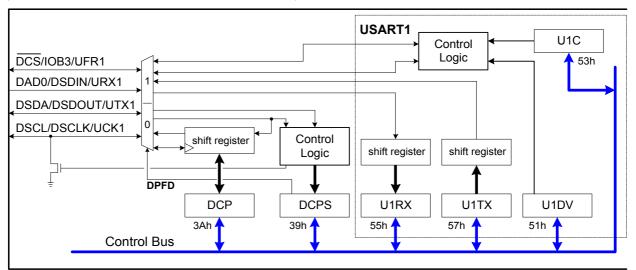
In GSPI master mode, the Start and Stop bits are not active (constantly low). When transferring bytes (reads or writes), the **CPS.RD** and **CPS.WR** bits are not useful; however, **IFL.ICP** is set after every 8 clocks are generated, indicating a completed transfer. If **IER.IECP** is set, an interrupt is generated, when **IFL.ICP** is set.

In GSPI format, the SPI port is always full duplex and does not classify an operation as a read or write (no bit interpretation as with I²C). In every transfer, 8-bits are shifted out the shift register onto the SDOUT pin, while 8-bit are shifted in the shift register via the SDIN pin. Since reading CP and writing CP each generates 8 clocks, when used for full-duplex operation CPS.NACK should be set (and not cleared), which will inhibit the generating of 8 clock pulses when CP is read. Only writing CP will generate eight clocks. Software would then read CP to get the data from the peripheral, and then write CP, which would cause the 8 clocks to be generated, swapping another byte with the external peripheral.

If only reading the external peripheral, then **CPS.NACK** should be clear. Then writing CP would start a transfer to the peripheral and the peripheral would send a byte. Next, reading CP would retrieve the byte and cause another 8 clocks to be generated, which would transfer the next byte. Before reading the last byte from CP, **CPS.NACK** should be set. Then reading CP will not cause any more clocks to be generated. Lastly, the chip select signal (**GPIO** pin) would be set high.

If only writing to the external peripheral, the first step is to bring the chip select for the external device low. Then writing CP would load the byte into a shift register and generate the 8 clocks needed to transmit the byte. On the next interrupt, the next byte would be loaded into CP. When the last byte is loaded into CP, the software should wait until the following interrupt (to allow the previous byte to be fully transmitted), then bring the chip select high. This interrupt can be cleared by setting **CPS.NACK** and then reading CP. Lastly, **CPS.NACK** should be cleared by writing it to zero (it will read zero since the value read is status from the SPI port, and SPI mode never generates NACK signals). Since the \overline{CS} pin is ignored by the Control Port, and writing or reading CP will cause clocks to be generated, software timing should be considered to guarantee that the "chip-select low to SCLK changing state" time for the external device is met.

Downloaded from Arrow.com.


2.3.4 Debug Port

The Debug Port provides a secondary port (besides the Control Port) for the external system to access the Controller. Although listed as a Debug Port, this interface is generic. When enabled, the Debug Port uses the EGPIO IOB[3:0] port. The Debug Port is enabled by default; however, the Controller can disable the Debug Port by setting the DCPS.DPFD bit, and not enabling USART1 (U1C.USEN clear), which configures the EGPIO IOB[3:0] port as extended general purpose I/O pins.

The Debug Port operation and control is very similar to the Control Port. The major differences are that the Debug Port can only set the LSB of the address in I^2C format, and the Debug Port has its own interrupt vector (doesn't use the IFL register) at memory location 0x0000C. In addition, when the Debug Port is configured for USART format, it connects to USART1. The Debug Port can operate the serial port as a master or slave device for all formats except OSPI, which is slave only. When configured as an GSPI master, the DCS pin can be controlled via the IOB3 EGPIO control, if only one chip select is needed. The Debug Port interrupt vector has a higher priority than the Control Port interrupt vector. Other than these differences, the Debug Port operates similar to the Control Port. See the *Control Port* description for more details on the three Port formats and their differences. The USART format and register interface are described in the *USARTs* Section.

When the Debug Port is operating in a slave format, **IOB3** must be configured as an input (**EDD1.GPOB3** clear).

When $\overline{\text{RST}}$ is de-asserted or at initial power-up, the Debug Port format is selected by a pull-up (I²C format) or pull-down (SPI format) on the DSCL/DSCLK pin. The Debug Port format can also be changed after power-up via the DCPS.I2CF bit. When the I²C format is selected (DCPS.I2CF set or pull-up on DSCL/DSCLK pin), the DAD0 pin selects the least significant address for the I²C port with the upper six bits hard-coded to 010001. When the DSCL/DSCLK pin is pulled high at startup (default I²C format), the DSDA pin will be driven low for one 128Fs period immediately on exiting the reset condition. This produces a start/stop condition on the bus; however, no address is output.. Data is always transferred MSB first on the data lines (DSDA for I²C, and DSDIN/DSDOUT for SPI format).

Figure 2-25: Debug Port

Program control is diverted to the Debug Port interrupt vector (location 0x0000C) whenever any of the status bits (DCPS bits **STOP**, **STR**, **WR**, **NACK**, **RD**) goes high. If the debug interrupt is enabled (**IER.DIEN** set), the debug interrupt service routine must clear the condition causing the interrupt (clear the DCPS bit as described below), before exiting the ISR.

MOST System On Chip

39h	DCPS	Debug Port Status	Host
Bit	Label	Description	Default
1512	rsvd	Reserved, Write to 0	0000
11	DPFD	Debug Port Formats Disable	0
10	FAST	Fast Mode enable	0
9	NACK	No Acknowledge	0
8	DPMM	Debug Port Master Mode. (must be clear in OSPI format)	0
7	STOP	Stop Condition (not valid in OSPI mode)	0
6	I2CF	0 in SPI mode, 1 is I ² C mode	*
5	GSPI	0 is Oasis-specific SPI mode (OSPI), 1 is generic SPI mode (GSPI)	0
4	CPOL	For generic SPI mode, polarity of clock	0
3	CPHA	For generic SPI mode, phase of clock to data	0
2	STR	Start transfer (read-only when DPMM clear)	0
1	WR	Write data available	0
0	RD	Read data request	0

* Initial state determined by DSCL/DSCLK pin at power-up.

Table 2-37: DCPS Register

- DPFD Debug Port Formats Disable. When clear, the Debug Port formats listed in this section are enabled. If set, the Debug Port formats are disabled and the Debug Port can be configured for USART1 (U1c.USEN set) or the four pins can be used as EGPIO port IOB[3:0] (U1c.USEN clear).
- FAST Fast mode enable. When the Debug Port is a master (**DPMM** set), **FAST** determines the clocking serial port clocking frequency as shown below:
 - With FAST clear the approximate clocking frequency is 88.2 kHz when Fs = 44.1 kHz, and 96 kHz when Fs = 48 kHz.
 - With **FAST** set, the approximate clocking frequency is 295.8 kHz when Fs = 44.1 kHz, and 310.6 kHz when Fs = 48 kHz.
- NACK No Acknowledge. Reading this bit does not read what was written. The read bit going high can generate an interrupt, if enabled. Writing **NACK** to zero clears the interrupt condition. When the Debug Port is configured as a slave port (**DPMM** clear):

NACK is set when the external master device is performing a read operation and does not acknowledge the transfer. Software can write this bit to zero **after** reading DCP. When configured as a slave port, software should never write **NACK** to one.

When the Debug Port is configured as a master port (DPMM set):

NACK is set when writing an external device and it does not acknowledge the transfer. In I^2C format, software should set **NACK** to one to keep the Debug Port from acknowledging the next (last) transfer. Once the "no acknowledge" is transmitted, **NACK** will read back one and must be cleared in software. The data in DCP must be read before clearing **NACK** or another eight clocks will be sent out. In GSPI format, **NACK** should be set for full-duplex communications, since it will keep DCP reads from generating 8 clocks (only writes will generate 8 clocks).

DPMM Debug Port Master Mode enable. When clear, the Debug Port is a slave port. When set, the Debug Port is a master port and **FAST** selects the clocking speed used. The OSPI format is not supported. In addition, I²C multi-master format is not supported.

MOST System On Chip

030003	MOST System on cmp Sinconspie	1112
STOP	When reading, STOP set indicates a stop condition has been detected on the bus; whereas writing to 0 clears the bit and writing to 1 (when in I ² C master mode) causes a Stop condition to be transmitted. If a STOP condition is detected on the bus, an interrupt can be generated. The STOP bit is set at power-up and when switching to master mode, and should be cleared before enabling the port. The STOP bit also respond to any bus stop bits until the first start b and address is sent. Then the STOP bit only responds after the correct address is sent. When the Debug Port is configured as a slave port (DPMM clear): In I ² C format, STOP is set when an I ² C Stop bit is detected on the bus. In either SPI for mat, STOP high indicates that the D CS pin rose. STOP is cleared by writing STOP to zero. When configured as a slave port, software should never write STOP to one. When the Debug Port is configured as a master port (DPMM set): In I ² C format, STOP is set only after an I ² C Stop bit is detected on the bus. In GSPI format, STOP is always low. STOP is cleared by writing STOP to zero. In I ² C format, writing STOP is cleared by writing STOP is always low. STOP is cleared by writing STOP to zero. In I ² C format, writing STOP we be read as one, indicating a Stop condition was seen on the bus.	on d pit r- o. nat,
I2CF	SPI or I ² C format. When set, the Debug Port uses the I ² C format. When clear, the Debug Port uses the SPI format indicated by the GSPI bit. I2CF is initially set by the value of the DSCL/DSCLK pin when RST is de-asserted or at initial power-up.	ort
GSPI	Generic SPI. When set, and I2CF is clear, the Debug Port interface uses a generic SPI form (GSPI). When GSPI is clear (Oasis-specific SPI, OSPI), the data format matches the I^2C format and the wr and rd bits work as in I^2C format. The Debug Port must be a slave port who configured for OSPI mode.	or-
CPOL	Clock Polarity, in generic SPI format only. When GSPI is set and I2CF is clear, this bit determines the SCLK clock polarity as indicated in Figure 2-24.	-
СРНА	Clock Phase, in generic SPI format only. When GSPI is set and I2CF is clear, this bit determines the DSCLK clock phase as indicated in Figure 2-24. When in slave mode and CPHA is clear, $\overline{\text{DCS}}$ must be brought high between each data byte transferred.	S
STR	 Start. Reading indicates if a start condition has been detected on the bus. When in master mode, writing to 0 clears the bit and writing to 1 causes a Start condition. If a sTR condition detected on the bus, an interrupt can be generated in I²C and GSPI-slave formats. When the Debug Port is configured as a slave port (DPMM clear): In I²C format, STR is set when an I²C Start bit is detected on the bus, followed by an address matching 010001z, where z is set via the DAD0 pin. In both SPI formats, STR going high indicates that the DCS pin fell. STR is cleared by writing to the DCP register (STR is read-only and cannot be cleared by writing to 0). Writing STR to 1 has no effect. When the Debug Port is configured as a master port (DPMM set): In I²C format, STR is set only after an I²C Start bit is detected on the bus. In GSPI formats, STR is always low. STR is cleared by writing STR to zero. In I²C format, writing STR to on causes a Start bit to be transmitted onto the bus. Once the bit is transmitted, STR will b read as one, indicating a Start condition was seen on the bus. 	nat,
WR	 Write data bit. When the Debug Port is not in generic SPI mode (GSPI clear): When in slave mode, wr is set when data is transferred from the serial input shift register to the DCP register; and wr is cleared when the Controller reads the DCP register or exp itly writes wr to 0. Writing wr to 1 has no effect. When in master mode, wr is set when data is transferred from DCP to the serial shift register to be shifted out; and wr is cleared when the Controller writes DCP with the next word, explicitly writes wr to 0. 	olic- ter,

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

RD Read data bit. When the Debug Port is not in generic SPI mode (GSPI clear):
 When in slave mode, RD is set when data is transferred from the DCP register to the shift register, to be shifted out of the chip; and RD is cleared when the Controller writes the DCP register or explicitly writes RD to 0. Writing RD to 1 has no effect.
 When in master mode, RD is set when data is transferred from the shift register to the DCP register, and RD is cleared when the Controller reads DCP or explicitly writes RD to 0.

3Ah DCP **Debug Port Data** Host Default Bit Label Description 15..8 rsvd Reserved, Write to 0 00h data, bit 7 is MSB 7..0 D[7:0] 00h

Table 2-38: DCP Register

D[7:0] Debug Port bi-directional data register when the Debug Port is enabled and in any format except USART1.

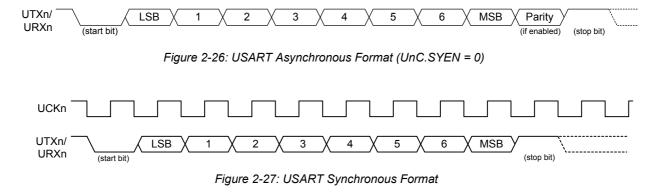
When the Debug Port is configured as a slave port (DCPS.DPMM clear):

Reading or writing the DCP register after **DCPS.WR** or **DCPS.RD** is set, clears the particular status bit, clearing the interrupt condition.

When the Debug Port is configured as a master port (DCPS.DPMM set):

Writing the DCP register causes 8 clocks to be transmitted in GSPI and 9 clocks in I²C. Reading the DCP register also causes 8 clocks to be transmitted in GSPI and 9 clocks in I²C format. However in I²C format, **DCPS.NACK** should be written immediately after reading the second-to-last transfer from DCP. This will cause the part to not-acknowledge the last transfer. Once the last byte is in DCP, it must be read BEFORE clearing **DCPS.NACK** (or another 9 clocks will be transmitted). For GSPI format, if **DCPS.NACK** is set before reading the last word in DCP, no more clocks will be generated. Then DCP should be read, followed by clearing **DCPS.NACK**.

See the *Control Port* Section for an functional description of how the Debug Port operates. The differences are that the Debug port can only set the LSB of the port address in the I²C format, the interrupt vector is unique for the Debug Port, the registers are DCPS and DCP instead of CPS and CP, and the pins used have the same name as the Control Port with a 'D' prefix attached. In addition, the Debug Port is attached to USART1; whereas the Control Port is attached to USART0. Since the interrupt is non-maskable and the Debug Port pins powering-up can generate initial conditions, (generally the **DCPS.STOP** bit is set) a Debug Interrupt Routine is required, even if the Debug Port is unused. The following is an example of a dummy interrupt routine that will clear out any initial interrupt flags that get set.


MOST System On Chip

```
porg (0x09); Debug Interrupt Vector
jmp Dummy Debug Int Routine
. . .
//-----
// Dummy Debug Interrupt Routine
//------
Dummy_Debug_Int_Routine:
                    // push ACC on stack
  *sp = acc;
  sp += 2;
                    // push SR on stack
  acc = sr;
  *sp = acc;
  sb:
                    // set byte mode
  acc = (int) 0 \times 0078;
                    // set zeros to mask out all status bits
  dcps &= acc;
                    // clear all four status bits in Debug Port Status register
  acc = *sp;
                    // restore SR
  sr = acc;
  sp -= 2;
                    // restore ACC
  acc = *sp;
  ret;
                    // End of Debug Port Interrupt
//------
```

2.3.5 USARTs

The Control Port and the Debug Port can be configured for USART operation. USART0 is connected to the Control Port and USART1 is connected to the Debug Port. Through a programmable divider, standard BAUD rates are supported (1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400). The clock source for the USARTs is configurable, based on the Unc.cksl[1:0] bits: 256xFs, 384xFs, 512xFs. For timing-slave devices, the entire chip is frequency locked to the Network Fs; therefore, the BAUD rate generated is relative to Fs. If the chip is out-of-lock, the BAUD rate will drift with the PLL, which can cause errors when the USART is configured for asynchronous operation (assuming the device connected to the USART is not also frequency locked to Fs).

The USART can be configured for asynchronous or synchronous operation. Asynchronous operation supports BAUD rates of up to 230400; whereas, synchronous operation supports BAUD rates up to 1 Mbit. The synchronous format uses start and stop bits to delineate the bytes.

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

Regardless of whether in synchronous or asynchronous formats, software must read the data out of UnRX.URD[7:0] before the next byte is fully received, or an overrun error (UnRX.OE) will occur. The default, no data, state for the URXn an UTXn pins is the mark state, where the actual pins are high. An all-space state, where the pins are consistently low, denotes a USART break condition.

52h	U0C	USART0 Configuration (Control Port)	Host
Bit	Label	Description	Default
15, 14	rsvd	Reserved. Write to 0	00
13	TXI	Transmit status	0
12	RXI	Receive status	0
11	TXEN	Transmit Interrupt Enable	0
10	RXEN	Receive Interrupt Enable	0
9	SYTX	Synchronous Transmit signal.	0
8	USEN	USART0 Enable	0
7, 6	CKSL[1:0]	Clock Select: 00 - 256Fs, 01 - 384Fs, 10 - 512Fs	00
5	CKMTR	When in Synchronous Mode, enables synchronous clock output on the UCK0 pin.	0
4, 3	PMD[1:0]	Parity Mode: 00 - even, 01 - odd, 10 - space, 11 - mark	00
2	PEN	Parity Enable: 0 - no parity bit, 1 - parity enabled	0
1	SYSL	Synchronous select:	0
0	SYEN	Synchronous enable: 0 - asynchronous, 1 - synchronous mode	0

Table 2-39: U0C Register

- TXI Transmit Status. When set, The UOTX.UTD[7:0] bits are free to be loaded with the next byte to transmit. TXI can be cleared by writing UOTX. TXEN set can also set IFL.ICP and can generate an interrupt if IER.IECP is set. When initially coming out of reset, the TXI bit will be clear even though the UOTX.UTD[7:0] bits will be empty. After the initial data is written to UOTX.UTD[7:0], and the UART starts transmitting the data, TXI will be set.
- RXI Receive Status. When set, The **UORX.URD[7:0]** bits contain a received byte. **RXI** can be cleared by reading **UORX**. **RXEN** set can also set **IFL.ICP** and can generate an interrupt if **IER.IECP** is set.
- TXEN Transmit Interrupt Enable. When set, and **USEN** is set, the USART0 transmit port empty bit **TXI** sets **IFL.ICP** and can generate an interrupt if **IER.IECP** is set. When clear, the transmit Interrupt will not set **IFL.ICP** and **TXI** can be used in a polling fashion.
- RXEN Receive Interrupt Enable. When set, and **USEN** is set, the USART0 receive port full bit **RXI** sets **IFL.ICP** and can generate an interrupt if **IER.IECP** is set. When clear, the receive Interrupt will not set **IFL.ICP** and **RXI** can be used in a polling fashion.
- SYTX Synchronous Transmit signal. Must be 0.
- USEN USART0 enable. When set, and the regular Control Port formats are disabled (CPS.CPFD set), USART0 is enabled. When clear, USART0 is disabled and the pins can be used as IOA[3:0] if CPS.CPFD is set.
- CKSL[1:0] Clock Select. Selects the clock source used for the divider chain U0DV.
 - 00 256Fs
 - 01 384Fs
 - 10 512Fs
 - 11 Reserved.

O^A^S^I^S SiliconSystems

MOST System On Chip

- CKMTR Clock Master. When in synchronous mode (SYEN set), CKMTR set enables the synchronous clock (set by U0DV) to be output on UCK0. When CKMTR is clear (clock slave), UCK0 is an input for the synchronous clock, and the data direction bit for IOA0 (EDD1.GPOA0) must be clear (set to input).
- PMD[1:0] Parity Mode. Only valid when parity is enabled (**PEN** set) and in asynchronous mode (**SYEN** clear).
 - 00 Even Parity. Number of transmitted ones is even.
 - 01 Odd Parity. Number of transmitted ones is odd.
 - 10 Space. Parity is always 0.
 - 11 Mark. Parity is always 1.

OS8805

- PEN Parity Enable. When set and in asynchronous mode (SYEN clear), parity is enabled and a parity character is added between the last data bit and the stop bit. The type of parity is selected via PMD[1:0].
- SYSL Synchronous Select. Must be 0.0 One Start and Stop bit delineate each synchronous byte.
- SYEN Synchronous Enable. When set, the data format is synchronous. **CKMTR** determines whether this device is the synchronous master or slave device. Synchronous data is output on the falling edge of UCK0 and valid on the rising edge of UCK0. In synchronous mode, no parity is generated. When **SYEN** is clear, USART0 operates as a UART (asynchronously), and the UCK0 and UFR0 pins are free to used as EGPIO pins IOA0 and IOA3.

50h	U0DV	USART0 Divider	Host
Bit	Label	Description	Default
150	D[15:0]	16-bit clock divider. The value loaded in this register should be the desired divide value - 1.	0000h

Table 2-40: U0DV Register

D[15:0] The following table indicates the dividers needed to support standard BAUD Rates. The maximum BAUD rate for asynchronous operation is 230400, and the maximum BAUD rate for syn-

chronous operation is 1000000 (1 MBAUD). The formula is $uodv[15:0] = \frac{CKSL \times Fs}{Target BAUD} - 1$.

Target			UnD\	/[15:0]		
BAUD		Fs = 44.1 kHz			Fs = 48 kHz	
Rate	256xFs	384xFs	512xFs	256xFs	384xFs	512xFs
1200	24BFh	371Fh	497Fh	27FFh	3BFFh	4FFFh
2400	125Fh	1B8Fh	24BFh	13FFh	1DFFh	27FFh
4800	092Fh	0DC7h	125Fh	09FFh	0EFFh	13FFh
9600	0497h	06E3h	092Fh	04FFh	077Fh	09FFh
19200	024Bh	0371h	0497h	027Fh	03BFh	04FFh
38400	0125h	01B8h	024Bh	013Fh	01DFh	027Fh
57600	00C3h	0125h	0187h	00D4h	013Fh	01A9h
115200	0061h	0092h	00C3h	0069h	009Fh	00D4h
230400	0030h	0048h	0061h	0034h	004Fh	0069h

Table 2-41: UnDV Values for Standard BAUD Rates

MOST System On Chip

OS8805

54h	U0RX	USART0 Receive register	Host
Bit	Label	Description	Default
1513	rsvd	Reserved. Write to 0	000
12	RB	Receive Break	0
11	OE	Overrun Error	0
10	PE	Parity Error	0
9	FE	Framing Error	0
8	RDF	Receive Data Full (read-only)	0
70	URD[7:0]	USART Receive Data (read only)	00h

Table 2-42: U0RX Register

RB Received break. When set, indicates that a break was detected (all space). Cleared by writing **RB** to 0.

OE Overrun Error. When set, indicates that a new data byte was lost due to the **urb[7:0]** being full. This bit is sticky and cleared by writing to 0.

PE Parity Error. Only possible in Asynchronous mode, **UOC.SYEN** clear. When **PE** is set, indicates that parity was in error since the last time **PE** was cleared. Cleared by writing **PE** to 0.

FE Framing Error. FE set indicates a stop bit was not received at the expected bit time.

RDF When set, URD[7:0] contain a received data byte. Cleared by reading U0RX.

URD[7:0] USART0 received data. **RDF** set indicates new data is available.

56h	UOTX	USART0 Transmit register	Host
Bit	Label	Description	Default
1510	rsvd	Reserved. Write to 0	000000
9	TSB	Transmit Send Break	0
8	rsvd	Reserved. Write to zero.	1
70	UTD[7:0]	USART Transmit Data	00h

Table 2-43: U0TX Register

TSB Transmit Send Break. When set, the UTX0 pin continually sends the space character. (Sets the FE and RB bits in receiving device.)

UTD[7:0] USART0 Transmit Data. **uoc.txi** set indicates that new data can be loaded into **utp[7:0]**.

53h	U1C	USART1 Configuration (Debug Port)	Host
Bit	Label	Description	Default
15, 14	rsvd	Reserved. Write to 0	00
13	TXI	Transmit status	0
12	RXI	Receive status	0
11	TXEN	Transmit Interrupt Enable	0
10	RXEN	Receive Interrupt Enable	0
9	SYTX	Synchronous Transmit signal.	0
8	USEN	USART1 enable	0
7, 6	CKSL[1:0]	Clock Select: 00 - 256Fs, 01 - 384Fs, 10 - 512Fs, 11 - crystal	00
5	CKMTR	Enables synchronous clock output on the UCK1 pin.	0
4, 3	PMD[1:0]	Parity Mode: 00 - even, 01 - odd, 10 - space, 11 - mark	00
2	PEN	Parity Enable: 0 - no parity bit, 1 - parity enabled	0

MOST System On Chip

Bit	Label	Description	Default		
1	SYSL	Synchronous select:	0		
0	SYEN	Synchronous enable: 0 - asynchronous, 1 - synchronous mode	0		
		Table 2-44: U1C Register (Continued)			
ТХІ	Transmit Status. When set, The U1TX.UTD[7:0] bits are free to be loaded with the next byte to transmit. TXI can be cleared by writing U1TX. If TXEN is set when TXI goes high, a Debug Interrupt will occur if IER.DIEN is set. When initially coming out of reset, the TXI bit will be clear even though the U1TX.UTD[7:0] bits will be empty. After the initial data is written to U1TX.UTD[7:0], and the UART starts transmitting the data, TXI will be set.				
RXI		is. When set, The u1RX.uRD[7:0] bits contain a received byte. RXI car IRX. If RXEN is set when RXI goes high, a Debug Interrupt will occur			
TXEN	causes a Deb	rrupt Enable. When set (and usen is set), the USART1 transmit port bug Port interrupt if IER.DIEN is set. When clear, TXI going high does r Ipt and can be used in a polling fashion.			
RXEN	causes a Deb	rupt Enable. When set, and usen is set, the USART1 receive port fu bug Port interrupt if IER.DIEN is set. When clear, RXI going high does r ipt and can be used in a polling fashion.			
SYTX	Synchronous	Transmit signal. Must be 0.			
USEN	USART1 enable. When set, and DCPS.DPFD set (Debug Port Formats disabled), enables USART1. When clear, USART1 is disabled and the pins can be used as IOB[3:0] if DCPS.DPFD is set.				
CKSL[1:0]	Clock Select. Selects the clock source used for the divider chain U1DV. 00 - 256Fs 01 - 384Fs 10 - 512Fs 11 - Reserved.				
CKMTR	clock (set by l	When in synchronous mode (SYEN set), CKMTR set enables the syn U1DV) to be output on UCK1. When CKMTR is clear (clock slave), UC ynchronous clock, and the data direction bit for IOB0 (EDD1.GPOB0) n	CK1 is an		
PMD[1:0]	clear). 00 - Even Par 01 - Odd Pari 10 - Space. P	Only valid when parity is enabled (PEN set), and in asynchronous mo ity. Number of transmitted ones is even. ty. Number of transmitted ones is odd. arity is fixed as a space. rity is fixed as a mark.	ode (SYEN		
PEN	Parity Enable. When set and in asynchronous mode (SYEN clear), parity is enabled and a par- ity character is added between the data and the stop bit. The type of parity is selected via PMD[1:0] .				
SYSL	•	Select. Must be 0. and Stop bit delineate each synchronous byte.			

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

SYEN Synchronous Enable. When set, the data format is synchronous. **CKMTR** determines whether this device is the synchronous master or slave device. Synchronous data is output on the falling edge of UCK1 and valid on the rising edge of UCK1. In synchronous mode, no parity is generated. When **SYEN** is clear, USART1 operates as a UART (asynchronously), and the UCK1 and UFR1 pins are free to used as EGPIO pins IOB0 and IOB3.

51h	U1DV	USART1 Divider	Host
Bit	Label	Description	Default
150	D[15:0]	16-bit clock divider. The value loaded in this register should be the desired divide value - 1.	0000h

Table 2-45: U1DV Register

U1DV[15:0] See Table 2-41 for the divider needed to support standard BAUD rates. The maximum BAUD rate for asynchronous operation is 230400, and the maximum BAUD rate for synchronous

operation is 1000000 (1 MBAUD). The formula is $u1Dv[15:0] = \frac{CKSL \times Fs}{Target BAUD} - 1$

55h	U1RX	USART1 Receive register	Host
Bit	Label	Description	Default
1513	rsvd	Reserved. Write to 0	000
12	RB	Receive Break	0
11	OE	Overrun Error	0
10	PE	Parity Error	0
9	FE	Framing Error	0
8	RDF	Receive Data Full (read only)	0
70	URD[7:0]	USART Receive Data (read only)	00h

Table 2-46: U1RX Register

- RB Received break. When set, indicates that a break was detected (all space). Cleared by writing **RB** to 0.
- OE Overrun Error. When set, indicates that a new data byte was lost due to the **urp[7:0]** being full. This bit is sticky and cleared by writing to 0.
- PE Parity Error. Only possible in Asynchronous mode, **U1C.SYEN** clear. When **PE** is set, indicates that parity was in error since the last time **PE** was cleared. Cleared by writing **PE** to 0.

FE Framing Error. FE set indicates a stop bit was not received at the expected bit time.

RDF When set, **URD**[7:0] contain a received data byte. Cleared by reading U1RX.

URD[7:0] USART1 received data. **RDF** set indicates new data is available.

U1TX Host 57h USART1 Transmit register Bit Label Description Default 15..10 rsvd Reserved. Write to 0 000000 9 TSB Transmit Send Break 0 Reserved. Write to zero. 8 rsvd 1 UTD[7:0] USART Transmit Data 00h 7..0

Table 2-47: U1TX Register

TSB Transmit Send Break. When set, the UTX1 pin continually sends the space character. (Sets the FE and RB bits in receiving device.)

UTD[7:0] USART1 Transmit Data. u1c.txi set indicates that new data can be loaded into utp[7:0].

OS8805 MOST System On Chip

2.3.6 GPIO Pins and GP Timer

The GP Timer (not to be confused with the Global Timer flags GTR register) peripheral consists of pins that can output a value when the timer reaches a certain value, or pins that can capture a timer value when an external event occurs. Four of these pins can also generate interrupts (GPD[3:0]). When not using these pins for timer functions, they can be used as general purpose IO. The GPA through GPD GPIO ports differ from the EGPIO pins mentioned in the next section. The GPA through GPD ports are backwards compatible with the OS8804, whereas the new EGPIO pins have "enhanced" functionality/control.

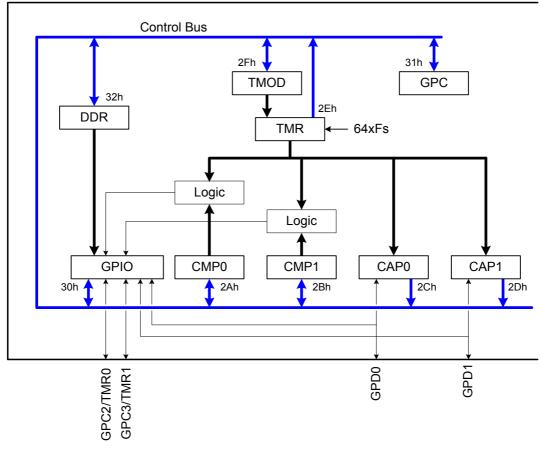


Figure 2-28: GP Timer

To save pins, all the GPIO are multiplexed with other functions. The GPA[3:0] and GPB[3:0] can be used by either the Host Controller or DSP0. For the Host Controller, they are just GPIO and serve no other purpose. For DSP0, the pins can be either enhanced GPIO or Asynchronous Source Port A. For DSP0 to have control over the GPA[3:0] and GPB[3:0] pins, the Host Controller must leave them configured as inputs. In rev. G or greater, when the GPIO is configured as an output by either DSP0 or the Host Controller, DSP0's IPOT register controls the output type (open-drain or driven in both directions). In revisions prior to G, the Host Controller's GPIO outputs are always open-drain.

The GPC[3:0] and GPD[3:0] pins can be used by either the Host Controller or DSP1. For the Host Controller, GPC[3:2] can be GPIO or TMR[1:0], and the GPD[3:0] pins can generate interrupts. For DSP1, the pins can be either enhanced GPIO or Asynchronous Source Port B. For DSP1 to have control over the GPC[3:0] and GPD[3:0] pins, the Host Controller must leave them configured as inputs. In rev. G or greater, when the GPIO is configured as an output by either DSP1 or the Host Controller, DSP1's IPOT register controls the output type (open-drain or driven in both directions). In revisions prior to G, the Host Controller's GPIO outputs are always open-drain.

MOST System On Chip

The general purpose timer (GP Timer) is a 16-bit timer clocked at 64xFs. The modulo of the counter is programmable via the Timer Modulo TMOD register. The phase of this timer, the time when the counter is loaded from the TMOD register, can be adjusted by writing TMOD to zero and then writing the correct value. For example, the TMOD register is loaded with 0x0B06 to get a 1 ms timer tick when the part is in the lock state at a network rate of 44.1 kHz. If the part goes into an unlocked state, it may be desirable to reprogram the timer, while in an unlock state, to 0x0280 to maintain the approximately 1 ms ticks. If the timer counter has counted past 0x0280 when TMOD is written, then the counter will count all the way to 0xFFFF and rollover - causing a very long time interval. Writing TMOD to zero first (which causes the counter to reset) forces the timer to re-initialize. When TMOD is then written to a non-zero value, the timer's counter starts counting up again.

There are two timer output pins: **TMR1-TMR0**. The rising edge of **TMR0** can generate a Host-Controller timer interrupt (**IFL.ITMR0**). Each output has an associated compare register: CMP1 and CMP0. The **TMRn** pins have one state when the GP Timer count is less than or equal to the CMPn register value and another state when the GP Timer count is greater than CMPn. The Polarity of the **TMRn** pins is determined by the **GPC.OP[1:0]** bits.

GPD0 and **GPD1** have associated capture registers: CAP0 and CAP1. When the pin is configured to be edge sensitive (**GPC.LVn** clear), the corresponding capture register is loaded with the contents of the GP Timer when the interrupt occurs. The capture registers are not affected when **GPDn** is configured as level-sensitive (**GPC.LVn** set).

2Ah	CMP0	Timer Compare 0	Host
Bit	Label	Description	Default
150	D[15:0]	When the timer value is less than or equal to CMP0, the TMR0 pin has one state, and TMR0 is in the other state when the timer value is greater than CMP0. (if enabled).	0000h

Table 2-48: CMP0 Register

2Bh	CMP1	Timer Compare 1	Host	
Bit	Label	Description	Default	
150	D[15:0]	When the timer value is less than or equal to CMP1, the TMR1 pin has one state, and TMR1 is in the other state when the timer value is greater than CMP1. (if enabled).	0000h	
Table 2.40: CMR1 Previoter				

Table 2-49: CMP1 Register

20	h	CAP0	Timer Capture 0 (read only)	Host
Bi	t	Label	Description	Default
15	0	D[15:0]	When (edge-sensitive) GPD0 goes active, TMR value is loaded into CAP0.	0000h

Table 2-50: CAP0 Register

2Dh	CAP1	Timer Capture 1 (read only)	Host
Bit	Label	Description	Default
150	D[15:0]	When (edge-sensitive) GPD1 goes active, TMR value is loaded into CAP1.	0000h

Table 2-51: CAP0 Register

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

2Eh	TMR	GP Timer Value (read only)	Host
Bit	Label	Description	Default
150	D[15:0]	GP Timer value. Counts up at a 64xFs rate. When TMR equals TMOD, TMR is reset to 0 and counting up begins again.	0000h

Table 2-52: TMR Register

2Fh	TMOD	GP Timer Modulo	Host
Bit	Label	Description	Default
150	D[15:0]	GP Timer Modulo value. When TMR reaches this value, TMR is reset to 0 and continues counting up. TMOD should be set to the desired count value - 1. Setting TMOD to 0000h, disables/resets the GP Timer.	0000h

Table 2-53: TMOD Register

30h	GPIO	General Purpose I/O Data	
Bit	Label	Description	Default
1512	GPD[3:0]	I/O data for GPD[3:0] pins. As inputs, these pins can also generate interrupts. These pins can also be used by DSP1.	*
118	GPC[3:0]	I/O data for GPC[3:0] pins. GPC[3:2] can also be configured as timer compare outputs. These four pins can also be used by DSP1.	*
74	GPB[3:0]	I/O data for GPB[3:0] pins. These pins can also be used by DSP0.	*
30	GPA[3:0]	I/O data for GPA[3:0] pins. These pins can also be used by DSP0.	*

* Initial value is determined by the respective GPxn pin.

Table 2-54: GPIO Register

- GPD[3:0] I/O data for the GPD[3:0] pins. DDR.GPDOE[3:0] enables the pin as an output. These pins can also interrupt the Host Controller. As an interrupt, the polarity, and whether its level- or edge-sensitive, is controlled via GPC.IP[3:0] and GPC.LV[3:0] bits, respectively. The interrupt is enabled via IER.IED[3:0] with the status in IFL.ID[3:0]. If these pins are left as inputs, then DSP1 can use the GPD port as its own GPIO or as Source Port B1.
- GPC[3:0] I/O data for the GPC[3:0] pins. DDR.GPCOE[3:0] enables the pin as an output. GPC3 can also be the TMR1 output, enabled via GPC.TOE1. GPC2 can also be the TMR0 output, enabled via GPC.TOE0. The timer interrupt IFL.ITMR0 is generated by the rising edge of TMR0. If these pins are left as inputs, then DSP1 can use the GPC port as its own GPIO or as Source Port B0.
- GPB[3:0] I/O data for the GPB[3:0] pins. DDR.GPBOE[3:0] enables the pin as an output. If these pins are left as inputs, then DSP0 can use the GPB port as its own GPIO or as Source Port A1.
- GPA[3:0] I/O data for the GPA[3:0] pins. DDR.GPAOE[3:0] enables the pin as an output. If these pins are left as inputs, then DSP0 can use the GPA port as its own GPIO or as Source Port A0.

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

31h	GPC	General Purpose I/O Control	Host
Bit	Label	Description	Default
1513	rsvd	Reserved. Write to 0	000
12	rsvd	Reserved. Write to 0	0
11	TOE1	Timer 1 Output Enable. When set, GPC3 pin functions as TMR1 output	0
10	TOE0	Timer 0 Output Enable. When set, GPC2 pin functions as TMR0 output	0
9, 8	OP[1:0]	TMR[1:0] output polarity	00
74	LV[3:0]	GPD[3:0] interrupt type. When set, GPDn is level-sensitive. When clear, GPDn is edge sensitive.	0000
30	IP[3:0]	GPD[3:0] interrupt polarity. When set, interrupt is active high.	0000

Table 2-55: GPC Register

- TOE1 Timer 1 Output Enable. When set, changes the GPC3 pin to the TMR1 output. The DDR.GPCOE3 bit must still be set to use TMR1. Once enabled, OP1 sets the output polarity. When the GP Timer value matches CMP1, TMR1 changes state.
- TOE0 Timer 0 Output Enable. When set, changes the GPC2 pin to the TMR0 output. The DDR.GPCOE2 bit must still be set to use TMR0. Once enabled, OP0 sets the output polarity. When the GP Timer value matches CMP0, TMR0 changes state. A rising edge of TMR0 can also generate an interrupt (IFL.ITMR0).
- OP[1:0] Timer Output Polarity for TMR1 and TMR0 pins. When clear, the corresponding pin is low while the GP Timer value is less than or equal to the corresponding CMPn register value. When set, the corresponding pin is high while the GP Timer value is less than or equal to the corresponding CMPn value.
- LV[3:0] Level-sensitive Interrupt type. When set, the corresponding GPDn interrupt is level sensitive and the IFL.IDn bit is read-only. The interrupt must be cleared externally. When LVn is clear, the IFL.IDn bit is edge-sensitive and cleared by writing a 0 to the IFL.IDn bit.
- IP[3:0] Interrupt polarity. When set, the GPDn pin is active high (rising edge, or high, generates interrupt). When IPn is clear, the GPDn pin is active low (falling edge, or low, generates interrupt).

32h	DDR	GPIO Data Direction Register	
Bit	Label	Description	Default
1512	GPDOE[3:0]	GPD[3:0] pins output enables	0000
118	GPCOE[3:0]	GPC[3:0] pins output enables	0000
74	GPBOE[3:0]	GPB[3:0] pins output enables	0000
30	GPAOE[3:0]	GPA[3:0] pins output enables	0000

Table 2-56: DDR Register

- GPDOE[3:0] GPD[3:0] output enables. When set, the corresponding GPDn pin is an output and, in rev. G or greater, DSP1's IPOT.GPPTDn bits control the output driver type. When clear, the GPDn pin is an input if DSP1 hasn't configured it as an output through the corresponding EDD.GPODn bit.
- GPCOE[3:0] GPC[3:0] output enables. When set, the corresponding GPCn pin is an output and, in rev. G or greater, DSP1's IPOT.GPPTCn bits control the output driver type. When clear, the GPCn pin is an input if DSP1 hasn't configured it as an output through the corresponding EDD.GPOCn bit.
- GPBOE[3:0] GPB[3:0] output enables. When set, the corresponding GPBn pin is an output and, in rev. G or greater, DSP0's IPOT.GPPTBn bits control the output driver type. When clear, the GPBn pin is an input if DSP0 hasn't configured it as an output through the corresponding EDD.GPOBn bit.
- GPAOE[3:0] GPA[3:0] output enables. When set, the corresponding GPAn pin is an output and, in rev. G or greater, DSP0's IPOT.GPPTAn bits control the output driver type. When clear, the GPAn pin is an input if DSP0 hasn't configured it as an output through the corresponding EDD.GPOAn bit.

MOST System On Chip

2.3.7 Global Control

The GCTL register manages Network pins, external DSP0 memory enable, and an advanced softwarecontrolled jitter tolerance circuit for the timing-master node.

3Bh	GCTL	Global Control register	Host
Bit	Label	Description	Default
15	RFPR	RX FIFO Pointers Release	0
147	rsvd	Reserved. Write to 0.	00h
6	MJCE	Timing-Master Jitter Control Enable for MOST timing-master node	0
4, 5	rsvd	Reserved. Write to 0.	00
3	NETD	Network Disable. When set, TX and RX can be used as GPIO.	0
2	ERRD	ERR pin Disable. When set, ERR can be used as EGPIO IOG1	0
1	EDMEN	External Data Memory Enable for DSP0.	0
0	rsvd	Reserved. Write to 0.	0

Table 2-57: GCTL Register

- RFPR RX FIFO Pointer Release. Only valid when MJCE is set. When RFPR is clear, the RX FIFO Pointers are held in reset, where the pointers are equidistant. When RFPR is set, the RX FIFO Pointers are free to track the data, where the incoming FIFO pointer is clocked from the RX recovered clock and the outgoing FIFO pointer is clocked from an internal non-jittered clock. When MJCE is set, software must toggle RPFR after any unlock-to-lock sequence to maximize the distance between the read and write pointers. Toggling this bit may or may not cause a momentary unlock event (which should be ignored). Leaving this bit low also may not cause unlock events.
- MJCE Timing-Master Jitter Control Enable. When **MJCE** is set in a timing-master (**bXCR.MTR** set), a receive FIFO is used to recover data from the **RX** pin, and software must manage the reset of the pointers to maximize the peak-to-peak jitter tolerance of a master node. When **MJCE** is set, software must use **RFPR** to reset the FIFO pointers every time lock is achieved. When **MJCE** is clear, the MOST transceiver operates in a normal automatic jitter tolerance mode that requires no software intervention.
- NETD Network Disable. When set, TX and RX can be used as GPIO IOG2 and IOG3, respectively.
- ERRD ERR pin Disable. When set, ERR can be used as EGPIO IOG1.
- EDMEN External Data Memory Enable for DSP0, when **RGEN.XME** is set and **MMPC.XMQ** is clear. Then **EDMEN** set enables the external data memory port. **EDMEN** clear configures the IOE[15:0] and IOF[10:0] pins to be used as EGPIO.

2.3.8 EGPIO

The OS8805 has the ability to configure almost all digital IO pins for its regular functions or as Enhanced GPIO pins. There are a total of 64 GPIO pins GPA[3:0], GPB[3:0], GPC[3:0], GPD[3:0], IOA[3:0], IOB[3:0], IOC[5:0], IOD[1:0], IOE[15:0], IOF[10:0], and IOG[4:0], however they are multi-functions pins.

Although the GPIO pins of OS8805 (GPA[3:0], GPB[3:0], GPC[3:0], and GPD[3:0]) are multiplexed with the new DSP source ports, the default is that the GPIO pins of OS8805 function the same in the OS8804. The remaining GPIO pins operate as the extended GPIO (EGPIO) where the function of EGPIO is described in this section.

Each EGPIO pin is controlled by three control signals: the data direction **GPOxn** bit, the data polarity or driver type **GPPTxn** bit, and the **EGPIO** sticky or output disable **GPSDxn** bit.

MOST System On Chip

Each EGPIO pin has a corresponding data direction **GPOxn** bit. If the **GPOxn** bit is set and the pin is configured as EGPIO, the pin is configured as an output pin for the Host Controller. If the **GPOxn** bit is low and the pin is configured as EGPIO, the pin is configured as an input pin for the Host Controller.

Each EGPIO pin has a corresponding polarity or driver type GPPTxn bit. If the GPPTxn bit is set and GPOxn bit is clear, the pin serves as an active low input, where the register bit is set if the input is low. If the GPPTxn bit is cleared and the GPOxn bit is clear, the pin serves as an input where the register bit is set if the input is high.

When the EGPIO pin is configured as an output (GPOxn set), the GPPTxn bit controls the selection of CMOS or open-drain output level on the pin. If the GPOxn bit is set and GPPTxn bit is set, the pin is configured as a CMOS output. If the GPOxn bit is set and GPPTxn bit is clear, the output level is an open-drain driver.

Each EGPIO pin has a corresponding sticky or output disable bit GPSDxn. When the EGPIO pin is configured to be an input, and the GPSDxn bit is set, the corresponding pin will be sticky. If the GPSDxn bit is high and the GPPTxn bit is low, a high pulse input on the pin will set the corresponding EGPIO register. The EGPIO register remains set until the input goes low and a zero is written to the corresponding EGPIO register bit (GPDxn). If the data bit is cleared, but the input is still high, the data bit is immediately set again. The combination of the GPPTxn and the GPSDxn bits supports detection of high or low pulses.

When the EGPIO pin is configured to be an output (GPOxn set), the GPSDxn bit functions as an output disable.

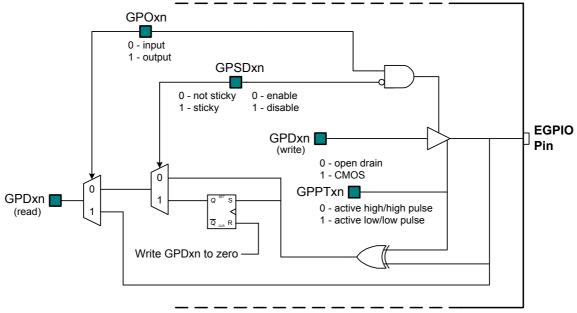


Figure 2-29: EGPIO Conceptual Logic

The table below summarizes the conditions in which each GPIO and EGPIO port can be configured and the default function of each port.

The GPA[3:0] and GPB[3:0] are shared between the Host Controller and DSP0. The GPC[3:0] and GPD[3:0] are shared between the Host Controller and DSP1. The DSPs have their own set of registers which control the functionality of these pins and they are implemented as extended GPIOs. When the DDR bit of the Host Controller of the corresponding GPIO pin is low, the DSPs has control of the direction of the GPIO pin.

In the event that both the DDR of the corresponding pin of the Host Controller and the DSPs are set, the Host Controller has priority of the GPIO pin over the DSPs. In other words, the data of the Host Controller is presented on the GPIO pin.

MOST System On Chip

Pin	Function Name	Power-Up State	GPIO Name	GPIO Enable	Default Function
95 94 93 91	SCKA0 FSYA0 SXA0 SRA0	Inputs	GPA0 GPA1 GPA2 GPA3	DSP0 DS0C.BPI[6:0] = 0000000	GPA Port
90 89 88 87	SCKA1 FSYA1 SXA1 SRA1	Inputs	GPB0 GPB1 GPB2 GPB3	DSP0 DS1C.BPI[6:0] = 0000000	GPB Port
86 85 84 81	SCKB0 FSYB0 TMR0/SXB0 TMR1/SRB0	Inputs	GPC0 GPC1 GPC2 GPC3	DSP1 DS0C.BPI[6:0] = 0000000	GPC Port
80 79 78 77	INT0/SCKB1 INT1/FSYB1 INT2/SXB1 INT3/SRB1	Inputs	GPD0 GPD1 GPD2 GPD3	DSP1 DS1C.BPI[6:0] = 0000000	GPD Port
14 15 12 13	SCL/SCLK/UCK0 SDA/SDOUT/UTX0 AD0/ <u>SD</u> IN/URX0 AD1/CS/UFR0	Input - Config. pin Input/Output Input Input	IOA0 IOA1 IOA2 IOA3	CPS.CPFD = 1 and U0C.USEN = 0	Control Port
73 74 99 31	DSCL/SCLK/UCK1 DSDA/DSDOUT/UTX1 DAD0/DSDIN/URX1 DCS/UFR1	Input - Config. pin Input/Output Input Input	IOB0 IOB1 IOB2 IOB3	DCPS.DPFD = 1 and U1C.USEN = 0	Debug Port
23 22 18 24 19 25	SCK FSY SX0 SR0 SX1 SR1	Input Input Output - Iow Input Output - Iow Input	IOC0 IOC1 IOC2 IOC3 IOC4 IOC5	bSDC1.MOD[1:0] = 11	Source Port
98	PWM0	Input	IOD0	ACR.ENPWM = 0	IOD1
17	MA16	*	IOD1	RGEN.XME = 1^* , MMPC . XMQ = 0, and GCTL.EDMEN = 0	*MA16
	MRD/PA15 MA14/MCAS MA[13:0]	*	IOE15 IOE14 IOE[13:0]	RGEN.XME = 1*, MMPC.XMQ = 0, and GCTL.EDMEN = 0	*
117 111 109 many	XME/PCS/SA15 MRAS/MCS MWR/PMW MD[7:0]	* - Config. Pin * * *	IOF10 IOF9 IOF8 IOF[7:0]	RGEN.XME = 1*, MMPC.XMQ = 0, and GCTL.EDMEN = 0	*
28	RMCK	Output - toggling	IOG0	CMCS.DRMCK = 1	RMCK
29	ERR	Output	IOG1	GCTL.ERRD = 1	ERR
26 27	TX RX	Output - RX value Input	IOG2 IOG3 [‡]	GCTL.NETD = 1	TX RX
30	BOOT/PWM1	Input - BOOT	IOG4	ACR2.ENPWM1 = 0	[†] BOOT/IOG4

* Initial value is determined by the XME/PCS pin. If XME/PCS is high at power-up, all pins default to EGPIO inputs, otherwise the pins power-up as external Program memory for the Host Controller.

† At power-up, BOOT is the initial function and determines the reset vector for the Host Controller.

‡ When IOG3 is configured as an output, it can only be open-drain (not CMOS).

Table 2-58: EGPIO Enable Summary

MOST System On Chip

4Bh	EGPD1	Enhanced GPIO Data register 1	Host
Bit	Label	Description	Default
15, 14	GPDD[1:0]	Data bits for IOD[1:0] pins	*
138	GPDC[5:0]	Data bits for IOC[5:0] pins	*
74	GPDB[3:0]	Data bits for IOB[3:0] pins	*
30	GPDA[3:0]	Data bits for IOA[3:0] pins	*

* Initial value determined by state of corresponding pin.

Table 2-59: EGPD1 Register

GPDxn GPIO Data registers. When configured as an output, the data written to this bit is output to the respective pin. The data read is the value at the pin and may not be the value written. When configured as an input, displays the data from the pin, either directly or captured, based on the polarity selected.

3Dh	EGPD2	Enhanced GPIO Data register 2	Host
Bit	Label	Description	Default
150	GPDE[15:0]	Data bits for IOE[15:0] pins	*

* Initial value determined by state of corresponding pin.

Table 2-60: EGPD2 Register

GPDEn GPIO Data registers. When configured as an output, the data written to this bit is output to the respective pin. The data read is the value at the pin and may not be the value written. When configured as an input, displays the data from the pin, either directly or captured, based on the polarity selected.

3Eh	EGPD3	Enhanced GPIO Data register 3	Host
-----	-------	-------------------------------	------

Bit	Label	Description	Default
1512	GPDG[3:0]	Data bits for IOG[3:0] pins	*
11	GPDG4	Data bit for IOG4 pin	†
100	GPDF[10:0]	Data bits for IOF[10:0] pins	*

* Initial value determined by state of corresponding pin.

† Initial value set by **BOOT** pin function, which determines the reset vector for the Host Controller.

Table 2-61: EGPD3 Register

GPDxn GPIO Data registers. When configured as an output, the data written to this bit is output to the respective pin. The data read is the value at the pin and may not be the value written. When configured as an input, displays the data from the pin, either directly or captured, based on the polarity selected.

MOST System On Chip

4Ch	EDD1	Enhanced GPIO Data Direction register 1	Host
Bit	Label	Description	Default
15, 14	GPOD[1:0]	Output enable for IOD[1:0] pins	00
138	GPOC[5:0]	Output enable for IOC[5:0] pins	000000
74	GPOB[3:0]	Output enable for IOB[3:0] pins	0000
30	GPOA[3:0]	Output enable for IOA[3:0] pins	0000

Table 2-62: EDD1 Register

GPOxn Output Enable for corresponding IOxn pin. When IOxn is configured as a GPIO, this corresponding bit determines whether the pin is a general purpose input or output.

- 0 Corresponding IOxn pin is an input.
 - IPOT1.GPPTxn determines input polarity.

 ${\tt ISOD1.GPSDxn}$ determines whether input is sticky or not.

1 - Corresponding IOxn pin is an output.

 $\label{eq:intermediate} \textbf{IPOT1.GPPTxn} \ determines \ output \ driver \ type \ (CMOS \ or \ open-drain).$

ISOD1.GPSDxn is an output disable/enable.

If the Control Port formats are enabled (CPS.CPFD clear), IOA3 can be configured as an output when using GSPI master mode to act as the external device chip select, and must be configured as an input in all other cases. If the Control Port is used in USART synchronous slave mode (CPS.CPFD clear, UOC.USEN and UOC.SYEN set and UOC.CKMTR clear), IOA0 must be configured as input. If the Control Port is used in USART asynchronous mode (CPS.CPFD and UOC.SYEN clear, and UOC.USEN set), IOA0 and IOA3 can be used as GPIO.

Likewise, if the Debug Port formats are enabled (DCPS.DPFD clear), IOB3 can be configured as an output when using GSPI master mode to act as the external device chip select, and must be configured as an input in all other cases. If the Debug Port is used in USART synchronous slave mode (DCPS.DPFD clear, U1C.USEN and U1C.SYEN set and U1C.CKMTR clear), IOB0 must be configured as input. If the Debug Port is used in USART asynchronous mode (DCPS.DPFD and U1C.SYEN clear, and U1C.USEN set), IOB0 and IOB3 can be used as GPIO.

	3Fh	EDD2	Enhanced GPIO Data Direction register 2	Host
I	Bit	Label	Description	Default
	150	GPOE[15:0]	Output enable for IOE[15:0] pins	0000h

Table 2-63: EDD2 Register

GPOEn Output Enable for corresponding IOEn pin. When IOEn is configured as a GPIO, this corresponding bit determines whether the pin is a general purpose input or output.

0 - Corresponding IOEn pin is an input.

IPOT2.GPPTEn determines input polarity.

ISOD2.GPSDEn determines whether input is sticky or not.

- 1 Corresponding IOEn pin is an output.
 - **IPOT2.GPPTEn** determines output driver type (CMOS or open-drain). **ISOD2.GPSDEn** is an output disable/enable.

MOST System On Chip

40h	EDD3	Enhanced GPIO Data Direction register 3	Host
Bit	Label	Description	Default
1512	GPOG[3:0]	Output enable for IOG[3:0] pins	0h
11	GPOG4	Output enable for IOG4 pin	0
100	GPOF[10:0]	Output enable for IOF[10:0] pins	00h, 000

Table 2-64: EDD3 Register

GPOxn Output Enable for corresponding IOxn pin. When IOxn is configured as a GPIO, this corresponding bit determines whether the pin is a general purpose input or output.

- 0 Corresponding IOxn pin is an input. IPOT3.GPPTxn determines input polarity. ISOD3.GPSDxn determines whether input is sticky or not.
- 1 Corresponding IOxn pin is an output. When IOG3 is an output, it can only be configured as open-drain, IPOT3.GPPTG3 doesn't affect the pin.

IPOT3.GPPTxn determines output driver type (CMOS or open-drain).

ISOD3.GPSDxn is an output disable/enable.

41h IPOT1 EGPIO Input Polarity/Output Type register 1 Host

Bit	Label	Description	Default
15, 14	GPPTD[1:0]	Input polarity or output driver type for IOD[1:0] pins	00
138	GPPTC[5:0]	Input polarity or output driver type for IOC[5:0] pins	000000
74	GPPTB[3:0]	Input polarity or output driver type for IOB[3:0] pins	0000
30	GPPTA[3:0]	Input polarity or output driver type for IOA[3:0] pins	0000

Table 2-65: IPOT1 Register

GPPTxn Input polarity or output driver type for corresponding IOxn pin when configured as a GPIO. When IOxn pin is configured as an input (EDD1.GPOxn clear), this bit sets the polarity:

0 - active high input (non-inverting) or high-pulse capture if sticky

1 - active high input (non-inverting) or high-pulse capture if st
 1 - active low input (inverting) or low-pulse capture if sticky

When IOxn pin is configured as an output (EDD1.GPOxn set), this bit sets the output driver type:

- 0 Open-drain output (only driven low)
- 1 CMOS output (driven both high and low)

	42h	IPOT2	EGPIO Input Polarity/Output Type register 2	Host
	Bit	Label	Description	Default
ſ	150	GPPTE[15:0]	Input polarity or output driver type for IOE[15:0] pins	0000h

Table 2-66: IPOT2 Register

GPPTEn Input polarity or output driver type for corresponding **IOEn** pin when configured as a GPIO. When **IOEn** pin is configured as an input (**EDD2.GPOEn** clear), this bit sets the polarity:

0 - active high input (non-inverting) or high-pulse capture if sticky

1 - active low input (inverting) or low-pulse capture if sticky

When IOEn pin is configured as an output (EDD2.GPOEn set), this bit sets the output driver type:

- 0 Open-drain output (only driven low)
- 1 CMOS output (driven both high and low)

MOST System On Chip

43h	IPOT3	EGPIO Input Polarity/Output Type register 3	Host
Bit	Label	Description	Default
1512	GPPTG[3:0]	Input polarity or output driver type for IOG[3:0] pins	0h
11	GPPTG4	Input polarity or output driver type for IOG4 pin	0
100	GPPTF[10:0]	Input polarity or output driver type for IOF[10:0] pins	00h, 000

Table 2-67: IPOT3 Register

GPPTxnInput polarity or output driver type for corresponding IOxn pin when configured as a GPIO.When IOxn pin is configured as an input (EDD3.GPOxn clear), this bit sets the polarity:

- 0 active high input (non-inverting) or high-pulse capture if sticky
- 1 active low input (inverting) or low-pulse capture if sticky
- When IOxn pin is configured as an output (EDD3.GPOxn set), this bit sets the output driver type. When IOG3 is an output, it can only be configured as open-drain, IPOT3.GPPTG3 doesn't affect the pin.
 - 0 Open-drain output (only driven low)
 - 1 CMOS output (driven both high and low)

44h	ISOD1	EGPIO Input Sticky/Output Disable register 1	Host
-----	-------	--	------

Bit	Label	Description	Default
15, 14	GPSDD[1:0]	Input sticky or output disable for IOD[1:0] pins.	00
138	GPSDC[5:0]	Input sticky or output disable for IOC[5:0] pins	000000
74	GPSDB[3:0]	Input sticky or output disable for IOB[3:0] pins	0000
30	GPSDA[3:0]	Input sticky or output disable for IOA[3:0] pins	0000

Table 2-68: ISOD1 Register

GPSDxn Input sticky or output disable for corresponding IOxn pin when configured as a GPIO.

When IOxn pin is configured as an input (EDD1.GPOxn clear), this bit sets sticky or not.

- 0 EGPD1.GPDxn reflects the IOxn pin, after polarity (IPOT1.GPPTxn).
- 1 EGPD1.GPDxn is sticky and captures a high or low pulse (based on IPOT1.GPPTxn) on IOxn. Once set, cleared by writing EGPD1.GPDxn to zero (assuming pin is in inactive state).
- When IOxn pin is configured as an output (EDD1.GPOxn set), this bit controls output enable:
 - 0 The IOxn pin is enabled and driven, based on IPOT1.GPPTxn.
 - 1 The IOxn pin is disabled, high impedance.

45h	ISOD2	EGPIO Input Sticky/Output Disable register 2	Host
Bit	Label	Description	Default
150	GPSDE[15:0]	Input sticky or output disable for IOE[15:0] pins	0000h

Table 2-69: ISOD2 Register

GPSDEn Input sticky or output disable for corresponding IOEn pin when configured as a GPIO.

When IOEn pin is configured as an input (EDD2.GPOEn clear), this bit sets sticky or not.

- 0 EGPD2.GPDEn reflects the IOEn pin, after polarity (IPOT2.GPPTEn).
- 1 EGPD2.GPDEn is sticky and captures a high or low pulse (based on IPOT2.GPPTEn)

on IOEn. Once set, cleared by writing EGPD2.GPDEn to zero (assuming pin is in inactive state).

When IOEn pin is configured as an output (EDD2.GPOEn set), this bit controls output enable:

- 0 The IOEn pin is enabled and driven, based on <code>IPOT2.GPPTEn</code>.
- 1 The IOEn pin is disabled, high impedance.

MOST System On Chip

46h	ISOD3	EGPIO Input Sticky/Output Disable register 3	Host
Bit	Label	Description	Default
1512	GPSDG[3:0]	Input sticky or output disable for IOG[3:0] pins	0h
11	GPSDG4	Input sticky or output disable for IOG4 pin	0
100	GPSDF[10:0]	Input sticky or output disable for IOF[10:0] pins	00h, 000

Table 2-70: ISOD3 Register

GPSDxn Input sticky or output disable for corresponding IOxn pin when configured as a GPIO. When IOxn pin is configured as an input (EDD3.GPOxn clear), this bit sets sticky or not.

- 0 EGPD3.GPDxn reflects the IOxn pin, after polarity (IPOT3.GPPTxn).
- 1 EGPD3.GPDxn is sticky and captures a high or low pulse (based on IPOT3.GPPTxn) on IOxn. Once set, cleared by writing EGPD3.GPDxn to zero (assuming pin is in inactive state).

When IOxn pin is configured as an output (EDD3.GPOxn set), this bit controls output enable:

- 0 The \mathbf{IOxn} pin is enabled and driven, based on <code>IPOT3.GPPTxn</code>.
- 1 The IOxn pin is disabled, high impedance.

2.3.9 DC Measurement ADC

The DC Measure ADC consists of an eight-to-one mux followed by a charge-balanced analog-to-digital converter with a first-order modulator. The analog input range is from 0 V to twice the **VREF** voltage. The output is a two's complement number where 000h represents center scale or the **VREF** voltage, which is typically 1.3 V.

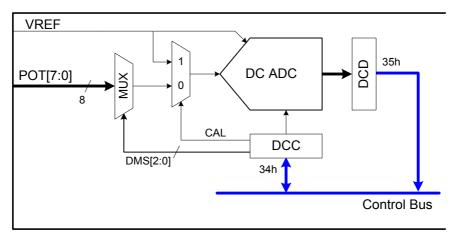


Figure 2-30: DC Measurement ADC

The DCC register contains three bits which control the analog multiplexer and a sample bit (**SAM**). The output of the multiplexer is sampled onto a capacitor approximately 1 μ s after **DCC.SAM** goes high. This sampled value is converted to a 12-bit value in approximately another 1 ms. After the conversion is complete, the ready signal **DCC.RDY** goes high. The ready signal sets the DC ADC data ready interrupt bit **IFL.IADC**.

Since there is a delay between the time **DCC.SAM** goes high and the output of the mux is sampled, **DCC.SAM** and the mux control bits **DCC.DMS[2:0]** can be changed at the same time. In addition, the mux can be changed after the sampling process is complete, but before the conversion process is complete.

The interrupt resolution control bits **DCC.IRES[2:0]** specify the resolution at which **DCC.RDY** goes high, the conversion is stopped, and the interrupt occurs.

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

34h	DCC	DC Measurement ADC Control	Host
Bit	Label	Description	Default
15	RDY	Data Ready. Cleared by reading DCD register	0
14	CAL	Calibration	0
138	rsvd	Reserved. Write to 0	000000
7	PDN	Power down.	0
64	IRES[2:0]	Interrupt Resolution	000
3	SAM	Sample (write only)	0
20	DMS[2:0]	DC ADC Mux Select	000

Table 2-71: DCC Register

- RDY Data Ready. When set, indicates that the DCD register has valid data in it. The resolution which causes **RDY** to go high is specified by **IRES[2:0]**. When **RDY** goes high, an interrupt can be generated (**IFL.IADC**) if the interrupt enable bit **IER.IEADC** is set. When the DCD register is read, **RDY** is cleared.
- CAL Calibration. When set, the voltage reference is fed directly to the DC ADC input so that the VREF error can be determined. Since setting **CAL** only selects the **VREF** voltage, subtracting out the offset error must be done in Controller software.
- PDN Power-down. When set, the DC ADC is powered down.
- IRES[2:0] Interrupt resolution. Sets the resolution at which the interrupt IFL.IADC is generated.
 - 000 12 bit 001 - 11 bit 010 - 10 bit 011 - 9 bit 100 - 8 bit 101 - 7 bit 110 - 6 bit 111 - 5 bit
- SAM Start Sampling. Approximately 1 µs after **SAM** is set, the selected input is sampled. **SAM** is automatically cleared. The conversion must finish (**RDY** high) before another conversion can be started. If **SAM** is set before a conversion is complete, the current conversion is lost, and a new conversion is started.
- DMS[2:0] DC Measurement ADC Mux Select. Selects the DC input to be converted. Since the sampling occurs approximately 1 μs after SAM is set, SAM and DMS[2:0] can be changed in the same register write.
 000 POT0 pin

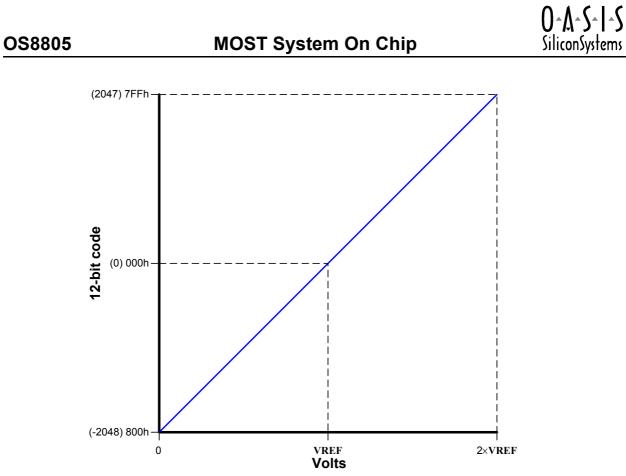
001 – POT1 pin 010 – POT2 pin 011 – POT3 pin 100 – POT4 pin 101 – POT5 pin 110 – POT6 pin 111 – POT7 pin

MOST System On Chip

35h	DCD	DC Measurement ADC Data (read only)	Host
Bit	Label	Description	Default
15	rsvd	Reserved.	0
1412	RES[2:0]	Data Resolution. Between 5 and 12, indicating the current resolution.	000
110	DCD[11:0]	DC ADC measurement value. Bit 11 (DCD11) is the MSB. Data is two's complement format.	000h

Table 2-72: DCD Register

RES[2:0] Resolution of the DCD[11:0] bits. The conversion cycles through the resolutions until it reaches the resolution set in DCC.RES[2:0] bits. RES[2:0] are updated as the DCD[11:0] bits are updated when the DCC.IRES[2:0] resolution is reached, conversion is stopped and DCC.RDY is set. When DCD is read, the DCC.RDY bit is cleared.


000 - 12 bit 001 - 11 bit 010 - 10 bit 011 - 9 bit 100 - 8 bit 101 - 7 bit 110 - 6 bit 111 - 5 bit

DCD[11:0] Two's complement DC ADC measurement result. Resolutions below 12 bits are LSB-justified (smaller numbers) and sign-extended to the full 12 bits, as shown in the Table below. Figure 2-31 illustrates the transfer function when configured for 12-bit resolution.

Resolution	approx.	RES[2:0]	DCD[11:0]		
Resolution	96Fs cycles	RES[2.0]	Positive Number	Negative Number	
5 bits	31	111	00000000RRRR	11111111RRRR	
6 bits	63	110	0000000RRRRR	1111111RRRRR	
7 bits	127	101	000000RRRRRR	111111RRRRRR	
8 bits	255	100	00000RRRRRRR	11111RRRRRRR	
9 bits	511	011	0000RRRRRRRR	1111RRRRRRRR	
10 bits	1023	010	000RRRRRRRR	111RRRRRRRRR	
11 bits	2047	001	00RRRRRRRRRR	11RRRRRRRRRR	
12 bits	4095	000	0RRRRRRRRRRR	1RRRRRRRRRRR	

The 'R' characters are the non-sign resolution binary bits

Table 2-73: DC ADC Resolution

OS8805 MOST System On Chip

2.3.10 Source Converter Control

The Source Converters consist of the high-speed ADCs and DACs that are connected through the MOST Routing bus. The MOST Routing Table determines how to access the Converter data. The PWM DACs are controlled by DSP0. The DC Measurement ADC is controlled directly by the Host Controller. For all converters, the enables and volume controls are accessed by the Host Controller through the Control bus. All volume controls use zero-crossing to change volume, thereby minimizing pops and clicks.

Each ADC has a programmable input gain stage before the actual ADC, accessed via the Control bus. Each DAC has a programmable output attenuator and associated control register, which specifies the amount of attenuation.

The gain and attenuation bits in the ADACn registers, GADCs, GMIC and GMPX registers are mapped to both DSPs as well as the Host Controller. Since both the Host Controller and DSPs can write to the register to change the setting, the last write of the register will remain and that is the value to be read back. Therefore, the Host Controller may not read back what it wrote to the register if one of the DSPs writes to it after the Host Controller write. In addition, these registers can only be written when **FPCR.RUN** is set, and the Source Port clocks (**FSY** and **SCK**) are operating (are outputs and enabled, or are inputs and driven by external clocks).

1Dh	FPCR	Source Converter Control Register	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0.	000h
3	RUN	Global enable for Source Converters. When set, the enabled Source Converters data is processed and transferred across the Routing bus. When RUN is clear, no data is transferred across the Routing bus.	0
20	rsvd	Reserved. Write to 0.	000

Table 2-74: FPCR Register

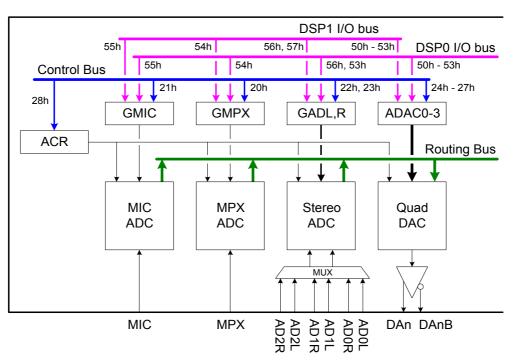


Figure 2-32: Source Converters

- - -

MOST System On Chip

. . .

Each data converter channel can be independently enabled and disabled through the enable bits in the Analog Control Register (ACR). When the enable bit is high, the corresponding converter operates normally. When the enable bit is low, the corresponding converter enters a low power state. In the low power state, the digital data out of the ADCs is all zero's, DSP0, DSP1, and the Host Controller all have access to the converter's volume controls. The last value written is what is read by any of the three processors. Therefore, if two processors are writing a converter's volume register, a processor may not read the same value written (if the other processor made the last write).

Each audio ADC has a three-to-one input mux. Both muxes are controlled by the same two bits in the analog control register.

28h ACR Analog Control Register		Analog Control Register	Host
Bit	Label	Description	Default
1513	rsvd	Reserved. Write to 0	000
12	PWMOE	PWM0 DAC Output enable. When clear, the PWM0 output is muted.	0
11	ENPWM	PWM0 DAC enable. When clear, the PWM0 DAC is powered down.	0
10	rsvd	Reserved. Write to 0	0
9, 8	AMS[1:0]	Audio ADC Mux input select	00
7	ENMPX	MPX ADC enable. When clear, MPX ADC is powered down.	0
6	ENMIC	Mic ADC enable. When clear, Mic ADC is powered down.	0
5	ENADL	Left Audio ADC enable. When clear, Left Audio ADC is powered down.	0
4	ENADR	Right Audio ADC enable. When clear, Right Audio ADC is powered down.	0
3	ENDAC0	DAC0 enable. When clear, DAC0 is powered down.	0
2	ENDAC1	DAC1 enable. When clear, DAC1 is powered down.	0
1	ENDAC2	DAC2 enable. When clear, DAC2 is powered down.	0
0	ENDAC3	DAC3 enable. When clear, DAC3 is powered down.	0

.... . -

Table 2-75: ACR Register

- **PWMOE** PWM DAC Output Enable. When set, the PWM0 pin outputs a PWM signal representative of the data sent to the PWMDR register by DSP0. When clear, the PWM0 output is muted (AC ground).
- **ENPWM** Enable PWM DAC. When set, the PWM0 DAC is enabled. When clear, the PWM0 DAC is powered down and the PWM0 pin can be used as GPIO IOD0 pin.
- Audio ADC Mux Select. Selects stereo analog inputs to the Audio ADC. AMS[1:0]
 - 00 AD0L, AD0R pins
 - 01 AD1L, AD1R pins
 - 10 AD2L, AD2R pins
 - 11 Reserved.
- **ENMPX** Enable MPX ADC. When set, the MPX ADC is enabled. When clear, MPX is powered down.
- ENMIC Enable Mic ADC. When set, the Mic ADC is enabled. When clear, Mic is powered down.
- Enable Left Analog ADC. When set, the left Analog ADC is enabled. When clear, the left Ana-ENADL log ADC is powered down.
- ENADR Enable Right Analog ADC. When set, the right Analog ADC is enabled. When clear, the right Analog ADC is powered down.
- ENDAC[3:0] Enables for DAC3 through DAC0. When set, the corresponding DACx is enabled. When clear, DACx is powered down and the output pin is at analog ground (DC zero).

MOST System On Chip

4Ah	ACR2	Analog Control Register 2	Host
Bit	Label	Description	Default
1513	rsvd	Reserved. Write to 0.	000
12	PWM10E	PWM1 DAC Output enable. When clear, the PWM1 output is muted.	0
11	ENPWM1	PWM1 DAC enable. When clear, the PWM1 DAC is powered down.	0
100	rsvd	Reserved. Write to 0.	00, 00h

Table 2-76: ACR Register

- PWM1OE PWM1 DAC Output Enable. When set, the **PWM1** pin outputs a PWM signal representative of the data sent to the PWM1DR register by DSP0. When clear, the **PWM1** output is muted (AC ground).
- ENPWM1 Enable PWM1 DAC. When set, the PWM1 DAC is enabled. When clear, the PWM1 DAC is powered down and the PWM1 pin can be used as GPIO IOG4.

2.3.10.1 MPX ADC

20h	GMPX	MPX ADC Volume	Host
Bit	Label	Description	Default
155	rsvd	Reserved. Write to 0.	00h, 000
40	GAIN[4:0]	MPX ADC Gain. The least significant bit represents 1 dB, with 00000 = 0 dB and 11010 = 26 dB (maximum value).	00000

Table 2-77: GMPX Register

2.3.10.2 Microphone ADC

21h	GMIC	MIC ADC Volume	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0.	000h
30	GAIN[3:0]	Mic ADC Gain. The least significant bit represents 1 dB, with 0000 = 0 dB and 1111 = 15 dB.	0000

Table 2-78: GMIC Register

2.3.10.3 Stereo Audio ADCs

22h	GADL	Left Audio ADC Volume	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0.	000h
30	GAIN[3:0]	Left Audio ADC Gain. The least significant bit represents 1 dB, with 0000 = 0 dB and 1111 = 15 dB.	0000

Table 2-79: GADL Register

23h	GADR	Right Audio ADC Volume	Host
Bit	Label	Description	Default
154	rsvd	Reserved. Write to 0.	000h
30	GAIN[3:0]	Right Audio ADC Gain. The least significant bit represents 1 dB, with 0000 = 0 dB and 1111 = 15 dB.	0000

Table 2-80: GADR Register

MOST System On Chip

2.3.10.4 Quad Audio DACs

For the DACs, common-mode rejection can be improved by connecting 0.1 µF and 1 µF bypass capacitors between the VREFS pin and AGND, and setting the ADACn.SEDE bit for the particular DAC. Although these capacitors help in differential mode, significant dynamic range improvements are seen when using the DACs in single-ended mode.

24h	ADAC0	Audio DAC0 Volume	Host
Bit	Label	Description	Default
157	rsvd	Reserved. Write to 0.	00h, 0
6	SEDE	Set when VREFS has capacitors connected to improve dynamic range.	0
5	MUTE	Mute. When set, DAC0 output is muted.	0
40	ATTN[4:0]	DAC0 Attenuation. The least significant bit represents -1 dB, with 00000 = 0 dB and 11111 = -31 dB.	00000

Table 2-81: ADAC0 Re

25h	ADAC1	Audio DAC1 Volume	Host
Bit	Label	Description	Default
157	rsvd	Reserved. Write to 0.	00h, 0
6	SEDE	Set when VREFS has capacitors connected to improve dynamic range.	0
5	MUTE	Mute. When set, DAC1 output is muted.	0
40	ATTN[4:0]	DAC1 Attenuation. The least significant bit represents -1 dB, with 00000 = 0 dB and 11111 = -31 dB.	00000

Table 2-82: ADAC1 Register

26h	ADAC2	Audio DAC2 Volume	Host
Bit	Label	Description	Default
157	rsvd	Reserved. Write to 0.	00h, 0
6	SEDE	Set when VREFS has capacitors connected to improve dynamic range.	0
5	MUTE	Mute. When set, DAC2 output is muted.	0
40	ATTN[4:0]	DAC2 Attenuation. The least significant bit represents -1 dB, with $00000 = 0 \text{ dB}$ and $11111 = -31 \text{ dB}$.	00000

Table 2-83: ADAC2 Register

27h ADAC3 Audio DAC3 Volume

27h	ADAC3	Audio DAC3 Volume	Host
Bit	Label	Description	Default
157	rsvd	Reserved. Write to 0.	00h, 0
6	SEDE	Set when VREFS has capacitors connected to improve dynamic range.	0
5	MUTE	Mute. When set, DAC3 output is muted.	0
40	ATTN[4:0]	DAC3 Attenuation. The least significant bit represents -1 dB, with 00000 = 0 dB and 11111 = -31 dB.	00000

Table 2-84: ADAC3 Register

2.3.11 **DSP Program Control**

The Host Controller has access to each DSP's Program Counter (DxPC), Program Control Register (DxPCR), and Program Data Register - Lower bit (DxPDL). Since DSP memory is RAM, the Host Controller must load the RAM on start-up. This is accomplished by setting the DxPC to the starting address, and downloading data through the DxPDL and DxPCR registers. Once the DSP memory is filled, the Controller can program DxPC to the start of memory and set the DxPCR.RUN bit to start DSP execution.

$\left(\right) \wedge \left(\right$ SiliconSystems

OS8805

. _ .

MOST System On Chip

Since DSP memory is 26 bits wide, two Controller registers are needed to access one DSP word. The DxPDL register provides access to the lower 16 bits of DSP memory (DM[15:0]). The DxPCR register provides access to the upper 10 bits of DSP memory through the DM[25:16] bits.

When the DxPCR.AI bit is set, the DxPC increments after data is written to (or read from) Program memory. This allows blocks of data to be loaded efficiently.

17h	DOPCR	DSP0 Program Control	Host
Bit	Label	Description	Default
15, 14	*DFS[1:0]	DSP0 frequency select	11
134	DM[25:16]	High 10 bits of DSP0 Program memory. Bit 13 (DM25) is MSB.	00h, 00
3	*RUN	DSP0 Run enable. When clear, DSP0 is idle.	0
2	AI	Auto-Increment enable	0
1	WR	Write program memory (write only)	0
0	RD	Read program memory (write only)	0

RUN must be clear to access the DFS[1:0] bits. In addition, RUN must not be enabled in the same cycle where the DFS[1:0] bits are configured.

Table 2-85: D0PCR Register

- DFS[1:0] DSP0 Frequency Select bits. Selects the operating speed of the DSP. These bits must be configured before (in a different I/O cvcle) RUN is set.
 - 00 768×Fs

- 01 960×Fs
- 10 1536xFs
- 11 1344×Fs (default)
- DM[25:16] The upper 10 bits of DSP0's Program memory. Used, in conjunction with D0PDL.DM[15:0], as the data portal when the Controller is accessing DSP Program memory.
- RUN Set for normal operation. When clear, the DSP is in a low power state and the operating speed can be selected through **DFS[1:0]**. In addition, Program memory can be filled by the Controller. Once the programs are downloaded, D0PC should be programmed to 0, DFS[1:0] should be configured, and (in a different cycle) RUN should be set to start DSP execution.
- AI When set, the D0PC increments after a write (wR) or a read (RD).
- WR Write DSP0 Program memory (write only). When wr is set, the DM[25:0] data (D0PCR.DM[25:16] + D0PDL.DM[15:0]) is written to the address specified by D0PC. WR is auto-cleared after the operation is complete.
- RD Read DSP0 Program memory (write only). When RD is set, the DM[25:0] data (D0PCR.DM[25:16] + D0PDL.DM[15:0]) is read from the address specified by D0PC. RD is auto-cleared after the operation is complete.

18h	D0PDL	DSP0 Program memory Data Low	Host
Bit	Label	Description	Default
15 0	DM[15:0]	DSP0's lower 16 bits of Program memory used, in conjunction with	0000h

		5 7	
Bit	Label	Description	Default
150	DM[15:0]	DSP0's lower 16 bits of Program memory used, in conjunction with D0PCR.DM[25:16] , for Controller reading or writing DSP memory.	0000h

Table 2-86: D0PDL Register

19h D0PC DSP0 Program Counter Host Bit Label Description Default Reserved. Write to 0. 00000 15..11 rsvd 10..0 D[10:0] DSP0 Program Counter. Bit 10 (D10) is the MSB 00h, 000 Table 2-87: D0PC Register

Final Product Data Sheet Page 92

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

Host

1Ah	D1PCR	DSP1 Program Control	Host
Bit	Label	Description	Default
15, 14	*DFS[1:0]	DSP1 frequency select	11
134	DM[25:16]	High 10 bits of DSP1's Program memory. Bit 13 (DM25) is MSB.	00h, 00
3	RUN	DSP1 Run enable. When clear, DSP1 is in low-power mode.	0
2	AI	Auto-Increment enable	0
1	WR	Write program memory (write only)	0
0	RD	Read program memory (write only)	0

* RUN must be clear to access the DFS[1:0] bits. In addition, RUN must not be enabled in the same cycle where the DFS[1:0] bits are configured.

Table 2-88: D1PCR Register

- DFS[1:0] DSP1 Frequency Select bits. Selects the operating speed of the DSP. These bits must be configured before (in a different I/O cycle) **RUN** is set.
 - 00 768×Fs
 - 01 960×Fs
 - 10 1536xFs
 - 11 1344×Fs (default)
- DM[25:16] The upper 10 bits of DSP1's Program memory. Used, in conjunction with **D1PDL.DM[15:0]**, as the data portal when the Controller is accessing DSP memory.
- RUN Set for normal operation. When clear, the DSP is in a low power state and the operating speed can be selected through **DFS[1:0]**. In addition, Program memory can be filled by the Controller. Once the programs are downloaded, D1PC should be programmed to 0, **DFS[1:0]** should be configured, and (in a different cycle) **RUN** should be set to start DSP execution.
- Al When set, the D1PC increments after a write (**wR**) or a read (**RD**).
- WR Write DSP1 Program memory (write only). When **wR** is set, the DM[25:0] data (D1PCR.DM[25:16] + D1PDL.DM[15:0]) is written to the address specified by D1PC. **wR** is auto-cleared after the operation is complete.
- RD Read DSP1 Program memory (write only). When **RD** is set, the DM[25:0] data (**D1PCR. DM[25:16]** + **D1PDL. DM [15:0]**) is read from the address specified by D1PC. **RD** is auto-cleared after the operation is complete.

1Bh	D1PDL	DSP1 Program memory Data Low	Host
Bit	Label	Description	Default
150	DM[15:0]	DSP1's lower 16 bits of Program memory used, in conjunction with D1PCR. DM [25:16], for Controller reading or writing DSP memory.	0000h

Table 2-89: D1PDL Register

1Ch	D1PC	DSP1 Program Counter	Host
Bit	Label	Description	Default
1511	rsvd	Reserved. Write to 0.	00000
100	D[10:0]	DSP1 Program Counter. Bit 10 (D10) is the MSB	00h, 000

Table 2-90: D1PC Register

OS8805 MOST System On Chip

2.3.12 DSP0 External Memory Configuration

Only when the Host Controller is operating out of internal memory (**RGEN.XME** set and **MMPC.XMQ** clear), can DSP0 use the external memory port. When the external memory port is configured for DSP0 external memory, **GCTL.EDMEN** set enables the external memory port for DSP0 data memory expansion. If **GCTL.EDMEN** is clear, then the external memory port can be used as GPIO. Section 4.6.1 on page 174, *DSP0 External Memory Configuration*, describes the software interface to DSP0's external data memory port.

29h	ХМС	DSP0 External Data Memory Control	Host
Bit	Label	Description	Default
158	RCD[7:0]	Refresh Counter Divider	00h
7	rsvd	Reserved. Write to 0.	0
6, 5	RCP[1:0]	Refresh Counter Prescaler	00
4	ARE	Automatic Refresh Enable (DRAM only, MMS = 1)	0
3	MT	Memory Timing: 0 = fast, 1 = slow	0
2	BW	external data Bus Width: 0 = 8 bits, 1 = 4 bits	0
1	MWW	Memory Word Width: 0 = 8 bits, 1 = 16 bits	0
0	MMS	Memory Mode Select: 0 = SRAM, 1 = DRAM	0

Table 2-91: XMC Register

- RCD[7:0] Refresh Counter Divider. When **ARE** is set, these bits form a divider of 1 to 256 which, along with the **RCP[1:0]** bits, determine the refresh rate in DSP clock cycles (typically 1344xFs).
- RCP[1:0] Refresh Counter Prescaler. When **ARE** is set, **RCP**[1:0], along with the **RCD**[7:0] bits, divide down the DSP clock to generate an automatic DRAM refresh (CAS-before-RAS) rate.
 - 00 prescale divider of 64
 - 01 prescale divider of 8
 - 10 prescale divider of 1
 - 11 Reserved.
- ARE Automatic Refresh Enable. When set, enables automatic CAS-before-RAS DRAM refresh. The refresh rate is the DSP clock rate (typically 1344Fs), divided by the Refresh Counter Divider bits RCD[7:0] + 1 then divided by the prescale bits RCP[1:0].

The formula is: $\frac{(\text{RCD}[7:0] + 1) \times \langle \text{RCP}[1:0] \rangle}{\langle \text{DnPCR.DFS}[1:0] \rangle} \text{ s. Once a refresh request is made, the refresh will}$

occur after the current external memory cycle has finished. When **MMS** is clear, **ARE** must be clear.

- MT Memory Timing. External Data Memory timing control. For exact timings, see the *External Data Memory Interface* tables in the *Electrical Characteristics* Section.
 - 0 Fast Timing
 - 1 Slow Timing
- BW External Data Bus Width. Along with the **MWW** bit, determines the number of external chips needed for a given data memory size.
 - 0 8-bit bus width. For a 16-bit word, two accesses are made; whereas once access is made for an 8-bit word.
 - 1 4-bit bus width. The External Memory Controller will make two accesses to get an 8-bit word and four accesses to get a 16-bit word.
- MWW Memory Word Width. Along with the **Bw** bit, determines the number of external chips needed to support a given memory size.
 - 0 word size is 8 bits
 - 1 word size is 16 bits

MOST System On Chip

MMS Memory Mode Select. Determines the type of external memory used. 0 – SRAM (**ARE** must be clear) 1 - DRAM

The Host Controller uses internal Program memory, DSP0 can use the external data memory port to expand Data memory. The port can be configured as an 8-bit wide or 16-bit wide port, through the **XMC.MWW** bit. In addition, the external data accesses can be a nibble or a byte at a time. The advantage of nibble-wide data is lower costs, and the disadvantage is that accesses are twice as slow since double the accesses are needed to get a given data word width. Likewise, the advantage of byte-wide data is that accesses for a given word-width are twice as fast, and twice the memory size is supported.

Figure 2-33 illustrates 16-bit words (**xmc.mww** set) when using nibble-wide and byte-wide external memory (SRAM is used in this example). The lower external address bits, **MA**[1:0] for nibble-wide and **MA**0 for byte-wide, are generated by on-chip hardware and are not considered part of DSP0 Base+Offset address.

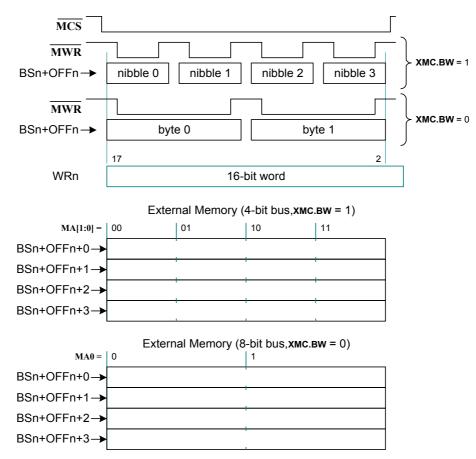


Figure 2-33: External Data Memory Port with 16-bit words (XMC.MWW set)

MOST System On Chip

Figure 2-34 illustrates 8-bit words (**xmc.mww** clear) when using nibble-wide and byte-wide external memory (SRAM is used in this example). The lower external address bit **MA0**, for nibble-wide transfers, is generated by on-chip hardware and is not considered part of DSP0 Base+Offset address. For byte-wide transfers, the Base+Offset registers generate all the external memory address bits.

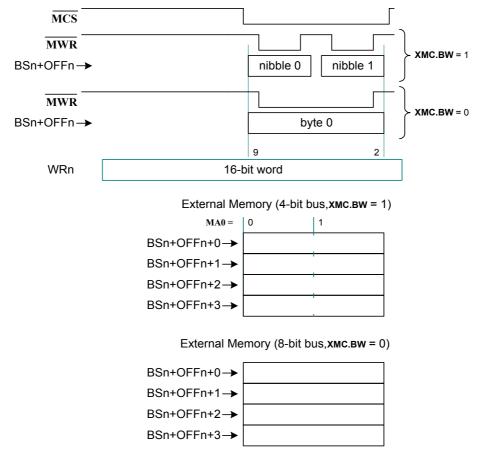


Figure 2-34: External Data Memory Port with 8-bit words (XMC.MWW clear)

MOST System On Chip

2.3.13 Watchdog Timer

OS8805

The Watchdog timer consists of a pre-scaler, clocked at 3072Fs, and a 16-bit counter clocked by the prescaler. The pre-scaler is 13 bits (divide of 8192) which produces a Watchdog timer count of 0.375Fs, or 60 μ s at a Network Fs rate of 44.1 kHz. The Watchdog timer counts up and resets the chip when it reaches its terminal count of all ones. The Watchdog timer register is reset by RST, a Host Controller software reset, and the Watchdog timer reset. Host Controller software must write the Watchdog timer register periodically to keep the Watchdog timer from expiring. Assuming the Host Controller writes all zeros into the register, the time-out period is $65535 \times 60 \ \mu$ s = 3.96 s, when Fs = 44.1 kHz.

The Watchdog timer powers up enabled. Therefore, if the counter reaches its terminal count, it will reset the chip. If it is not used, it must be explicitly disabled by setting **RGEN.WDD**.

4Fh	WDT	Watchdog Timer	Host
Bit	Label	Description	Default
150	D[15:0]	Watchdog timer value. The watchdog timer counts up from the value written in this register at a 1/(0.375Fs) rate. If the timer hits all ones, a chip reset is produced. The timer can be disabled by setting RGEN.WDD .	0000h

Table 2-92: WDT Register

If the PLL is not locked, the time-out period will depend on the state of the FLT pin. If it is low, the time-out period can be up to four times longer than normal.

2.3.13.1 Reset Generator

The following conditions can generate the reset signal when the power supply voltage is above 2.7 to 3.0 V:

- \overline{RST} pin low
- two transitions (falling edge followed by a rising edge) on RX, GPA0, GPA1, or GPA2 when CMCS.PD is active/set. The two transitions are only detected after the power supply has stabilized.
- · the Watchdog timer times out

The \overline{RST} pin is level sensitive and must be low when power is applied to the device. If \overline{RST} is low and the power supply is above 2.7 to 3.0 V, the internal chips reset is active. This clears the **CMCS.PD** bit and takes the chip out of the zero-power state.

The reset generator has a control and status register, RGEN, which allows the Host Controller to select which features can cause a reset and indicates the source of the previous reset. Five control bits determine which events can cause a reset, and six status bits indicate the cause of the previous reset. The status bits are only reset by writing the bits to zero (sticky) and they are not cleared by any reset source.

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

Host 4Eh RGEN **Reset Generator Control/Status** Bit Label Description Default GPA2D GPA2 toggle reset disable 15 0 14 GPA1D GPA1 toggle reset disable 0 13 GPA0D GPA0 toggle reset disable 0 12 RXD RX toggle reset disable 0 11 WDD Watchdog Timer disable. 0 = enabled, 1 = disabled 0 Reserved. Write to 0. 8 0 rsvd 7 XME External Program memory enable * 6 RSHC Reset status - Host Controller RESET instruction t 5 RSGPA2 Reset status - GPA2 pin t 4 RSGPA1 Reset status - GPA1 pin t 3 RSGPA0 Reset status - GPA0 pin t 2 RSRX Reset status - RX pin t 1 RSWD Reset status - Watchdog timer t 0 RSRST Reset status - RST pin t

* Initial state determined by the $\overline{\mathbf{XME}}/\overline{\mathbf{PCS}}$ pin.

† Initial state determined by state of reset generator.

Table 2-93: RGEN Register

- GPA2D GPA2 reset disable. When CMCS.PD is set and GPA2D is clear, two transitions (falling then rising edge) on the GPA2 pin will cause an internal reset thereby clearing the CMCS.PD bit and powering up the part. When GPA2D is set, transitions on GPA2 have no effect and will not wake up the device. This bit is only reset by RST or by the power-supply monitor if the voltage is below specification.
- GPA1D GPA1 reset disable. When CMCS.PD is set and GPA1D is clear, two transitions (falling then rising edge) on the GPA1 pin will cause an internal reset thereby clearing the CMCS.PD bit and powering up the part. When GPA1D is set, transitions on GPA1 have no effect and will not wake up the device. This bit is only reset by RST or by the power-supply monitor if the voltage is below specification.
- GPA0D GPA0 reset disable. When CMCS.PD is set and GPA0D is clear, two transitions (falling then rising edge) on the GPA0 pin will cause an internal reset thereby clearing the CMCS.PD bit and powering up the part. When GPA0D is set, transitions on GPA0 have no effect and will not wake up the device. This bit is only reset by RST or by the power-supply monitor if the voltage is below specification.
- RXDRX reset disable. When CMCS.PD is set and RXD is clear, two transitions (falling then rising
edge) on the RX pin will cause an internal reset thereby clearing the CMCS.PD bit and powering
up the part. When RXD is set, transitions on RX have no effect and will not wake up the device.
This bit is only reset by RST or by the power-supply monitor if the voltage is below specifica-
tion.
- WDD Watchdog timer disable. When clear, the Watchdog timer, WDT, counts up and resets the device when it reaches all ones. The Host Controller must write WDT before all ones is reached to prevent a reset. If **wDD** is set, the Watchdog timer is disabled.
- XMEExternal memory enable. This bit is initialized by a pull-up/pull-down on the XME/PCS pin.When clear, the Host Controller uses external Program memory and the internal memory is
disabled. When set, the Host Controller uses internal memory, allowing DSP0 to use the exter-
nal memory port if desired (MMPC.XMQ and GCTL.EDMEN bits). Changing XME causes an internal
reset to be generated, which resets all the on-chip peripherals, and will reset the Host Control-
ler if the MMPC.RSTD bit is clear.

OS8805 MOST System On Chip Reset Status - Host Controller. When set, indicates that a previous reset was due to the Host RSHC Controller executing a software RESET instruction. This bit is only reset by writing it to zero. RSGPA2 Reset Status - GPA2 pin. When set, indicates that a previous reset was due to a transition on the GPA2 pin. This reset source can be disabled by setting the GPA2D bit. RSGPA2 is only reset by writing it to zero. RSGPA1 Reset Status - GPA1 pin. When set, indicates that a previous reset was due to a transition on the GPA1 pin. This reset source can be disabled by setting the GPA1D bit. RSGPA1 is only reset by writing it to zero. RSGPA0 Reset Status - GPA0 pin. When set, indicates that a previous reset was due to a transition on the GPA0 pin. This reset source can be disabled by setting the GPA0D bit. RSGPA0 is only reset by writing it to zero. RSRX Reset Status - RX pin. When set, indicates that a previous reset was due to a transition on the RX pin. This reset source can be disabled by setting the RXD bit. RSRX is only reset by writing it to zero. RSWD Reset Status - Watchdog timer time-out. When set, indicates that a previous reset was due to the Watchdog timer timing out (reaching all ones). This reset source can be disabled by setting the wDD bit. RSWD is only reset by writing it to zero. RSRST Reset Status - \overline{RST} pin. When set, indicates that a previous reset was due to a transition on the RST pin. This reset source cannot be disabled. RSRST is only reset by writing it to zero. The

2.3.14 Power Supply Monitor

The power supply monitor consists of a voltage reference and a comparator. The comparator determines whether or not a divided version of the power supply voltage is above or below the reference voltage. The reference voltage and the dividers are set to detect whether the supply voltage is above or below 2.85 V, nominally. The reference voltage has a tolerance of ± 5 %, producing a power supply trip point in the range of 2.7 V to 3.0 V.

RST reset clears the upper five control bits in this register.

When the power supply voltage is out of range, the **CMCS.PD** bit is set and cannot be cleared. When the power supply comes back in range, the reset generator is enabled and waiting for an event to generate a reset pulse. When the \overline{RST} pin is pulsed or the toggle detector senses activity (as specified in the RGEN register), the reset generator generates an internal reset pulse which initializes the chip and clears the **CMCS.PD** bit. Although the part goes through an under-voltage condition on initial power-up, the **CMCS.PD** default state is zero since \overline{RST} must be asserted at power-up (clearing **CMCS.PD**).

OS8805MOST System On Chip2.4 Control Bus I/O Register Summary

The Control Bus I/O registers include the Host Controller's registers as well as peripherals and DSP Control registers, and inter-processor communication ports.

Name	Label	Addr.	Description	Page
Host Controller:				
Shadow Program Counter	SPC	00h	Swaps with PC during interrupts and subroutines	
Shadow PC High	SPCH	58h	Swaps with the high portion of the PC, similar to SPC	
Debug Shadow PC	DSPC	01h	Swaps with PC during debugger interrupt	
Debug Shadow PC High	DSPCH	59h	Swaps with the high portion of the PC, similar to DSPC	
Status	SR	02h	Controller status, page address, byte/word flag	
Interrupt Flag	IFL	03h	Controller interrupts source status	33
Interrupt Enable	IER	04h	Enables individual interrupt sources	34
Stack Pointer	SP	05h	Identifies current stack position	34
Program Memory Page	PGMP	5Ah	Upper 2 bits when accessing Program Memory	39
Flash Memory Control	FMC	5Bh	Flash Program memory control (erase partition/pgm byte)	30
Flash Protection 8K blocks	FPBK	5Ch	Flash Protection for blocks FB15-FB1 and Info Block	31
Flash Protection FB16	FPB16	5Dh	Flash Protection for block FB16	31
COM (Internal) Ports:				
MOST COM Data First	RCF	06h	First/last address of MOST COM data reg.	44
MOST COM Data Mid	RCM	07h	Middle address of MOST COM data register	44
MOST COM Status	RCS	10h	Flags for MOST bus COM port transfers	43
DSP0 COM Data First	D0CF	08h	First/last address of control-DSP0 COM data reg.	
DSP0 COM Data Mid	D0CM	09h	Middle address of control-DSP0 COM data register	
DSP0 COM Status	D0CS	11h	Flags for control-DSP0 bus COM port transfers	44
DSP0 Debug COM Data First	DD0CF	13h	First/last address of control-DSP0 Debug COM data reg.	
DSP0 Debug COM Data Mid	DD0CM	14h	Middle address of control-DSP0 Debug COM data register	45
DSP0 Debug COM Status	DD0CS	1Eh	Flags for control-DSP0 bus Debug COM port transfers	45
DSP1 COM Data First	D1CF	0Ah	First/last address of control-DSP1 COM data reg.	45
DSP1 COM Data Mid	D1CM	0Bh	Middle address of control-DSP1 COM data register	45
DSP1 COM Status	D1CS	12h	Flags for control-DSP1 bus COM port transfers	
DSP1 Debug COM Data First	DD1CF	15h	First/last address of control-DSP1 Debug COM data reg.	46
DSP1 Debug COM Data Mid	DD1CM	16h	Middle address of control-DSP1 Debug COM data register	46
DSP1 Debug COM Status	DD1CS	1Fh	Flags for control-DSP1 bus Debug COM port transfers	45
External Ports:				
Control Port Status	CPS	0Eh	Control Port flags and control signals	52
Control Port Data	CP	0Fh	Control Port bi-directional data register	54
Debug Control Port Status	DCPS	39h	Debug Port flags and control signals	64
Debug Port Data	DCP	3Ah	Debug Port bi-directional data register	66

Table 2-94: Control Bus Register Summary

MOST System On Chip

Name	Label	Addr.	Description	Page	
DSP Program Control:		•		•	
DSP0 Program Control	D0PCR	17h	Control Flags and upper 10 bits of DSP0 Program memory instruction		
DSP0 Program Data Low	D0PDL	18h	Lower 16 bits of DSP0 Program memory instruction		
DSP0 Program Counter	D0PC	19h	DSP0 Program Counter		
DSP0 Trap Shadow PC	D0TSPC	48h	DSP0 TRAP instruction Program Counter copy		
DSP1 Program Control	D1PCR	1Ah	Control Flags and upper 10 bits of DSP1 Program memory instruction		
DSP1 Program Data Low	D1PDL	1Bh	Lower 16 bits of DSP1 Program memory instruction	93	
DSP1 Program Counter	D1PC	1Ch	DSP1 Program Counter	93	
DSP1 Trap Shadow PC	D1TSPC	49h	DSP1 TRAP instruction Program Counter copy	46	
Source Converter Control:		1			
Source Converter Control	FPCR	1Dh	Source Converter Routing RUN bit	88	
MPX ADC Gain	GMPX	20h	Analog Gain setting for MPX ADC	90	
Microphone ADC Gain	GMIC	21h	Analog gain setting for microphone ADC	90	
Left Audio ADC Gain	GADL	22h	Analog gain setting for Left Audio ADC	90	
Right Audio ADC Gain	GADR	23h	Analog gain setting for Right Audio ADC	90	
DAC0 Attenuation	ADAC0	24h	Analog attenuation setting for DAC0 output	91	
DAC1 Attenuation	ADAC1	25h	Analog attenuation setting for DAC1 output		
DAC2 Attenuation	ADAC2	26h	Analog attenuation setting for DAC2 output		
DAC3 Attenuation	ADAC3	27h	Analog attenuation setting for DAC3 output		
Analog Control	ACR	28h	Data Converter enables and Audio ADC mux. select	89	
Analog Control 2	ACR2	4Ah	PWM1 DAC control	90	
Global Control, Memory, an	Global Control, Memory, and Clock Manager Peripherals:				
External Memory Port Ctrl.	XMC	29h	DSP0 external data memory configuration	94	
Mode Control	MMPC	37h	OS8805 revision and global control	28	
Clock Manager 4	CM4	38h	Affects PWD tolerance	48	
Clock Manager Ctrl./Status	CMCS	33h	PLL control, lock status, RMCK divider	47	
Global Sync. Timer	GTR	36h	Global timing flags for processor synchronization	50	
Global Control	GCTL	3Bh	GPIO Enables/Network disable	77	
Watch Dog Timer	WDT	4Fh	Watchdog timer	97	
Reset Generator	RGEN	4Eh	Determines cause and enables wakeup generators	98	
DC Measurement ADC				-	
DC Meas. ADC Control	DCC	34h	Mux. select, ready flag, timing control	85	
DC Meas. ADC Data	DCD	35h	ADC converstion results and resolution information	86	
General Purpose Timer:					
Compare 0	CMP0	2Ah	Timer value when the TMR0 pin toggles	74	
Compare 1	CMP1	2Bh	Timer value when the TMR1 pin toggles		
Capture 0	CAP0	2Ch			
Capture 1	CAP1	2Dh	Saves the timer value when interrupt 1 occurs	74	
Timer	TMR	2Eh	16-bit GP Timer clocked at 64×Fs	75	
Timer Modulo	TMOD	2Fh	Modulo value for GP Timer	75	

Table 2-94: Control Bus Register Summary (Continued)

MOST System On Chip

O-A-S-I-S SiliconSystems

Name	Label	Addr.	Description	Page		
General Purpose I/O:						
GPIO Data	GPIO	30h	h Read/write GPIO pin data for GPA[3:0], GPB[3:0], GPC[3:0], GPD[3:0]			
GPIO Control	GPC	31h	Enables timer outputs and interrupt ctrl.			
GPIO Data Direction	DDR	32h	Output enables for GPA[3:0], GPB[3:0], GPC[3:0], GPD[3:0			
EGPIO Data 1	EGPD1	4Bh	Read/write EGPIO pin data for IOA[3:0], IOB[3:0], IOC[3:0], IOD[3:0]	80		
EGPIO Data 2	EGPD2	3Dh	Read/write EGPIO pin data for IOE[15:0]	80		
EGPIO Data 3	EGPD3	3Eh	Read/write EGPIO pin data for IOF[10:0], IOG[4:0]	80		
EGPIO Data Direction 1	EDD1	4Ch	Data direction for IOA[3:0], IOB[3:0], IOC[3:0], IOD[3:0]	81		
EGPIO Data Direction 2	EDD2	3Fh	Data direction for IOE[15:0]	81		
EGPIO Data Direction 3	EDD3	40h	Data direction for IOF[10:0], IOG[4:0]	82		
EGPIO In Pol., Out Type 1	I., Out Type 1 IPOT1 41h Input polarity or output driver type for IOA[3:0], IOB[3:0], IOC[3:0], IOD[3:0]		82			
EGPIO In Pol., Out Type 2	IPOT2	42h	Input polarity or output driver type for IOE[15:0]			
EGPIO In Pol., Out Type 3	IPOT3	43h	Input polarity or output driver type for IOF[10:0], IOG[4:0]			
EGPIO In Sticky, Out Dis. 1	ISOD1	44h	h Input sticky or output disable for IOA[3:0], IOB[3:0], IOC[3:0], IOD[3:0]			
EGPIO In Sticky, Out Dis. 2	ISOD2	45h	n IInput sticky or output disable for IOE[15:0]			
EGPIO In Sticky, Out Dis. 3	ISOD3	46h	h Input sticky or output disable for IOF[10:0], IOG[4:0]			
USARTS:	USARTS:					
USART0 Divider	U0DV	50h	h Sets BAUD rate for the Control Port in USART format			
USART0 Configuration	U0C	52h	h Control Port USART0 enable, config., and interrupt status			
USART0 Receive	U0RX	54h	h Control Port USART0 receive data and status			
USART0 Transmit	U0TX	56h	6h Control Port USART0 transmit data and status			
USART1 Divider	U1DV	51h	1h Sets BAUD rate for the Debug Port in USART format			
USART1 Configuration	U1C	53h	Debug Port USART1 enable, config., and interrupt status	70		
USART1 Receive	U1RX	55h	Debug Port USART1 receive data and status	72		
USART1 Transmit	U1TX	57h	Debug Port USART1 transmit data and status	72		

Table 2-94: Control Bus Register Summary (Continued)

OS8805 MOST System On Chip 3 MOST Interface and Routing Bus

The MOST Processor contains a fully-compliant interface to the MOST Network and provides an efficient means to communicate streaming data between on-chip resources and the Network. The Processor consists of a ROM-coded RISC micro-controller and the appropriate logic to interface directly with the on-chip MOST fiber-optic transceiver. The MOST Processor transfers all its data across the Routing bus. The Source Converters are comprised of the mixed-signal ADCs and DACs and are described in the *Source Converters* Section.

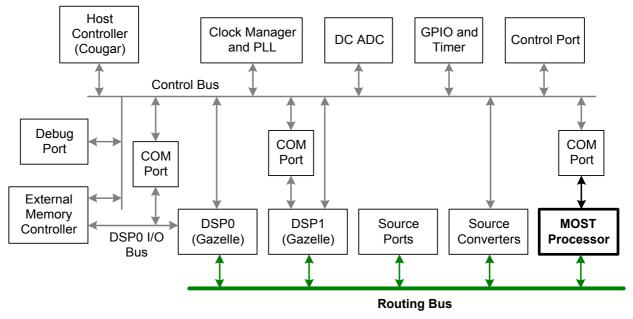


Figure 3-1: Routing Bus

3.1 Host Controller COM Port

The Host Controller COM port is an 8-bit parallel interface with some handshaking flow control signals. The MOST Processor expects a Memory Address Pointer (MAP), and then data during a write operation. During a read operation, it reads from the internal memory location pointed to by the MAP value previously written then increments the MAP pointer.

When the Controller writes the MAP byte to the COM port First/Last address register (RCF), the MOST Processor reads the corresponding MOST register and writes it back to the COM port. If the Host Controller reads this data from the Middle Address Register (RCM), MAP will automatically be incremented and the value from the new register location pointed to by MAP will be read by the MOST Processor and written to the COM port. If the Host Controller writes to the Middle Address (RCM), the MOST Processor will read the data and write it to the MOST register pointed to by MAP. Then, MAP will be incremented to point to the next register. See the Host Controller's *Inter-processor Communications* Section for more details on transferring data across the COM Port.

The MAP value is 8 bits which spans 256 bytes of the MOST Processor register space. The MOST Processor register space spans 1024 bytes or four pages of 256 bytes each. The last byte in each page is reserved for switching pages. Therefore, if the Host Controller writes the MAP to FFh (RCF = FFh), and then writes RCM to 0, 1, or 3 (page 2 is reserved); then the MOST Processor switches to the respective memory page. When the MAP is auto-incrementing and reaches the end of a page, it wraps to the beginning of the same page.

Downloaded from Arrow.com.

3.2 MOST Transceiver

OS8805

The MOST Transceiver interfaces to the MOST Optical Network. The receiver section, in conjunction with the Clock Manager peripheral of the Host Controller, recovers the clock, decodes the data, and passes the information to the Source Ports or DACs. The transmitter accepts data from the Source Ports or ADCs, or the MOST receiver, encodes the data, and transmits it across the Network. The transceiver can be configured as a Network timing-master or timing-slave. As a timing-slave, the transmitter (and the rest of the chip) is clocked by the receiver. The received bit stream is delayed by 2.5 bi-phase bit periods and retransmitted.

As a timing-master, the timing of the transmitter (and the rest of the chip) is determined by SCK, the external crystal, or an SPDIF channel entered through the source data port. The receiver PLL multiplies this timing source up to 3072xFs. The PLL-control resides in the Clock Manager peripheral on the Control bus. The receiver input pin, RX, is over-sampled by a high frequency clock and data is recovered by a digital state machine. Source data can only be transferred while the system is locked (CMCS.LOCK set). When the node goes from unlock to the lock state, three frames are required to synchronize the internal buffers before source data is correctly transferred by the MOST Processor.

3.2.1 MOST Routing Table (MRT) and Routing Ports

The MOST Processor uses the MOST Routing Table (MRT) to link Source Peripherals. Routing synchronous data between on-chip peripherals and the MOST Network is accomplished by filling the MOST Routing Table (MRT) with the addresses of where data should come from (the sources). The MRT specifies destinations where data is to be sent. Source Peripheral destinations include the MOST Network (transmit), DACs, DSPs (DR register in the DSP I/O space), and Source Ports (SX0 and SX1). Sources are defined by MOST Routing Addresses (MRA). Source Peripheral sources include the MOST Network (receive), ADCs, DSPs (DX register in the DSP I/O space), and Source Ports (SR0 and SR1). Routing is accomplished by placing the address of a source (MRA) into the MRT location for a particular destination.

The peripheral routing is synchronized to the SCK pin when the Source Ports are enabled. Therefore, for the upper MRT to work properly when the Source Ports are enabled (default state), SCK must be configured as an output, or when SCK and FSY are configured as inputs, proper external clocks must be applied.

The following Tables, determine how the MOST Processor transfers data across the Routing bus. The MRT is a memory location for outgoing data to the MOST Network, DSPs, Source Converter DACs, or Source Ports. The Tables also list the MOST routing addresses (MRA) for data coming from the MOST Network, DSPs, Source Converter ADCs, or Source Ports. For routing incoming data to an outgoing location, the incoming data address is placed in the outgoing MRT memory location.

Source Device	MOST Routing Locations (outputs) and Addresses (inputs) (Hex)
MOST Network	00-3B
SR0, SX0 port pins *	40, 48, 50, 58, 60, 68, 70, 78
SR1, SX1 port pins	41, 49, 51, 59, 61, 69, 71, 79
DSP0 Routing port - low byte	42, 4A, 52, 5A, 62, 6A, 72, 7A
DSP0 Routing port - high byte	43, 4B, 53, 5B, 63, 6B, 73, 7B
DSP1 Routing port - low byte	44, 4C, 54, 5C, 64, 6C, 74, 7C
DSP1 Routing port - high byte	45, 4D, 55, 5D, 65, 6D, 75, 7D
Source Converters - low byte	46, 4E, 56, 5E, 66, 6E, 76, 7E
Source Converters - high byte	47, 4F, 57, 5F, 67, 6F, 77, 7F

* When configured as SPDIF, left audio (most to least significant) is 50, 48, 40 and right audio is 70, 68, 60.

Table 3-1: MOST Processor MRA and MRT

MOST System On Chip

The words within the Source Converters are arranged as follows:

Source Converters	Addresses and Locations (Hex)					
Source converters	Upper Byte	Lower Byte				
Inputs (MRA address to be placed in MRT):						
Left Audio ADC	47	46				
MPX	4F	4E				
Right Audio ADC	57	56				
MPX	5F	5E				
Mic ADC	67	66				
MPX	6F	6E				
reserved	77	76				
MPX	7F	7E				
Outputs (MRT locations):						
DAC0	47	46				
reserved	4F	FE				
DAC1	57	56				
reserved	5F	5E				
DAC2	67	66				
reserved	6F	6E				
DAC3	77	76				
reserved	7F	7E				

Table 3-2: Source Converter Routing MRA and MRT

The Source Converters are routed in a similar fashion. Table 3-2 lists the MOST Processor addresses for the Source Converters. The MPX ADC is listed four times since it runs at 4xFs. The Mic ADC only runs at 0.25xFs; therefore, the data is repeated four times when transferring to the MOST Network (always at Fs).

Table 3-2 lists the MRT and defines the Source Peripheral destinations. Routing is accomplished by filling this table with the source address (MRA), which defines where the data comes from. The Host Controller fills this table through the MOST COM port. The MOST Processor then uses this table to route source data to the destinations. The first half of the table supports the 60 bytes of Synchronous data on the MOST Network (transmit data) and the last half of the table is peripherals that sink data (destinations).

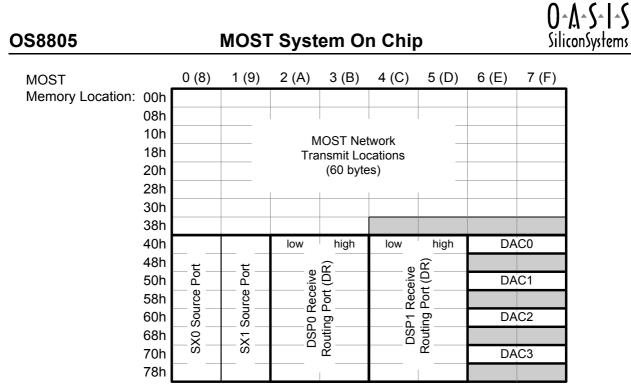


Figure 3-2: MOST Routing Table (Destinations)

Figure 3-3 illustrates the addresses for Source data. These addresses should be placed in the MRT to connect a source with a destination. The first half of the addresses are the received data from the MOST Network and the last half of the addresses are the peripherals that are data sources.

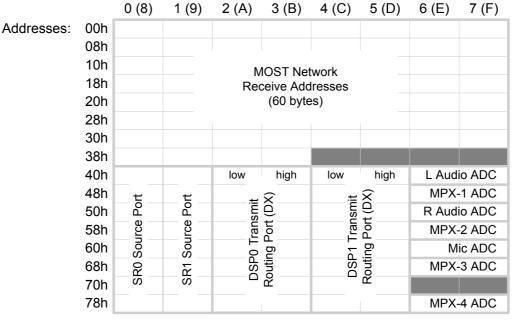
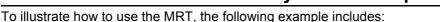



Figure 3-3: MRA Routing Addresses (Sources)

The special address reference F8h forces zero's to any desired output channel. Placing F8h in an MRT register tells the MOST Processor to output zero (0x00) for that particular destination byte. This may be used to force unused channels to zero (mute) or as a temporary remedy to mute all output peripheral channels when lock is lost.

MOST System On Chip

- Sending the Mic (source) to the MOST Network Synchronous bytes 04h and 05h.
- Sending Stereo audio data from the MOST Network received synchronous bytes 00h-03h to DAC0 (for left) and DAC1 (for right).
- Sending the MPX ADC data to DSP0, who then processes the data and outputs a stereo audio signal (4 bytes), which is sent to DSP1 for further processing.
- DSP1 takes the stereo audio data from DSP0, does its processing, and then outputs the data on both the MOST Network, synchronous bytes 08h-0Bh, and Source Port SX1. This illustrates that source addresses can go to multiple destinations.
- The audio ADCs are sent to the MOST Network, Synchronous bytes 20h-23h
- Lastly, any MOST Transmit bytes not used by the peripherals are connected to the same byte from the MOST Receiver. This allows flow-through of channels not used by this chip.

The MRT filled with the source addresses for this example is illustrated in Figure 3-4. The addresses to fill in the MRT are gotten from Figure 3-3.

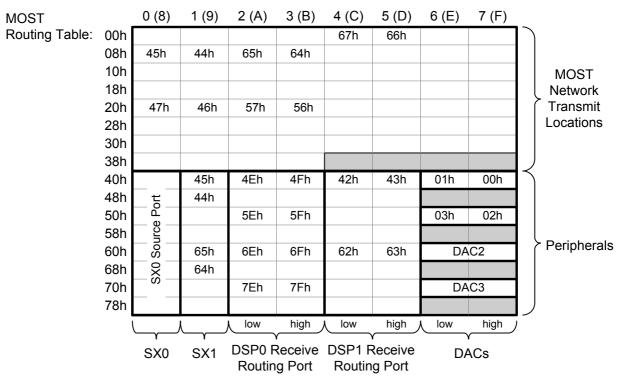


Figure 3-4: MRT Example - Step 1

To send the Mic data to the MOST Network, the Host Controller would have to write, through the MOST COM port, location 04h as the MAP (Memory Address Pointer). Then the Controller would write 67h, which goes to location 04h, and 66h, which goes to location 05h. For MOST Network synchronous data greater than one byte (channel), the most significant byte generally goes to the lowest location.

The second step is to get the MOST Network received stereo audio data from synchronous channels 00h-03h and send them to DAC0 and DAC1. The MOST Network receive addresses are placed in the MRT at the DAC0 and DAC1 destinations. Therefore, MRT locations for DAC0, 47h and 46h, must be programmed with the left channel addresses from the MOST received synchronous data, 00h and 01h, respectively. Likewise, the MRT locations for DAC1, 57h and 56h, must be programmed with the right channel addresses from the MOST Network, 02h and 03h, respectively.

O-A-S-I-S SiliconSystems

MOST System On Chip

The third step is to send the MPX ADC data to DSP0. The MPX ADC outputs 16-bit samples at 4xFs. The DSP0 receive routing port (DR) may be sampled at up to 8xFs. Which four of the eight DSP locations are used is entirely up to the programmer. For this example, the four MPX samples are spaced evenly in the DSP0 receive routing port: locations 42h, 43h for the first MPX sample (addresses 4Eh, 4Fh) through the last MPX sample (addresses 7Eh, 7Fh) at DSP0 receive locations 72h, 73h. DSP0 could use the **GTR.FS4** flag (through interrupt or polling) to synchronize to the MPX data sent by the MOST processor.

DSP0 processes the MPX ADC data and outputs a stereo stream that is sent to DSP1 for further processing. DSP1 gets DSP0's data by placing DSP0's transmit addresses 42h, 43h into DSP1's receive MRT locations 44h and 45h; and DSP0's transmit addresses 62h, 63h into DSP1's MRT locations 64h, 65h. As with the previous sequence, the particular two sampled used out of the eight DSP samples is purely arbitrary. For this example, each sample is spaced halfway through the DSP ports allowing the **GTR.FS2** flag to be used for synchronization between the two DSPs.

In the next step, DSP1 processes DSP0's output data and then sends the data to the MOST Network and the **sx1** Source Port. This illustrates that source data can be used for multiple destinations. Since DSP1 is outputting stereo data, the 2-of-8 samples selected are the same as the incoming data (spaced halfway through the 8xFs DSP routing port so **GTR.FS2** may be used to load the DSP's DX register). To output these two DSP1 samples onto the MOST transmit Network, the MOST MRT locations 08h-0Bh get 45h, 44h for the first sample, and 65h, 64h for the second. To send the same data to the **SX1** Source Port, the **SX1** Source Port MRT locations 41h, 49h get the DSP1 addresses 45h, 44h; and the **SX1** MRT locations 61h, 69h, get the DSP1 addresses 65h, 64h. This spaces the Source Port stereo data at the edges of the **FSY** signal (MSB-justified). Assuming the Source port is using 64-bits per frame, the Source Port timing is illustrated in Figure 3-5.

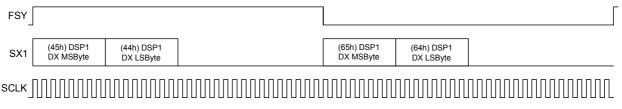


Figure 3-5: MRT Example - Source Port Routing

The last peripheral routing involves sending the left and right audio ADCs out on the MOST Network. This example uses the MRT locations 20h-23h. The standard ordering calls for left before right and most-significant byte first (at lowest address). Therefore, using Figure 3-3 addressing, the Left Audio ADC MS-Byte address (47h) is placed at MRT 20h and the LS-Byte address (46h) is placed at MRT 21h. For the Right Audio ADC, the MS-Byte address (57h) goes in MRT location 22h, and the LS-Byte address (56h) goes in MRT location 23h.

MOST System On Chip

Now that all the routing is finished (and illustrated in Figure 3-4), the rest of the MOST Transmit synchronous data is generally filled with the address of the corresponding MOST receive synchronous data - which is the power-up default value. This supports flow-through data from other devices in the MOST Network. The finished MRT is illustrated in Figure 3-6. To further explain, the MOST received synchronous data channels 00h-03h are sent to DAC0 and DAC1. The same data is also passed through to the MOST transmit synchronous network (MRT locations 00h-03h) for other devices on the MOST Network to use.

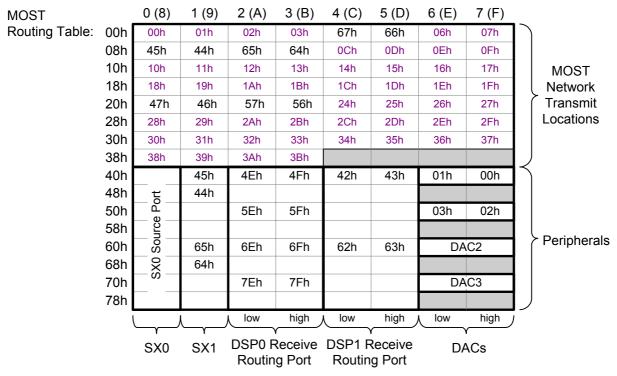


Figure 3-6: MRT Example - Finished Table

MOST System On Chip

The power-up default values for the MRT are illustrated in Figure 3-7. The MRT section for the MOST Network transmit section is filled with the corresponding MOST receive bytes. Therefore, when the transceiver is taken out of *All-Bypass* mode, all the bytes received from the MOST Network will be retransmitted. The stream peripheral section of the MRT (upper half) contains F8h by default, which sends zeros to any of the peripherals that are enabled.

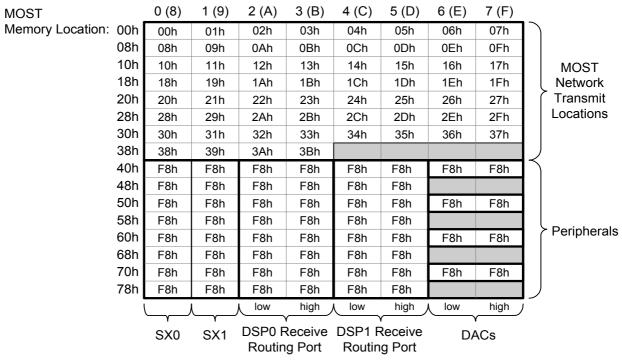


Figure 3-7: MRT Power-Up Defaults

Figure 3-2 and Figure 3-3 depict the Source Port signals supporting the maximum of eight bytes each. The full eight bytes are used when the Source Ports are programmed for 64 bits per frame (bSDC1.NBR[1:0] = 00). Table 3-3 depicts the MOST Routing Table locations for all the different bit-per-frame formats supported on SX0 and SX1 and Table 3-4 depicts the MOST Routing Addresses for SR0 and SR1.

Cignal	Bits per	Byte								
Signal	Frame	First							Last	
	*64 - in/out	40h	48h	50h	58h	60h	68h	70h	78h	
	48 - out	40h	4	8h	58h	60h	6	8h 78h		
SX0	32 - out	4	Oh	5	8h	6	0h	78h		
	*32 - in	4	0h	50h		60h		70h		
	SPDIF	40h	48h	50h	58h	60h	68h	70h	78h	
	*64 - in/out	41h	49h	51h	59h	61h	69h	71h	79h	
SX1	48 - out	41h	4	9h	59h	61h	6	9h	79h	
	32 - out	4	1h	5	59h		61h		79h	
	*32 - in	4	1h	5	1h	6	1h	7	1h	

* When SCK is an input (in), the clock is assumed continuous (not a gated clock).

Table 3-3: Source-Port MOST Routing Table for SX0, SX1

MOST System On Chip

Signal	Bits per	Byte							
Signal	Frame	First							Last
	*64 - in/out	40h	48h	50h	58h	60h	68h	70h	78h
	48 - out	40h	40h 50		58h	60h	70h 7		78h
SR0	32 - out	5	Oh	5	8h	7	0h 78h		8h
	*32 - in	48h		58h		68h		78h	
	SPDIF	40h	48h	50h	58h	60h	68h	70h	78h
	*64 - in/out	41h	49h	51h	59h	61h	69h	71h	79h
SR1	48 - out	41h	5	1h	59h	61h	7	1h	79h
	32 - out	5	1h	59h		71h		79h	
	*32 - in	4	9h	5	9h	6	9h	7	9h

* When SCK is an input (in), the clock is assumed continuous (not a gated clock).

Table 3-4: Source-Port MOST Routing Addresses for SR0, SR1

The MRT locations for SX0 (SX1) and the MRA addresses for SR0 (SR1) with respect to timing on the Source Ports is shown pictorially in Figure 3-8.

FSY									
SCL	K I/O:								
64									
SX0 (1)	40h (41h)	48h (49h)	50h (51h)	58h (59h)	60h (61h)	68h (69h)	70h (71h)	78h (79h)	
SR0 (1)	40h (41h)	48h (49h)	50h (51h)	58h (59h)	60h (61h)	68h (69h)	70h (71h)	78h (79h)	
SCLK	SCLK Output Only:								
48									
SX0 (1)	40h (41h)	48h (49h)		58h (59h)	60h (61h)	68h (69h)		78h (79h)	
SR0 (1)	40h (41h)	50h (51h)		58h (59h)	60h (61h)	70h (71h)		78h (79h)	
32									
SX0 (1)	40h (41h)			58h (59h)	60h (61h)			78h (79h)	
SR0 (1)	50h (51h)			58h (59h)	70h (71h)			78h (79h)	
SCL	SCLK Input Only:								
32	32/////////////////////////////////////								
SX0 (1)	40h (41h)	50h ((51h)	60h (61h)		70h	70h (71h)	
SR0 (1)	48h (49h)	58h ((59h)	68h ((69h)	78h ((79h)	

Figure 3-8: MRT Addresses with respect to Source Port Timing

3.2.1.1 Routing Limitations

Certain routing limitations exist when routing from peripheral data sources to sinks. No limitations exist when routing peripherals to or from the MOST Network, or routing from the receive to transmit portions of the MOST Network. These routing limitations exist due to the asynchronous nature of an FSY (input or output) that all the Source Peripherals are synchronized to, and the MOST Network receive and transmit start of frame.

Final Product Data Sheet Restricted Access

MOST System On Chip

To guarantee that all transmitted bytes are delayed the same amount (entered the chip at the same time - or are coherent) when entering MRA Source Peripherals into MRT Source Peripherals (destinations) MRT locations 40h-47h should not contain any of the MRA values between 78h and 7Fh. In addition, for systems that do not comply with the *MOST Specification of Physical Layer*, the delay from transmit start-of-frame (**TX**) to receive start-of-frame (**RX**) should be limited to less than $9/16^{\text{ths}}$ of a frame. This condition only applies to the timing-master node. If the MOST Physical Layer specification is met, then a network delay this large cannot occur.

As an example, if DSP0 transferred a stereo 16-bit data to DAC0/1 and its DX register is loaded at times corresponding to MRA 7Ah (left sample) and 5Ah (right sample); then MRT46 = 7Ah, MRT47 = 7Bh for left, and MRT56 = 5Ah, MRT57 = 5Bh for right. The stereo pair would not be coherent, since:

- DAC0 resides in the MRT area of 40h-47h, and
- the DSP0 output routing of 7Ah/7Bh are within the MRA values (78h 7Fh) that should not be routed to the MRT values above.

However, if the left and right samples are swapped, so MRA 5Ah is the left sample and 7Ah is the right sample, then MRT46/47 = 5Ah/5Bh and MRT65/57 = 7Ah/7Bh, the routing limitation is avoided, and the stereo sample is coherent. Therefore, this routing limitation can be avoided by judicious use of the MRA values when routing to MRT locations 40h to 47h.

3.2.2 SPDIF Mode (SR0/SX0)

The Source Port pins SX0 and SR0 can be configured to support SPDIF by setting **bSDC1.MOD[1:0]** = 10. In addition, if the chip is the Network timing-master, the master clock source can be the SPDIF data stream on SR0 by setting **CMCS.MX[1:0]** = 11.

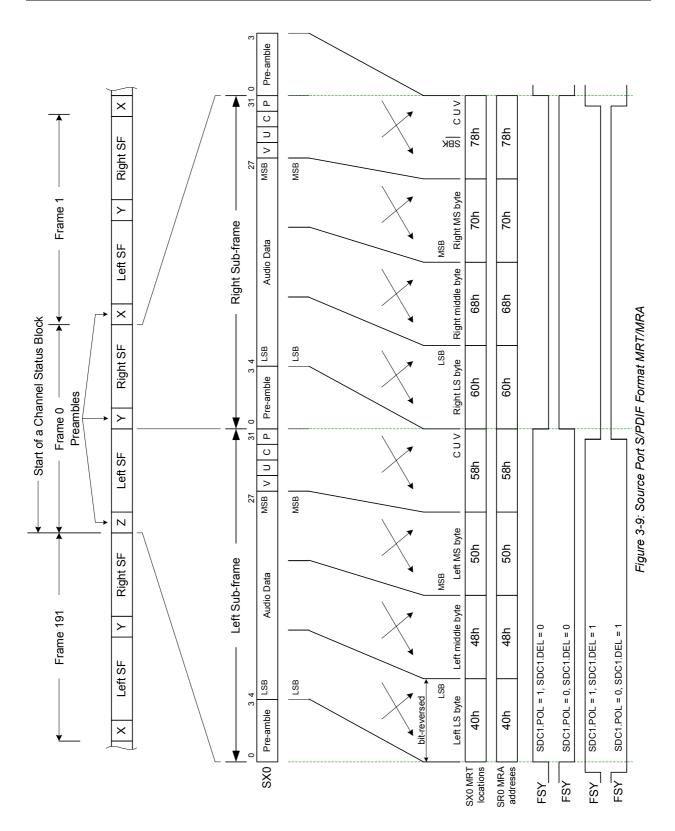
An SPDIF frame consists of two sub-frames: the left channel and the right channel sub-frame. Each subframe consists of a pre-amble for identification, 24 audio bits, three control bits (V, U, C), and a parity bit P. Three MRT addresses support the 24 audio bits per sub-frame. The fourth address contains the V, U, and C control bits. The MRT addresses for SPDIF data are illustrated in Figure 3-9.

A synchronous block bit, **SBK** is added to the control byte, and is high in the right sub-frame just prior to the start of an SPDIF channel status block boundary (the Z preamble), on the received SPDIF data (**SR0**).



Table 3-5: SPDIF Sub-frame Control Byte

For the transmitted SPDIF data on SX0, the Z preamble is transmitted every 192 SPDIF frames. If the control byte received from the Routing bus contains the SBK bit, then the transmitted data will be resynchronized to the SBK bit, by transmitting the Z preamble in the next transmitted frame on SX0.


Source data is transmitted across the Most Network MSB-first. Since S/PDIF data is transmitted LSB-first, each byte is bit-reversed before transmission. Therefore, data bytes received from SR0 are bit-reversed before transmitting across the Routing bus. Likewise, bytes received from the Routing bus are bit-reversed before transmitting out the SX0 pin.

The SPDIF receiver checks for parity and bi-phase coding errors. If an error occurs, the validity bit (V) of the erred sub-frame is automatically set.

MOST Network synchronous data that is greater than one byte (channel) generally places the most significant byte in the lowest MRT location. To place the 16 most significant bits of SPDIF left data from the received **SR0** pin on the MOST Network, channels 0 and 1 and the right SPDIF data on channels 2 and 3; the received-SPDIF most-significant-byte address 50h would be placed in the MRT table location 00h and the middle-byte address 48h would be placed in MRT location 01h. For the right channel, the received-SPDIF address 70h would be placed in MRT location 02h, and SPDIF address 68h in MRT location 03h.

MOST System On Chip

O-A-S-I-S SiliconSystems

OS8805 MOST System On Chip

3.2.3 MOST Configuration Registers

For the MOST Processor registers, a prefix is added to the register name to help discern between byte and word registers, as well as buffers. A prefix of 'b' indicates a byte-wide register. A prefix of 'w' indicates a 16-bit word-wide register, and a prefix of 'm' indicates a multi-byte buffer.

80h	bXCR	Transceiver Control Register	MOST
Bit	Label	Description	Default
7	MTR	timing-Master/Slave select	0
6	OE	Transmitter output enable	0
5	NMEN	MOST Network enable. 1 is Network enabled. 0 is factory test mode.	1
4	rsvd	Reserved, Write to 0.	0
3	rsvd	Reserved, Write to 0.	0
2	SBY	Source data bypass	0
1	ABY	All Bypass	0
0	rsvd	Reserved, Write to 0	0

Table 3-6: bXCR Register

MTR Timing Master/Slave select.

- 0 Device is MOST Network timing-salve node. **RX** must be set as timing source (**CMCS.MX[1:0]** = 10).
- 1 Device is MOST Network timing-master node. Only one device can be timing-master in the Network. The timing source, set through CMCS.MX[1:0] bits, cannot be RX. When set to timing-master, bSBC must be configured and a *Deallocate All* message must be sent.
- OE Transmitter Output Enable. Only has affect when $\overline{ABY} = 1$.
 - 0 Transmitter output disabled. Output held low.
 - 1 Transmitter output enabled.

NMEN Network Mode Enable.

- 0 A factory test mode.
- 1 Normal Mode operation.(must be set for normal operation).

SBY Source data Bypass for timing-slave nodes (MTR clear).

- 0 Synchronous source data can be exchanged with the Network. The node increments the system's delay counter (bNDR) by one and the delay through the node for synchronous source data is two frames. Routing to and from the MOST Network is managed by the MRT.
- Source data directly bypassed within the transceiver. No routing to/from the MOST Network is possible, and bNDR is not incremented.

ABY All Bypass.

0 – Transceiver is bypassed. Part not visible to the Network, and bNPR is not incremented.
 Signal at RX electrically connected to TX. The delay from RX to TX is approximately 7 ns.
 1 – OS8805 interacts with the Network. Data can be sourced and sinked. Control messages

can be sent. The delay from **RX** to **TX** is one bit period $\left(\frac{1}{512 \times Fs}\right)$ plus 7 ns. The node

increments the system's position counter (bNPR).

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

a a in same Ota tura. Da mia ta m

MOST

81h	bXSR	Transceiver Status Register	MOST			
Bit	Label	Description	Default			
7	rsvd	Reserved, Write to 0.	0			
6	MSL	Mask SPDIF lock error	0			
5	MXL	Mask transceiver lock error	0			
4	ME	Mask coding error	0			
3	ERR	All error capture	0			
2	rsvd	Reserved, Write to 0	0			
1	ESL	Error capture SPDIF	0			
0	EXL	Error capture transceiver	0			
MSL	1 – SPDIF le	ock error captured by bXSR.ERR and ERR pin. ock error ignored.				
MXL	Mask transc	ock error ignored. eiver lock error. iver lock error captured by bXSR.ERR and ERR pin.				
		iver lock error ignored.				
ME	stream (doe 0 – Coding (g error. A coding error is a bi-phase violation or parity error from the is not apply to S/PDIF input). error captured by bXSR.ERR and ERR pin. error ignored.	Network bit-			
ERR	in an unmas	 1 – Coding error ignored. All error capture. Errors not masked by MSL, MXL, or ME. When set, indicates an error occurred in an unmasked error condition, or a power-on ready condition. This bit is sticky and cleared by writing a 0 to it. This bit is OR'ed with bMSGS.ERR. If bMSGS.ERR is set, and the interrupt 				

- by writing a 0 to it. This bit is OR'ed with **bMSGS.ERR**. If **bMSGS.ERR** is set, and the interrupt enable **bIE.IERR** is set, the MOST Routing Processor will set **RCS.INT**, which can interrupt the Host Controller. See Figure 3-10.
- ESL Error capture SPDIF. When set, indicates an error occurred on the SPDIF incoming source data port. This bit is sticky and cleared by writing a 0 to it.
- EXL Error capture transceiver. When set, indicates that an error occurred on the network transceiver. This bit is sticky and is cleared by writing a 0 to it.

84h	bNC	Network Control	MOST
Bit	Label	Description	Default
72	rsvd	Reserved, Write to 0.	000000
1	APREN	Asynchronous Packet Receive Enable.	0
0	RWD	Remote Write disable	0

Table 3-8: bNC Register

- APREN Asynchronous Packet Receive Enable. This bit must be clear on revisions prior to G, which do not support asynchronous packets.
 - 0 MOST Processor ignores received Asynchronous Packets.
 - 1 Enables reception of Asynchronous Packets. MOST Processor high-speed bit MMPC.RFS1 must be set to meet the proper timing when APREN is set.

RWD Remote Write Disable.

- 0 *Remote Write* Control messages (transmit message type bXTYP = 02h) are supported. Other nodes are allowed to write to page 0 registers of the MOST Processor.
- 1 *Remote Write* Control messages (transmit message type bXTYP = 02h) are blocked. Other nodes cannot write to any of the MOST Processor registers; however, *Remote Reads* are allowed. Nodes sending *Remote Write* messages will get the bXTS response of 0x11 (transmit message type not supported).

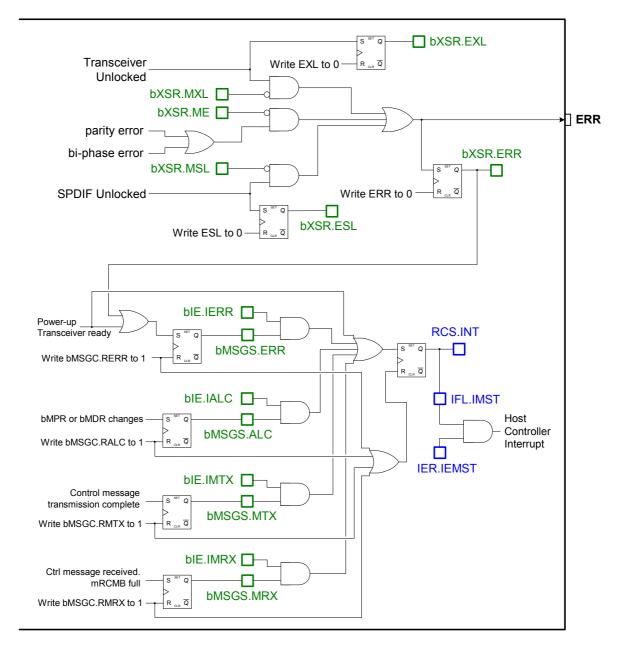


Figure 3-10: MOST Transceiver Errors and ERR Pin

OS8805		MOST System On Chip	SiliconSystems
87h	bNPR	Node Position Register	MOST
Bit	Label	Description	Default
70	NP[7:0]	Node Position Register.	00h

Table 3-9: bNPR Register

NP[7:0] Node Position. Represents the chip's physical node position in the network. Enumeration starts with 00h at the timing-master node. The timing-slave node connected to the timing-masters TX pin, has node position 01h, and so on. Nodes in all-bypass mode (bXCR.ABY clear) are invisible to the Network and do not increment NP[7:0]. Sets the node's physical address to 0x400 + NP[7:0]. Not valid until after Network lock (bCM2.LOK) is established.

88h	bIE	Interrupt Enable	MOST
Bit	Label	Description	Default
74	rsvd	Reserved. Write to 0.	0000
3	IALC	Allocation change interrupt enable. When set, allows interrupts when bMSGS.ALC gets set.	0
2	IERR	MOST Network Error interrupt enable. When set, allows interrupts when bMSGS.ERR gets set. The Transceiver power-on ready is not masked by this bit.	0
1	IMTX	Message transmitted interrupt enable. When set, allows interrupts when bMSGS.MTX gets set.	0
0	IMRX	Message received interrupt enable. When set, allows interrupts when bMSGS.MRX gets set.	0

Table 3-10: bIE Register

89h	bGA	Group Address	MOST
Bit	Label	Description	Default
70	GA[7:0]	Group Address for Control messages sent out as Group-cast.	*
* At now or	up the default is	indeterminate. Once written the value is retained even if the shin is react	

* At power-up the default is indeterminate. Once written, the value is retained even if the chip is reset.

Table 3-11: bGA Register

GA[7:0] Group Address. Sets the nodes group address (group-cast) to 0x300 + GA[7:0]. A Control message sent to the group address is received by all nodes that have their bGA register set to the same value. C8h is not allowed in bGA as this is the Broadcast address (3C8h) for all nodes.

8Ah	bNAH	Node Address High	MOST
Bit	Label	Description	Default
70	NA[15:8]	Node Address High.	0Fh

Table 3-12: bNAH Register

NA[15:8] Node Address High. The high portion of the Logical address, bits 11 through 8. Together with bNAL, it forms the 12-bit Logical address used for Control messages. The default address after reset is 0FFFh. Valid addresses are 0001h - 02FFh.

 0^{A}

MOST System On Chip

O-A-S-I-S SiliconSystems

8Bh	bNAL	Node Address Low	MOST
Bit	Label	Description	Default
70	NA[7:0]	Node Address Low.	FFh

Table 3-13: bNAL Register

NA[7:0] Node Address low. The lower byte of the Logical address, bits 7 through 0. Together with bNAH, it forms the 12-bit Logical address used for Control messages. The default address after reset is 0FFFh. Valid addresses are 0001h - 02FFh.

8Eh bCM2 Clock Manager 2 (read only) MOST

Bit	Label	Description	Default
7	LOK	PLL Lock status. When set, indicates that the PLL is NOT locked. When clear, the PLL is locked.	1
6	NNAC	No Network Activity status. When set, activity is NOT detected on the MOST Network. When clear, activity is detected on the Network.	1
50	rsvd	Reserved. Write to 0.	00010

Table 3-14: bCM2 Register

8FH	bNDR	Node Delay Register	MOST
Bit	Label	Description	Default
70	D[7:0]	Network Node delay.	00h

Table 3-15: bNDR Register

D[7:0] Node Delays. Indicates the number of Synchronous Source data node delays between this node and the timing-master node. If this node is not in Source data bypass mode (bxCR.SBY clear), it will increment bNDR and pass the value to the next node. The time delay per node is two frames. Only valid after lock (bCM2.LOK) is established.

90h	bMPR	Maximum Position Register	MOST
Bit	Label	Description	Default
70	D[7:0]	Total number of nodes in the Network.	00h

Table 3-16: bMPR Register

D[7:0] Maximum Position. Indicates the total number of nodes in the network. A change of this register sets **bMSGS.ALC** and generates an interrupt if **bIE.IALC** is set. Nodes in all-bypass mode (**bXCR.ABY** clear) are invisible to the Network and not counted. Only valid after lock (**bCM2.LOK**) is established and Network initialization is complete. Valid bMPR values are 0-63, where 0 indicates 64 nodes in the ring.

91h	bMDR	Maximum Delay Register	MOST
Bit	Label	Description	Default
70	D[7:0]	Maximum Delay through the network	00h

Table 3-17: bMDR Register

D[7:0] Maximum Delay. Indicates the total number of node delays for synchronous source data within the Network. A change of this register sets **bMSGS.ALC** and generates an interrupt if **bIE.IALC** is set. Nodes in Source-Data bypass mode (**bXCR.SBY** set) are not counted as they add no source delay. Only valid after lock (**bCM2.LOK**) is established and Network initialization is complete.

OS8805		MOST System On Chip	SiliconSystems
96h	bSBC	Synchronous Bandwidth Control	MOST
Bit	Label	Description	Default
74	rsvd	Reserved. Write to 0.	0000
30	SAC[3:0]	Number of synchronous quadlets. Valid range is 06h through 0Fh.	0000

Table 3-18: bSBC Register

SAC[3:0] Synchronous Area Count – in quadlets. Can only be modified in the timing-master device (**bXCR.MTR** set), and only valid after lock (**bCM2.LOK**) is established. Specifies the number of quadlets reserved for synchronous data. The rest of the 15 quadlets may be used for asynchronous data. Therefore, this value specifies the boundary between synchronous and asynchronous data. In a timing-slave device, this register is read-only. Valid values are from 06h to 0Fh inclusive, where:

06h – 6 quadlets for synchronous data and 9 for asynchronous data (minimum value).

0Fh – All 15 quadlets for synchronous data and no asynchronous data. Although the chip supports 0Fh (no asynchronous data), the MOST Specification requires at least one quadlet be reserved for asynchronous data, making the maximum 0Eh.

The default value is NOT valid. This register MUST be programmed to a valid value for proper Network operation.

Whenever bSBC is changed, the timing-master node *must* send the *De-allocate All* system Control message to initialize the mCRA properly.

97h	bXSR2	Network Transceiver Status Register 2	MOST
Bit	Label	Description	Default
72	rsvd	Reserved. Write to 0.	000000
1	INV	Bi-phase Inversion control. When set, inverts the bi-phase data sent to the PLL and XCR, which affects the polarity of pulse-width distortion tolerated by the device. This value should be optimized for the respective FOR device used.	0
0	rsvd	Reserved. Write to 0.	0

Table 3-19: bXSR2 Register

380h	mCRA	Channel Resource Allocation table	MOST
Byte	Label	Description	Default
00h	bCRA0	Channel Allocation Status for MOST Synchronous data byte 0	70h
01h	bCRA1	Channel Allocation Status for MOST Synchronous data byte 1	70h
		to	
3Ah	bCRA58	Channel Allocation Status for MOST Synchronous data byte 58	70h
3Bh	bCRA59	Channel Allocation Status for MOST Synchronous data byte 59	70h

Table 3-20: mCRA Table

The mCRA contains the current allocation status for each MOST Network synchronous byte, or channel. The valid table size is based on the bSBC value (how many quadlets are reserved for synchronous data), where the last valid byte is calculated as follows:

last mCRA byte = $380h + (bSBC \times 4) - 1$

In each byte, the MSB (most significant bit) is interpreted separately from the lower seven bits. Timingslave nodes (**bXCR.MTR** clear) must ignore the MSB, which can only be interpreted by the timing-master node. In the timing-master, the MSB set indicates a channel is in use, and the MSB clear indicates a channel is not in use. The lower seven bits contain the Connection Label, which is loaded into each byte (phys-

 $\bigcap_{A} \bigwedge_{A} \bigcap_{A} \bigcap_{A$

MOST System On Chip

ical synchronous channel) associated with the logical channel. The value of 70h indicates that a channel is not allocated. The Connection Label is the physical channel address of the first byte in the logical grouping. Therefore, if the four physical channels allocated to a request are 00, 01, 02, and 03; then the Connection Label for the whole group is 00. At reset, all values in the mCRA are set to 70h (bytes are not allocated and are not in use).

Once lock is achieved and bSBC is set properly, the mCRA must be initialized by the timing-master node by sending a *De-allocate All* system Control message to itself. The *De-allocate All* message is derived from the *Resource De-allocate* Control system message, with the Connection Label set to 7Fh.

3.2.4 MOST Control Message Registers

In the MOST Specification, the Control messages have the appearance of:

```
SrcAdr -> TrgAdr: FBlockID.InstID.FktID.OpType.Length(Parameter)
```

The SrcAdr is the Source Address (the Node Address of the device sending the message), the TrgAdr is the Target Address. The MOST Control message Length parameter supports lengths of up to 4095 bytes, which is greater than the eleven bytes of the MOST Spec. Control message. The Length parameter is indirectly coded in the TeIID and TeILen fields.

In addition, the Length field is generally hidden when CF messages are described. Since only one of a particular FBlock exists in a typical system, the *Instance ID* can also be omitted, and is coded as 0. This would make the MOST Spec Control message appear as follows:

SrcAdr -> TrgAdr: FBlockID.FktID.OpType(Parameter)

A variant listed in the *MOST Specification* lists functions which are in a device. The actual device is termed DeviceID and would be the target address (TrgAdr) when sending a command to that function in that particular device. The format follows:

DeviceID.FBlockID.InstID.FktID.OpType.Length(Parameter)

A Control message is transmitted through the mXCMB buffer and received through the mRCMB buffer. The relationship between the normal Control message above, and the buffers are illustrated in Figure 3-11. This Figure illustrates the alignment of the Control message to the buffers, but does not indicate all the information required to send an actual message.

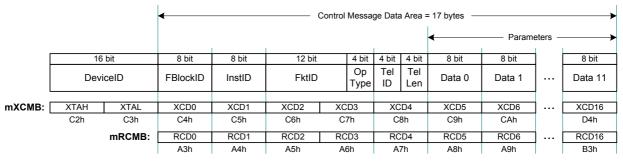


Figure 3-11: Control Message Buffers

The following registers are used to send and receive Control messages. Control messages send are divided into two groups: normal - where the transmit message type is 00h, and system - where the transmit message type is anything other than 00h.

MOST System On Chip

O-A-S-I-S SiliconSystems

OS8805

85h	bMSGC	Message Control	MOST
Bit	Label	Description	Default
7	STX	Start Transmission	0
6	RBE	Receiver buffer enable	0
5	RES	MOST Processor reset	0
4	SAI	Start address initialization	0
3	RALC	Reset Allocation change interrupt	0
2	RERR	Reset Error and Power-on after start-up interrupt	0
1	RMTX	Reset Message transmitted interrupt	0
0	RMRX	Reset Message received interrupt	0

Table 3-21: bMSGC Register

- STX Start Transmission. When set, starts transmission of a control message previously written into the Transmit Control Message Buffer, mXCMB. When the transmission starts, **STX** is cleared automatically. The result is indicated by the **bMSGS.TXR** bit.
- RBE Receive Buffer Enable. When set, the Receive Control Message Buffer, mRCMB, is free to receive a new message. **RBE** is automatically cleared when the MOST Processor finishes the releasing procedure. **RBE** should only be set after the current message has been read or if the received message is to be ignored.
- RES MOST Processor reset. When set, the MOST Processor resets all of the MOST Processor, including bXCR, the COM ports, and the MOST Routing Table (MRT).
- SAI Start Address Initialization. When set, starts address verification using the address previously written into the mXCMB as target address. After the address is verified as unique in the network, it is stored in the Node Address register bNAH, bNAL. The result of address initialization is indicated by the bMSGS.TXR bit. SAI is automatically cleared.
- RALC Reset Allocation change interrupt. When set, the Allocation Change Interrupt bit, **bMSGS.ALC** is cleared. **RALC** is automatically cleared.
- RERR Reset Error and Power-on after start-up interrupt. When set, the **bMSGS.ERR** bit is cleared. **RERR** is automatically cleared.
- RMTX Reset Message Transmit interrupt. When set, the **bMSGS.MTX** bit is cleared. **RMTX** is automatically cleared.
- RMRX Reset Message Receive interrupt. When set, the **bMSGS.MRX** bit is cleared. **RMRX** is automatically cleared.

MOST System On Chip

86h	bMSGS	Message Status	MOST	
Bit	Label	Description	Default	
7	RBS	Receive buffer status	0	
6	TXR	Transmit message status	0	
5, 4	rsvd	Reserved, Write to 0	00	
3	ALC	Allocation change	0	
2	ERR	Error or Power-on event	0	
1	MTX	Message transmitted	0	
0	MRX	Message received	0	
		Table 3-22: bMSGS Register		
RBS		er status. buffer is available for the next received message. buffer is locked with a received message.		
TXR		n Result. smission failed. An error code is in bXTS. smission was successful.		
ALC	bMDR has c	nange. When set, indicates that one or more of the allocation registe hanged. ALC is cleared by setting bMSGC.RALC. ALC can generate a C ne Host Controller if bIE.IALC is set.		
ERR	bMSGS.ERR is	set, indicates a power-on ready event or an error event that set bXSF s cleared by setting bMSGC.RERR . ERR can generate a COM Port inter ler if bIE.IERR is set. See Figure 3-10.		
MTX	status. MTX is	ansmitted. When set, message transmission is complete with TXR in s cleared by setting bMSGC.RMTX. MTX can generate a COM Port inteller if bIE.IMTX is set.		
MRX	•	ceived. When set, a message is in the receive buffer mRCMB. MRX i c.RMRX . MRX can generate a COM Port interrupt to the Host Controll		

MOST System On Chip

A0h	mRCMB	Receive Control Message Buffer	MOST
Byte	Label	Description	Default
00h	bRTYP	Received Message Type	00h
01h	bRSAH	Source Address High	00h
02h	bRSAL	Source Address Low	00h
03h	RCD0	Received control byte 00h	00h
04h	RCD1	Received control byte 01h to	00h
 12h	 RCD15	Received control byte 0Fh	 00h
13h	RCD16	Received control byte 10h	00h

Table 3-23: mRCMB Buffer

- bRTYP Received Control message type. bRTYP indicates the type of address used to send the message.
 - 00h Logical addressing (address in bNAH/bNAL).
 - 01h Physical addressing (0x400 + bNPR).
 - 02h Broadcast addressing (0x3C8).
 - 03h Groupcast addressing (0x300 + bGA).
- bRSAH Source Address high. High-nibble of the logical address of the device which sent the message.
- bRSAL Source Address low. Low-byte of the logical address of the device which sent the message.
- RCD[16:0] Received Control message bytes. When a message is received, **bMSGS.RBS** is set which locks this buffer from further writing and indicates that a message was received. To unlock this buffer for the next message, **bMSGC.RBE** must be set.

bXTIM	Transmit Retry Time Register	MOST
Label	Description	Default
D[7:0]	Time between transmission retries.	0Bh
	Label	Label Description

Table 3-24: bXTIM Register

D[7:0] Time between transmit Control message retries. Specifies the number of Control message periods to wait before attempting a retry. The minimum value is 03h. The time for one control message is (approximately):
 363 µs at Fs = 44.1 kHz
 333 µs at Fs = 48 kHz.

BFh	bXRTY	Transmit Retry Register	MOST
Bit	Label	Description	Default
70	D[7:0]	Total transmission attempts. Specifies the number of transmission attempts/retries. The minimum value is 01h, the maximum value FFh.	06h

Table 3-25: bXRTY Register

D[7:0] Transmission Retry. Total number of attempts at transmitting a Control message, if the transmission fails. The minimum value is 01h. The default value of 06h indicates 5 retries (plus the initial attempt).

MOST System On Chip

C0h	mXCMB	Transmit Control Message Buffer	MOST
Byte	Label	Description	Default
00h	bXPRI	Transmit Priority	00h
01h	bXTYP	Transmit Control message type	00h
02h	bXSAH	Target Address High	00h
03h	bXSAL	Target Address Low	00h
04h	XCD0	Transmit control byte 00h	00h
05h	XCD1	Transmit control byte 01h	00h
		to	
13h	XCD15	Transmit control byte 0Fh	00h
14h	XCD16	Transmit control byte 10h	00h

Table 3-26: mXCMB Buffer

- bXPRI Transmit Priority. Specifies the priority, used for Network arbitration, for the transmit message. 00h – lowest priority 0Fh – highest priority
- bXTYP Transmit message type.
 - 00h Normal message, using any of the addressing options (logical, group, etc.).
 - 01h Remote Read system message.
 - 02h Remote Write system message. Only valid for receiving nodes with bNC.RWD bit clear.
 - 03h Resource Allocate system message.
 - 04h Resource De-allocate system message.
 - 05h Remote GetSource system message.
- bXSAH Target Address high. High portion of the destination device address.
- bXSAL Target Address low. Low byte of the destination device address. Through bXSAH/bXSAL, different addressing modes are supported (0000h is not valid):
 - 0001h 02FFh: Logical addressing. The receiving node's logical address, bNAH/bNAL.
 03C8h: Broadcast addressing to all nodes. Use of Broadcast addressing should be minimized since all nodes stop transmission attempts until all nodes have received the broadcast message, thereby lowering the overall Network Control message bandwidth.
 0300h-03FhF: Groupcast addressing. The receiving node's bGA register.
 0400h-043Fh: Physical addressing. The receiving node's position register, bNPR.
 0440h-0FFFh: reserved.
- XCD[16:0] Transmit Control message. When this transmit buffer is loaded, then **bMSGC.STX** should be set, causing the message to be transmitted. The transmission result is indicated by **bMSGS.TXR** with the status in bXTS.

_	D5h	bXTS	Transmit Status Register	MOST
	Bit	Label	Description	Default
	70	XTS[7:0]	Transmission Results.	00h

Table 3-27: bXTS Register

XTS[7:0] Transmission results. Reflects the results of the last control message transmission.

- 00h Transmission failed. Target device did not respond.
- 10h Transmission successful.
- 11h Transmission successful, but receiving device doesn't support the message type used. Nodes with **bNC.RWD** set will return this response to a *Remote Write* system message.
- 20h Transmission failed. Wrong CRC.
- 21h Transmission failed. Target device receive buffer full.

MOST System On Chip

3.2.4.1 System Control Messages

A non-zero transmit message type (bXTYP in mXCMB) is defined as a system Control message. Normal Control messages (bXTYP = 0) are sent to nodes which receive the message and store the message in its mRCMB receive message buffer. When a system message is sent, the target node responds in the same transmitted message with its receive buffer remaining untouched. The responses to the system message are stored in the *sender's* transmit buffer, mXCMB. Using this method, system messages are handled in the background and have no effect on normal Control message flow.

System messages are handled by on-chip hardware and do not require extra software in the Host Controller. In contrast, normal Control messages are sent to a target node's receive buffer, where the message is stored until Host Controller software reads the message and reacts. Table 3-28 illustrates the values transmitted (Tran) and the responses (Rec) for each system message. The '=' sign indicates that the received data is the same as the transmitted data, and blank cells are reserved. The transmit priority, bXPRI is generally left at the default value of 01h.

mXCMB	Remote	e Read	Remot	e Write	Resou	rce Allocate	Resource	De-allocate	Remote G	GetSource
Addr.	Tran	Rec	Tran	Rec	Tran	Rec	Tran	Rec	Tran	Rec
C0h	bXPRI	=	bXPRI	=	bXPRI	=	bXPRI	=	bXPRI	=
C1h	01h	=	02h	=	03h	=	04h	=	05h	=
C2h	bXSAH	=	bXSAH	=	04h	=	04h	=	03h	=
C3h	bXSAL	=	bXSAL	=	00h	=	00h	=	C8h	=
C4h										
C5h	MAP	=	MAP	=	RQST	=	CL	=	[†] CL	=
C6h			LEN							
C7h		D0	D0			ANS1		ANS1		
C8h		D1	D1			ANS2				
C9h		D2	D2			CL (MRT0)				
CAh		D3	D3			MRT1				NP
CBh		D4	D4			MRT2				
CCh		D5	D5			MRT3				GA
CDh		D6	D6			MRT4				NAH
CEh		D7	D7			MRT5				NAL
CFh						MRT6				
D0h						MRT7				
D1h-D4h										

[†] For the Remote GetSource message, this can be the Connection Label or a particular physical channel.

Table 3-28: System Control Messages - mXCMB

When the mXCMB buffer is filled, the message is sent by setting the **bMSGC.STX** bit (**bMSGC.RMTX** should also be set to clear the previous transmit message status). When the **bMSGS.MTX** gets set, the message has been transmitted. If **bMSGS.TXR** is set, the results are in the mXCMB transmit buffer, as listed in Table 3-28, column *Rec.* If **bMSGS.TXR** is clear, the message was not sent successfully, and the error status is in bXTS.

OS8805 MOST System On Chip

3.2.4.1.1 Remote Read and Write System Messages

The *Remote Read* system message (bXTYP = 01h) always reads eight bytes on memory page 0 of the target node. The memory location/address to read data from is sent in MAP. Upon successful transmission (bMSGS.MTX = bMSGS.TXR = 1), the eight bytes read from the target node, starting at addressed MAP, are located in mXCMB, labels D0-D7.

The *Remote Write* system message (bXTYP = 02h) can write up to eight bytes on memory page 0 of the target node - only if the target node allows *Remote Write* commands (bNC.WRD clear). If bNC.WRD is set, no remote writes are possible. The memory location/address to write data to is sent in MAP, the number of bytes to write is in LEN, and the actual data is in D0-D7. Upon successful transmission (bMSGS.MTX = bMSGS.TXR = 1), LEN bytes are written to the target node, starting at addressed MAP.

3.2.4.1.2 Resource Allocate System Message

The *Resource Allocate* system message (bXTYP = 03h) is always sent to the timing-master node. Therefore, the simplest target address to use is the physical address, which is always 0x400 for the timing-master.

Before data is placed on the MOST Network (filling the lower half of the MRT), the physical synchronous channels used should be allocated by the timing-master node. Therefore, to place stereo audio data from the ADCs on the MOST Network, the four physical synchronous channels needed (two for left audio data and two for right audio data) are requested from the timing-master using the *Resource Allocate* system message. The number of channels needed (up to eight) are sent in the mXCMB RQST byte. Upon successful transmission (bMSGS.MTX = bMSGS.TXR = 1), ANS1 and ANS2 bytes indicate the response from the timing-master node. The ANS1/2 responses are listed below.

ANS1	ANS1 Description	ANS2	ANS2 Description
01	Allocation Granted. The MRT locations are in MRT0- MRT7, with MRT0 being the Connection Label (CL). CL is used to deallocate the group of channels when finished.	Free Chan.	Number of free channels - including current request
02	Timing-master is busy. Resend the message later.	Free Chan.	Total free channels available
03	Request denied. Not enough free channels available. ANS2 indicates how many free channels exist.	Free Chan.	Total free channels available
04	The RQST value is not valid (0 or greater than 8).	Free Chan.	Total free channels available
05	Message sent to the wrong node (a timing-slave node) - not sent to the timing-master.	00	

Table 3-29: Resource Allocate Responses

The physical synchronous channels allocated are considered a *logical channel*, with the logical channel identifier, or Connection Label, CL. CL is the MRT location of the first allocated channel, and used to deallocate, or give up the channels, when the logical channel is no longer needed. The CL is also stored in the mCRA in the physical channel positions for each physical channel that is part of the logical channel. Therefore, if the request for four physical channels was granted, and the returned channels were 04h, 05h, 06h, and 07h (MRT0-MRT3); then 04h would be the Connection Label CL, and 04h would be stored in the mCRA in the four physical channel positions. After masking off the MSB, 0x384 = 0x385 = 0x386 = 0x387 = 04h.

O-A-S-I-S SiliconSystems

O-A-S-I-S SiliconSystems

OS8805 MOST System On Chip

3.2.4.1.3 Resource De-allocate and De-allocate All System Messages

The *Resource De-allocate* system message (bXTYP = 04h) is always sent to the timing-master node. Therefore, the simplest target address to use is the physical address, which is always 0x400 for the timing-master.

When the node is finished using the logical synchronous channel, the MRT locations are freed-up (by placing the Network receive MRA address in the MRT location), and the channels should be de-allocated so other nodes can use them. To free up the channels, the *Resource De-allocate* system message is sent with the mXCMB CL byte contain the Connection Label received when the physical channels were allocated. Upon successful transmission (bMSGS.MTX = bMSGS.TXR = 1), ANS1 indicates the response from the timingmaster node.

ANS1	ANS1 Description				
01	De-allocation successful				
02	Timing-master is busy. Resend the message later.				
04	The CL value is not valid (greater than 7Fh).				
05	Message sent to the wrong node (a timing-slave node) - not sent to the timing-master.				

Table 3-30: Resource De-allocate Responses

The special Connection Label of 0x7F is defined as the *De-allocate All* system message, and must be sent by the timing-master node after any change to the bSBC register. This command properly initializes the mCRA table.

3.2.4.1.4 Remote GetSource System Message

The *Remote GetSource* system message (bXTYP = 05h) is always sent as a broadcast message (address 0x3C8). This system Control message locates the node that is transmitting data onto the MOST Network using the physical channel in the sent message. Assuming that nodes use all physical channels within a logical channel as a group, the Connection Label (CL) can be used to find the whole group. Upon successful transmission (bMSGS.MTX = bMSGS.TXR = 1), the mXCMB buffer contains the node's addresses (physical, group, and logical) that is transmitting data using the physical channel. If bMSGS.MTX is set, but bMSGS.TXR is clear, no node in the current network is using the physical channel.

mXCMB	Successful Response Description (bMSGS.MTX = bMSGS.TXR = 1)				
NP	Node Position (part of physical address) of node using the physical channel				
GA	Group Address (part of group-cast address) of node using the physical channel				
NAH	High byte of Node Address (high byte of logical address) of node using the physical channel				
NAL	Low byte of Node Address (low byte of logical address) of node using the physical channel				

Table 3-31: Remote GetSource Response

3.2.5 Packet Data Transfer

The *Packet Data Transfer* service uses the portion of the MOST Network reserved for the asynchronous channel, and is useful for applications that can transfer data in bursts (e.g., Internet data, GPS map data, email), instead of in a continuous data stream (e.g., video or audio content). The maximum packet size supported is 48 data bytes and is protected by a trailing CRC (Cyclic Redundancy Check), which is automatically generated/checked by the OS8805. Support for *Packet Data Transfer* was added in revision G silicon, and is not supported on previous revisions.

To enable Async. Packet reception on the OS8805, the **bNC.APREN** and the **MMPC.RFS1** bits must both be set.

MOST System On Chip

When sending a packet, the target address can either be the target node's logical address (specified in the bNAH/bNAL registers), or it can be the address stored in the target node's alternate packet address registers. Sending packets to the logical address uses the same addressing as used for the Control messages. If separate addresses for Control and Packet messages are required, the alternate packet address registers (bAPAH and bAPAL) can be used.

The Host Controller's asynchronous/packet flag **RCS.AINT** indicates either the reception or transmission of packet data. For transmitted packets, **RCS.AINT** is set when the packet is completely transferred, the transmit status is available, and the Packet Transmit Buffer (mAXP) is available. For received packets, **RCS.AINT** is set when a valid packet is received, with the entire packet available in the Packet receive buffer mARP. A valid received packet is one for which the logical address (bNAH/bNAL) or the alternate packet address (bAPAH/bAPAL) is correct, and the message has a valid CRC.

0xE8	bAPAH	Alternate Packet Address High	MOST
Bit	Name	Description	
70	APA[15:8]	Alternate Packet Address High. This value cannot be the same as bNAH.	0x0F

Table 3-32: bAPAH Register

The bAPAH register keeps the higher address part (bits 15 through 8) of the alternate address for packets received. The default alternate packet address after reset is 0x0F0F. The bAPAH register cannot be the same value as bNAH. When a node receives a packet, it checks the target address high byte against its bNAH value. If they do not match, the alternate packet address registers are checked. bAPAH and bAPAL can be used as an asynchronous packet groupcast address to allow multiple nodes to receive the same message. However, using this register for groupcast addressing does not have the same protection and acknowledges that are associated with the Control message groupcast addressing.

0xE9	bAPAL	Alternate Packet Address Low	MOST
Bit	Name	Description	Default
70	APA[7:0]	Alternate Packet Address Low	0x0F
		Table 3-33: bAPAL Register	
0xEC	bPLDT	Transmit Packet Length	MOST
0xEC Bit	bPLDT Name	Transmit Packet Length Description	MOST Default
		-	1

The value in this register specifies the number of data bytes (in quadlets) sent when transmitting a packet, and includes the data bytes along with the two source address bytes. Therefore, the length value is calculated as follows:

 $bPDLT = roundup \left(\frac{number of data bytes + 2}{4}\right)$

Valid values for bPLDT are 0x01 to 0x0D. If the length value is rounded up (fractional), then the extra filler bytes at the end of the packet should be set to 0x00. For example, sending three data bytes takes two quadlets, because two source address bytes are used. Three filler bytes exist at the end of the packet, which should be filled with zeros. bPLDT does not include the CRC bytes, which are automatically generated by the part.

OS8805		MOST System On Chip	
0xF2	bPPI	Transmit Packet Priority	MOST
Bit	Name	Description	Default
70	D[7:0]	Packet Priority. Valid values are 0x01 (highest) to 0x07 (lowest)	0x01
-			

Table 3-35: bPPI Register

The value in bPPI determines the priority of a transmitted packet, used in arbitration of the asynchronous portion of the MOST Network source data. Valid values are 0x01 to 0x07, where 0x01 stands for the highest priority level.

0xE2	bPCTC	Packet Control	MOST
Bit	Name	Description	Default
75	rsvd	Reserved; Write as 0	0
4	RAF	Reset Packet rejected status (mARP full) bit bPCTS.AF	0
3	RAC	Reset Packet rejected status (CRC failed) bit bPCTS.AC	0
2	rsvd	Reserved. Write as 0	0
1	RATX	Clear Packet Transmitted interrupt	0
0	RARX	Unlock the Asynchronous Receive Packet Buffer mARP	0

Table 3-36: bPCTC Register

- RAF Reset *Packet Rejected status (mARP full)* bit **bPCTS.AF**. When the **RAF** bit is set, the **bPCTS.AF** bit is cleared. **RAF** must not be set unless **bPCTS.AF** is set. The **RAF** bit is cleared automatically.
- RAC Reset *Packet Rejected status (CRC failed)* bit **bPCTS.AC**. When the **RAC** bit is set, the **bPCTS.AC** bit is cleared. **RAC** must not be set unless **bPCTS.AC** is set. The **RAC** bit is cleared automatically.
- RATX Clear *Packet Transmitted* bit. When the **RATX** bit is set, the **bPCTS.ATX** bit is cleared. If both **bPCTS.ATX** and **bPCTS.ARX** are clear, the Host Controller's **RCS.AINT** bit is cleared. **RATX** must not be set unless **bPCTS.ATX** is set. The **RATX** bit is cleared automatically.
- RARX Unlock the Asynchronous Receive Packet Buffer mARP, and clear packet received interrupt. Setting the **RARX** bit clears the **bPCTS.ARX** bit and unlocks the Asynchronous Receive Packet Buffer mARP. If both **bPCTS.ATX** and **bPCTS.ARX** are clear, the Host Controller's **RCS.AINT** bit is cleared. When the **bPCTS.ARX** bit is set, mARP contains a packet and is locked until the **RARX** bit unlocks it. While locked, mARP will not receive any other packets. **RARX** must not be set unless **bPCTS.ARX** is set. The **RARX** bit is cleared automatically.

0xEA	bPSTX	Transmit Packet Start	MOST
Bit	Name	Description	Default
7	ASTX	Start packet transmission	0
60	rsvd	Reserved. Write as 0	0

Table 3-37: bPSTX Register

ASTX Start packet transmission. When the **ASTX** bit is set, the part starts arbitrating for the asynchronous channel to transmit the current packet in mARP. The **ASTX** bit is cleared automatically when the transmission is finished.

MOST System On Chip

0xE3	bPCTS	Packet Status	MOST
Bit	Name	Description	Default
75	rsvd	Reserved	0
4	AF	Packet rejected — mARP full	0
3	AC	Packet rejected — CRC failed	0
2	rsvd	Reserved	0
1	ATX	Packet transmitted	0
0	ARX	Packet received	0

Table 3-38: bPCTS Register

- AF Packet rejected, mARP full. When the **AF** bit is set, it indicates that the last reception failed because the packet receive buffer mARP is full (locked). mARP is unlocked by setting the **RARX** bit to 1 after having read its contents. The **AF** bit is cleared by setting the **bPCTC.RAF** bit.
- AC Packet rejected, CRC failed. When the **AC** bit is set, it indicates that the last reception failed due to a bad CRC value. The **AC** bit is cleared by setting the **bPCTC.RAC** bit.
- ATX Packet transmitted event. When the **ATX** bit is set, it indicates that a packet transmission is completed. **ATX** will be set after the last byte of a packet is processed. The Host Controller's **RCS.AINT** bit will be set shortly after the **ATX** bit is set. The **ATX** bit is cleared by setting the **bPCTC.RATX** bit.
- ARX Packet received event. When the **ARX** bit is set, it indicates that a packet has been received and that mARP is locked. Shortly after the **ARX** bit is set, the Host Controller's **RCS.AINT** bit will be set. The **ARX** bit is cleared by setting the **bPCTC.RARX** bit.

As long as the **bPCTS.ARX** bit is set, no reception of further packets is possible. Clearing the **bPCTS.ARX** bit unlocks mARP. The contents of mARP can then be overwritten by the next packet.

The Asynchronous I	Receive Packet buffer	contains the last p	acket which was su	ccessfully received.
--------------------	-----------------------	---------------------	--------------------	----------------------

0x180	mARP	Asynchronous Receive Packet Buffer	MOST
Byte	Name	Description	Default
0x00	bARTH	Received Target address high	0x00
0x01	bARTL	Received Target address low	0x00
0x02	bASAH	Source address high	0x00
0x03	bASAL	Source address low	0x00
0x04	bARD0	Asynchronous receive data byte 0	0x00
0x05	bARD1		
		Asynchronous receive data byte 1 to 46	0x00
0x32	bARD46		
0x33	bARD47	Asynchronous receive data byte 47	0x00

Table 3-39: mARP Buffer

bARTH/bARTL Received Target Address High/Received Target Address Low. The target address to which the received packet was sent. Either the logical node address (bNAH/bNAL) or the alternate packet address (bAPAH/bAPAL).

bASAH/bASAL Source Address High/Source Address Low. The logical address of the sending node. The origin of the packet data in the MOST Network.

bARD[0:47] Asynchronous Receive Data Bytes 0 to 47. These bytes contain the actual packet data that was received.

.....

OS8805		MOST System On Chip	U-A-J-I-J SiliconSystems
0x1C0	mAXP	Asynchronous Transmit Packet Buffer	MOST
Byte	Name	Description	Default
0x00	bATAH	Target address high	0x0F
0x01	bATAL	Target address low	0xFF
0x02	bAXD0	Asynchronous Transmit data byte 0	0x00
0x03	bAXD1		
		Asynchronous Transmit data byte 1 to 46	0x00
0x30	bAXD46		
0x31	bAXD47	Asynchronous Transmit data byte 47	0x00

Table 3-40: mAXP Buffer

bATAH/bATAL

Target Address High/Target Address Low. These bytes contain the target address of the node to send the packet to. This should be the logical node address or the alternate packet address of the receiving/target node.

bAXD[0:47] Asynchronous Transmit Data Bytes 0 to 47. These bytes contain the packet data to be sent. If the number of bytes to be sent is not divisible by 4, it is recommended to add filler bytes (generally 0x00).

3.2.5.1 Packet Data Handling

The chip transmits packet data using the portion of the MOST frame reserved for asynchronous packet data transfer. The amount of MOST Network bandwidth reserved for asynchronous packet data is defined in the bSBC register. If there is not sufficient space for sending a packet within a single frame, data is segmented automatically and sent in smaller portions until the transmission is finished.

When sending packet data, a maximum of 48 bytes can be sent per packet,. When receiving a packet, the actual data length in the buffer is not provided. Therefore, the number of user data bytes per packet must be reported from the sending node to the receiving node. This is the task of the controlling application software and should be done before starting transmission. Alternately, the packet length can be included in the first few bytes when using a predefined packet protocol, as used by the MOST High Protocol.

After length is calculated and written to the bPLDT register, user data can be written to the Asynchronous Transmit Packet Buffer mAXP.

If the Host Controller's **RCS.AINT** bit is set, indicating that status in bPCTS has changed, the Packet Control Status register is read to determine if **bPCTS.ATX** and/or **bPCTS.ARX** bits are set. In addition, error information (the **bPCTS.AF** and **bPCTS.AC** bits) can be stored for later use, if needed.

If the **bPCTS.ARX** bit is set, then a packet has been received, and is available in the Asynchronous Receive Packet Buffer mARP. After reading mARP, the buffer must be released (by setting the **bPCTC.RARX** bit) to allow further packet reception.

If the **bPCTC.RAF** and **bPCTC.RAC** error bits have been set, they should also be cleared to prepare them for the next message. This ends the handling of a packet received event.

If the **bPCTS.ATX** bit is set, the packet in mAXP has been transmitted, and a new packet can be loaded into mAXP. To start transmission, the **bPSTX.ASTX** bit must be set. The **bPSTX.ASTX** bit is cleared automatically after the transmit packet is sent.

3.2.6 Configurable Routing Registers

If some of the Source Peripherals are not used, their routing addresses can be used by one of the DSPs to double the routing throughput between the DSP and the Routing bus. By default, each DSP can transfer up to eight words (16 bytes) between the DSP and the Routing bus, each Fs period. On the DSP side, these transfers occur through the DX and DR registers. This transfer rate can be doubled by disabling one

0.1.2.1.0

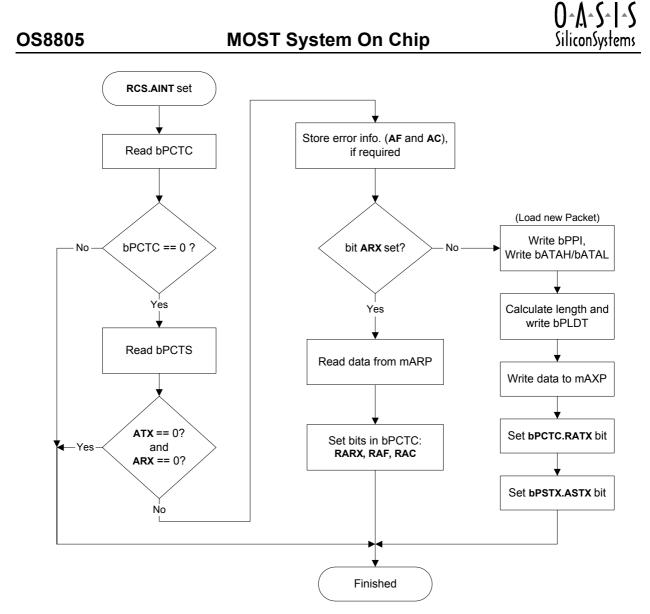


Figure 3-12: Packet Data Transfer Polling

of the other Source Peripheral routing blocks. The available blocks are the Source Ports, the Source Converters, or the other DSP. Therefore, to double the bandwidth through one of the DSPs, one of the other blocks is disabled, and the DSP uses the disabled block's Routing addresses by enabling the DSP's Secondary Routing Port. Then the DSP can use its Secondary Routing Port through DR1 and DX1.

98h	bSPR	Source Port Routing	MOST
Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	SPR[5:0]	Source Port Routing.	17h

Table 3-41: bSPAR Register

SPR[5:0] Source Port Routing. The only valid values are listed below.

17h - Source Port Routing Enabled.

3Dh - Source Port Routing Disabled. DSP0 or DSP1 port can use the Source Ports Routing locations/addresses to double the bandwidth between the Routing bus and the DSP.

MOST System On Chip

9Dh	bFPR	Source Converter Routing	MOST
Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	FPR[5:0]	Source Converter Routing (ADCs and DACs).	1Dh

Table 3-42: bFPR Register

FPR[5:0] Source Converter (ADCs and DACs) Routing. The only valid values are listed below. 1Dh - Source Converter Routing Enabled.

3Dh - Source Converter Routing Disabled. DSP0 or DSP1 port can use the Source Converter Routing locations/addresses to double the bandwidth between the Routing bus and the DSP.

99h	bD0RP	DSP0 Primary MOST Port Routing	MOST
-----	-------	--------------------------------	------

Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	D0RP[5:0]	DSP0 Primary Routing Port Address.	19h

Table 3-43: bD0RP Register

D0RP[5:0] DSP0 Primary MOST Routing Port Address. The only valid values are listed below. 19h - DSP0 primary MOST Routing Port, DR/DX registers, enabled.

3Dh - DSP0 primary MOST Routing Port disabled. DSP1's secondary MOST Routing port, registers DX1/DR1, can use DSP0's Routing locations/addresses to double the bandwidth between the Routing bus and the DSP1.

9Ah	bD0RS	DSP0 Secondary MOST Port Routing	MOST
-----	-------	----------------------------------	------

Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	D0RS[5:0]	DSP0 Secondary Routing Port Address.	3Dh

Table 3-44: bD0RS Register

D0RS[5:0] DSP0 Secondary MOST Routing Port address. The only valid values are listed below.

- 3Dh DSP0 secondary MOST Routing Port disabled. To change to any other value, one of the other routing ports must be disabled first.
- 17h DSP0 secondary MOST Routing Port, DR1/DX1 registers, enabled. **SPR[5:0]** must be set to 3Dh (both Source Ports disabled).
- 1Bh DSP0 secondary MOST Routing Port, DR1/DX1, enabled. **D1RP[5:0]** must be set to 3Dh (DSP1's primary MOST Routing Port disabled).
- 1Dh DSP0 secondary MOST Routing Port, DR1/DX1 registers, enabled. **FPR[5:0]** must be set to 3Dh (all Source Converter, ADCs and DACs, routing disabled).

MOST System On Chip

9Bh	bD1RP	DSP1 Primary MOST Port Routing	MOST
Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	D1RP[5:0]	DSP1 Primary Routing Port Address.	1Bh

Table 3-45: bD1RP Register

D1RP[5:0] DSP1 Primary MOST Routing Port Address. The only valid values are listed below. 1Bh - DSP1 primary MOST Routing Port, DR/DX registers, enabled.

3Dh - DSP1 primary MOST Routing Port disabled. DSP0's secondary MOST Routing port, registers DX1/DR1, can use DSP1's Routing locations/addresses to double the bandwidth between the Routing bus and the DSP0.

9Ch	bD1RS	DSP1 Secondary MOST Port Routing	MOST
-----	-------	----------------------------------	------

Bit	Label	Description	Default
7, 6	rsvd	Reserved. Write to 0	00
50	D1RS[5:0]	DSP1 Secondary Routing Port Address.	3Dh

Table 3-46: bD1RS Register

D1RS[5:0] DSP1 Secondary MOST Routing Port address. The only valid values are listed below.

- 3Dh DSP1 secondary MOST Routing Port disabled. To change to any other value, one of the other routing ports must be disabled first.
- 17h DSP1 secondary MOST Routing Port, DR1/DX1 registers, enabled. **spr[5:0]** must be set to 3Dh (both Source Ports disabled).
- 19h DSP1 secondary MOST Routing Port, DR1/DX1, enabled. **D0RP[5:0]** must be set to 3Dh (DSP0's primary MOST Routing Port disabled).
- 1Dh DSP1 secondary MOST Routing Port, DR1/DX1 registers, enabled. **FPR[5:0]** must be set to 3Dh (all Source Converter, ADCs and DACs, routing disabled).

As an example, to double DSP0's Routing bus bandwidth, one of the following must be disabled:

- DSP1's Primary Routing bus bandwidth (bD1RP = 3Dh),
- the Source Converter's Routing bus bandwidth (bFPR = 3Dh), or
- the Source Port's Routing bus bandwidth (bSPR = 3Dh).

For this example, it is assumed that the Source Converters (ADCs and DACs) are not used; therefore, their Routing bus bandwidth is disabled (bFPR = 3Dh). Then DSP0's Secondary MOST Routing Port is enabled by connecting bD0RS to the Source Converter's Routing addresses (bD0RS = 1Dh). This changes the MOST Routing Registers from those listed in Figure 3-2 to those illustrated in Figure 3-13, where the DAC Routing Table locations are replaced by DSP0's Secondary MOST Routing Port DR1. Now DSP0 has two Routing Ports to transfer data from the Routing bus to DSP0, thereby doubling the Routing bandwidth.

Similarly, the MOST Routing Addresses change from those listed in Figure 3-3 to those listed in Figure 3-14, where the ADC Routing Addresses are replaced by DSP0's Secondary MOST Routing Port DX1. This supports the other direction (DSP0 to Routing bus) for the Secondary Routing port, DX1.

MOST System On Chip

O-A-S-I-S SiliconSystems

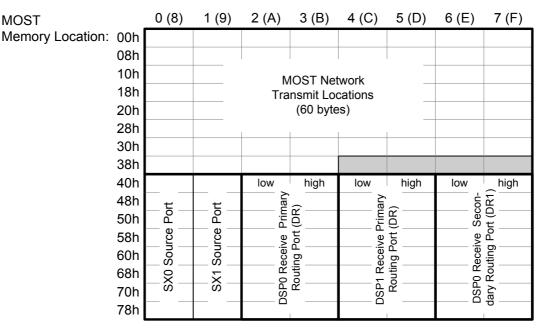


Figure 3-13: ReRoute Example - MRT

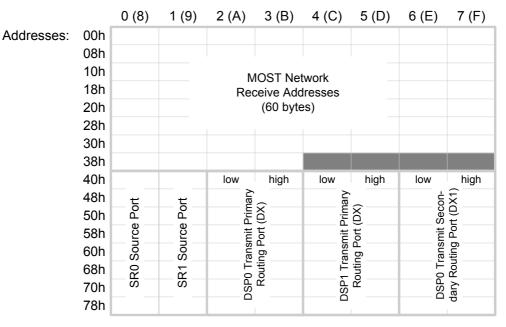


Figure 3-14: ReRoute Example - MRA

3.3 Source Ports

The Source Ports provide external access to the source data (synchronous channel data) in the MOST network. Data can be input through two serial inputs (SR0 and SR1) and output through two serial outputs (SX0 and SX1). The data format on all four pins is the same and they are all clocked by the SCK and FSY pins. A variety of different data formats can be selected through the Source Port Control register bSDC1.

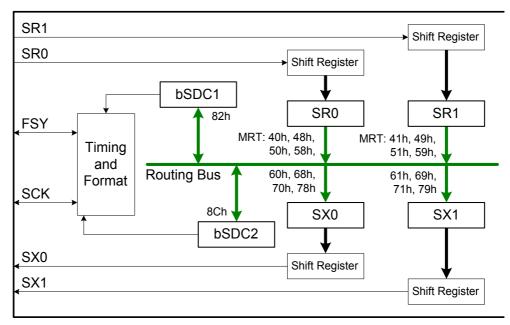


Figure 3-15: MOST Source Ports

The Global Timer GTR and peripheral routing are synchronized to the SCK signal. Therefore, SCK must be configured properly for GTR and peripheral routing to operate. If the bSDC1.MOD[1:0] bits are not set to 11 (Source Port enabled), then SCK must be configured as an output, or SCK and FSY can remain inputs as long as external clocks of the proper frequency are applied.

SR0-SX0 can be configured as an SPDIF transceiver. When configured as the timing-master (**bXCR.MTR** set), the SPDIF data can be clocked in synchronously, or the PLL can recover a clock from it. The **CMCS.MX[1:0]** bits select the source of the PLL and determine the clocking for the entire chip. As a timing-slave node, the PLL recovers a clock from the MOST data; therefore, SPDIF data must be clocked in synchronously.

82h	bSDC1	Source Port Control 1	MOST
Bit	Label	Description	Default
7	EDG	Active edge of SCK. 0 is data valid at falling edge.	0
6	DEL	Delay from FSY edge – one SCK period	0
5	POL	Polarity of FSY	0
43	NBR[1:0]	Number of bits in audio frame	00
21	MOD[1:0]	Source Port mode select	00
0	MUT	Mute source data outputs (SX[1:0])	0

Table 3-47: bSDC1 Register

EDG Active edge of SCK. Indicates the edge where inputs are sampled and output data is valid. 0 - SCK falling edge is where inputs are sampled and outputs are valid.

1 - SCK rising edge is where inputs are sampled and outputs are valid.

OS8805	5 MOST System On Chip	U-A-J-I-J SiliconSystems
DEL	Delay. Data delayed one bit from FSY edge. 0 – First bit period after FSY edge is MSB. 1 – Second bit period after FSY edge is MSB (I ² S format).	
POL	Polarity of FSY. 0 – FSY high indicates right sample and low indicates left. 1 – FSY high indicates left sample and low indicates right.	
NBR[1:0]	Number of bits in audio frame. When SCK is configured as an output, the SC version of the 64-bit period clock, as illustrated in Figure 3-16. When SCK supports either 64 or 32 bits per frame. When the chip is a timing-master a source is the SCK input, SCK must be a continuous clock for the PLL to loc chip is a timing-slave or if SCK is not the chip's master clock, then the SCK gated clock. 00 - 64 bit periods per FSY frame (input or output) 01 - 48 bit periods per FSY frame (output only) 10 - 32 bit periods per FSY frame (input or output) 11 - Reserved.	is an input, the chip and the chip's clock ck properly. If the
MOD[1:0]	 Source Port mode select. 00 – FSY and SCK are inputs. 01 – FSY and SCK are outputs. 10 – FSY and SCK are outputs. SR0, SX0 are SPDIF format, see Figure 3-9 SR1, SX1 are normal audio format (format controlled by EDG, DEL, and 11 – Disables the Source Ports, allowing IOC[5:0] to be used as EGPIO. 	

MUT Mute. When clear, **SX0** and **SX1** outputs are digitally muted (signal at ground).

When configured as an SPDIF transceiver, **FSY** is synchronized to the SPDIF data. The edge of **FSY** that identifies a left sample, as determined by **bSDC1.POL**, occurs between the left preamble and the LSB of the left sample. Data is transferred in bytes starting at this point.

FSY	
SCLK Output:	
48	
32	

Figure 3-16: Source-Port SCLK Output Timing (bSDC1.EDG = 0)

8Ch	bSDC2	Source Port Control 2	MOST
Bit	Label	Description	Default
74	rsvd	Reserved. Write to 0.	0000
3	MUTE	When set, mutes (holds at 0) FSY and SCK, when configured as outputs.	0
20	rsvd	Reserved. Write to 0.	000

Table 3-48: bSDC2 Register

MOST System On Chip

3.4 MOST Register Summary

For additional details on how to use these registers, refer to the OS8104 MOST Transceiver Data Sheet.

Name	Label Addr.		Description		
MOST Routing Table (MRT):					
	bRE0	00h	MOST Routing Table Locations for Network		
	bRE3B	3Bh	Transmitted Synchronous data.	106	
	bRE40 bRE7E	40h 7Eh	MOST Routing Table Locations for Source Port outputs (SX0/1), DAC outputs as well as DSP input Routing ports.	106	
Hardware Control Section:	DINETE	7 ⊑11	liput Routing poits.		
Transceiver Control	bXCR	80h	timing-Master/slave select, and bypass control	114	
Transceiver Status	bXSR	81h	ERR pin error conditions and masks	115	
Source Port Control	bSDC1	82h	Source Port Configuration	136	
Network Control	bNC	84h	Remote Write disable and Packet Rec. enable	115	
Message Control	bMSGC	85h	Control mes. status resets, start TX, clear Rec.	121	
Message Status	bMSGS	86h	Control message status	122	
Node Position	bNPR	87h	Lower byte of Physical address	117	
Interrupt Enable	bIE	88h	Interrupt enables for different sources	117	
Group Address	bGA	89h	Lower byte of Group address for group cast	117	
Node Address High	bNAH	8Ah	Logical address, high byte	117	
Node Address Low	bNAL	8Bh	Logical address, low byte	118	
Source Port Control 2	bSDC2	8Ch	FSY/SCK MUTE (disable outputs) bit	137	
Clock Manager 2	bCM2	8Eh	PLL lock status bit	118	
Node Delay	bNDR	8Fh	Node delays from timing-master node	118	
Maximum Position	bMPR	90h	Total number of nodes in the network	118	
Maximum Delay	bMDR	91h	Total delay around the network	118	
Synchronous Bandwidth Control	bSBC	96h	Source data allocated to synchronous data	119	
Transceiver Status Register 2	bXSR2	97h	INV (invert) bit for incoming RX data	119	
Source Port Routing	bSPR	98h	Enable/disable for Source Port routing	132	
DSP0 Primary MOST Port Routing	bD0RP	99h	Enable/disable for DSP0 Primary Routing port	133	
DSP0 Second. MOST Port Routing	bD0RS	9Ah	Enable/disable for DSP0 Secondary Routing port	133	
DSP1 Primary MOST Port Routing	bD1RP	9Bh	Enable/disable for DSP1 Primary Routing port	134	
DSP1 Second. MOST Port Routing	bD1RS	9Ch	Enable/disable for DSP1 Secondary Routing port	134	
Source Converter Routing	bFPR	9Dh	Enable/disable for Source Converter routing	133	
Receive Control Message Buffer:	mRCMB			123	
Received Message Type	bRTYP	A0h	Addressing mode used in received message		
Source Address - High byte	bRSAH	A1h	Sending devices logical address, high byte		
Source Address - Low byte	bRSAL	A2h	Sending devices logical address, low byte		
Received Control Data 0 Received Control Data 1	bRCD0 bRCD1	A3h A4h			
to Received Control Data 15 Received Control Data 16	 bRCD15 bRCD16	 B2h B3h			
Control Message Transmit Control			1		
Transmit Retry Time	bXTIM	BEh	Waiting time between Control mes. retries	123	
Transmit Retries	bXRTY	BFh	Total number of Control message retries	123	

Table 3-49: MOST Routing Bus Register Summary

MOST System On Chip

Name	Label	Addr.	Description	Page
Transmit Control Message Buff	er: mXCMB			124
Transmit Priority	bXPRI	C0h	00 - lowest priority, 0Fh - highest priority	
Transmit Message Type	bXTYP	C1h	Normal, Remote, Resource alloc./dealloc.	
Target Address - High byte	bXTAH	C2h	high byte of target node address	
Target Address - Low byte	bXTAL	C3h	low byte of target node address	
Transmit Control Data 0	bXCD0	C4h		
Transmit Control Data 1 to	bXCD1	C5h		
Transmit Control Data 15	bXCD15	 D3h		
Transmit Control Data 16	bXCD16	D4h		
Transmit Status	bXTS	D5h	Received okay,or failed and why	124
Packet Data Control:				1
Packet Control	bPCTC	E2h	Controls clearing of status flags	129
Packet Status	bPCTS	E3h	Indicates transmit and receive Packet status	130
Alternate Packet Address High	bAPAH	E8h	Receive Packet Alternate address high	128
Alternate Packet Address Low	bAPAL	E9h	Receive Packet Alternate address low	128
Transmit Packet Start	bPSTX	EAh	Start bit to send a packet in mAXP to Network	129
Transmit Packet Length	bPLDT	ECh	Transmit Packet length in quadlets	128
Transmit Packet Priority	bPPI	F2h	Transmit Packet priority - 01 to 07 (highest)	129
Memory Page change		FFh	Can write to change memory pages to 1 or 3	120
Receive Packet Message Buffer	∙ m∆RP		our write to change memory pages to 1 or o	130
Receive Address high	bARTH	180h	Either Logical or Alternate Packet Address high	100
Receive Address low	bARTL	181h	Either Logical of Alternate Packet Address low	
Source Address - High byte	bASAH	182h	Sending devices logical address, high byte	
Source Address - Low byte	bASAL	183h	Sending devices logical address, high byte	
Received Packet Data 0	bARD0	184h		
Received Packet Data 0	bARD0 bARD1	185h		
to				
Received Packet Data 46	bARD46	1B4h		
Received Packet Data 47	bARD47	1B5h		
Transmit Packet Message Buffe	r: mAXP			131
Target Address - High byte	bXTAH	1C0h	high byte of target node address or alternate packet address	
Target Address - Low byte	bXTAL	1C1h	low byte of target node address or alternate packet address	
Transmit Packet Data 0	bAXD0	1C2h		
Transmit Packet Data 1	bAXD1	1C3h		
to				
Transmit Packet Data 46	bAXD46	1F2h		
Transmit Packet Data 47	bAXD47	1F3h		
Memory Page change		1FFh	Can write to change memory pages to 0 or 3	
Channel Resource Allocation Ta				119
Synchronous Channel 0	bCRA0	380h		
Synchronous Channel 1	bCRA1	381h		
to		 20 A h		
Synchronous Channel 58 Synchronous Channel 59	bCRA58 bCRA59	3BAh 3BBh		
	DURA39		Con write to change memory pages to 0 at 1	
Memory Page change		3FFh	Can write to change memory pages to 0 or 1	

 Table 3-49: MOST Routing Bus Register Summary (Continued)

MOST System On Chip

O-A-S-I-S SiliconSystems

l/O Addr.	Mnemonic	B7	B6	В5	B4	В3	B2	B1	В0	Page
80h	bXCR	MTR	OE	NMEN			SBY	ABY		114
81h	bXSR		MSL	MXL	ME	ERR		ESL	EXL	115
82h	bSDC1	EDG	DEL	POL	NBR1	NBR0	MOD1	MOD0	MUT	136
84h	bNC							APREN	RWD	115
85h	bMSGC	STX	RBE	RES	SAI	RALC	RERR	RMTX	RMRX	121
86h	bMSGS	RBS	TXR			ALC	ERR	MTX	MRX	122
87h	bNPR		•	F	Physical A	ddress byt	e			117
88h	bIE					IALC	IERR	IMTX	IMRX	117
89h	bGA				Group Ad	dress byte				117
8Ah	bNAH			Log	gical Addre	ess - high l	oyte			117
8Bh	bNAL			Lo	gical Addr	ess - low b	yte			118
8Ch	bSDC2					MUTE				137
8Eh	bCM2	LOC	NNAC							118
8Fh	bNDR		Node Delay byte							
90h	bMPR	Total number of nodes in the network byte							118	
91h	bMDR		Total network delay byte							
96h	bSBC					SAC3	SAC2	SAC1	SAC0	119
97h	bXSR2							INV		119
E2h	bPCTC				RAF	RAC		RATX	RARX	129
E3h	bPCTS				AF	AC		ATX	ARX	130
E8h	bAPAH	Alternate Packet Address - high byte							128	
E9h	bAPAL	Alternate Packet Address - low byte							128	
EAh	bPSTX	ASTX								129
ECh	bPLDT	Packet Length, in quadlets							128	
F2h	bPPI	Packet Priority, 01-07 (highest)							129	

Below is the MOST Hardware Control Section, bit summary.

Table 3-50: MOST Hardware Control Registers - Bit Summary

OS8805 MOST System On Chip 4 Digital Signal Processors

The OS8805 has two on-chip digital signal processors, DSP0 and DSP1. The DSPs are both 18x14-bit Gazelle DSP cores which are customized to provide the optimum resources for a wide variety of signal processing applications. The default operating frequency for the DSPs is 1344xFs, which provides 59 MIPS. DSP0 and DSP1 are identical and have the same amount of Program memory, Vector memory, Pointer memory, and computation power. Both DSP's have a COM port interface to the Host Controller, a MOST Routing Port to the MOST Processor, and a global timing register. However, the DSP0 has additional I/O peripherals: two pulse width modulation (PWM) DACs, and an external data memory interface.

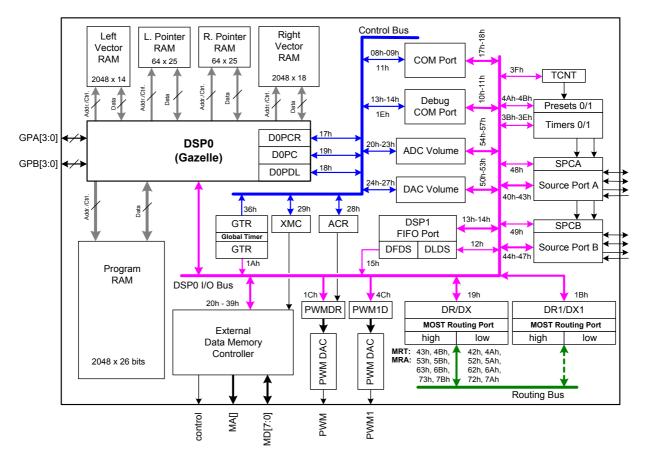


Figure 4-1: DSP0 I/O Bus

O-A-S-I-S SiliconSystems

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

The DSPs are controlled by the Host Controller through the COM port interface and the program control interface. The DSP's access MOST Network data, Source Converters, and the Source Port through the MOST Routing Port. The data can be processed with a digital signal processing algorithm and the resulting data returned through the MOST Routing Port to the MOST Network, the Source Port, or the Source Converters.

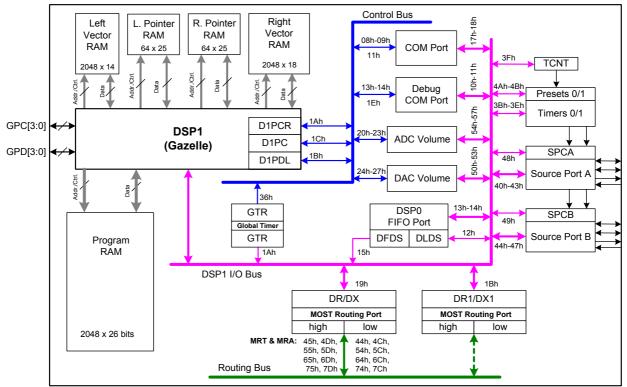


Figure 4-2: DSP1 I/O Bus

4.1 Architecture

The OS8805 DSP core consists of a Program memory, two Vector (data) memories, two Pointer memories, a program controller, an interrupt controller, two address generation units, and an execution unit. The Program memory is 26 bits wide and 2048 locations deep. The Vector memory is divided into left and right sides. The left Vector memory is 14 bits wide and 2048 locations deep and the right Vector memory is 18 bits wide and 2048 locations deep. The Pointer memory is also divided into left and right sides. Both Pointer memories are 25 bits wide and 64 locations deep

Program memory stores the application program and the Data memories store data and coefficients for digital signal processing. As illustrated in Figure 4-3, a 26-bit instruction word in Program memory is comprised of an 8-bit opcode, followed by two 9-bit operands. The 9-bit operand is further divided into a 3-bit memory type field (Control), and a 6-bit address field. The left and right Pointer memories store address pointer values, which consists of an 11-bit address field, a 6-bit update field, and an 8-bit modulo field.

Different functional blocks in the execution unit are provided to support the digital signal processing operation. A fast single-cycle multiply-and-accumulate supports arithmetic-intensive digital signal processing algorithms. A bit manipulation unit and a shifter support data packing, extraction and scaling. Two data address generation units support normal and specialized address modes, and calculate data memory addresses. Lastly, a DSP I/O data bus interfaces to the on-chip peripherals.

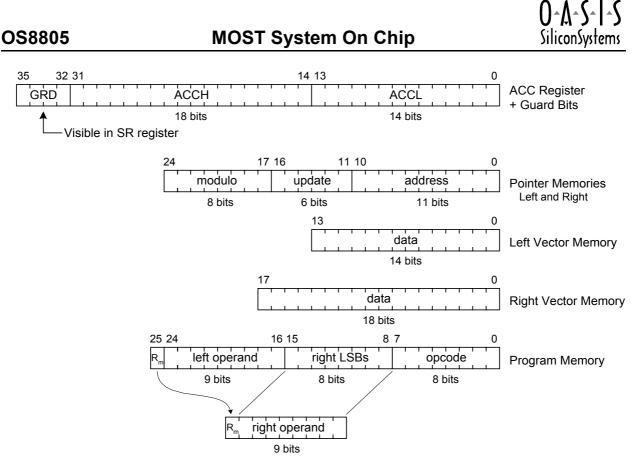


Figure 4-3: DSP Memory Architecture

The Gazelle DSP employs a four-stage pipeline: a fetch stage, a read pointer stage, a read data stage and an execute stage. Since long sequences of operations are broken down into smaller portions, higher performance of the processor can be achieved.

The following sections supply a general overview and describe the variations of Gazelle that are specific to the OS8805. The differences are restricted to memory, I/O registers, condition codes, and interrupts. For detailed description and programming information on the Gazelle DSP, see the *Gazelle User's Manual*.

4.1.1 Program Memory

The DSP has 2048x26 bits of Program memory. Program memory is accessed by the Host Controller through the program control registers. Since the DSP Program memory is RAM, the Host Controller must download programs into the DSP's Program memory during initialization.

4.1.2 Vector Memory

The Gazelle DSP employs a dual-data memory architecture: left Vector and right Vector memory. Therefore, two data operands can be fetched in a single instruction: one on the left data bus and the other on the right data bus. The left and right data address buses are obtained from either the opcode for direct addressing, or the left and right Pointer memories for indirect addressing. Direct addressing is supported for the first 64 words of each Vector memory.

4.1.3 **Pointer Memory**

The Gazelle DSP also employs a dual-pointer memory architecture: the left Pointer and the right Pointer memory. Therefore, two indirect addresses can be manipulated in a single instruction. The Pointer memories are 25-bit wide and consist of three fields: an 11-bit address field, an 8-bit modulo field and a 6-bit update field. The Pointer memories are generally used as address registers since they support post incrementing and modulo arithmetic. Special instructions support reading and writing the Pointer memories.

The 11-bit address field specifies the indirect address of the corresponding 2048 words of Vector memory. Both the left and right Pointer memories contain 64 pointers.

The 6-bit update field specifies the post-update value of the indirect address. Pointer addresses can be updated by this update value or one. The pointer ALU's are only 10 bits; therefore, the upper pointer address bit selects one of two 1K pages. Vector memory data arrays should not cross the 1K boundary since Pointer memory post-updates will not transition across the page boundary, but will wrap to the start of the page. For example, if a pointer with the value 0x00003FF is post-incremented by 1, the value would be 0x00000000, not 0x0000400.

The 8-bit modulo field specifies the size of the circular buffer. An 8-bit modulo field supports modulo buffer sizes of 2 to 256 words (modulo value plus one). Since the upper address bit selects between two pages as mentioned previously, a 1024 byte (half the memory) modulo buffer also exists by setting the modulo value to zero. The modulo buffer size can be an arbitrary length, starting on a 2^N block boundary, where N is the number of bits required to represent the modulo value. The highest bit set in the modulo field determines N. For example, if the modulo value is 5, then the start address is xxxxxxx000 and the upper address is xxxxxxx101. Except when using the entire memory page as a modulo buffer (1024 words), a modulo value of zero defines no modulo buffer.

4.1.4 Program Controller

The program controller contains the 11-bit program counter (PC) and its associated increment and decrement logic. Additional logic includes an interrupt shadow program counter, a subroutine shadow program counter, and the instruction loop control logic which includes the start register, the end register, and the count register.

The program controller is responsible for the sequencing of the program flow. The program counter always contains the address of the next instruction to be fetched. The interrupt shadow program counter, the sub-routine shadow program counter and the shadow strategic registers provide fast context switching for critical code. For non-critical code, the DSP supports creation of software stacks.

All registers can be read by the I/O read instruction and written by the I/O-write instruction. The program counter has two I/O addresses to differentiate between a return-from-interrupt and a return-from-subroutine.

Two types of Interrupt Service Routines (ISRs) are defined: short and long. Short ISRs are seven or less instructions and execute while interrupts are disabled. These routines typically use the RETI instruction to return from an interrupt. Long ISRs are greater than seven instructions and can be interrupted (if desired) by a higher priority interrupt. To support nested interrupts, the ISPC register must be stored on a software stack so the return address of the main program can be restored. Once the ISR has completed, the ISPC value stored on the software stack can be directly written to the PCI register. When the PCI register is written, the SR, ACCH, and ACCL are swapped with their shadow registers. Writing PCI directly provides a more code-efficient method of returning than popping the stored ISPC value back to the ISPC register and executing a RETI instruction.

Two types of subroutines are also defined: short and long. Short subroutines are not nested; whereas long subroutines support subroutine nesting. Short subroutines generally use the RET instruction to exit from the subroutine. For long subroutines, the SSPC return value must be stored on a software stack before the

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

next (nested) subroutine is entered. When exiting from a long subroutine, the PC can be written directly from the SSPC value stored on the software stack. This provides a more code-efficient method of returning than popping the stored SSPC value back to the SSPC register and executing a RET instruction.

00h	PC	Program Counter	DSPs
Bit	Label	Description	Default
1711	rsvd	Reserved, Write to 0	0000000
100	D[10:0]	Program Counter. Typically written to return from long (nested) subroutines by popping the PC value off a software stack directly to this register.	00h, 000

Table 4-1: PC Register

01h	PCI	Program Counter Interrupt	
Bit	Label	Description	Default
1711	rsvd	Reserved, Write to 0	0000000
100	D[10:0]	Program Counter Interrupt. Typically written to return from a long interrupt service routine by popping the PC value off a software interrupt stack directly to this register. Writing PCI causes the SR, ACCH, and ACCL registers to be swapped with their shadow counterparts.	00h, 000

Table 4-2: PCI Register

02h	02h ISPC Interrupt Shadow Program Counter		DSPs
Bit	Label	Description	Default
1711	rsvd	Reserved, Write to 0	0000000
100	D[10:0]	Interrupt Shadow Program Counter. Swapped with PC during an interrupt that is not the Debug Interrupt. Restored (swapped again) to PC on a return from interrupt (RETI) instruction when not in the Debug Interrupt. Generally used in short ISRs.	00h, 000

Table 4-3: ISPC Register

03h	03h SSPC Subroutine Shadow Program Counter		DSPs
Bit	Label	Description	Default
1711	rsvd	Reserved, Write to 0	0000000
100	D[10:0]	Subroutine Shadow Program Counter. Swapped with PC during a subroutine call (JMPS or D_JMPS). Restored to PC on a return from a subroutine (RET) which is generally used in short (non-nested) subroutines.	00h, 000

Table 4-4: SSPC Register

The loop control logic contains: the start register which stores the 11-bit start address location of the loop, the end register which stores the 11-bit end address location of the loop, and the count register which stores the 16-bit repeat value. There are no shadow registers for CNT, STRT, and END. They must be saved on the general purpose stack to support nested loops and loops within multiple ISR's.

09h	CNT	Repeat Count	DSPs
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	Count value for loops and repeats	0000h

Table 4-5: CNT Register

	MOST System On Chip	SiliconSystems	
END	End Address	DSPs	
Label	Description	Default	
rsvd	Reserved, Write to 0	0000000	
D[10:0]	End address for hardware looping	00h, 000	
	Table 4-6: END Register		
STRT	Start Address	DSPs	
	END Label rsvd D[10:0]	END End Address Label Description rsvd Reserved, Write to 0 D[10:0] End address for hardware looping Table 4-6: END Register	

	0Bh	STRT	Start Address	DSPs
Ĩ	Bit	Label	Description	Default
Ĩ	1711	rsvd	Reserved, Write to 0	
	100	D[10:0]	Start address for hardware looping	00h, 000

Table 4-7: STRT Register

The count, start, and end registers (and associated logic) enable blocks of program code to be looped and single word instructions to be repeated without any cycles lost to overhead. If the PC value is equal to the end address and the count value is greater than zero, the PC will jump to the start address. A "repeat" instruction is formed by setting the start and end addresses, of a loop instruction, to the same value.

4.1.5 Interrupt Controller

The interrupt controller contains the interrupt priority logic, the interrupt issuing logic, and the interrupt queuing logic. The interrupt controller is also responsible for providing the interrupt vector, corresponding to the active interrupt, to the program controller for fetching of instructions. Some of the interrupt sources are the global timing register, the COM port to the Host Controller, the FIFO Port to the other DSP, the Async. Source Ports, and a GPIO pin. The global timing register flags, which can interrupt the DSP, are **FS8**, **FS4**, **FS2**, **FS1**, **FS4TH**, and a Fs/64 (which is not visible in GTR). The interrupts occur on the rising edge of the corresponding global timing register bit. The Fs/64 interrupt occurs on every fourth rising-edge of the Fs/16 flag **GTR.FS16TH**.

The GTR flags and peripheral routing are synchronized to SCK. If the Source Port is enabled (**bSDC1.MOD[1:0]** not set to 11), then SCK must be configured as an output, or SCK and FSY must have the proper external clocks applied when configured as inputs.

The interrupt vectors are spaced eight words apart starting with the **FS8** vector at 008h. The reset vector is 000h. The Vector table is illustrated in Figure 4-4. The interrupt enable register contains the bits to independently enable each interrupt (except the COM and FIFO Ports). If an interrupt occurs when it is disabled, it becomes pending until that interrupt is enabled.

The FIFO Port has a unique interrupt vector; however, it shares the interrupt enable and priority settings with the COM Port interrupt. For the FIFO Port to generate an interrupt, the **IER.IECP** must be set and the **DFLS.IMSK** bit must be clear. The interrupt can be used solely for the FIFO Port by setting the **DCS.CIM** mask bit, which masks COM Port interrupts. This allows the COM Port to be polled, while the DSP FIFO port uses the interrupt line.

When Async. Source Port (SP) 0 is disabled, the GPIO interrupt vector is shared with the GPIO pin and Async. SP 1. When Async. SP 0 is enabled, the interrupt vector only services the Async. Source Ports as the GPIO pin is part of SP 0. The GPIO priority affects both the GPIO pin and the Async. Source Ports.

The Host Controller setting DDnCS.TRINT or a TRAP instruction execution can cause the Debug interrupt.

All interrupts, except the GPIO and COM Port, have fixed priority. The GPIO interrupt priority is programmable. The GPIO interrupt services the Asynchronous Source Ports, when enabled. When the Async. Source Port 0 is disabled, the GPIO interrupt is used for GPA0 on DSP0 or GPC0 on DSP1. The COM port interrupt priority can be programmed as either the second-highest or lowest. When the COM port interrupt is the second-highest priority, it is higher than any other interrupt including GPIO, but not the Debug inter-

0-1-5-

MOST System On Chip

O-A-S-I-S SiliconSystems

		0x001	0x002	0x003
0x000	Reset vector			
0x004		*****		
		*****		****
0x008	8xFs Global Timer vector			
0x00C				
0x010	4xFs Global Timer vector			
0x014				
		****		*****
0x018	2xFs Global Timer vector			
0x01C				
0x020	Fs Global Timer vector			
0x024				

0x028	1/4Fs Global Timer vector			
0x02C				
0x030	1/64Fs Timer vector			
0x034	+++++++++++++++++++++++++++++++++++++++			
0x038	COM Port vector			
0x03C				
0x040	GPIO and Async. Source Por	ts vector		
0x044	+++++++++++++++++++++++++++++++++++++++			

0x048	FIFO Port vector			
0x04C				
0x050	Debug vector			
0x054	+++++++++++++++++++++++++++++++++++++++			
0.001				

Figure 4-4: DSP Vector Table

rupt vector. When the COM port interrupt is the lowest priority, it is lower than any other interrupt including GPIO. The COM Port interrupt enable and priority are shared with the FIFO Port, however, the interrupt vector is unique. Interrupt priority should not be changed without first disabling the associated interrupt and servicing any pending interrupts; otherwise, the wrong interrupt vector could be selected when reenabling the interrupt. The Debug interrupt vector is non-maskable and has the highest priority.

Interrupt	Interrupt Vector	Priority
Debug	50h	0 (highest)
8Fs	08h	1
4Fs	10h	2
2Fs	18h	3
Fs	20h	4
4 th	28h	5
64 th	30h	6
COM and FIFO Port	38h and 48h	second-highest or lowest
GPIO pin and Async. Source Ports	40h	programmable

Table 4-8: DSP Interrupt Priority

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

04h	IER	Interrupt Enable Register	DSPs
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
15	GPOL	Polarity of GPIO interrupt, low is rising edge or high level	0
14	LEV	GPIO level or edge sensitive, low is edge	0
13	rsvd	Reserved, Write to 0	0
12	rsvd	Reserved, Write to 0	0
119	PRI[2:0]	GPIO interrupt priority	000
8	CPHI	COM port and FIFO port interrupt priority	0
7	IEGP	GPIO and Async. Source Ports interrupt enable	0
6	IECP	COM port and FIFO port interrupt enable	0
5	IE64TH	64 th interrupt enable [†]	0
4	IE4TH	4 th interrupt enable [†]	0
3	IE1FS	Fs interrupt enable [†]	0
2	IE2FS	2Fs interrupt enable [†]	0
1	IE4FS	4Fs interrupt enable [†]	0
0	IE8FS	8Fs interrupt enable [†]	0

[†] Requires the proper SCK frequency or the Source Port to be disabled

Table 4-9: IER Register

- GPOL GPIO Polarity. When clear, the GPIO is rising-edge or active high. This bit provided for backwards compatibility. Newer software should use register IPOT to set the polarity of GPA0 for DSP0 or GPC0 for DSP1. See Figure 4-15.
- LEV GPIO Level Sensitive. When clear, GPIO is edge-sensitive. Cleared by writing a zero to **EGPD.GPDA0** for DSP0 and **EGPD.GPDC0** for DSP1. This bit provided for backwards compatibility. Newer software should use register ISOD to set level or edge-sensitive configuration of **GPA0** for DSP0 or **GPC0** for DSP1. See Figure 4-15.
- PRI[2:0] Priority level of GPIO. Sets the priority at which the GPIO interrupt occurs. The GPIO interrupt must be disabled (IEGP clear), and any pending interrupt cleared, before changing these bits. 000 – Lower than 7
 - 001 between 7 and 6
 - 010 between 6 and 5
 - 011 between 5 and 4
 - 100 between 4 and 3
 - 101 between 3 and 2
 - 110 between 2 and 1
 - 111 higher than 1 but lower than 0
- CPHI COM Port and FIFO port Priority High. When clear, the COM port and FIFO Port have the lowest priority. When set, the COM Port and FIFO Port have the second-highest priority. The COM Port interrupt must be disabled (IECP clear), and any pending interrupt cleared, before changing this bit.

IEGP Interrupt Enable for GPIO and Async. Source Ports. When Async. Source Port 0 is enabled, IEGP set enables the interrupt with the status available in register DTC. When Async. Source Port 0 is disabled, IEGP allows GPA0 for DSP0 or GPC0 for DSP1 to generate an interrupt, or Async. Source Port 1. For GPIO, the level/edge and polarity should be set via the EGPIO IPOT and ISOD registers (see Figure 4-15). The interrupt priority is programmable through the PRI[2:0] bits.

MOST System On Chip

- IECP Interrupt Enable for COM Port and FIFO Port. When set, the COM Port generates an interrupt that vectors to memory location 038h, on the rising edge of the STR, RD or WR bits in the DCS register. Also when IECP is set and DFLS.IMSK is clear, the FIFO port generates an interrupt that vectors to memory location 048h, on the rising edge of **DFFS.STR** or **DFFS.WR**. The interrupt priority is programmable to highest (CPHI set) or lowest. Interrupt Enable at one 64th Fs. Although this bit is not visible in the GTR register, the bit is IE64TH synchronous with the GTR bits and causes an interrupt on every fourth rising-edge of the Fs/16 flag GTR.FS16TH. The interrupt vectors to memory location 030h and has a priority of 6. IE4TH Interrupt Enable at one 4th Fs. When set, causes an interrupt on the rising-edge of the GTR.FS4TH bit, which vectors to memory location 028h and has a priority of 5. IE1FS Interrupt Enable at Fs rate. When set, causes an interrupt on the rising-edge of the GTR.FS1 bit, which vectors to memory location 020h and has a priority of 4. IE2FS Interrupt Enable at two times Fs. When set, causes an interrupt on the rising-edge of the GTR.FS2 bit, which vectors to memory location 018h and has a priority of 3. IE4FS Interrupt Enable at four times Fs. When set, causes an interrupt on the rising-edge of the GTR.FS4 bit, which vectors to memory location 010h and has a priority of 2.
- IE8FS Interrupt Enable at eight times Fs. When set, causes an interrupt on the rising-edge of the **GTR.FS8** bit, which vectors to memory location 008h and has a priority of 1.

The TRAP instruction is a software interrupt and can be used for debugging. The TRAP instruction cannot be placed in the three instructions after a delay jump, delay jump to subroutine, return, return from interrupt, I/O write to PC or PCI. TRAP can also not be the second word of a two-word instruction. During the execution phase of the TRAP instruction, the PC is loaded with the Debug interrupt vector and the DSPn Trap Shadow PC register, on the Control bus, is loaded with the TRAP instruction address location. In addition, SR is loaded into TSSR. Software must restore SR when returning from a debug interrupt. The first RETI after a Debug Interrupt copies the Trap Shadow PC (visible on the Control bus) value back to the PC; however, no other registers are swapped. All interrupts are disabled once the TRAP instruction is executed and while in the Debug interrupt service routine. The Host Controller can also cause the Debug interrupt vector to be fetched by setting the DDnCS.TRINT bit.

When an interrupt occurs (other than the Debug Interrupt), the ISPC is loaded with the interrupt vector. The instruction fetched during the interrupt is not executed. For the first three cycles of an interrupt service routine, the SPC will specify the program memory location. At the end of the third cycle of the interrupt service routine, the PC and ISPC are swapped, and ACCH, ACCL, and SR are swapped with their respective shadow registers. When returning from an interrupt, the contents of PC are swapped with ISPC, and the contents of ACCH, ACCL, and SR are swapped with their respective shadow registers.

Interrupts can be long or short. Short interrupts cannot be interrupted. They are either the highest priority ISR or they are seven or less instructions long. Short interrupts use the shadow registers as a hardware stack. A short interrupt is exited by executing a return from interrupt instruction (RETI).

MOST System On Chip

4.1.6 Execution Unit

The Execution Unit operations have a fourstage pipeline. During the first stage, the instruction is read from Program memory and stored in the Instruction Register (IR). During the second stage, a pointer value is read from Pointer memory. During the third stage, Vector memory is read. During the fourth stage, the ALU operation is performed and the result is written to the specified destination.

The internal data bus is 18 bits wide. Since data needs to be transferred between the ACC and memories of different width, alignment issues must be addressed. For Sources going to the data bus, Figure 4-5 illustrates the alignment. The ACC and data memories are MSB aligned and the address/Pointer memories are LSB aligned.

For data going to destinations, Figure 4-6 illustrates the data alignment. The ACC and Vector memories are MSB aligned and the different sections of the Pointer memories are LSB aligned. When writing one section of the Pointer memory, the other sections are not affected.

The execution unit updates the necessary status bits in the status register SR according to the result of the operation. The execution unit also provides shadow registers for the low accumulator, high accumulator, and the status register, to facilitate fast context switching for timing-critical interrupt service routines.

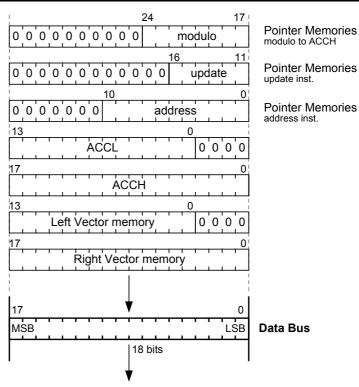


Figure 4-5: DSP Source Data Alignment

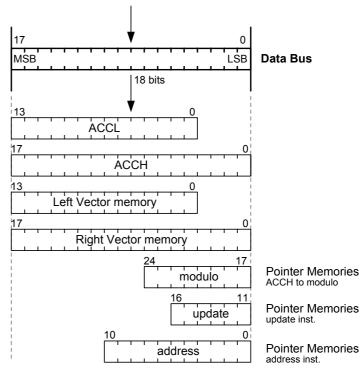


Figure 4-6: DSP Destination Data Alignment

MOST System On Chip

05h	SR	Status Register	DSPs
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
15	С	Carry flag	0
14	N	Negative flag	0
13	Z	Zero flag	0
12	0	Overflow flag	0
11	L	Limit flag	0
105	rsvd	Reserved, Write to 0	000000
4	rsvd	Reserved, Write to 0	0
30	G[3:0]	Guard bits	0000

Table 4-10: SR Register

- C Carry flag. Set when an addition operation produces a carry out or when a subtraction operation requires a borrow. Used in the conditional jump and some arithmetic instructions.
- N Negative flag. Set when the MSB of an arithmetic operation is set. Used in the conditional jump instruction.
- Z Zero flag. Set when the result of an arithmetic operation is zero. Used in the conditional jump instruction.
- O Overflow flag. Set when a two's complement overflow occurs as the result of an operation.
- L Limit flag. Set when saturation occurs as the result of a shift operation with saturation.
- G[3:0] Guard bits. Upper four bits of the accumulator, used to guard against overflow of intermediate results. Used with the entire accumulator (ACC) in MAC operations or just the higher portion of the accumulator (ACCH).

06h	SSR	Shadow Status Register	DSPs
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	SSR[15:0]	Shadow Status Register.	0000h

Table 4-11: SSR Register

SSR[16:0] Shadow Status Register. Loaded with SR during an interrupt that is not the Debug Interrupt. Restored to SR on a return from an interrupt (RETI), except when in a Debug Interrupt.

07h SACCL Shadow Accumulator Low	SACCL Shadow Accumulator Low	
----------------------------------	------------------------------	--

Bit	Label	Description	Default
174	SACCL[14:0]	Shadow Accumulator Low.	000h, 00
30	rsvd	Reserved, Write to 0	0000

Table 4-12: SACCL Register

SACCL[14:0] Shadow Accumulator Low. Loaded with ACCL during a non-Debug interrupt. Restored to ACCL on a return from an interrupt (RETI), except when in a Debug Interrupt.

()8h	SACCH	Shadow Accumulator High	DSPs
I	Bit	Label	Description	Default
1	70	SACCH	Shadow Accumulator High.	0000h, 00

Table 4-13: SACCH Register

SACCH[17:0] Shadow Accumulator High. Loaded with ACCH during a non-Debug interrupt. Restored to ACCH on a return from an interrupt (RETI), except when in a Debug Interrupt.

DSPs

OS880	5	MOST System On Chip	U-A-S-I-S SiliconSystems
0Ch	TSSR	Trap Shadow Status Register	DSPs
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	TSSR[15:0]	Trap Shadow Status Register.	0000h

Table 4-14: TSSR Register

TSSR[15:0] Trap Shadow Status Register. The Debug Interrupt is fetched and TSSR is loaded with SR when a TRAP instruction is executed, or the Host Controller sets **DDnCS.TRINT**. The programmer must restore SR manually when leaving the Debug Interrupt (RETI).

4.1.7 Address Generation Unit

The processor supports three different operand addressing modes: register, direct, and indirect. When the operand resides in the accumulator or an I/O register, the register identifier is encoded in the instruction. Indirect addressing reads one of 64 Pointer memory locations to obtain the address for the data memory operand. Direct addressing is available for the first 64 words of Vector data memory.

The indirect addressing mode also supports post incrementing and decrementing of the data address stored in the Pointer memory. The address is incremented and decremented by either one or an update value stored along with the data address in the Pointer memory. The address calculation can also be performed using modulo arithmetic, where the modulo value is also stored along with the data address in Pointer memory. See Figure 4-3.

4.1.7.1 Register Addressing Mode

Register operands are explicitly encoded within the instruction. The high accumulator and the low accumulator are hardware registers which can be register direct operands. I/O registers are read and written using separate I/O read and I/O write instructions.

4.1.7.2 Direct Addressing Mode

The DSP can directly address the first 64 words of both the left and right Vector data memory in direct addressing mode.

4.1.7.3 Indirect Addressing Mode

When using the indirect addressing mode, an instruction does not directly specify the address of the Vector memory operand, but instead supplies the location, in Pointer memory which contains the Vector memory address. The Vector memory operand address is read from the Pointer memory before the Vector data memory is read from or written to.

Along with the Vector memory address, the Pointer memory also stores a modulo and an update value, which can be used during the post incrementing or decrementing of the address. See Figure 4-3.

 Λ Λ Λ Λ

MOST System On Chip

4.1.8 Instruction Summary

Instruction	Syntax	Words	Cycles
absolute value	<pre>acc = abs(acc), <ls update="">, <rs update="">;</rs></ls></pre>	1	1
add	d = ls + rs, <ls update="">, <rs update="">;</rs></ls>	1	1
add with carry	<pre>d = ls + rs + carry, <ls update="">,<rs update="">;</rs></ls></pre>	1	1
and	d = ls & rs, <ls update="">, <rs update="">;</rs></ls>	1	1
bit clear	s.# = 0;	1	1
bit set	s.# = 1;	1	1
clear accumulator and status	clr, <ls update="">, <rs update="">;</rs></ls>	1	1
compare	<pre>dummy = ls - rs, <ls update="">, <rs update="">;</rs></ls></pre>	1	1
io read	d = ioreg;	1	1
io write	ioreg = d;	1	1
jump bit clear	if (!#) jmp label;	1	1 to 4
jump bit set	if (#) jmp label;	1	1 to 4
delay jump bit clear	if (!#) d_jmp label;	1	1
delay jump bit set	if (#) d jmp label;	1	1
jump conditional	if (cc) jmp label;	1	1 to 4
delay jump conditional	if (cc) d jmp label;	1	1
jump condition subroutine	if (cc) jmps label;	1	1 to 4
delay jump condition subroutine	if (cc) d jmps label;	1	1
load	d = imm, <s update="">;</s>	2	2
Іоор	loop count, start, end;	2	2
move	d = s, <ls update="">, <rs update="">;</rs></ls>	1	1
move acch to modulo	d.m = acch, <s update="">;</s>	1	1
move modulo to acch	acch = s.m, <s update="">;</s>	1	1
multiply	d = ls * rs, <ls update="">, <rs update="">;</rs></ls>	1	1
multiply and accumulate	d = acc + ls * rs, <ls update="">, <rs update="">;</rs></ls>	1	1
multiply and subtract	d = acc - ls * rs, <ls update="">, <rs update="">;</rs></ls>	1	1
negate accumulator	acc = -acc, <ls update="">, <rs update="">;</rs></ls>	1	1
no operation	nop;	1	1
or	d = ls rs, <ls update="">, <rs update="">;</rs></ls>	1	1
delay return from interrupt	reti, <ls update="">, <rs update="">;</rs></ls>	1	1
delay return from subroutine	ret, <ls update="">, <rs update="">;</rs></ls>	1	1
arithmetic shift left	d = acc << imm, <s update="">;</s>	1	1
logical shift left	d = acc < imm, <s update="">;</s>	1	1
arithmetic shift left and saturate	d = saturate(acc << imm), <s update="">;</s>	1	1
arithmetic shift left and round	d = round(acc << imm), <s update="">;</s>	1	1
arithmetic shift left, round and saturate	<pre>d = round saturate(acc << imm), <s update="">;</s></pre>	1	1
arithmetic shift right	d = acc >> imm, <s update="">;</s>	1	1
logical shift right	d = acc > imm, <s update="">;</s>	1	1
arithmetic shift right and saturate	<pre>d = saturate(acc >> imm), <s update="">;</s></pre>	1	1
arithmetic shift right and round	<pre>d = round(acc >> imm), <s update="">;</s></pre>	1	1
arithmetic shift right, round and saturate	<pre>d = round saturate(acc >> imm), <s update="">;</s></pre>	1	1
software reset	reset, <ls update="">, <rs update="">;</rs></ls>	1	1
subtract	<pre>d = ls - rs, <ls update="">, <rs update="">;</rs></ls></pre>	1	1
subtract with carry	<pre>d = ls - rs - carry, <ls update="">, <rs update="">;</rs></ls></pre>	1	1
trap	trap;	1	4
exclusive or	<pre>d = ls ^ rs, <ls update="">, <rs update="">;</rs></ls></pre>	1	1
	Table 4-15: DSP Instruction Set	·	•

Table 4-15: DSP Instruction Set

OS8805 MOST System On Chip 4.2 Global Timer Peripheral

The Global Timer consists of an 8-bit counter, clocked at 16Fs, which can be read by the Controller, DSPs, and MOST processor. Each bit of the counter oscillates at different rates, which support inter-processor synchronization. The rates available are 8, 4, 2, 1, 1/2, 1/4, 1/8, and 1/16Fs. The **FS8**, **FS4**, **FS2**, **FS1** and **FS4TH** bits can generate a DSP interrupt. The Global Timer is illustrated in Figure 2-11 and Figure 2-12 on page 51.

1Ah	GTR	Global Timer Register (read only)	DSPs
Bit	Label	Description	Default
178	rsvd	Reserved, Write to 0	00h, 00
7	FS16TH	one rising edge every 16 Fs periods	0
6	FS8TH	one rising edge every 8 Fs periods	0
5	FS4TH	one rising edge every 4 Fs periods	0
4	FSHALF	one rising edge every other Fs period	0
3	FS1	1 rising edge every Fs period	0
2	FS2	2 rising edges every Fs period	0
1	FS4	4 rising edges every Fs period	0
0	FS8	8 rising edges every Fs period	0

Table 4-16: GTR Register

4.3 Inter-Processor Communications

The inter-processor communication ports consist of the COM ports between the DSPs and the Host Controller, and the MOST Routing Ports between the DSPs and the MOST Processor. The COM ports are normally used for communicating control information between the DSPs and the Host Controller. The MOST Routing Ports allow source data to be exchanged between the DSPs and the on-chip Source Peripherals as well as the MOST Network. Each DSP has its dedicated set of inter-processor communication ports. The DSPs also have a FIFO Port between the two DSPs to allow direct inter-DSP communications.

4.3.1 MOST Routing Port

The MOST Routing Port has bi-directional data registers which enable source data to communicate between the MOST Processor (hence the MOST Network) and the DSP. Each port consists of two 16-bit registers, one for sending data in each direction. The registers co-exist at the same I/O address where DR receives data from the MOST Processor and DX transmits data to the MOST Processor.

The MOST Processor reads and writes each Routing Port (DR and DX) 8 times per audio sample. Eight 16-bit channels can be transferred into and out of each DSP. The DSP can use the Global Timer (GTR) and timer interrupts to accesses as many channels as are needed for a given application. The GTR bits and the MOST Processor peripheral routing are synchronized to the Source Port SCK pin. Therefore, for the GTR flags and peripheral routing to operate properly, the Source Ports must be disabled, SCK configured as an output, or SCK and FSY must be configured as inputs with the proper external clocks applied.

19h	DR	MOST Routing Port Receive Data (read only)	DSPs
Bit	Label	Description	Default
172	DR	MOST Routing Port receive data	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-17: DR Register

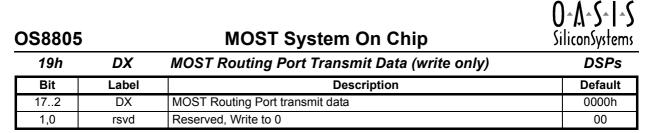


Table 4-18: DX Register

A second set of MOST Routing Ports exist which can double the bandwidth between the DSP and the Routing bus; however, other Routing bus ports must be disabled to enable this port. This Routing port is enabled through the MOST Processor registers by first disabling the external Source Ports, the Source Converters, or the other DSP's routing port.

1Bh	DR1	Second MOST Routing Port Receive Data (read only)	
Bit	Label	Description	Default
172	DR1	Second MOST Routing Port receive data. This routing port is disabled by default and must be enabled through the MOST Processor before using.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-19: DR1 Register

1Bh	DX1	Second MOST Routing Port Transmit Data (write only)	DSPs
-----	-----	---	------

Bit	Label	Description	Default
172	DX1	Second MOST Routing Port transmit data. This routing port is disabled by default and must be enabled through the MOST Processor before using.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-20: DX1 Register

4.3.2 Host Controller COM Port

The COM Port, from the DSP to the Control bus, consists of a status register (DCS) and a data register (DCD). Bits in the status register can interrupt the DSP or allow the DSP to interrupt the Host Controller for service (INT). The data register is 16 bits wide and communicates data bi-directionally between the DSP bus and the Control bus. For additional information on the DSP COM ports, see the Host Controller *Interprocessor Communication* Section.

The **STR**, **RD**, and **WR** flags are read-only by the Controller and DSP. They provide handshaking between the Controller and the DSP during data transfers. They are set when the Controller accesses the data register and are cleared when the DSP accesses the data register. A low-to-high transition of any of these flags can generate the DSP COM port interrupt. Since the status flags must cross clock boundaries between the DSP and the Host Controller, a one-cycle delay exists between when the DSP causes a status bit to change and when the change can be read from the status register. As an example, if the DSP is writing the data register to clear the **DCS.RD** bit, a NOP should be inserted before reading DCS to compensate for the clock-boundary delay. To illustrate the example:

	// assumes DCS.RD is set due to Host Controller reading COM register.
dcd = acch;	// DSP clears the DCS.RD bit (after one-cycle delay) by writing DCD
nop;	// Compensates for the one-cycle delay
<pre>acch = dcs;</pre>	// Read the correct status bits. RD should now be clear.

The DSP alerts the Host Controller that it needs servicing by setting the **DCS.INT**. A low-to-high transition of **INT** can generate the DSP COM Port interrupt in the Controller, if the **IER.IEDSPn** bit is set. For the DSP, when **DCS.CIM** is set, the COM Port interrupt from the Host Controller is masked, which allows the COM Port to be used in a polling fashion while the DSP FIFO port uses the shared interrupt. When **DCS.CIM** is clear, the COM port can generate an interrupt to the DSP, when service is required.

MOST System On Chip

17h	DCS	COM Port Status	DSPs
Bit	Label	Description	Default
175	rsvd	Reserved, Write to 0	000h, 00
4	CIM	COM Port Interrupt Mask	0
3	INT	Interrupt flag to Host Controller	0
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	Read data request (read-only)	0

Table 4-21: DCS Register

18H	DCD	COM Port Data	DSPs
Bit	Label	Description	Default
172	DCD	Bit 17 is MSB: Data from the Host Controller (read only) Data to the Host Controller (write only)	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-22: DCD Register

4.3.3 Host Controller Debug COM Port

The Debug COM port is identical to the regular COM port between DSPs and the Host Controller, except that the DSPs do not have the capability to interrupt the Host Controller through this port. The data register can be read or written by the Host Controller using DD0CF for the first or last transfer and DD0CM for middle word transfer to DSP0. Similarly, DD1CF and DD1CM are for DSP1. The Host Controller can read the status register using DD0CS and DD1CS for DSP0 and DSP1 respectively. Similar to the regular COM port, the status flags must cross clock boundaries between the DSP and the Host Controller, a one-cycle delay exists between when the DSP causes a status bit to change and when the change can be read from the status register. As an example, if the DSP is writing the DDCD data register to clear the **DDCS.RD** bit, a NOP should be inserted before reading DDCS to compensate for the clock-boundary delay.

10h	DDCS	Debug COM Port Status	DSPs
Bit	Label	Description	Default
173	rsvd	Reserved, Write to 0	000h, 000
2	STR	Start transfer (read-only)	0
1	WR	Write data available (read-only)	0
0	RD	read data request (read-only)	0

Table 4-23: DDCS Register

11H	DDCD	Debug COM Port Data	DSPs
Bit	Label	Description	Default
172	DCD	Bit 17 is MSB: Data from the Host Controller (read only) Data to the Host Controller (write only)	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-24: DDCD Register

Debug functions in the DSP are supported through two methods. One method is to insert a TRAP instruction in the DSP Program memory, and the other is when the Host Controller interrupts the DSP using a non-maskable highest priority DSP debug interrupt, **DDnCS.TRINT**. In the first case the TRAP is typically put in the DSP Program memory by the Host Controller, when the external debugger places a break point at that location in the DSP program. The TRAP instruction could also be a part of the DSP program in this case. Typically the first time the user puts a break point in the DSP program, the Host Controller interrupts DSP using the debug interrupt and puts a TRAP instruction at that location.

MOST System On Chip

Inter-DSP FIFO Port 4.3.4

OS8805

The two DSPs have a communication port between them that allows the direct sharing of data without going through the Routing bus, utilizing an 18-bit by 16-deep FIFO between the two DSPs. Each DSP has its own status and data registers mapped to its I/O space. One of two status bits will be set depending on the register written to by the DSP, with the option of generating an interrupt in the other DSP when the FIFO is full. The two status bits perform the same function, but allow the receiving DSP to discern between two different message types (defined by the user). Both DSPs have the following registers to initiate and control a data transfer with the other DSP.

12h	DFLS	DFLS FIFO Port Local Status register	
Bit	Label	Description	Default
178	rsvd	Reserved, Write to 0	00h, 00
74	DEPTH[3:0]	Local FIFO port Depth (FIFO depth = DEPTH[3:0] + 1)	0000
3	IMSK	Local FIFO port Interrupt Mask	0
2	STR	Local FIFO port start status	0
1	WR	Local FIFO port write status	0
0	rsvd	Reserved, Write to 0	0

Table 4-25: DFLS Register

DEPTH[3:0] Sets the depth of the FIFO for sending data to the other DSP. When the sum of this depth and the other DSP depth, set by DFFS.DEPTH[3:0], is greater than 15, software handshaking is required to prevent overwriting of data. Valid values are 0 to 15 (depth of 1 to 16 words).

- IMSK When IMSK is clear and IER.IECP is set, an interrupt is generated when either DFFS.STR or DFFS.WR go high, which indicates that the other DSP has filled the FIFO to a depth of DFFS.DEPTH[3:0]. The interrupt priority is set by IER.CPHI and the interrupt vector is 048h.
- STR Set when the last word is written to the DFSD register, filling the FIFO to the DEPTH[3:0] setting. When **STR** is set, an interrupt is generated on the other DSP, if its interrupt mask is clear (DFFS.IMSK clear) and IER.IECP is set. STR is cleared when the other DSP reads the last word out of the FIFO (reading its DFRD register the number of times specified by its DFFS.DEPTH[3:0]).
- WR Set when the last word is written to the DFWD register, filling the FIFO to the DEPTHI3:0] setting. When we is set, an interrupt is generated on the other DSP, if its interrupt mask is clear (DFFS.IMSK clear) and IER.IECP is set. WR is cleared when the other DSP reads the last word out of the FIFO (reading its DFRD register the number of times specified by its DFFS.DEPTH[3:0]).

15h	DFFS	FIFO Port Far Status register (read only)	DSPs
Bit	Label	Description	Default
178	rsvd	Reserved, Write to 0	00h, 00
74	DEPTH[3:0]	Far end FIFO port Depth	0000
3	IMSK	Far end FIFO port Interrupt Mask	0
2	STR	Far end FIFO port start status	0
1	WR	Far end FIFO port write status	0
0	rsvd	Reserved, Write to 0	0

Table 4-26: DFFS Register

DEPTH[3:0] The depth of the FIFO set by the other DSP. This depth defines how many reads are required to empty the FIFO, thereby clearing DFFS.WR or DFFS.STR which caused the interrupt (if enabled). Since the DSPs are running off independent clocks, these bits are not reliable if the other DSP is in the process of writing them.

MOST System On Chip

- IMSK Indicates whether the other DSP will receive interrupts (IMSK clear, assuming IER.IECP is set) when the FIFO is filled.
- STR Set when the other DSP writes the last word to its DFSD register, filling the FIFO to the DFFS.DEPTH[3:0] setting. When STR is set, an interrupt is generated on this DSP, if its interrupt mask is clear (DFLS.IMSK clear) and IER.IECP is set. STR is cleared when the DFRD register is read the number of times specified by DFFS.DEPTH[3:0], thereby emptying the FIFO.
- WR Set when the other DSP writes the last word to its DFWD register, filling the FIFO to the DFFS.DEPTH[3:0] setting. When wr is set, an interrupt is generated on this DSP, if its interrupt mask is clear (DFLS.IMSK clear) and IER.IECP is set. wr is cleared when the DFRD register is read the number of times specified by DFFS.DEPTH[3:0], thereby emptying the FIFO.

13h	DFSD	FIFO Port Start Data register (write only)	DSPs
Bit	Label	Description	Default
170	DFSD[17:0]	FIFO Port Start Data. Writing to this register loads a word into the FIFO. If the write fills the FIFO to the depth indicated by the DFLS.DEPTH[3:0] bits, the DFLS.STR bit is set, and can generate an interrupt to the other DSP if its FIFO Port interrupt is enabled (DFFS.IMSK clear and IER.IECP set).	00h, 00

Table 4-27: DFSD Register

14h **DSPs** DFWD FIFO Port Write Data register (write only) Bit Label Description Default FIFO Port Write Data. Writing to this register loads a word into the FIFO. If the write fills the FIFO to the depth indicated by the DFLS.DEPTH[3:0] 17..0 DFWD[17:0] bits, the **DFLS.WR** bit is set, and can generate an interrupt to the other 00h, 00 DSP if its FIFO Port interrupt is enabled (DFFS.IMSK clear and IER.IECP set).

Table 4-28: DFWD Register

14h	DFRD	FIFO Port Read Data register (read only)	DSPs
Bit	Bit Label Description		
170	DFRD[17:0]	FIFO Port Read Data. Reading this register removes a word from the FIFO. When the last word in the FIFO is read (based on DFFS.DEPTH[3:0]), the DFFS.WR or DFFS.STR bit (which ever was high) will then be cleared.	00h, 00

Table 4-29: DFWD Register

4.4 Asynchronous Source Ports

Each DSP has two Asynchronous Source Ports: 0 and 1. These ports differ from the Source Ports directly connected to the routing bus, in that the DSP Source Ports are asynchronous to the Network (or global timer **GTR.FS1**). All four pins can be configured as a block of GPIO or as a Source Port. The Source Ports communicate data externally to the OS8805, as opposed to the Routing Port which communicates data internally. DSP0 communicates through Async. Source Port A and DSP1 through Source Port B. For DSP0, Source Port A0 shares pins with **GPA[3:0]** and Source Port A1 shares pins with **GPB[3:0]**. For DSP1, Source Port B0 shares pins with **GPC[3:0]** and Source Port B1 shares pins with **GPD[3:0]**. These GPIO pins can also be controlled via the Host Controller. Enabling the Source Port (**DSnC.BPI[6:0]** > 0) has precedence over any GPIO function.

Each Source Port consists of a transmit pin SXxn which transmits data out of the OS8805, a receive pin SRxn which receives data from an external source, a bit-clock pin SCKxn, and a framing pin FSYxn. For DSP0, the x stands for A (Source Port A pins) and for DSP1, the x stands for B (Source Port B pins). Since each DSP has two Source Ports, the n stands for 0 or 1. Table 4-30 lists the pins for each Source Port.

MOST System On Chip

O-A-S-I-S SiliconSystems

	DSP0				DSP1			
Function	-	SourceAsync. Sourcet A0Port A1			Async. Source Port B0		Async. Source Port B1	
	SP	GPIO	SP	GPIO	SP	GPIO	SP	GPIO
Bit Clock	SCKA0	GPA0	SCKA1	GPB0	SCKB0	GPC0	SCKB1	GPD0
Framing Clock	FSYA0	GPA1	FSYA1	GPB1	FSYB0	GPC1	FSYB1	GPD1
Transmit Data	SXA0	GPA2	SXA1	GPB2	SXB0	GPC2	SXB1	GPD2
Receive Data	SRA0	GPA3	SRA1	GPB3	SRB0	GPC3	SRB1	GPD3

Table 4-30: DSP Async. Source Port Pins

The framing and bit clocks can be inputs or outputs. Each DSP has two timers that may be connected to the Source Ports, where one timer outputs the bit clock **SCKxn** and the other outputs the framing clock **FSYxn**. The second Source Port's clocks can be chained to the first, or input externally. If the timers are not used to output clocks, they can capture the counter time when **FSYxn** changes.

4.4.1 Async. Source Port Timer

The timer on each DSP consists of two 15-bit programmable dividers and a control register. The timer control register has 3 bits, which enable the timer divider outputs and control the divide-by-2 multiplexer. If the S/PDIF format is enabled, DDIV0 and DDIV1 must be set properly for the S/PDIF format regardless of whether the SCKxn and FSYxn pins are inputs or outputs.

3Bh	DDIV0	DSP Divider 0 register	DSPs
Bit	Label	Description	Default
17	rsvd	Reserved, Write to 0	0
162	DDIV0[14:0]	Divider value for Timer 0. Clocked from a 3072xFs signal.	000, 000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-31: DDIV0 Register

DDIV0[14:0] Divider value for DSP Timer 0. The Timer 0 counter counts up at a 3072xFs rate, and when the counter reaches the **DDIV0[14:0]** value, the counter generates a pulse and resets the

counter. To achieve a clock that is a certain ratio to Fs, **DDIV0[14:0]** = $\frac{3072}{ratio} - 1$. To achieve a

50 % duty cycle, the **DDIV0[14:0]** value should be set to half the required ratio (twice the frequency) minus one, and then set **DTC.T0D2E**, which will divide the result by two. Timer 0 can be output as the Async Source Port bit clock SCKxn by setting **DSnC.CKOE**. When used as SCKxn output, the valid values (assuming **DTC.T0D2E** is set) are listed in Table 4-36. When Source Port 0 is set for S/PDIF, **DDIV0[14:0]** must be set to twice the S/PDIF bit clock frequency if **DTC.T0D2E** is clear, or four times the bit-clock frequency if **DTC.T0D2E** is set.

3Ch	DDIV1	DSP Divider 1 register	DSPs
Bit	Label	Description	Default
17	rsvd	Reserved, Write to 0	0
162	DDIV1[14:0]	Divider value for Timer 1. Clocked from the output of Timer 0.	000, 000h
10	rsvd	Reserved Write to 0	00

Table 4-32: DDIV1 Register

DDIV1[14:0] Divider value for DSP Timer 1. The Timer 1 counter counts up at a rate set by the output of Timer 0, and when the counter reaches the **DDIV1[14:0]** value, the counter generates a pulse and resets the counter. To achieve a clock that is a certain ratio to Fs,

DDIV1[14:0] = $\frac{\text{Timer 0 output}}{\text{ratio}} - 1$. To achieve a 50 % duty cycle, the **DDIV1[14:0]** value should be

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

set to half the required ratio (twice the frequency) minus one, and then set DTC.T1D2E, which will divide the result by two. Timer 1 can be output as the Async Source Port bit clock FSYxn by setting DSnC.CKOE. When used as FSYxn output, the valid values (assuming DTC.T1D2E is set) are listed in Table 4-36.

3Dh	DCAP0	DSP Capture 0 register	DSPs
Bit	Label	Description	Default
172	DCAP0[15:0]	Capture value. Captures the timer 0 value when one of four events occurs, where the selection is made via the DTC.CSEL[1:0] bits.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-33: DCAP0 Register

3Eh	DCAP1	DSP Capture 1 register	DSPs
Bit	Label	Description	Default
172	DCAP1[15:0]	Capture value. Captures the timer 1 value when one of four events occurs, where the selection is made via the DTC.CSEL[1:0] bits.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-34: DCAP1 Register

3Fh	DTC	DSP Timer Control register	DSPs
Bit	Label	Description	Default
17	SP1TXI	Source Port 1 Transmit Interrupt Status	0
16	SP0TXI	Source Port 0 Transmit Interrupt Status	0
15	SP1RXI	Source Port 1 Receive Interrupt Status	0
14	SP0RXI	Source Port 0 Receive Interrupt Status	0
1311	rsvd	Reserved. Write to 0	000
10	T0RSD	Timer 0 S/PDIF Data Transition Reset Enable	0
9, 8	CSEL[1:0]	Capture Select	00
7	T1CAP	Trigger Capture for Timer 1	0
6	T0CAP	Trigger Capture for Timer 0	0
5	T1D2E	Timer 1 Divide by 2 enable	0
4	T0D2E	Timer 0 Divide by 2 enable	0
3	T1EN	Timer 1 Enable	0
2	T0EN	Timer 0 Enable	0
1,0	rsvd	Reserved, Write to 0	00

Table 4-35: DTC Register

- SP1TXI Source Port x1 Transmit Interrupt Status. When set, this bit indicates that Source Port x1's Transmit registers DS1X0 - DS1X3 are empty and ready for loading. The rising edge of **SP1TXI** generates an interrupt to the GPIO interrupt vector when **IER.IEGP** is set. **SP1TXI** is cleared by writing any one of the DS1X0 - DS1X3 registers or directly clearing **SP1TXI**.
- SP0TXI Source Port x0 Transmit Interrupt Status. When set, this bit indicates that Source Port x0's Transmit registers DS0X0 - DS0X3 are empty and ready for loading. The rising edge of **SP0TXI** generates an interrupt to the GPIO interrupt vector when **IER.IEGP** is set. **SP0TXI** is cleared by writing any one of the DS0X0 - DS0X3 registers or directly clearing **SP0TXI**.
- SP1RXI Source Port x1 Receive Interrupt Status. When set, this bit indicates that Source Port x1's Receive registers DS1R0 DS1R3 are full and ready to be read. The rising edge of **SP1RXI** generates an interrupt to the GPIO interrupt vector when **IER.IEGP** is set. **SP1RXI** is cleared by reading any one of the DS1R0 DS1R3 registers or directly clearing **SP1RXI**.

MOST System On Chip

SPORXI	Source Port x0 Receive Interrupt Status. When set, this bit indicates that Source Port x0's Receive registers DS0R0 - DS0R3 are full and ready to be read. The rising edge of SPORXI generates an interrupt to the GPIO interrupt vector when IER.IEGP is set. SPORXI is cleared by reading any one of the DS0R0 - DS0R3 registers or directly clearing SPORXI .
T0RSD	Timer 0 S/PDIF Data Transition Reset enable.Must be set when in S/PDIF mode.
CSEL[1:0]	 Capture Select. Selects the trigger mechanism for loading the DCAP0 and DCAP1 registers from their respective timers. 00 - Setting the respective trigger bit in DTC: TOCAP for DCAP0, and T1CAP for DCAP1. 01 - Start of a Async. Source Port Frame on FSYx0. 10 - Start of a Async. Source Port Frame on FSYx1. 11 - Rising edge of GTR.FS1.
T1CAP	Capture 1 trigger. When CSEL[1:0] = 00, setting this bit causes the Timer 1 value to be loaded into DCAP1.
T0CAP	Capture 0 trigger. When CSEL[1:0] = 00, setting this bit causes the Timer 0 value to be loaded into DCAP0.
T1D2E	Timer 1 Divide-by-2 Enable. When set, the output generated by DDIV1 is divided by 2 to generate a 50 % duty cycle clock.
T0D2E	Timer 0 Divide-by-2 Enable. When set, the output generated by DDIV0 is divided by 2 to generate a 50 % duty cycle clock.
T1EN	Timer 1 Enable. When set, Timer 1 is enabled. When clear, Timer 1 is powered down.
TOEN	

T0EN Timer 0 Enable. When set, Timer 0 is enabled. When clear, Timer 0 is powered down.

4.4.2 Source Port Registers

OS8805

The Asynchronous Source Port is a generic programmable Source Port which supports I^2S and S/PDIF operation. One instantiation of the Source Port block provide two independent Source Ports, port 0 and port 1. Within the Source Port block, there are two programmable timers which can generate SCKxn and FSYxn signals. Therefore, if both ports are operating in output mode, port 0 and port 1 can be of the same frequency and synchronous to each other. Also, an S/PDIF block is attached to port 0. One of the timers (timer 0) can generate the 50% duty cycle of SCKxn, the other timer (timer 1) can generate the FSYxn.

The Source Ports are capable of generating four independent interrupts, port 0 receive interrupt, port 1 receive interrupt, port 0 transmit interrupt and port 1 transmit interrupt. Depending on the register setting, all 4 interrupts can be totally independent of each other. However, depending on the register setting and configuration, port 0 and port 1 can be serviced by the same receive and transmit interrupt. In some configurations, only one interrupt is needed when port 0 and port 1, transmit and receive are synchronized.

In addition, **DTC.SPOTXI**, **DTC.SPITXI**, **DTC.SPORXI**, and **DTC.SP1RXI** indicate the interrupt status. If interrupts are not possible, then these four bits can be polled through software. The **DTC.SPOTXI** and **DTC.SP1TXI** bits go high when their corresponding DS0Xn or DS1Xn registers are ready to be loaded with the next transmit data. The **DTC.SPOTXI** and **DTC.SP1TXI** bits can be cleared by writing to any of the corresponding DS0Xn or DS1Xn registers are ready to be unloaded. The **DTC.SPOTXI** and **DTC.SP1TXI** bits go high when their corresponding DS0Rn or DS1Rn registers are ready to be unloaded. The **DTC.SPORXI** and **DTC.SP1RXI** bits can be cleared by reading from any of the corresponding DS0Rn or DS1Rn registers.

If Asynchronous Source Port interrupts are enabled, transmit and receive interrupts **must both** be cleared before existing the ISR; otherwise, new interrupts will be blocked from occurring. Since all four interrupts are OR'd, any **one** set when exiting the ISR will block a new rising edge from occurring, thereby blocking further interrupts. Software must verify that all four are simultaneously zero sometime during servicing, or new interrupts might not be generated.

The DSnC.DEL, DSnC.FPOL, and DSnC.EDG bit combinations allow the support of different formats on the Source Ports.

For the case where SCKxn and FSYxn are outputs, the following tables lists the valid combinations of timer and Source Port settings to get the desired number of bits per Fs period. When set for more than one interrupt per Fs, the GPIO input bit attached to the particular FSYxn pin indicates when FSYxn changes state. The DSP can use this data to determine which of the interrupts is occurring during an Fs period. For DSP0, FSYA0 is connected to GPA1 and, for DSP1, FSYB0 is connected to GPC1.

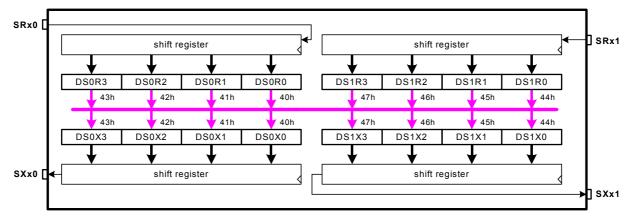
SCL	SCLKxn		FSYxn		Interrupts		ers Used
Bits/Fs	DDIV0 *	Periods per Fs	DDIV1 *	Interrupts per Fs	DSnC. BPI	тх	RX
32	002Fh	1	000Fh	1	1Fh	DSnX3-DSnX2	DSnR1-DSnR0
64	0017h	1	001Fh	1	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
128	000Bh	1	003Fh	2	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
256	0005h	1	007Fh	4	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
512	0002h	1	00FFh	8	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
128 [†]	000Bh	1	003Fh	1	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0
256 †	0005h	1	007Fh	2	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0
512 [†]	0002h	1	00FFh	4	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0

* For SCLKxn assumes DTC.T0D2E set, and for FSYxn assumes DTC.T1D2E set. To load the DDIVn registers, the values listed must be shifted up by four as the register bits are MSB-aligned in the DDIVn registers.

[†] 128-bit mode, where Source Port x1 registers are cascaded/used; therefore, Source Port x1 is not available.

Table 4-36: Valid Output Clocking Combinations for Async. Source Ports

Each of the two Source Ports are independent from each other. Source Port x0 and Source Port x1 have their respective DSnC.DEL, DSnC.FPOL, DSnC.EDG, DSnC.CKOE, and DSnC.BPI[6:0] controls. However, if both Source Ports are configured to have SCKxn and FSYxn as outputs, the SCKxn and FSYxn frequency and the DSnC.BPI[6:0] bits need to be the set the same for both ports, since there is only one set of timers. When both sets of Source Port clocks are configured as output, only one interrupt is needed since transmit and receive are synchronized. In addition, DSnC.CHAIN can chain the SCKxn and FSYxn inputs together for both Source Ports, to minimize the number of interrupt. When DS1C.CHAIN is set, the SCKx0 and FSYx0 signals are used for both Source Ports.


The maximum number of bits per interrupt is 128. When the **DSnC.BPI[6:0]** is set to 7Fh, Source Port x0 and Source Port x1 are cascaded. When configured to output **SCKxn** and **FSYxn**, the timers outputs are used for both ports. When the Source Port clocking are configured to be inputs, **SCKxn** and **FSYxn** control each port (unless chained). All four interrupts occur simultaneously when in 128-bit mode (Source Ports cascaded). For received data, each must be cleared by reading at least one register in each of the received data blocks (DS0R3-DS0R0 and DS1R3-DS1R0 blocks). Likewise, for transmitted data, each must be cleared by writing at least one register in each of the received data blocks (DS0X3-DS0X0 and DS1X3-DS1X0 blocks). In addition DS0xn block contains the most significant set of data for both transmit and receive directions

MOST System On Chip

The Source Port data outputs are powered up disabled to reduce EMI. The **DSnC.SDOEN** bit unmutes the SX outputs.

The two 64-bit output shift registers accept data from eight DSP IO registers, DS0X0-3 and DS1X0-3. These registers are loaded during the interrupt mentioned above and parallel loaded into the output shift registers at the same time the input shift registers are loaded into their parallel registers. Data is then shifted out the two data output pins as data is shifted in from the two data input pins.

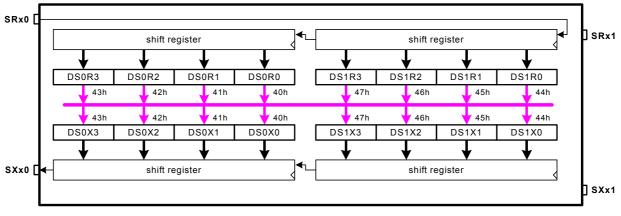


Figure 4-8: DSP ASP 128-bit Mode

In the OS8805, the **DTC.SPOTXI**, **DTC.SPITXI**, **DTC.SPORXI**, and **DTC.SPIRXI** bits are OR'd with the GPIO interrupt. Therefore, when a DSP GPIO interrupt occurs, software must examine the EGPIO and the DTC registers to determine the source of the interrupt. If a DTC interrupt exists, at the end of the interrupt routine **BOTH** the transmit and receive interrupts should be checked and cleared, as **either one** set could block further interrupts from occurring.

40h	DS0R0	DSP Source Port 0, Receive word 0 (read only)	DSPs
Bit	Label	Description	Default
172	DS0R[15:0]	DSP Source Port 0: In 32-bit mode, second of two words in, In 64- and 128-bit modes, fourth of four/eight words in, from pin SRA0 for DSP0 and pin SRB0 for DSP1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-37: DS0R0 Register

MOST System On Chip

DSPs

41h	DS0R1	DSP Source Port 0, Receive word 1 (read only)	DSPs
Bit	Label	Description	Default
172	DS0R[31:16]	DSP Source Port 0: In 32-bit mode, first of two words in, In 64- and 128-bit modes, third of four/eight words in, from pin SRA0 for DSP0 and pin SRB0 for DSP1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-38: DS0R1 Register

42h	DS0R2	DSP Source Port 0, Receive word 2 (read only)	DSPs
Bit	Label	Description	Default
172	DS0R[47:32]	DSP Source Port 0: (not used in 32-bit mode) In 64- and 128-bit modes, second of four/eight words in, from pin SRA0 for DSP0 and pin SRB0 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-39: DS0R2 Register

43h	DS0R3	DSP Source Port 0, Receive word 3 (read only)	DSPs
Bit	Label	Description	Default
172	DS0R[63:48]	DSP Source Port 0: (not used in 32-bit mode) In 64- and 128-bit modes, first of four/eight words in, from pin SRA0 for DSP0 and pin SRB0 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-40: DS0R3 Register

44h DS1R0 DSP Source Port 1, Receive word 0 (read only)

Bit	Label	Description	Default
172	DS1R[15:0]	DSP Source Port 1: In 32-bit mode, second of two words in, In 64-bit mode, fourth of four words in, In 128-bit mode, eighth of eight words in, from pin SRA1 for DSP0 and pin SRB1 for DSP1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-41: DS1R0 Register

45h	DS1R1	DSP Source Port 1, Receive word 1 (read only)	DSPs
Bit	Label	Description	Default
172	DS1R[31:16]	DSP Source Port 1: In 32-bit mode, first of two words in, In 64-bit mode, third of four words in, In 128-bit mode, seventh of eight words in, from pin SRA1 for DSP0 and pin SRB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-42: DS1R1 Register

0	-1-5-	S
Si	liconSys	tems

MOST System On Chip

46h	DS1R2	DSP Source Port 1, Receive word 2 (read only)	DSPs
Bit	Label	Description	Default
172	DS1R[47:32]	DSP Source Port 1: (not used in 32-bit mode) In 64-bit mode, second of four words in, In 128-bit mode, sixth of eight words in, from pin SRA1 for DSP0 and pin SRB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-43: DS1R2 Register

47h DS1R3 DSP Source Port 1, Receive word 3 (read only) **DSPs**

Bit	Label	Description	Default
172	DS1R[63:48]	DSP Source Port 1: (not used in 32-bit mode) In 64-bit mode, first of four words in, In 128-bit mode, fifth of eight words in, from pin SRA1 for DSP0 and pin SRB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-44: DS1R3 Register

40h	DS0X0	DSP Source Port 0, Transmit word 0 (write only)	DSPs
Bit	Label	Description	Default
172	DS0X[15:0]	DSP Source Port 0: (not used in 32-bit mode) In 64- and 128-bit modes, fourth of four/eight words out, from pin SXA0 for DSP0 and pin SXB0 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-45: DS0X0 Register

41h DS0X1 DSP Source Port 0. Transmit word 1 (write only)

41h	DS0X1	DSP Source Port 0, Transmit word 1 (write only)	DSPs			
Bit	Bit Label Description					
172	DS0X[31:16]	DSP Source Port 0: (not used in 32-bit mode) In 64- and 128-bit modes, third of four/eight words out, from pin SXA0 for DSP0 and pin SXB0 for DSP1	0000h			
1,0	rsvd	Reserved, Write to 0	00			

Table 4-46: DS0X1 Register

42h DS0X2 **DSPs** DSP Source Port 0, Transmit word 2 (write only) Bit Label Description Default DSP Source Port 0: In 32-bit mode, second of two words out 17..2 DS0X[47:32] 0000h In 64- and 128-bit modes, second of four/eight words out, pin SXA0 for DSP0 and pin SXB0 for DSP1 1,0 rsvd Reserved, Write to 0 00

Table 4-47: DS0X2 Register

43h DS0X3 DSP Source Port 0, Transmit word 3 (write only) **DSPs**

Bit	Label	Description	Default
172	DS0X[63:48]	DSP Source Port 0: In 32-, 64-, and 128-bit modes, first of two/four/eight words out from pin SXA0 for DSP0 and pin SXB0 for DSP1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-48: DS0X3 Register

1,0

MOST System On Chip

		5 1	1
44h	DS1X0	DSP Source Port 1, Transmit word 0 (write only)	DSPs
Bit	Label	Description	Default
172	DS1X[15:0]	DSP Source Port 1: (not used in 32-bit mode) In 64-bit mode, fourth of four words out, In 128-bit mode, eighth of eight words out, from pin SXA1 for DSP0 and pin SXB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-49: DS1X0 Register

DSPs 45h DS1X1 DSP Source Port 1, Transmit word 1 (write only)

Bit	Label	Description	Default
172	DS1X[31:16]	DSP Source Port 1: (not used in 32-bit mode) In 64-bit mode, third of four words out, In 128-bit mode, seventh of eight words out, from pin SXA1 for DSP0 and pin SXB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-50: DS1X1 Register

46h DSP Source Port 1, Transmit word 2 (write only) **DSPs DS1X2**

Bit	Label	Description	Default
172	DS1X[47:32]	DSP Source Port 1: In 32-bit mode, second of two words out In 64-bit mode, second of four words out, In 128-bit mode, sixth of eight words out, from pin SXA1 for DSP0 and pin SXB1 for DSP1	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-51: DS1X2 Register

47h DS1X3 DSP Source Port 1, Transmit word 3 (write only) DSPs

Bit	Label	Description	Default
172	DS1X[63:48]	DSP Source Port 1: In 32- and 64-bit modes, first of two/four words out, In 128-bit mode, fifth of eight words out, from pin SXA1 for DSP0 and pin SXB1 for DSP1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-52: DS1X3 Register

DS8805		MOST System On Chip	SiliconSystems
48h	DS0C	DSP Source Port 0 Control	DSPs
Bit	Label	Description	Default
1711	BPI[6:0]	Number of bits per interrupt. Also enables/disables Source Port x0.	0000000
10	SPLK	S/PDIF Lock status (read only)	0
9	EDG	Active edge of SCKx0. 0 = valid on falling and changing on rising edge	. 0
8	DEL	Delay from FSYx0 edge.	0
7	FPOL	Polarity of FSYx0. When 0, the start of frame is FSYx0 low.	0
6	rsvd	Reserved. Write to 0	0
5	rsvd	Reserved. Write to 0	0
4	SPEN	S/PDIF mode enable	0
3	CKOE	Clock Output enable. When set, FSYx0/SCKx0 are outputs.	0
2	SDOEN	Source Data Output Enable. When clear SXx0 is always 0.	0
1,0	rsvd	Reserved. Write to 0	00

Table 4-53: DS0C Register

- BPI[6:0] Number of bits per interrupt. The settings for SCLKx0 and FSYx0 are dependent on the BPI[6:0] settings. Valid BPI[6:0] values are:
 - 00h Source Port x0 is disabled. The pins can be used for GPIO. For DSP0 BPI[6:0] set to zero enables GPIO pins GPA[3:0]. For DSP1 BPI[6:0] set to zero enables pins GPC[3:0].
 - 1Fh Source Port x0 enabled, with 32 bits per interrupt. Registers DS0X3-DS0X2 and DS0R1-DS0R0 are used. Not allowed when in S/PDIF mode (**sPEN** enabled).
 - 3Fh Source Port x0 enabled, with 64 bits per interrupt. Registers DS0X3-DS0X0 and DS0R3-DS0R0 are used.
 - 7Fh Source Port x0 enabled, with 128 bits per interrupt (128-bit mode). **DS1C.BPI[6:0]** must equal 7Fh as Source Port x1's registers are cascaded to get all 128 bits per interrupt. For transmitting, registers DS0X3- DS0X0 contain the most significant 64 bits and DS1X3- DS1X0 contain the least significant 64 bits. For receiving, registers DS0R3-DS0R0 contain the most significant and DS1R3-DS1R0 contain the least significant 64 bits.
- SPLK S/PDIF Lock status. When Source Port x0 is configured for S/PDIF format (**SPEN** set), **SPLK** is set, indicating *in lock*, when three consecutive left preambles are correctly received. **SPLK** is cleared when two consecutive left preambles are not received correctly.
- EDG Active edge of SCKA0 for DSP0 or SCKB0 for DSP1. EDG clear is data valid on the falling edge and changing on the rising edge. EDG set is data valid on the rising edge and changing on the falling edge.
- DEL Delay from FSYx0 edge. When set, the MSB starts one SCKx0 clock period after FSYx0 edge (Philips I²S style). When clear, the MSB starts at the FSYx0 edge.
- FPOL Polarity of FSYx0. When 0, the start of frame is FSYx0 going low. When FPOL is set, the start of a frame is FSYx0 going high.
- SPEN S/PDIF enabled. When set, Source Port x0 is configured to input and output S/PDIF data. **BPI[6:0]** must be set to 64 or 128 bits per interrupt. When SPEN is set, the DSP timers are used for transmitting the S/PDIF signal; therefore, Source Port x1 is internally forced to use the same timing (**DS1C.CHAIN** must be clear), or must use externally derived timing (**DS1C.CKOE** clear).
- CKOE Clock Output enable. When set, the DSP timers are output on the FSYx0/SCKx0 pins, where DSP timer 0 goes to the SCKx0 pin and timer 1 goes to the FSYx0 pin. If the CHAIN bit is clear, then SRx0/SXx0 are clocked using the DSP timers. If CHAIN is set when CKOE is set, SRx0/SXx0 are clocked from SCKx1/FSYx1 and SCKx0/FSYx0 just output the DSP timer clocks. When CKOE is clear, FSYx0/SCKx0 are inputs.

 $\bigcap_{A} \bigwedge_{A} \bigcap_{A} \bigcap_{A$

O-A-S-I-S SiliconSystems

DSPs

OS8805

MOST System On Chip

SDOEN Source Data Output Enable. When clear, the **SXx0** pin is high impedance. When set, **SXx0** outputs data from the DS0X3-DS0X0 registers, starting with the MSB of DS0X3.

49h DS1C DSP Source Port 1

Default Bit Label Description 0000000 17..11 BPI[6:0] Number of bits per interrupt. Also enables/disables Source Port x1. 10 rsvd Reserved. Write to 0 0 Active edge of SCKA1 for DSP0 or SCKB1 for DSP1. 0 is data valid on EDG 0 9 the falling edge and changing on the rising edge. Delay from FSYx1 edge. When set, the MSB starts one SCKx1 clock 8 DEL 0 period after FSYx1 edge. When clear, the MSB starts at the FSYx1 edge. Polarity of FSYx1. When 0, the start of frame is FSYx1 low. For DSP0 the 7 FPOL 0 pin is FSYA1 and for DSP1 the pin is FSYB1. CHAIN Chain FSYx1/SCKx1 with other port (FSYx0/SCKx0). 6 0 Reserved. Write to 0 5 rsvd 0 4 SPEN S/PDIF mode enable. Only set when DS0C.SPEN set and BPI[6:0] = 7Fh. 0 Clock Output enable. When set, FSYx1/SCKx1 are outputs. When clear, 3 CKOE 0 FSYx1/SCKx1 are inputs. Source Data Output Enable. When clear SXx1 is always 0. When set, 2 **SDOEN** 0 SXx1 outputs data. Reserved. Write to 0 1,0 rsvd 00

Table 4-54: DS1C Register

BPI[6:0]	Number of bits per interrupt. The settings for SCLKx1 and FSYx1 are dependent on the BPI[6:0] settings. Valid BPI[6:0] values are:
	 00h - Source Port x1 is disabled. The pins can be used for GPIO. For DSP0 BPI[6:0] set to zero enables GPIO pins GPB[3:0]. For DSP1 BPI[6:0] set to zero enables pins GPD[3:0]. 1Fh - Source Port x1 enabled, with 32 bits per interrupt. Registers DS1X3- DS1X2 and
	DS1R1-DS1R0 are used.
	3Fh - Source Port x1 enabled, with 64 bits per interrupt. Registers DS1X3- DS1X0 and DS1R3-DS1R1 are used.
	7Fh - Source Port x1 enabled, with 128 bits per interrupt. DSOC.BPI[6:0] must equal 7Fh as Source Port x0's registers are cascaded to get all 128 bits per interrupt. For transmitting, DS0X3- DS0X0 and DS1X3-DS1X0 are used as mentioned in the DSOC.BPI[6:0] bit description. For receiving, DS0R3-DS0R0 and DS1R3-DS1R0 are used.
EDG	Active edge of SCKA1 for DSP0 or SCKB1 for DSP1. EDG clear is data valid on the falling edge and changing on the rising edge. EDG set is data valid on the rising edge and changing on the falling edge.
DEL	Delay from FSYx1 edge. When set, the MSB starts one SCKx1 clock period after FSYx1 edge (Philips I ² S style). When clear, the MSB starts at the FSYx1 edge.
FPOL	Polarity of FSYx1. When 0, the start of frame is FSYx1 going low. When FPOL is set, the start of a frame is FSYx1 going high.
CHAIN	Chain FSYx1/SCKx1 with other port (FSYx0/SCKx0). Source Port x0 clocks (FSYx0/SCKx0) are also the timing source for Source Port x1. Therefore, either the internal DSP timers must be output on the Source Port x0 clocks, or externally derived clocks must be input on FSYx0/SCKx0. CHAIN must also be cleared when cascading the two Source Ports in 128-bit mode (BPI[6:0] = 7Fh).

SPEN S/PDIF enabled. Must only be set when Source Port x0 is configured for 128-bit per interrupt S/PDIF operation (DS0C.BPI[6:0] set to 7Fh).

MOST System On Chip

- CKOE Clock Output enable. When set, the DSP timers are output on the FSYx1/SCKx1 pins, where DSP timer 0 goes to the SCKx1 pin and timer 1 goes to the FSYx1 pin. If the CHAIN bit is clear, then SRx1/SXx1 are clocked using the DSP timers. If CHAIN is set when CKOE is set, SRx1/SXx1 are clocked from SCKx0/FSYx0, and SCKx1/FSYx1 just output the DSP timer clocks. When CKOE is clear, FSYx1/SCKx1 are inputs. When Source Port x0 is configured for S/PDIF (DS0C.SPEN set), then Source Port x0 uses the DSP timers. In this case, Source Port x1 can only set this bit if Port x1 uses the same timing as Source Port x0.
- SDOEN Source Data Output Enable. When clear, the SXx1 pin is high impedance. When set, SXx1 outputs data from the DS1X3-DS1X0 registers, with the MSB of DS1X3 transmitted first.

The Source Port interrupt is OR'd with the GPIO interrupt; therefore, the Source Port interrupt priority is configurable via the IER.PRI[2:0] bits. Since the Source Port pins for both DSPs are shared with the Host Controller, the corresponding interrupt enables for the GPIO function must be disabled when the Source Ports are in use. For both DSP0 and DSP1, when Source Port x0 is in use, the DSP GPIO interrupt is automatically disabled in hardware since the SCKx0 pin of the Source Port x0 is shared as the EGP0 of the DSPs, which can triggered the DSP GPIO interrupt. For the Host Controller, when DSP1 is using Source Port x0, the Host Controller timer interrupts must be disabled in software.

4.4.2.1 S/PDIF Format

OS8805

The S/PDIF operation is only available on Source Port x0. However, a 128-bit S/PDIF format links both Source Ports together, using both sets of registers to transfer 128 bits per interrupt. To select S/PDIF mode, DSnc.SPEN must be set. To select 128-bit S/PDIF mode, both DSoc.SPEN and DS1c.SPEN must be set, and both DSnc.BPI[6:0] must be set to 7Fh.

When S/PDIF format is selected, both DSP Timers must be configured for S/PDIF operation regardless of whether SCKxn and FSYxn are inputs or outputs. DSP Timer 0 must be configured for two times the bits per S/PDIF frame when the DTC.TOD2E is not set, and four times the bits per S/PDIF frame when the DTC.TOD2E is set. Since both DSP Timers are used in S/PDIF mode, if Source Port x1 is configured to output SCKx1 and FSYx1, it must be the same frequency and bit rate as Source Port x0. SCKx1 output will be the Timer 0 setting divided by two (same bit rate as Port 0). If Source Port x1 is configured to input SCKxn and FSYxn, it can be totally independent from Source Port x0. If both Ports are independent from each other, two interrupts will be needed.

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

When setting Source Port x0 to S/PDIF format, Timer 0 and Timer 1 must be set properly. The transmitted bit stream on SXx0 is set by the combination of Timer 0 settings (set to twice the bit period of the S/PDIF stream), and Timer 1 settings for the preambles as listed in Table 4-55. In S/PDIF mode, the output of Timer 0 is internally divided by two before sending the output to Timer 2 or the output pin.

S/PDIF		Timer 0		Timer 1		Interrupts		Registers Used	
Mul.	SXx0 Bits/Fs	Clocks /Fs	DDIV0	Periods per Fs	DDIV1*	Ints. per Fs	DSnC. BPI	тх	RX
1x	64	128	000Bh*	1	001Fh	1	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
2x	128	256	0005h*	1	003Fh	2	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
4x	256	512	0002h*	1	007Fh	4	3Fh	DSnX3-DSnX0	DSnR3-DSnR0
								•	
2x	128	256 †	0005h*	1	003Fh	1	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0
4x	256	512 [†]	0002h*	1	007Fh	2	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0
8x	512	1024 †	0002h	1	00FFh	4	7Fh	DS0X3-DS0X0 + DS1X3-DS1X0	DS0R3-DS0R0+ DS1R3-DS1R0

* For Timer 0, assumes **DTC.T0D2E** set (except the 8x case); and for Timer 1, assumes **DTC.T1D2E** set.

† 128-bit mode, where Source Port x1 registers are cascaded/used; therefore, Source Port x1 is not available. When in 128-bit mode, all four interrupts occur and must be cleared by reading or writing the appropriate block of registers.

Table 4-55: Valid S/PDIF Clocking Combinations for Async. Source Port 0

The first three columns in Table 4-55 use the Source Port in 64-bit per interrupt mode, and the last three columns use 128-bit per interrupt mode by cascading the two source ports together.

Figure 4-9 illustrates the S/PDIF data stream alignment with respect to the Async. Source Port data registers for 64-bit per interrupt mode. For the transmitted bit stream on SXx0, the required preambles are generated automatically. The preamble portion of the data must be zero for proper preamble transmission: • Left preamble bits: psoxr7:41 = 0000 (bits 9-6 of register DS0X0).

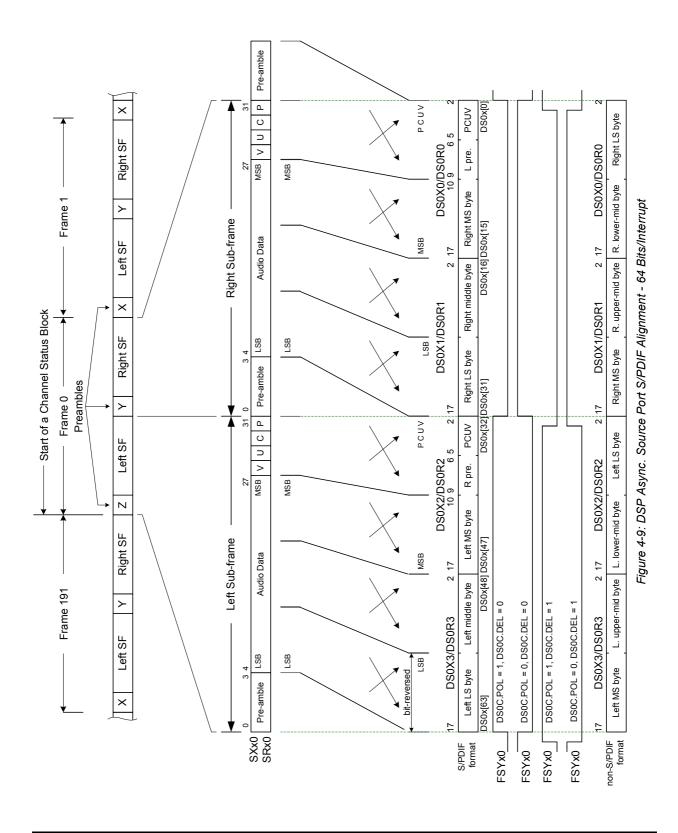
- To force a Block preamble, set bits: **DSOX[7:4]** = 0110, which is also resync the internal block counter that generates a Block preamble once every 192 frames.
- Right preamble bits: **DS0X[39:36]** = 0000 (bits 9-6 of register DS0X2).

For the received bit stream on SRx0, the left preamble indicates when a new CS block starts. The preamble portion of the received data is:

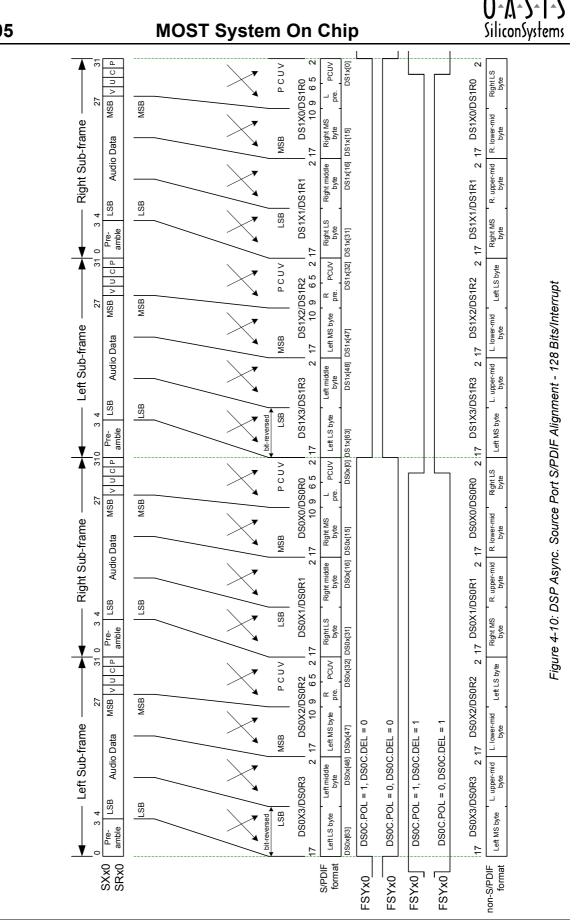
- Left preamble bits: DSOR[7:4] (bits 9-6 of register DSOR0) =
 - 1010 left preamble
 - 0110 block preamble
- Right preamble bits: DSOR[39:36] = 0110 (bits 9-6 of register DSOR2).

Figure 4-10 illustrates the S/PDIF data stream alignment with respect to the Async. Source Port data registers for 128-bit per interrupt mode, with the two Source Ports cascaded. For the transmitted bit stream on SXx0, the four preamble portions of the data must be zero for proper preamble transmission:

• Left preamble bits: DS0X[7:4] = DS1X[7:4] = 0000 (bits 9-6 of registers DS0X0 and DS1X0).


To force a Block preamble, set the bits to 0110, which is also resync the internal block counter.

• Right preamble bits: DS0X[39:36] = DS0X[39:36] = 0000 (bits 9-6 of registers DS0X2 and DS1X2).


For the received bit stream on SRx0, the left preamble indicates when a new CS block starts. The preamble portion of the received data is:

• Left preamble bits: DSOR[7:4] or DS1R[7:4] (bits 9-6 of register DS0R0 or DS1R0) =

- 1010 left preamble
- 0110 block preamble
- Right preamble bits: DSOR[39:36] = DS1R[39:36] = 0110 (bits 9-6 of register DS0R2 and DS1R2).

Final Product Data Sheet Restricted Access

Final Product Data Sheet Page 172

DS8805FP5 **Restricted Access**

OS8805

O-A-S-I-S SiliconSystems

MOST System On Chip

When transmitting complete S/PDIF data (including the preambles) to the Source Port **SX0**, the Left and Right preambles must be set to 0000 and the Block preamble must be set to 0001. These values also hold true when transmitting complete S/PDIF data across the MOST Network to an OS8104 or OS8804 Source Port. When receiving complete S/PDIF data from any of these sources, the preambles must be converted to the values listed above for transmitting out the DSP's Asynchronous Source Port.

When transmitting and receiving S/PDIF data, the interrupts for each direction cannot be aligned; therefore, independent ISRs are needed for transmit and receive.

4.5 Source Converter Volume Control

The ADACn registers, GADCs, GMIC and GMPX registers are mapped to both DSPs as well as the Host Controller. Since both the Host Controller and DSPs can write to the register to change the setting, the last write of the register will remain and that is the value to be read back. Therefore, a DSP may not read back what it wrote to the register if the Host Controller (or other DSP) writes to it after the DSP write. These registers are only available if the particular Source Converter is enabled by the Host Controller, **FPCR.RUN** is set, and the Source Port clocks (FSY and SCK) are operating (are outputs and enabled, or are inputs and driven by external clocks).

50h	ADAC0	Audio DAC0 Volume	DSPs
Bit	Label	Description	Default
176	rsvd	Reserved. Write to 0.	000h
5	MUTE	Mute. When set, DAC0 output is muted.	0
40	ATTN[4:0]	DAC0 Attenuation. The least significant bit represents -1 dB , with 00000 = 0 dB and 11111 = -31 dB .	00000

7	able	4-56 [.]	ADACO	Register
'	abic	7 00.	ADAGO	ricgisici

51h ADAC1 Audio DAC1 Volume

Bit	Label	Description	Default
176	rsvd	Reserved. Write to 0.	000h
5	MUTE	Mute. When set, DAC1 output is muted.	0
40	ATTN[4:0]	DAC1 Attenuation. The least significant bit represents -1 dB, with $00000 = 0 \text{ dB}$ and $11111 = -31 \text{ dB}$.	00000

Table 4-57: ADAC1 Register

52h	ADAC2	Audio DAC2 Volume	DSPs
Bit	Label	Description	Default
176	rsvd	Reserved. Write to 0.	000h
5	MUTE	Mute. When set, DAC2 output is muted.	0
40	ATTN[4:0]	DAC2 Attenuation. The least significant bit represents -1 dB, with $00000 = 0 \text{ dB}$ and $11111 = -31 \text{ dB}$.	00000

Table 4-58: ADAC2 Register

53h ADAC3 Audio DAC3 Volume

Bit	Label	Description	Default
176	rsvd	Reserved. Write to 0.	000h
5	MUTE	Mute. When set, DAC3 output is muted.	0
40	ATTN[4:0]	DAC3 Attenuation. The least significant bit represents -1 dB, with 00000 = 0 dB and 11111 = -31 dB.	00000

Table 4-59: ADAC3 Register

DSPs

DSPs

MOST System On Chip

O-A-S-I-S SiliconSystems

0000

54h	GMPX	MPX ADC Volume	DSPs
Bit	Label	Description	Default
175	rsvd	Reserved. Write to 0.	000h, 0
40	GAIN[4:0]	MPX ADC Gain. The least significant bit represents 1 dB, with 00000 = 0 dB and 11010 = 26 dB (maximum value).	00000
		Table 4-60: GMPX Register	
55h	GMIC	Mic ADC Volume	DSPs
Bit	Label	Description	Default
174	rsvd	Reserved. Write to 0.	000h, 00
30	GAIN[3:0]	Mic ADC Gain. The least significant bit represents 1 dB, with 0000 = 0 dB and 1111 = 15 dB.	0000
		Table 4-61: GMIC Register	
56h	GADL	Left Audio ADC Volume	DSPs
Bit	Label	Description	Default
174	rsvd	Reserved. Write to 0.	000h, 00
30	GAIN[3:0]	Left Audio ADC Gain. The least significant bit represents 1 dB, with 0000 = 0 dB and 1111 = 15 dB.	0000
		Table 4-62: GADL Register	
57h	GADR	Right Audio ADC Volume	DSPs
Bit	Label	Description	Default
174	rsvd	Reserved. Write to 0.	000h, 00

with 0000 = 0 dB and 1111 = 15 dB. *Table 4-63: GADR Register*

Right Audio ADC Gain. The least significant bit represents 1 dB,

4.6 Unique DSP Peripherals

GAIN[3:0]

3..0

The DSP0 interfaces to two additional peripherals: a external data memory interface and two pulse width modulation (PWM) DACs. The external data memory interface allow the DSP0 to access external memory for data storage. The DSP0 can optionally implement a crossover function or serve as an interpolation filter for the source data before transmitting to the PWM DACs. Each DSP controls up to eight EGPIO pins, shared with the Host Controller (a different eight for each DSP).

4.6.1 DSP0 External Data Memory Interface

The external data memory port is an I/O peripheral which provides a zero glue logic interface to external DRAM or SRAM. The port can be configured as an 8-bit wide or 4-bit wide data bus. The SRAM interface supports up to 128k bytes, and the DRAM interface supports up to 1M bytes. In DRAM mode, 10 address pins (MA[9:0]) are used (with the upper address bits being indeterminate) and in SRAM mode 17 address pins (MA[14:0], SA15, and MA16) are available.

The memory row address select (\overline{MRAS}), memory column address select (\overline{MCAS}), memory read (\overline{MRD}), and memory write (\overline{MWR}) pins control the data transfer with external DRAM. The \overline{MRAS} pin is a multifunction pin which becomes the memory chip select (\overline{MCS}) when communicating with external SRAM. The memory read and write signals are used for both DRAM and SRAM. The \overline{MCAS} pin becomes MA14 and $\overline{XME/PCS}$ pin becomes SA15 with external SRAM.

The external data memory port is internally connected to the DSP0 I/O bus, as illustrated in Figure 4-13. The XMC register (page 94) configures the external memory port for use as Program memory for the Host Controller, or data memory for DSP0. In addition, **GCTL.EDMEN** must be set to enable the external data

MOST System On Chip

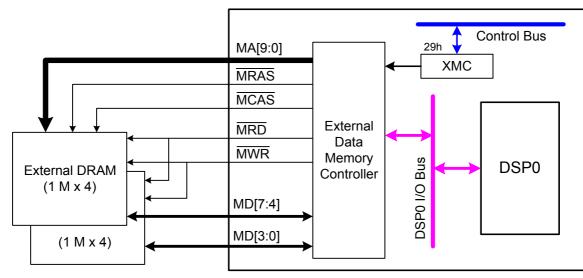


Figure 4-11: DSP0 External DRAM Interface

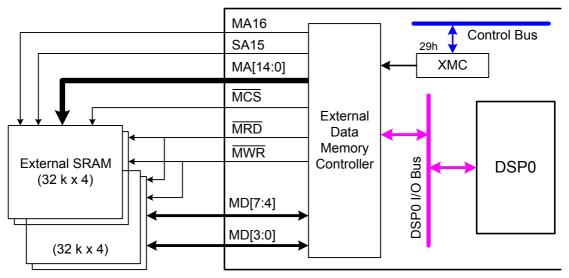


Figure 4-12: DSP0 External SRAM Interface

memory interface. If **GCTL.EDMEN** is clear, the interface can be used as EGPIO by the Host Controller. The XMC and GCTL registers reside on the Control bus and must be configured by the Host Controller. See the XMC register in the *Host Controller* section for more information on configuring the external memory port for DSP0 data memory.

The DSP accesses the external data memory port through a set of 16-bit I/O registers. The port communicates with external memory through either a 4- or 8-bit data bus. The external data memory port divides 8or 16-bit data from the DSP into bytes or nibbles before writing to external memory. Likewise, the port assembles 8- or 16-bit words for the DSP from byte or nibble data from external memory. See Figure 2-33 on page 95 and Figure 2-34 on page 96, for examples of how external memory is addressed.

Up to 512k 16-bit words can be stored in two external DRAM's and up to 64k 16-bit words can be stored in external SRAM's. External DRAM can be automatically refreshed. The refresh and the read/write timing can be adjusted.

MOST System On Chip

The memory timing (**XMC.MT**) bit specifies fast and slow memory accesses. When **XMC.MT** is low, memory accesses are fast. The DSP0 data memory timing can be found in *External Data Memory Interface* under the *Electrical Characteristics* Section.

DRAM can be automatically refreshed by setting the Automatic Refresh Enable (**XMC.ARE**) bit high. The Refresh Clock Divider (**XMC.RCD[7:0]**) bits and the Refresh Clock Prescaler (**XMC.RCP[1:0]**) bits specify the time in DSP0 clock cycles (typically 1344xFs), between CAS before RAS refresh cycles. The maximum time between refresh cycles is 483 µs. Refresh cycles have a higher priority than read or write operations. If successive reads or writes are being performed and the refresh timer requests a refresh cycle, the reads and writes will be stopped for the refresh cycle to complete.

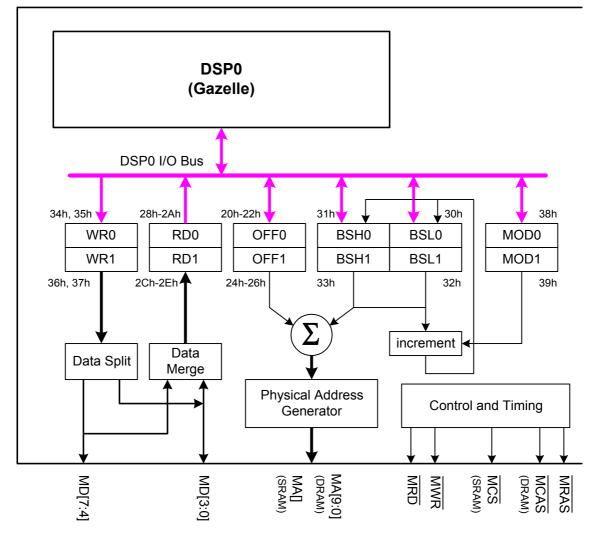


Figure 4-13: DSP0 External Memory Controller

An access to external memory can take many DSP0 instruction cycles to complete, and can be interrupted by refresh cycles when using DRAM. Once an access is started (read or write), trying to read the results (read from 28h, 29h, 2Ah, 2Ch, 2Dh, or 2Eh) or start a new access (write to 21h, 22h, 25h, 26h, 34h, 35h, 36h, or 37h) will stall the DSP until the memory cycle completes. Once stalled, the DSP cannot be interrupted. Table 4-64 indicates the number of DSP cycles required to complete a transaction once the execute cycle of the instruction that caused the operation occurs. Two cycles are needed to calculate the address, and two cycles are needed at the end of the operation (both included in the table below). There-

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

fore, if the chip is configured for fast DRAM mode and one access per operation, then a read operation will take nine cycles to complete. If the read instruction execute cycle occurs in the tenth cycle after the execute cycle that started the access, then the DSP will not be stalled.

External Memory Port Accesses per Operation	SRAM		DRAM	
External Memory Port Accesses per Operation	Fast	Slow	Fast	Slow
1 Access (8-bit word and bus)	5	6	10	13
2 Accesses (8-bit word on 4-bit bus or 16-bit word on 8-bit bus)	7	9	13	17
4 Accesses (16-bit word on 4-bit bus)	11	15	19	25

Table 4-64: DSP Cycles for EMI Access

4.6.1.1 External Memory Addressing

The External Memory port has two sets of Base (BSH/L1-0), Offset (OFF1-0), Modulo (MOD1-0), Read (RD1-0), and Write (WR1-0) registers. The Base, Offset, and Modulo registers generate the high physical address of external memory. The low bits are automatically generated by the port hardware.

When storing 16-bit words through the 8-bit data bus, one address LSB is created by hardware to map the 16-bit data from the DSP to 2-byte locations in external memory. Likewise, when storing bytes through the 4-bit bus, one address LSB is created by hardware. When storing words through the 4-bit bus, the two address LSBs are created by hardware. When storing bytes through the 8-bit bus, no address LSBs are created.

The Base, Offset, and Modulo registers determine the high physical address bits for the read or write access. The values in the Base and Modulo registers together define a circular buffer of arbitrary length starting at a 2^{N} block boundary, where N is the number of bits required to represent the buffer length. The highest bit set in the MOD register determined N. The *lower bound* for the modular buffer it determined by masking off the lower N bits from the base address. The *upper bound* is then determined by adding the MODn value to the lower bound. As an example, if BnAD (base address) = 013A7h and MODn contained 000Bh, then the circular buffer lower bound = 013A0h and the upper bound = 013ABh.

The start address of the circular buffer is given by adding the lower bound to the OFFn register. For no modulo, set the Modulo value to maximum. A Modulo value of 0 is a circular buffer of length one.

To generate the physical address, the hardware adds the Base and Offset registers and, if the result exceeds the upper bound for the circular buffer, subtracts the (Modulo register plus one). If the OFFn value is less than or equal to the Modulo value, the generated address always lies within the circular buffer. To continue the above example, if OFn[15:0] = 000Ah is added to BnAD = 013A7h, then the address would be 013B1h, which is outside the upper bound of 013ABh. Therefore the physical address generated would be 013B1h - (MOD+1), or 013B1h - (000Bh + 1), which is 013A5h.

By specifying an Offset value greater than the Modulo value, it is possible for the generated address to lie in a different buffer. Using the above example, but with OFn[15:0] = 0100h, which is larger than the Modulo value, generates an address of 023A7h, which is also outside the upper bound of 013ABh. Therefore the physical address generated would be 023A7h - (MOD+1), or 023A7h - (000Bh + 1), which is 0239Bh. This physical address is outside the buffer due to the large offset, and subtracting MOD+1 cannot bring the physical address back inside the buffer.

The base address can be post incremented by one after a read or write. The post increment is performed modulo the value in the Modulo register so that the base address always remains in the circular buffer.

Data from external memory is loaded into a Read register at the end of a read operation (which takes several cycles). Data to be written to external memory is loaded by DSP0 into one of the Write register.

MOST System On Chip

DSP0

4.6.1.2 DSP0 External Memory Register Description

OS8805

20h	OFF0	Offset 0	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	Provides offset from base address B0AD[19:0] . With 4 MSBs set to 0, OFF0 is added to B0AD[19:0] to generate the physical address. If the physical address is greater than the upper bound of the circular buffer, (MOD0+1) is subtracted before the physical address is generated.	0000h

Table 4-65: OFF0 Register

21h	OFF0+-	Offset 0, Start Read	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	A write to OFF0+- initiates a read operation.	0000h

Table 4-66: OFF0+- Register

22h DSP0 **OFF0++** Offset 0, Start Read with Post Increment Bit Label Description Default 17,16 Reserved, Write to 0 00 rsvd A write to OFF0++ initiates a read operation, and post-increments 0000h 15..0 D[15:0] B0AD[19:0].

Table 4-67: OFF0++ Register

24h OFF1 Offset 1

Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	Provides offset from base address B1AD[19:0] . With 4 MSBs set to 0, OFF1 is added to B1AD[19:0] to generate the physical address. If the physical address is greater than the upper bound of the circular buffer, (MOD1+1) is subtracted before the physical address is generated.	0000h

Table 4-68: OFF1 Register

25h	OFF1+-	Offset 1, Start Read	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	A write to OFF1+- initiates a read operation.	0000h

Table 4-69: OFF1+- Register

26h OFF1++ Offset 1, Start Read with Post Increment DSP0

Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	A write to OFF1++ initiates a read operation, and post-increments B1AD[19:0] .	0000h

Table 4-70: OFF1++ Register

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

28h	RD0	Read 0 (read only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	RD0 contains data from a previous read operation. Reading this register does not start a new read.	0000h
1,0	rsvd	Reserved, Write to 0	00
		Table 4-71: RD0 Register	
29h	RD0+-	Read 0, Start Read (read only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	RD0+- contains data from a previous read operation, and a new read operation is started.	0000h
1,0	rsvd	Reserved, Write to 0	00
		Table 4-72: RD0+- Register	
2Ah	RD0++	Read 0, Start Read with Post Increment (read only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	RD0++ contains data from a previous read operation, a new read operation is started, and B0AD[19:0] is post-incremented.	0000h
1,0	rsvd	Reserved, Write to 0	00
		Table 4-73: RD0++ Register	
2Ch	RD1	Read 1 (read only)	DSP0

201	RD1	Read 1 (read only)	DSPU
Bit	Label	Description	Default
172	D[15:0]	RD1 contains data from a previous read operation. Reading this register does not start a new read.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-74: RD1 Register

2Dh	RD1+-	Read 1, Start Read (read only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	RD1+- contains data from a previous read operation, and a new read operation is started.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-75: RD1+- Register

2Eh	RD1++	Read 1, Start Read with Post Increment (read only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	RD1++ contains data from a previous read operation, a new read operation is started, and B1AD[19:0] is post-incremented.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-76: RD1++ Register

30h	BSL0	Base Address 0 Low	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	B0AD[15:0]	Low 16 bits of base address 0. When post-incremented, B0AD[19:0] is incremented and, if greater than the circular buffer upper bound, (MOD0 +1) is subtracted from B0AD[19:0] before storing back into BSL0/BSH0.	0000h

Table 4-77: BSL0 Register

MOST System On Chip

OS8805

31h	BSH0	Base Address 0 High	DSP0
Bit	Label	Description	Default
174	rsvd	Reserved, Write to 0	000h, 00
30	B0AD[19:16]	High 4 bits of base address 0, used for external memory access with the other base-0 registers.	0000

Table 4-78: BSH0 Register

32h	BSL1	Base Address 1 Low	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	B1AD[15:0]	Low 16 bits of base address 1. When post-incremented, B1AD[19:0] is incremented and, if greater than the circular buffer upper bound, (MOD1 +1) is subtracted from B1AD[19:0] before storing back into BSL1/BSH1.	0000h

Table 4-79: BSL1 Register

33h	BSH1	Base Address 1 High	DSP0
Bit	Label	Description	Default
174	rsvd	Reserved, Write to 0	000h, 00
30	B1AD[19:16]	High 4 bits of base address for external memory access	0000

Table 4-80: BSH1 Register

34h	WR0+-	Write 0, Start Write (write only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	Writing WR0+- starts a write operation using the base-0 registers with the data in WD0.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-81: WR0+- Register

35h	WR0++	Write 0, Start Write with Post Increment (write only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	Writing WR0++ starts a write operation using the base-0 registers with the data in WD0 and then post-increments B0AD[19:0] .	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-82: WR0++ Register

36h	WR1+-	Write 1, Start Write (write only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	Writing WR1+- starts a write operation using the base-1 registers with the data in WD1.	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-83: WR1+- Register

37h	WR1++	Write 1, Start Write with Post Increment (write only)	DSP0
Bit	Label	Description	Default
172	D[15:0]	Writing WR1++ starts a write operation using the base-1 registers with the data in WD1, and then post-increments B1AD[19:0] .	0000h
1,0	rsvd	Reserved, Write to 0	00

Table 4-84: WR1++ Register

O-A-S-I-S SiliconSystems

MOST System On Chip

O-A-S-I-S SiliconSystems

38h	MOD0	Modulo 0	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	Highest bit set defined the number of bits used for the circular buffer and along with B0AD[19:0] , the lower bound. Then MOD0, added to the lower bound, define the upper bound.	0000h

Table 4-85: MOD0 Register

39h	MOD1	Modulo 1	DSP0
Bit	Label	Description	Default
17,16	rsvd	Reserved, Write to 0	00
150	D[15:0]	Highest bit set defined the number of bits used for the circular buffer and along with B1AD[19:0] , the lower bound. Then MOD1, added to the lower bound, define the upper bound.	0000h

Table 4-86: MOD1 Register

4.6.1.3 Write Operation

To write data to external memory, DSP0 loads a Base, Offset, and Modulo register with the appropriate values and then writes the data word to WR0+- or WR1+-. The act of writing to the Write register initiates the write process. Either set of Base, Offset, and Modulo registers can generate the address for the stored data by writing to the different Write register I/O addresses. The selected Base register can be optionally post-incremented by writing to the Write register ending in "++". The post-increment value can only be read by the DSP five instruction cycles after the post-increment instruction (read or write). To read the offset after the post-increment, the following delay would be needed:

```
wr0++ = var; // start a write, and do a post increment.
nop;
nop;
nop;
accl = bsl0; // must wait 5 inst. cycles to read post-incremented value
Likewise, a delay is needed on updating the base registers after post-incrementing or new data could be
overwritten by the post-increment result. Since the post-increment takes five cycles to complete the follow-
```

ing is errored:

When DSP0 writes to either Write register (WR0+- or WR0++), the data stored in **wD0[15:0]** is stored in external memory using the address generated by the Base 0, Offset 0, and Modulo 0 registers. Writing to WR1++ initiates the same procedure as writing to WR0+- except **B0AD[19:0]** is post incremented by one. Writing to WR1+- or WR1++ initiates the same procedure as writing to WR0+- or WR0+-, except the Base 1, Offset 1, and Modulo 1 registers are used.

4.6.1.4 Read Operation

Using "0" suffix registers as an example, a read operation is initiated by reading from Read registers RD0+- or RD0++, or writing to OFF+- or OFF++ registers. Writing to OFF0 or reading from RD0 does not initiate a read. Writing to OFF0+- initiates a read process. The result is stored in RD0 when available. Writ-

MOST System On Chip

ing to OFF0++ initiates the same read process and **B0AD[19:0]** is post-incremented. The post-increment value can only be read by the DSP five instruction cycles after the post-increment instruction. If the post-incremented **B0AD[19:0]** value is greater than MOD0, then **B0AD[19:0]** = **B0AD[19:0]** - (MOD0 +1).

Writing to Offset 1 I/O addresses 24h, 25h, and 26h start the same processes as writing to 20h, 21h, and 22h respectively, except Base 1, Offset 1, and Modulo1 generate the address and RD1 contains the result when the read operation finishes.

Data can be read, without initiating another read, by reading RD0. Reading RD0+- start a read, but does not post-increment the corresponding Base register. Reading RD0++ start a read, and post-increments the corresponding Base register.

4.6.1.5 Programming Examples

The following is an example of how a block of data can be written to external memory.

```
bsl0 = low_base_value; // set low base address
bsh0 = high_base_value; // set high base address
off0 = offset_value; // set offset
mod0 = modulo_value; // set modulo
wr0++ = data0; // write 1st word and post increment
wr0++ = data1; // write 2nd word and post increment
wr0++ = data2; // write 3rd word and post increment
wr0 = data3; // write last word
```

Since the processor will be waiting between writes, this time could be filled with useful instructions. The following is an example of how to read a block of data.

```
bsl1 = low_base_value; // set low base address
bsh1 = high_base_value; // set high base address
mod1 = modulo_value; // set modulo
off1++ = offset_value; // set offset, start read, and post increment
data0 = rd1++; // read 1st word, start next read, and post increment
data1 = rd1++; // read 2nd word, start next read, and post increment
data2 = rd1++; // read 3rd word, start next read, and post increment
data3 = rd1; // read last word
```

External memory can be used to create circular delay buffers. Each sample period a new data word overwrites the oldest sample in the buffer. Each sample period many samples with fixed delays are read from the buffer. The following is an example.

```
// during initialization set base and modulo
bsl1 = low base value; // set low base address
bsh1 = high base value; // set high base address
mod1 = modulo value; // set modulo
                 // In sample rate interrupt
off1+- = offset value0; // set offset, start read
data0 = rd1; // read 1st word
off1+- = offset_value1; // set offset, start read
data1 = rd1; // read 2nd word
off1+- = offset_value2; // set offset, start read
data2 = rd1; // read 3rd word
off1+- = offset_value3; // set offset, start read
              // read last word
data3 = rd1;
off1 = offset_value1; // set write offset
wrl++ = new sample; // write new sample and post-increment base
```

MOST System On Chip

4.6.1.6 Interrupts

There are 2 sets of Base, Offset, Modulo, and Read registers to provide easy context switching in the highest priority interrupt. One set of registers can be used in the highest priority interrupt and the other set in all other interrupt routines.

If multiple levels of interrupts use the same set of registers, a software stack must be maintained. The base, offset, modulo, and read registers must be pushed onto the stack at the beginning of the ISR and popped off at the end. The following illustrates how a medium level interrupt service routine manages the external memory interface registers.

```
// push registers onto stack
push bsl1;
push bsh1;
push off1;
push mod1;
                           // waits until data is available
push rd1;
          // load registers with new values
bsl1 = *low base address;
bsh1 = *high base address;
mod1 = modulo_value;
off1 = offset_value;
          // interrupt service routine
*low_base_address = bsl1; // save low base register
*high_base_address = bsh1;// save high base register
          // pop registers
pop rd1;
pop mod1;
pop off1;
pop bsh1;
pop bsl1;
reti;
```

If an interrupt occurs while the processor is waiting for a read or write to complete, control immediately jumps the ISR. After an ISR completes, the processor will not return to a wait state. The ISR must be long enough to ensure that a read or write, that started before the interrupt, will complete by the time the ISR finishes.

4.6.2 DSP0 PWM DACs

A PWM DAC supports high efficiency sub-woofer applications or can be a volume control for low-power applications. The PWM DACs consist of a noise-shaping quantizer and a PWM modulator. A DSP low-pass filter should filter signal components in the audible range before feeding the data to the noise shaper. The noise shaper processes data at an 8Fs rate. If DSP0 sends data at a lower rate, the data will be digitally up-sampled to 8Fs (sample and hold). A third-order error-feedback noise shaper quantizes and shapes the noise prior to PWM. The PWM modulator converts the PCM data to a pulse-width modulated data waveform at 8Fs.

A mute signal (ACR.PWMOE or ACR2.PWM10E clear) forces the modulator output to AC ground. A zero-crossing detector prevents clicks and pops due to mute/de-mute actions. A power down signal (ACR.ENPWM or ACR2.ENPWM1 clear) forces the output to DC ground when entering a low power state. The signal path for PWM0 and PWM1 is shown in Figure 4-14. PWM1 is identical with the exception of a separate register interface.

O-A-S-I-S SiliconSystems

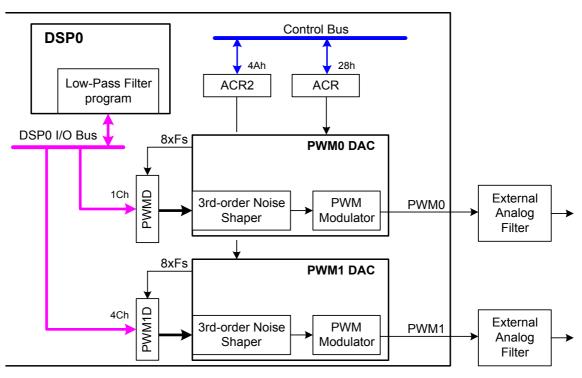


Figure 4-14: DSP0 PWM DACs

PWMD	PWM DAC Data (write only)	DSP0
Label	Description	Default
D[17:0]	PWM data	0000h, 00
	Table 4-87: PWMD Register	
PWM1D	PWM1 DAC Data (write only)	DSP0
Label	Description	Default
D[17:0]	PWM data	0000h, 00
	Label D[17:0] PWM1D Label	Label Description D[17:0] PWM data Table 4-87: PWMD Register PWM1D PWM1 DAC Data (write only) Label Description

Table 4-88: PWM1D Register

4.6.3 DSP0 EGPIO

The GPA[3:0] and GPB[3:0] are shared between the Host Controller and the DSP0. The DSP has its own set of registers which control the functionality of these pins and they are implemented as extended GPIOs. On revision G and greater, when the DDR bit of the Host Controller of the corresponding GPIO pin is low, the DSP has control of the direction of the GPIO pin. When the GPIO is configured as an output by either the DSP or the Host Controller, the IPOT register controls the output type (open-drain or driven in both directions).

The GPIO have the alternate function of Asynchronous Source Ports. Each set of four GPIO are grouped and can be an Asynchronous Source Port, or GPIO. If Dsnc.BPI[6:0] is set to all zeros, then the Asynchronous Source Port is disabled and the four pins may be used as GPIO. Therefore, Dsoc.BPI[6:0] enables Source Port A0 or GPA[3:0], and DS1C.BPI[6:0] enables Source Port A1 or GPB[3:0]. For DSP1, DSoc.BPI[6:0] enables Source Port B0 or GPC[3:0], and DS1C.BPI[6:0] enables Source Port B1 or GPD[3:0].

$0^{A}S^{-1}S$ SiliconSystems

OS8805

3..0

MOST System On Chip

In the event that both the DDR of the corresponding pin of the Host Controller and the DSP are set, the Host Controller has priority of the GPIO pin over the DSP. In this case, the data of the Host Controller is presented on the GPIO pin. DSP0's Asynchronous Source Ports have higher priority than EGPIO logic (either the Host Controller's or the DSPs).

EGPD	Enhanced GPIO Data	DSP0
Label	Description	Default
rsvd	Reserved. Write to 0.	00h, 00
GPDB[3:0]	Data bits for GPB[3:0] pins.	*
GPDA[3:0]	Data bits for GPA[3:0] pins	*
	Label rsvd GPDB[3:0]	LabelDescriptionrsvdReserved. Write to 0.GPDB[3:0]Data bits for GPB[3:0] pins.

* Initial value determined by state of corresponding pin.

Table 4-89: EGPD Register

- GPDxn General Purpose IO bits for the GPxn pins. These bits are GPIO when DsnC.BPI[6:0] = 000000. The Host Controller can also control these pins and override the DSP for output control. GPDA0 can generate an interrupt if enabled (IER.IEGP set).
 - When configured as an output (EDD.GPOxn set), the value written to this bit is driven out the corresponding pin when the output is enabled (ISOD.GPSDxn clear), based on output driver type (IPOT.GPPTxn). Data read is directly from the pin.
 - When configured as an input (EDD.GPOxn clear), the polarity is controlled by IPOT.GPPTxn and the data can be sticky (ISOD.GPSDxn set) or not. When sticky, the register bit is cleared by writing it to 0 (assuming the pin is inactive).

1Eh	EDD	Enhanced GPIO Data Direction	DSP0
Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPOB[3:0]	Output enable for GPB[3:0] pins	0000

GPOB[3:0] Output enable for GPB[3:0] pins GPOA[3:0] Output enable for GPA[3:0] pins

Table 4-90: EDD Register

- GPOxn Output Enable for corresponding GPxn pin. When GPxn is configured as a GPIO and the corresponding Host Controller DDR bit is clear, this corresponding bit determines whether the pin is a general purpose input or output. The Host Controller can override the DSP for output control through its DDR register.
 - 0 Corresponding GPxn pin is an input.
 - IPOT.GPPTxn determines input polarity.

ISOD.GPSDxn determines whether the input is sticky or not.

- 1 Corresponding GPxn pin is an output.
 - **IPOT.GPPTxn** determines output driver type (CMOS or open-drain). ISOD.GPSDxn is an output disable/enable.

0000

3..0

GPSDA[3:0]

MOST System On Chip

0000

1Fh	ΙΡΟΤ	EGPIO Input Polarity/Output Type	DSP0
Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPPTB[3:0]	Input polarity or output driver type for GPB[3:0] pins	0000
30	GPPTA[3:0]	Input polarity or output driver type for GPA[3:0] pins	0000

Table 4-91: IPOT Register

GPPTxnInput polarity or output driver type for corresponding GPxn pin when configured as a GPIO.When GPxn pin is configured as an input (EDD.GPOxn clear), this bit sets the polarity:

0 - Active high input (non-inverting) or high-pulse capture, if sticky

1 - Active low input (inverting) or low-pulse capture, if sticky

When GPxn pin is configured as an output for DSP0 (EDD.GPOxn set) or the Host Controller (EDD1.GPOxn set on rev. G or greater), this bit sets the output driver type:

0 - Open-drain output (only driven low)

1 - CMOS output (driven both high and low)

3Ah	ISOD	EGPIO Input Sticky/Output Disable	DSP0
Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPSDB[3:0]	Input sticky or output disable for GPB[3:0] pins	0000

Table 4-92: ISOD Register

GPSDxn Input sticky or output disable for corresponding GPxn pin when configured as a GPIO. When GPxn pin is configured as an input (EDD.GPOxn clear), GPSDxn sets sticky or not.

Input sticky or output disable for GPA[3:0] pins

- 0 EGPD.GPDxn reflects the GPxn pin, after polarity (IPOT.GPPTxn).
- 1 EGPD.GPDxn is sticky and captures a high or low pulse (based on IPOT.GPPTxn) on GPxn. Once set, cleared by writing EGPD.GPDxn to zero when input pin is in the inactive state.

When GPxn pin is configured as an output (EDD.GPOxn set), this bit controls output enable:

- 0 The GPxn pin is enabled and driven, based on IPOT.GPPTxn.
- 1 The GPxn pin is disabled, high impedance.

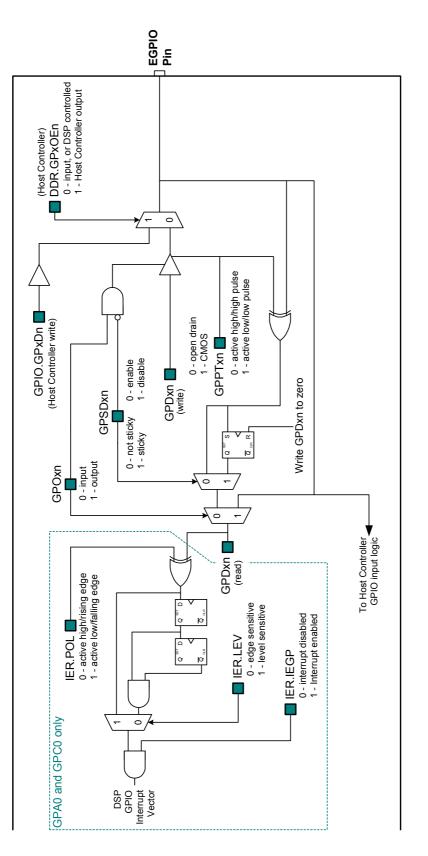


Figure 4-15: DSP EGPIO Conceptual Logic

Final Product Data Sheet Restricted Access

4.6.4 DSP1 EGPIO

The GPC[3:0] and GPD[3:0] are shared between the Host Controller and the DSP1. The DSP has its own set of registers which control the functionality of these pins and they are implemented as extended GPIOs. On revision G or greater, when the DDR bit of the Host Controller of the corresponding GPIO pin is low, the DSP has control of the direction of the GPIO pin. When the GPIO is configured as an output by either the DSP or the Host Controller, the IPOT register controls the output type (open-drain or driven in both directions).

The GPIO have the alternate function of Asynchronous Source Ports. Each set of four GPIO are grouped and can be an Asynchronous Source Port, or GPIO. If Dsnc.BPI[6:0] is set to all zeros, then the Asynchronous Source Port is disabled and the four pins may be used as GPIO. Therefore, Dsoc.BPI[6:0] enables Source Port B0 or GPC[3:0], and Ds1c.BPI[6:0] enables Source Port B1 or GPD[3:0].

In the event that both the DDR of the corresponding pin of the Host Controller and the DSP are set, the Host Controller has priority of the GPIO pin over the DSP. In this case, the data of the Host Controller is presented on the GPIO pin. DSP1's Asynchronous Source Ports have higher priority than EGPIO logic (either the Host Controller's or the DSPs).

1Dh	EGPD	Enhanced GPIO Data	DSP1
Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPDD[3:0]	Data bits for GPD[3:0] pins.	*
30	GPDC[3:0]	Data bits for GPC[3:0] pins	*

* Initial value determined by state of corresponding pin.

- GPDxn General Purpose IO bits for the GPxn pins. These bits are GPIO when Dsnc.BPI[6:0] = 000000. The Host Controller can also control these pins and override the DSP for output control. GPDC0 can generate an interrupt if enabled (IER.IEGP set).
 - When configured as an output (EDD.GPOxn set), the value written to this bit is driven out the corresponding pin when the output is enabled (ISOD.GPSDxn clear), based on output driver type (IPOT.GPPTxn). Data read is directly from the pin.
 - When configured as an input (EDD.GPOxn clear), the polarity is controlled by the IPOT.GPPTxn bit and the data can be sticky (ISOD.GPSDxn set) or not. When sticky, the register bit is cleared by writing it to 0 (assuming the pin is inactive).

Table 4-93: EGPD Register

OS8805	5	MOST System On Chip	U^A^J^I^J SiliconSystems
1Eh	EDD	Enhanced GPIO Data Direction	DSP1
Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPOD[3:0]	Output enable for GPD[3:0] pins	0000
30	GPOC[3:0]	Output enable for GPC[3:0] pins	0000
		Table 4-94: EDD Register	
GPOxn		le for corresponding GPxn pin. When GPxn is configured as a GPIC st Controller DDR bit is clear, this corresponding bit determines wh	

GPOxn Output Enable for corresponding GPxn pin. When GPxn is configured as a GPIO and the corresponding Host Controller DDR bit is clear, this corresponding bit determines whether the pin is a general purpose input or output. The Host Controller can override the DSP for output control through its DDR register.

- 0 Corresponding GPxn pin is an input. IPOT.GPPTxn determines input polarity.
 - **ISOD.GPSDxn** determines whether the input is sticky or not.
- Corresponding GPxn pin is an output.
 IPOT.GPPTxn determines output driver type (CMOS or open-drain).
 ISOD.GPSDxn is an output disable/enable.

1Fh	ΙΡΟΤ	EGPIO Input Polarity/Output Type	
-----	------	----------------------------------	--

DSP1

 Λ

Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPPTD[3:0]	Input polarity or output driver type for GPD[3:0] pins	0000
30	GPPTC[3:0]	Input polarity or output driver type for GPC[3:0] pins	0000

Table 4-95: IPOT Register

GPPTxnInput polarity or output driver type for corresponding GPxn pin when configured as a GPIO.When GPxn pin is configured as an input (EDD.GPOxn clear), this bit sets the polarity:

- 0 active high input (non-inverting) or high-pulse capture, if sticky
- 1 active low input (inverting) or low-pulse capture, if sticky
- When GPxn pin is configured as an output for DSP1 (EDD.GPOxn set) or the Host Controller (EDD1.GPOxn set on rev. G or greater), this bit sets the output driver type:
 - 0 Open-drain output (only driven low)
 - 1 CMOS output (driven both high and low)

3Ah ISOD EGPIO Input Sticky/Output Disable	DSP1
--	------

Bit	Label	Description	Default
178	rsvd	Reserved. Write to 0.	00h, 00
74	GPSDD[3:0]	Input sticky or output disable for GPD[3:0] pins	0000
30	GPSDC[3:0]	Input sticky or output disable for GPC[3:0] pins	0000

Table 4-96: ISOD Register

GPSDxn Input sticky or output disable for corresponding GPxn pin when configured as a GPIO.

- When GPxn pin is configured as an input (EDD.GPOxn clear), GPSDxn sets sticky or not.
 - 0 EGPD.GPDxn reflects the GPxn pin, after polarity (IPOT.GPPTxn).
 - 1 EGPD.GPDxn is sticky and captures a high or low pulse (based on IPOT.GPPTxn) on GPxn. Once set, cleared by writing EGPD.GPDxn to zero when input pin is in the inactive state.

When **GPxn** pin is configured as an output (**EDD.GPOxn** set), this bit controls output enable:

0 - The GPxn pin is enabled and driven, based on IPOT.GPPTxn.

4.7 Register Summary

DSP Processor registers are internal Gazelle registers as well as all registers connected to the DSP bus. They include the control and data registers for the COM Port to the Host Controller, and the data registers to the Routing bus (via the MOST Routing Port), the local timers, and the global timing register. The DSP0 also connects to the data registers of the external data memory port and the PWM data registers.

4.7.1 DSP0 I/O Registers

Name	Label	Addr.	Description	Page
DSP0:				
Program Counter	PC	00h	Program Counter, I/O address for subroutine pop	145
Interrupt Program Ctr.	PCI	01h	Program Counter, I/O address for interrupt pop	145
Interrupt Shadow PC	ISPC	02h	PC stack register for interrupts	145
Subroutine Shadow PC	SSPC	03h	PC stack register for subroutines	145
Interrupt Enable	IER	04h	Enables individual interrupt signals	148
Status Register	SR	05h	Contains DSP Status and ACC guard bits	151
Shadow Status Register	SSR	06h	SR stack register for interrupts and subs	151
Trap Shadow Status Register	TSSR	0Ch	SR stack register for TRAP instructions	152
Shadow ACC Low	SACCL	07h	ACC low stack register for interrupts and subs	151
Shadow ACC High	SACCH	08h	ACC high stack register for interrupts and subs	151
Count	CNT	09h	Count value for loops and repeats	145
End address	END	0Ah	End address for hardware looping	146
Start address	STRT	0Bh	Start address for hardware looping	146
DSP0 Peripherals:			•	
DSP Com Status	DCS	17h	Flags for Control/DSP inter-bus transfers	156
DSP Com Data	DCD	18h	Bi-directional data between Control and DSP buses	156
DSP Debug Com Status	DDCS	10h	Flags for Control/DSP inter-bus transfers	156
DSP Debug Com Data	DDCD	11h	Bi-directional data between Control and DSP buses	156
MOST Routing Port Receive	DR	19h	Data from MOST processor (read only)	154
MOST Routing Port Transmit	DX	19h	Data to MOST processor (write only)	155
MOST Routing Port Receive 1	DR1	1Bh	2nd Data from MOST processor (read only)	155
MOST Routing Port Transmit 1	DX1	1Bh	2nd Data to MOST processor (write only)	155
Global Timer	GTR	1Ah	Global timing flags for processor synchronization	154
PWM DAC Data	PWMD	1Ch	Output data for PWM DAC	184
PWM1 DAC Data	PWM1D	4Ch	Output data for PWM1 DAC	184
DAC0 Volume Control	ADAC0	50h	DAC0 attenuation control	173
DAC1 Volume Control	ADAC1	51h	DAC1 attenuation control	173
DAC2 Volume Control	ADAC2	52h	DAC2 attenuation control	173
DAC3 Volume Control	ADAC3	53h	DAC3 attenuation control	173
MPX Volume Control	GMPX	54h	MPX ADC gain control	174
MIC Volume Control	GMIC	55h	MIC ADC gain control	174
Audio ADC Left Volume Control	GADL	56h	Audio ADC left gain control	174
Audio ADC Right Volume Control	GADR	57h	Audio ADC right gain control	174

Table 4-97: DSP0 Register Summary

MOST System On Chip

O-A-S-I-S SiliconSystems

Name	Label	Addr.	Description	Page
Inter-DSP FIFO Port:				- "ge
FIFO Port Local Status	DFLS	12h	DSP0's FIFO Status and Control	157
FIFO Port Start Data Write	DFSD	13h	Start write FIFO data port (write only)	157
FIFO Port Write Data	DFWD	14h	write FIFO data port (write only)	158
FIFO Port Read Data	DFRD	14h	read FIFO data port (read only)	158
FIFO Port Far Status	DFFS	15h	DSP1's FIFO status (read only)	157
Async. Source Port Timer:				L
DSP Timer Control	DTC	3Fh	DSP0's Async. Source Port Timer control	160
DSP Divider 0	DDIV0	3Bh	Async Source Port Timer divider 0	159
DSP Divider 1	DDIV1	3Ch	Async Source Port Timer divider 1	159
DSP Capture 0	DCAP0	3Dh	Async Source Port Timer capture 0	160
DSP Capture 1	DCAP1	3Eh	Async Source Port Timer capture 1	160
DSP Preset 1	DPRE1	4Bh	Positioning of S/PDIF preambles	160
Async. Source Ports:				
DSP Source Port 0 Control	DS0C	48h	Async. Source Port (ASP) A0 control	167
DSP Source Port 0, Receive 0	DS0R0	40h	ASP A0 receive LS word	163
DSP Source Port 0, Transmit 0	DS0X0	40h	ASP A0 transmit LS word	165
DSP Source Port 0, Receive 1	DS0R1	41h	ASP A0 receive lower middle word	164
DSP Source Port 0, Transmit 1	DS0X1	41h	ASP A0 transmit lower middle word	165
DSP Source Port 0, Receive 2	DS0R2	42h	ASP A0 receive upper middle word	164
DSP Source Port 0, Transmit 2	DS0X2	42h	ASP A0 transmit upper middle word	165
DSP Source Port 0, Receive 3	DS0R3	43h	ASP A0 receive MS word	164
DSP Source Port 0, Transmit 3	DS0X3	43h	ASP BA0 transmit MS word	165
DSP Source Port 1 Control	DS1C	49h	Async. Source Port A1 control	168
DSP Source Port 1, Receive 0	DS1R0	44h	ASP A1 receive LS word	164
DSP Source Port 1, Transmit 0	DS1X0	44h	ASP A1 transmit LS word	166
DSP Source Port 1, Receive 1	DS1R1	45h	ASP A1 receive lower middle word	164
DSP Source Port 1, Transmit 1	DS1X1	45h	ASP A1 transmit lower middle word	166
DSP Source Port 1, Receive 2	DS1R2	46h	ASP A1 receive upper middle word	165
DSP Source Port 1, Transmit 2	DS1X2	46h	ASP A1 transmit upper middle word	166
DSP Source Port 1, Receive 3	DS1R3	47h	ASP A1 receive MS word	165
DSP Source Port 1, Transmit 3	DS1X3	47h	ASP A1 transmit MS word	166
EGPIO:				
DSP0 EGPIO Data	EGPD	1Dh	GPA[3:0] and GPB[3:0] data	185
DSP0 EGPIO Data Direction	EDD	1Eh	GPA[3:0] and GPB[3:0] data direction (in/out)	185
EGPIO Input Polarity, Output Type	IPOT	1Fh	GPA[3:0], GPB[3:0] input polarity or output type	186
EGPIO In Sticky, Out Disable	ISOD	3Ah	GPA[3:0], GPB[3:0] input sticky or output disable	186

Table 4-97: DSP0 Register Summary (Continued)

MOST System On Chip

O-A-S-I-S SiliconSystems

Name	Label	Addr.	Description	Page
DSP0 External Data Port:				
Offset 0	OFF0	20h	Provides offset from base0	178
Offset 0, start read	OFF0+-	21h	A write loads off0 and initiates read	178
Offset 0, str rd, post inc	OFF0++	22h	A wr loads off0, starts read with post inc	178
Offset 1	OFF1	24h	Provides offset from base1	178
Offset 1, start read	OFF1+-	25h	A write loads off1 and initiates read	178
Offset 1, str rd, post inc	OFF1++	26h	A wr loads off1, starts read with post inc	178
Read 0	RD0	28h	Contains data read from external memory	179
Read 0, start read	RD0+-	29h	Read external data and start a new read	179
Read 0, start rd, post inc	RD0++	2Ah	Read data, start a new read with post inc	179
Read 1	RD1	2Ch	Contains data read from external memory	179
Read 1, start read	RD1+-	2Dh	Read external data and start a new read	179
Read 1, start rd, post inc	RD1++	2Eh	Read data, start a new read with post inc	179
Base Address 0 Low	BSL0	30h	Low base address for external memory access	179
Base Address 0 High	BSH0	31h	High base address for external memory access	180
Base Address 1 Low	BSL1	32h	Low base address for external memory access	180
Base Address 1 High	BSH1	33h	High base address for external memory access	180
Write 0	WR0+-	34h	Write data, start a new write	180
Write 0, post inc	WR0++	35h	Write data, start a new write with post inc	180
Write 1	WR1+-	36h	Write data, start a new write	180
Write 1, post inc	WR1++	37h	Write data, start a new write with post inc	180
Modulo 0	MOD0	38h	Modulo value for post increment of base0	181
Modulo 1	MOD1	39h	Modulo value for post increment of base0	181

Table 4-97: DSP0 Register Summary (Continued)

MOST System On Chip

4.7.2 DSP1 I/O Registers

Name	Label Addr.		Description				
DSP1:							
Program Counter	PC	00h	Program Counter, I/O address for subroutine pop	145			
Interrupt Program Ctr.	PCI	01h	Program Counter, I/O address for interrupt pop	145			
Interrupt Shadow PC	ISPC	02h	PC stack register for interrupts	145			
Subroutine Shadow PC	SSPC	03h	PC stack register for subroutines	145			
Interrupt Enable	IER	04h	Enables individual interrupt signals	148			
Status Register	SR	05h	Contains DSP Status and ACC guard bits	151			
Shadow Status Register	SSR	06h	SR stack register for interrupts and subs	151			
Trap Shadow Status Register	TSSR	0Ch	SR stack register for TRAP instructions	152			
Shadow ACC Low	SACCL	07h	ACC low stack register for interrupts and subs	151			
Shadow ACC High	SACCH	08h	ACC high stack register for interrupts and subs	151			
Count	CNT	09h	Count value for loops and repeats	145			
End address	END	0Ah	End address for hardware looping	146			
Start address	STRT	0Bh	Start address for hardware looping	146			
DSP1 Peripherals:			· · · · · ·				
DSP Com Status	DCS	17h	Flags for Control/DSP inter-bus transfers	156			
DSP Com Data	DCD	18h	Bi-directional data between Control and DSP buses	156			
DSP Debug Com Status	DDCS	10h	Flags for Control/DSP inter-bus transfers	156			
DSP Debug Com Data	DDCD	11h	Bi-directional data between Control and DSP buses	156			
MOST Routing Port Receive	DR	19h	Data from MOST Processor (read only)	154			
MOST Routing Port Transmit	DX	19h	Data to MOST Processor (write only)	155			
MOST Routing Port Receive 1	DR1	1Bh	2nd Data from MOST processor (read only)	155			
MOST Routing Port Transmit 1	DX1	1Bh	2nd Data to MOST processor (write only)	155			
Global Timer	GTR	1Ah	Global timing flags for processor synchronization	154			
DAC0 Volume Control	ADAC0	50h	Analog attenuation setting for DAC0 output	173			
DAC1 Volume Control	ADAC1	51h	Analog attenuation setting for DAC1 output	173			
DAC2 Volume Control	ADAC2	52h	Analog attenuation setting for DAC2 output	173			
DAC3 Volume Control	ADAC3	53h	Analog attenuation setting for DAC3 output	173			
MPX Volume Control	GMPX	54h	Analog gain setting for MPX ADC input	174			
MIC Volume Control	GMIC	55h	Analog gain setting for MIC ADC input	174			
Audio ADC Left Volume Control	GADL	56h	Analog gain setting for Left Audio ADC input	174			
Audio ADC Right Volume Control	GADR	57h	Analog gain setting for Right Audio ADC input	174			
Inter-DSP FIFO Port:	•						
FIFO Port Local Status	DFLS	12h	DSp1's FIFO Status and Control	157			
FIFO Port Start Data Write	DFSD	13h	Start write FIFO data port (write only)	158			
FIFO Port Write Data	DFWD	14h	Write FIFO data port (write only)	158			
FIFO Port Read Data	DFRD	14h	Read FIFO data port (read only)	158			
FIFO Port Far Status	DFFS	15h	DSP0's FIFO status (read only)	157			

Table 4-98: DSP1 Register Summary

MOST System On Chip

O-A-S-I-S SiliconSystems

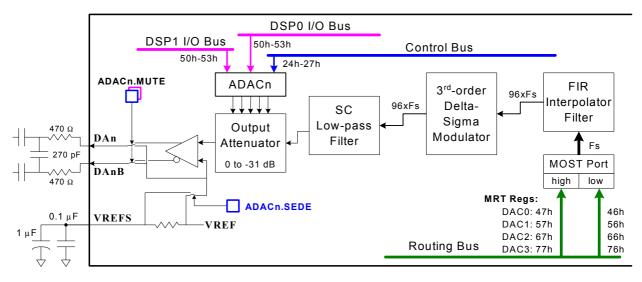
Name	Label	Addr.	Description	Page
Async. Source Port Timer:				
DSP Timer Control	DTC	3Fh	DSP1's Async. Source Port Timer control	160
DSP Divider 0	DDIV0	3Bh	Async. Source Port Timer Divider 0	159
DSP Divider 1	DDIV1	3Ch	Async. Source Port Timer Divider 1	159
DSP Capture 0	DCAP0	3Dh	Async. Source Port Timer Capture 0	160
DSP Capture 1	DCAP1	3Eh	Async. Source Port Timer Capture 0	160
Async. Source Ports:				
DSP Source Port 0 Control	DS0C	48h	Async. Source Port (ASP) B0 control	167
DSP Source Port 0, Receive 0	DS0R0	40h	ASP B0 receive LS word	163
DSP Source Port 0, Transmit 0	DS0X0	40h	ASP B0 transmit LS word	165
DSP Source Port 0, Receive 1	DS0R1	41h	ASP B0 receive lower middle word	164
DSP Source Port 0, Transmit 1	DS0X1	41h	ASP B0 transmit lower middle word	165
DSP Source Port 0, Receive 2	DS0R2	42h	ASP B0 receive upper middle word	164
DSP Source Port 0, Transmit 2	DS0X2	42h	ASP B0 transmit upper middle word	165
DSP Source Port 0, Receive 3	DS0R3	43h	ASP B0 receive MS word	164
DSP Source Port 0, Transmit 3	DS0X3	43h	ASP B0 transmit MS word	165
DSP Source Port 1 Control	DS1C	49h	Async. Source Port B1 control	168
DSP Source Port 1, Receive 0	DS1R0	44h	ASP B1 receive LS word	164
DSP Source Port 1, Transmit 0	DS1X0	44h	ASP B1 transmit LS word	166
DSP Source Port 1, Receive 1	DS1R1	45h	ASP B1 receive lower middle word	164
DSP Source Port 1, Transmit 1	DS1X1	45h	ASP B1 transmit lower middle word	166
DSP Source Port 1, Receive 2	DS1R2	46h	ASP B1 receive upper middle word	165
DSP Source Port 1, Transmit 2	DS1X2	46h	ASP B1 transmit upper middle word	166
DSP Source Port 1, Receive 3	DS1R3	47h	ASP B1 receive MS word	165
DSP Source Port 1, Transmit 3	DS1X3	47h	ASP B1 transmit MS word	166
EGPIO:			•	
DSP1 EGPIO Data	EGPD	1Dh	GPC[3:0] and GPD[3:0] data	188
DSP1 EGPIO Data Direction	EDD	1Eh	GPC[3:0] and GPD[3:0] data direction (in/out)	189
EGPIO Input Polarity, Output Type	IPOT	1Fh	GPC[3:0], GPD[3:0] input polarity or output type	189
EGPIO In Sticky, Out Disable	ISOD	3Ah	GPC[3:0], GPD[3:0] input sticky or output disable	189

Table 4-98: DSP1 Register Summary (Continued)

5 Source Converters

OS8805

The Source Converters consist of the ADCs and DACs that reside on the Routing bus. The MOST Processor transfers Source Converter data between the MOST Network and the other Source Peripherals.


The Stereo Audio ADCs have an input 3-to-1 mux; whereas the MIC and MPX ADCs are mono and have a single input. The Programmable Gain of each ADC is controlled by the Host Controller or the DSPs. The Quad Audio DAC outputs can be single-ended or differential with a drive capability of 2 k Ω . The Programmable Attenuation of each DAC is controlled by the Host Controller or either DSP. The value read from the volume control register will be the last one written. The individual ADC gain registers and DAC attenuation registers are described under *Source Converter Control* in the *Host Controller* Section and under *Source Converter Volume Control* in the *Digital Signal Processor* Section.

5.1 Quad Audio DACs

Four audio-bandwidth differential DACs are included on the chip. The DACs accept 16-bit, two's complement numbers. The typical connections are DAC0 for front left, DAC1 for front right, DAC2 for rear left, DAC3 for rear right. The programmable attenuator stage after the DACs can attenuate the analog output from 0 to -31 dB in 1 dB steps. Analog attenuation attenuates the noise with the signal, which mimics analog potentiometers.

The base-band source data is interpolated to 96xFs. This over-sampled source data is modulated into a 1bit data stream by the 3rd-order delta-sigma modulator. The switch-capacitor filter performs a low-pass function on the 1-bit data and converts it into an analog signal. The resultant analog signal passes through the programmable attenuation and output stage. The DAC output stage has a drive capability of 2 k Ω , when referenced to ground.

Each DAC can be powered down independently by the Host Controller. For additional information on the power down mode and programmable attenuation control, see the *Source Converter Control* in the *Host Controller* Section.

Figure 5-1: DAC Block Diagram

Common-mode rejection can be improved by connecting $0.1 \,\mu\text{F}$ and $1 \,\mu\text{F}$ bypass capacitors between the **VREFS** pin and AGND, and setting the **ADACn.SEDE** bit for the particular DAC. Although these capacitors help in differential mode, significant dynamic range improvements are seen when using the DACs in a single-ended fashion.

5.2 Microphone ADC

OS8805

The microphone input signal is amplified with the programmable input gain stage. The amplified signal is over-sampled by a 2nd-order delta-sigma modulator operating at 96xFs with an over-sampling ratio of 384. The decimation filter decimates and low-pass filters the digital signal to 1/4xFs. The output is a MSB-aligned, 12-bit, two's complement number in a 16-bit field.

The programmable gain stage for the Microphone ADC can amplify the analog input from 0 to 15 dB in 1 dB steps. The Microphone ADC can be powered down to conserve power. For additional information on the power down mode and programmable gain control, see the *Source Converter Control* in the *Host Controller* Section.

The Figure below illustrates the block diagram of the Mic ADC.

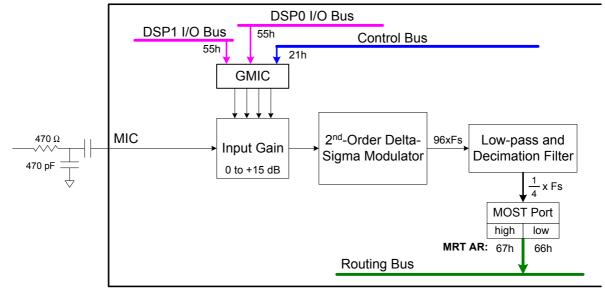


Figure 5-2: Mic ADC

5.3 MPX ADC

The MPX input signal is amplified with the programmable input gain stage. The amplified signal is oversampled by a 4th-order cascaded delta-sigma modulator operating at 96xFs with an over-sampling ratio of 24. The decimation filter decimates and low-pass filters the digital signal to 4xFs. The output is a 16-bit two's complement number.

The programmable gain stage for the MPX ADC can amplify the analog input from 0 to 26 dB in 1 dB steps. The MPX ADC can be powered down to conserve power. For more information on the power-down mode and programmable gain control, see the *Source Converter Control* in the *Host Controller* Section.

DSP0 I/O Bus DSP1 I/O Bus 54h **Control Bus** 54h 20h GMPX 4th-Order Low-pass and 96xFs Cascaded Decimation Filter Delta-Sigma MPX **270** Ω Input Gain Modulator 4xFs 270 pF MOST Port 0 to +26 dB high low MRT AR: 1 - 4Fh 4Fh 2 - 5Fh 5Eh 3 - 6Fh 6Fh 4 - 7Fh 7Eh Routing Bus

The Figure below illustrates the block diagram of the MPX ADC.

Figure 5-3: MPX ADC

5.4 Stereo Audio ADCs

OS8805

An input mux supports a selection of three external stereo audio sources: AD0L/AD0R, AD1L/AD1R, and AD2L/AD2R. The stereo audio input signals are amplified with the programmable input gain stages. The amplified signals are over-sampled by two 3rd-order cascaded delta-sigma modulators operating at 96xFs. The decimation filters decimate and low-pass filter the digital signals to Fs. The output is a 16-bit two's complement number.

The programmable gain stages for the Stereo Audio ADC can amplify the analog inputs from 0 to 15 dB in 1 dB steps. The Stereo Audio ADC can be powered down to conserve power. For additional information on the power down mode and programmable gain control, see the *Source Converter Control* in the *Host Controller* Section.

The Figure below illustrates the block diagram of the Stereo Audio ADCs.

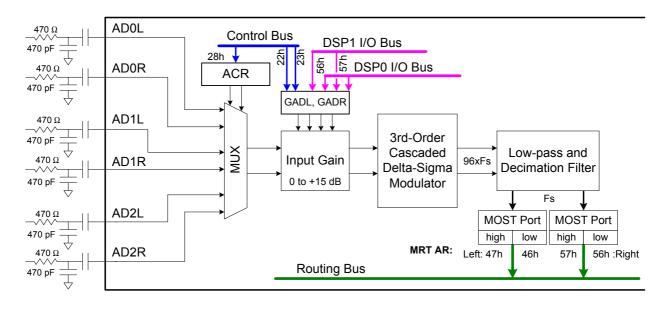


Figure 5-4: Stereo Audio ADCs

OS8805 MOST System On Chip 6 Electrical Characteristics

All pins configured as digital inputs or must not be left floating; therefore, they must be driven, have pullups or pull-downs, or be directly attached to power or ground.

6.1 Absolute Maximum Ratings

Parameter (Note 1)	Min	Max	Unit
Storage Temperature	-65	150	°C
Junction Temperature		165	°C
Power Supply Voltage	-0.5	4.0	V
DC Current to any Pin Except Power		±10	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-0.3 -0.3 -0.3 -0.3	VDDD + 0.3 6 6 VDDA + 0.3	V V V V

Notes:

1. Operation at or above these limits may damage the device

2. Table 7-1 lists which pins are input-only (D_{IN}) and which are not (D_{I/O} or D_{I/OD}).

6.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Junction Temperature (Note 1)	TJ	-40	150	°C
Power Supply Voltage (Note 2)		3.135	3.465	V
Recommended input voltage:				
Digital I/O pins (D _{I/O} and D _{I/OD})		0	5.5	V
Digital Input pins (D _{IN} pins)		0	5.5	V
Analog Input pins		0	VDDA	V
Operating Sample Frequency		38	48	kHz
Flash Program/Erase Cycles: $T_J = 100 \degree C$ $T_J = 125 \degree C$			20000 1000	cycles cycles

Note:

1. When using the ETQFP package on a properly designed board, the OS8805 can support ambient temperatures of up to 120 °C. See Section 8.2 for more information.

2. All power pins, including VDDD and VDDA

6.3 Thermal Characteristics

Parameter	Symbol	Value	Unit
Typical Junction to Package (MQFP package): two-layer PCB (no power/ground planes) multi-layer PCB (with power and ground planes)	Ψ_{JT}	3.0 4.0	°C/W °C/W
Typical Junction to Package (ETQFP package): multi-layer PCB (with power and ground planes)	Ψ_{JT}	0.85	°C/W
Typical Junction to Ambient (MQFP package): two-layer PCB (no power/ground planes) multi-layer PCB (with power and ground planes)	θ_{JA}	40 38	°C/W °C/W
Typical Junction to Ambient (ETQFP package): multi-layer PCB (with power and ground planes)	θ_{JA}	15	°C/W

6.4 DC Characteristics

 T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V ±5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Low-Level Input Voltage: XTI pin All other digital pins	V _{IL}			0.1×VDDD 0.8	V V	
High-Level Input Voltage: XTI pin All other digital pins	V _{IH}	0.9×VDDD 2.0			V V	
Input Leakage Current	١L			±10	μA	0 < Vin < VDDD
Slew-Limited Outputs: (Note 1)						·
Low Level Output Voltage	V _{OL}			0.4	V	I _{OL} = 2.4 mA
High Level Output Voltage	V _{OH}	VDDD-1.0			V	I _{OH} = -2.4 mA
High-Drive Outputs: (Note 2)						•
Low Level Output Voltage	V _{OL}			0.4	V	I _{OL} = 4.8 mA
High Level Output Voltage	V _{OH}	VDDD-1.0			V	I _{OH} = -4.8 mA
Power Supply Current:						
Total Power Supply Current	I _D + I _A		370	610	mA	(Note 3)
Digital Supply current: Each DSP enabled ADCs/DACs enabled Host Controller w/o DSPs	۱ _D		95 35 85		mA mA mA	Outputs unloaded FPCR.RUN set
Digital Supply variation: (Note 4)			0.18 133 ±5		mA/°C mA/V %	over temperature over supply over process
Analog Supply current: All ADCs/DACs on All ADCs/DACs off	۱ _A		90 15		mA mA	Outputs unloaded
Analog Supply variation: (Note 4)			0.03 5 ±9		mA/°C mA/V %	over temperature over supply over process
VDDA0 (PLL supply) current: PSRR:			9 60		mA ps/mV	induced jitter
Power Down current	$I_{D} + I_{A}$		4	25	mA	CMCS.PD set, outputs unloaded
Digital Input Pin Capactiance: RX Other Digital Inputs				5 7	pF pF	

Notes:

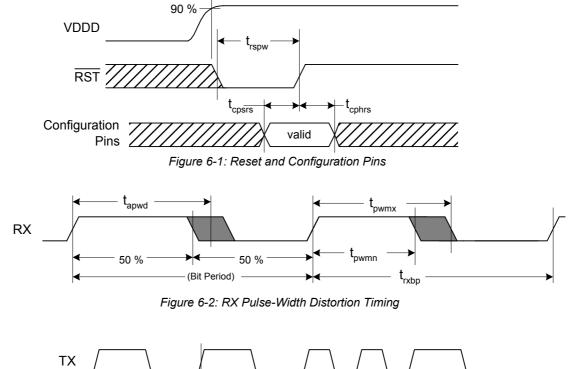
1. GPA[3:0], GPB[3:0], GPC[3:0], GPD[3:0], IOA[3:0], IOB[3:0], IOC[5:0], IOG1, IOG3. For pins configured as open-drain outputs, V_{OH} does not apply.

- IOD[1:0], IOE[15:0], IOF[10:0], IOG0, IOG2, IOG4. For pins configured as open-drain outputs, V_{OH} does not apply.
- 3. Both DSPs running at 1536Fs; all ADCs and DACs enabled; Fs = 48.1 kHz, and VDDD = VDDA = 3.465, outputs unloaded. The current seen in a particular application will vary significantly based on peripherals running, their speed of operation, and the external connections to the chip. For a given application, the current should be measured, and then the variation for analog and digital supplies over voltage and temperature should be added. Lastly, the value should be multiplied by (one plus) the process variation to determine the maximum current for a given application.
- 4. The total supply current variation over process will not exceed ±6 %.

MOST System On Chip

6.5 Switching Characteristics

 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz, Load Capacitance = 30 pF. unless otherwise noted.


Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Slew-Limited Outputs: (Note 1)			•			
Rise Time	t _{slr}			20	ns	10 % to 90 %
Fall Time	t _{slf}			20	ns	90 % to 10 %
High-Drive Outputs: (Note 2)						
Rise Time	t _{hdr}			5	ns	10 % to 90 %
Fall Time	t _{hdf}			5	ns	90 % to 10 %
Clocks and Reset:						
Sample Frequency: PLL Locked PLL Unlocked	Fs	37.9 5	44.1	48.1	kHz kHz	
RMCK Master Clock Output	f _{rmck}	2.4256		73.8816	MHz MHz	64×(Fs = 37.9 kHz) 1536×(Fs = 48.1 kHz)
Crystal Oscillator	f _{osc}	9.7024		24.6272	MHz MHz	256×(Fs = 37.9 kHz) 512×(Fs = 48.1 kHz)
Pulse-Width Variation, RX on timing-master (bXCR.MTR set)	t _{pwmn} t _{pwmx}	0.70		1.40	UI UI	bXSR2.INV=0 CM4 = C3h (note 4)
Average Pulse Width Distortion, RX on timing-slave (bXCR.MTR clear)	t _{apwd}	-0.18		0.35	UI	bXSR2.INV= 0, CM4=C3h (Notes 3, 4) t _{js} = 7 ns (pp)
Pulse Width Distortion, SR0	t _{pwds}	0.9		1.1	UI	(Note 5)
Jitter Tolerance (timing-master): XTI/O, SR0, SCK RX RX	t _{jm}	0.8 5 7.38			ns (pp) UI ns (pp)	bXCR.MTR set (Note 6) (Note 7) GCTL.MJCE cleared
RX Rise and Fall time	t _{rxt}			10	ns	recommended
TX Rise and Fall time	t _{txt}		7	10	ns	C _L = 20 pF
RST pulse width	t _{rspw}	150			ns	(Note 8)
Configuration pin setup to \overline{RST} rising	t _{cpsrs}	30			ns	(Note 8)
Configuration pin hold from RST high	t _{cphrs}	30			ns	(Note 8)

Notes:

- 1. GPA[3:0], GPB[3:0], GPC[3:0], GPD[3:0], IOA[3:0], IOB[3:0], IOC[5:0], IOG1, IOG3. For pins configured as opendrain outputs, t_{hdr} does not apply.
- 2. IOD[1:0], IOE[15:0], IOF[10:0], IOG0, IOG2, IOG4. Pins configured as open-drain outputs, V_{OH} does not apply.
- When the MOST Network frequency is 44.1 kHz, one UI is 22.1 ns, which is t_{rxbp}/2. The pulse width variation is defined as the sum of the average pulse-width distortion plus high-frequency jitter.
- 4. The average (APWD) spec, defined as $t_{apwd} = \frac{t_{pwmx} + t_{pwmn} t_{rxbp}}{2}$, is illustrated in Figure 6-2. The FLT pin is a high-impedance node; therefore, leakage current should be kept below 1 μ A, or average pulse-width distortion
- tolerance could be adversely affected.
- SR0 configured for S/PDIF where node is a timing-slave. One UI (Unit Interval) is defined as a single bi-phase period (one half of a bit period). Therefore, with Fs = 44.1 kHz, one UI is 177 ns.
- 6. The MOST Specification requires each node have a crystal-based master-clock source to support ring-break diagnostics, where nodes normally configured as timing-slaves can be re-configured as the timing-master.
- 7. Assumes software has enabled GCTL.MJCE and has toggled GTCL.RFPR whenever the part enters the lock state.
- 8. Power-up configuration pins include: IOA3, IOB0, IOG4, IOF10. The RST pulse width indicates the minimum amount of time required to reset the OS8805. However, the configuration pins can take longer to settle to their default state, based on the trace capacitance and size of the pull-up or pull-down resistor. Therefore, the RST pulse width must be long enough to allow the external configuration pins to achieve their default state.

O-A-S-I-S SiliconSystems

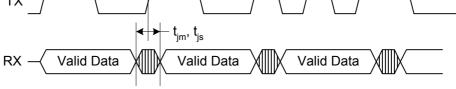
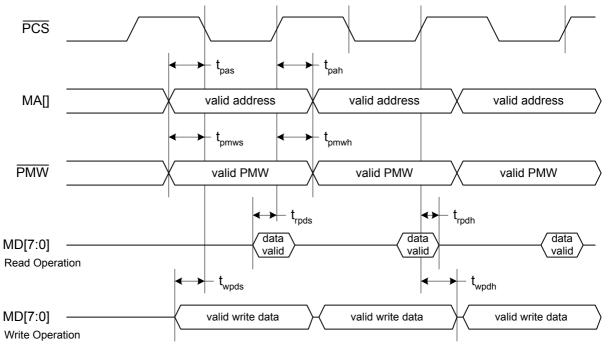


Figure 6-3: RX Jitter Tolerance Timing


MOST System On Chip



6.6 External Program Memory Interface

T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD = GNDA = 0.0 V; PLL locked at 44.1 kHz, Load Capacitance = 30 pF.

384xFs	Sympol	MMPC.F	PCSC = 0	MMPC.PCSC = 1		Unit
Parameter	Symbol	Min	Max	Min	Max	Unit
PCS high time	t _{pcsh}	56		41		ns
PCS low time	t _{pcsl}	56		70		ns
PCS cycle time	t _{pcsc}	115		115		ns
PMW set up to PCS low	t _{pmws}	26		19		ns
PMW hold from PCS high	t _{pmwh}	15		15		ns
MA[16:0] set up to PCS low	t _{pas}	26		19		ns
MA[16:0] hold from PCS high	t _{pah}	15		15		ns
Read Operation:						
MD[7:0] set up to PCS high	t _{rpds}	15		15		ns
MD[7:0] hold from PCS high	t _{rpdh}	0		0		ns
Write Operation:						
MD[7:0] set up to PCS low	t _{wpds}	15		15		ns
MD[7:0] hold from PCS high	t _{wpdh}	15		15		ns

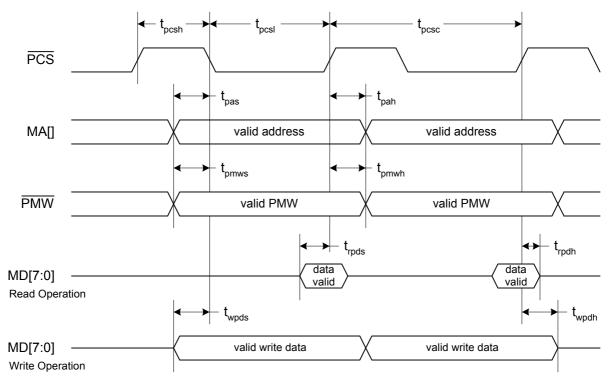
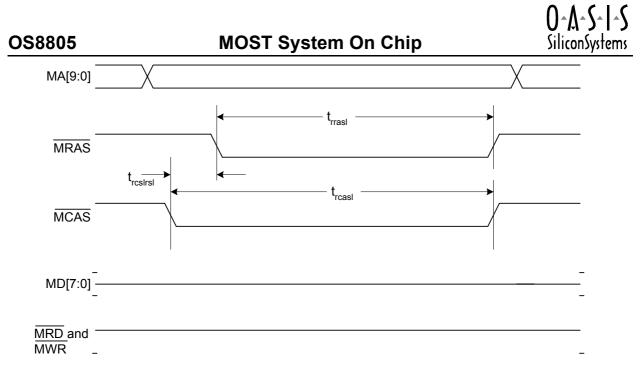
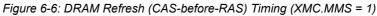


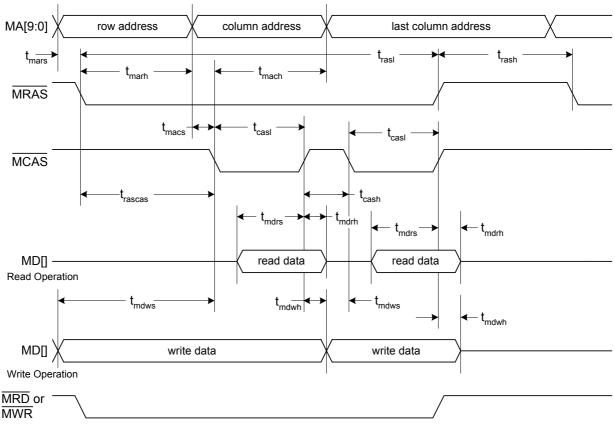
Figure 6-5: External Program Memory Timing (MMPC.PCSC = 1)

MOST System On Chip

6.7 External Data Memory Interface


 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz.; Load Capacitance = 30 pF (Note 1).

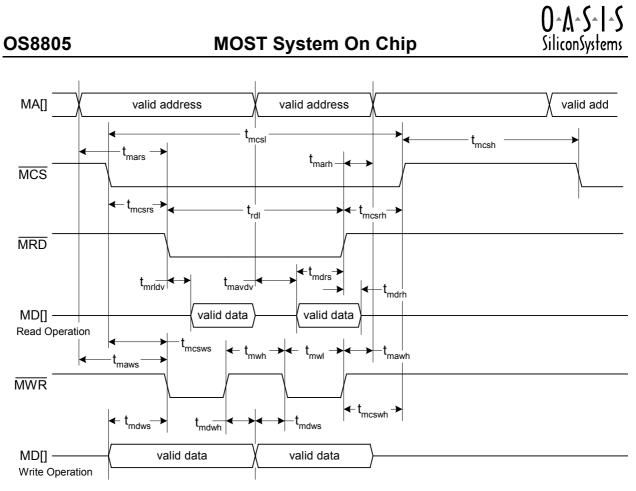

DRAM Interface (XMC.MMS = 1)	Symbol	Slow (XN	IC.MT = 1)	Fast (XM	Fast (XMC.MT = 0)		
Parameter	Symbol	Min	Тур	Min	Тур	Unit	
DSP Clock cycle (Note 2)	tc		<u>1</u> 1536Fs		1 1536Fs	s	
MA[9:0] set up to MRAS low	t _{mars}	0	0.5tc	0	0.5tc	ns	
MA[9:0] hold from MRAS low	t _{marh}	48	3.5tc	34	2.5tc	ns	
MA[9:0] set up to MCAS low	t _{macs}	0	0.5tc	0	0.5tc	ns	
MA[9:0] hold from MCAS low	t _{mach}	48	3.5tc	34	2.5tc	ns	
MRAS low to MCAS low	t _{rascas}	50	4tc	34	3tc	ns	
MRAS low time 1 access 2 accesses 4 accesses	t _{rasl}	100	7tc 11tc 19tc	70	5tc 8tc 14tc	ns	
MRAS high time	t _{rash}	70	5tc	65	4tc	ns	
MCAS low time	t _{casl}	38	3tc	24	2tc	ns	
MCAS high time (MRAS is low)	t _{cash}	12	tc	11	tc	ns	
MCAS low to MRAS high	t _{caslrash}	38	3tc	24	2tc	ns	
Read Operation:							
MD[7:0] set up to MCAS high	t _{mdrs}	10		10		ns	
MD[7:0] hold from MCAS high	t _{mdrh}	0		0		ns	
Write Operation:							
MD[7:0] set up to MCAS low	t _{mdws}	0	0.5tc	0	0.5tc	ns	
MD[7:0] hold from MCAS high	t _{mdwh}	5	0.5tc	5	0.5tc	ns	
Refresh Operation:							
MRAS low time	t _{rrasl}	80	6tc	50	4tc	ns	
MCAS low time	t _{rcasl}	80	7tc	65	5tc	ns	
MCAS low to MRAS low	t _{rcslrsl}	10	tc	10	tc	ns	


Notes:

1. The following DRAM timing figure is illustrated with two memory accesses. One to four access can occur based on the Data memory size (XMC.MWW) and the external memory data width (XMC.BW). In DRAM mode, the address bits above MA9 are indeterminate.

2. The DSP clock frequency is dependent on the DnPCR.DFS[1:0] bits. However, each frequency is achieved by dropping clocks from a 1536Fs continuous clock. Therefore, the minimum time is always based on a 1536Fs clock period, but the maximum could be up to four times the minimum value.

MOST System On Chip


T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz.; Load Capacitance = 30 pF. (Note 1)

SRAM Interface (XMC.MMS = 0)	Symbol	Slow (XMC.MT = 1)			Fast	t (ХМС.МТ	= 0)	Unit
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
DSP Clock cycle (Note 2)	tc		1 1536Fs			1 1536Fs		S
MCS low 1 access 2 accesses 4 accesses	t _{mcsl}	41	4tc 7tc 13tc		27	3tc 5tc 9tc		ns ns ns
MCS high	t _{mcsh}	38	3tc		38	3tc		ns
Read Operation:								
MA[16:0] set up to MRD low	t _{mars}	5	1.5tc		5	1.5tc		ns
MA[16:0] hold from MRD high	t _{marh}	5	0.5tc		5	0.5tc		ns
MCS set up to MRD low	t _{mcsrs}	5	tc		5	tc		ns
MCS hold from MRD high	t _{mcsrh}	5	tc		5	tc		ns
MRD low to MD[7:0] valid	t _{mrldv}			17			7	ns
MA[16:0] valid to MD[7:0] valid	t _{mavdv}			26			12	ns
MD[7:0] set up to MRD high	t _{mdrs}	5			5			ns
MD[7:0] hold from MRD high	t _{mdrh}	0			0			ns
MRD low 1 access 2 accesses 4 accesses	t _{rdl}	24	2tc 5tc 11tc		8	1tc 3tc 7tc		ns ns ns
MRD high	t _{rdh}	60	5tc		60	5tc		ns
Write Operation:								
MA[16:0] set up to MWR low	t _{maws}	0	0.5tc		0	0.5tc		ns
MA[16:0] hold from MWR high	t _{mawh}	5	0.5tc		5	0.5tc		ns
MCS set up to MWR low	t _{mcsws}	5	tc		5	tc		ns
MCS hold from MWR high	t _{mcswh}	5	tc		5	tc		ns
MD[7:0] set up to MWR low	t _{mdws}	0	0.5tc		0	0.5tc		ns
MD[7:0] hold from MWR high	t _{mdwh}	5	0.5tc		5	0.5tc		ns
MWR low	t _{mwl}	22	2tc		8	tc		ns
MWR high	t _{mwh}	10	tc		10	tc		ns

Notes:

1. The following SRAM timing figure is illustrated with two memory accesses. One to four access can occur based on the Data memory size (XMC.MWW) and the external memory data width (XMC.BW)

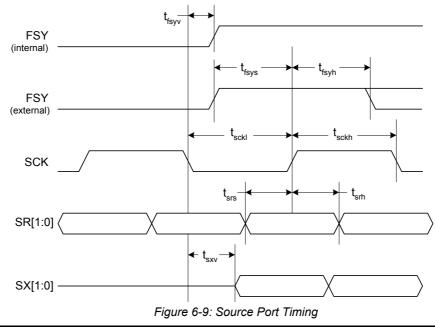
2. The DSP clock frequency is dependent on the DnPCR.DFS[1:0] bits. However, each frequency is achieved by dropping clocks from a 1536Fs continuous clock. Therefore, the minimum time is always based on a 1536Fs clock period, but the maximum could be up to four times the minimum value.

MOST System On Chip

6.8 Source Data Ports

 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz; Load Capacitance = 30 pF.

Parameter	Symbol	Min	Тур	Max	Unit	Comment
FSY frequency (Note 1)	f _{fsy}	37.9	44.1	48.1	kHz	
SCK frequency (Note 1)	f _{sck}	1.2128		3.0784	MHz MHz	32×Fs at 37.9 kHz 64×Fs at 48.1 kHz
SCK and FSY Outputs (bSDC1.MOD[1:0] = 01 or 10):			•		
SCK low time	t _{sckl}	25			ns	
SCK high time	t _{sckh}	25			ns	
FSY/SCK rise and fall time	t _{rsp,} t _{fsp}		5		ns	
SCK falling to FSY valid	t _{fsyv}	-25		25	ns	(Notes 2, 3)
SR[1:0] valid to SCK rising	t _{srs}	25			ns	(Notes 2, 4)
SR[1:0] hold from SCK rising	t _{srh}	25			ns	(Notes 2, 4)
SX[1:0] valid from SCK falling	t _{sxv}			30	ns	(Notes 2, 4)
SCK and FSY Inputs (bSDC1.MOD[1:	o] = 00):			•		
SCK low time	t _{sckl}	25			ns	
SCK high time	t _{sckh}	25			ns	
FSY valid to SCK rising	t _{fsys}	25			ns	(Notes 2, 3)
FSY hold from SCK rising	t _{fsyh}	50			ns	(Notes 2, 3)
SR[1:0] valid to SCK rising	t _{srs}	25			ns	(Notes 2, 4)
SR[1:0] hold from SCK rising	t _{srh}	75			ns	(Notes 2, 4)
SX[1:0] valid from SCK falling	t _{sxv}			80	ns	(Notes 2, 4)


Notes:

1. If SCK and FSY are inputs, they must be frequency locked to the master clock (RMCK output clock)

2. SCK active edge (edge where data is stable and not changing) is determined by the **bSDC1.EDG** bit. The parameters and are illustrated with **EDG** set. If **EDG** is cleared, reverse the edge in the parameters above and invert SCK in the diagram below.

3. FSY polarity is determined by the **bSDC1.POL** bit.

4. The MSB of SR[1:0] and SX[1:0] is the first or the second bit after FSY changes, based on the bSDC1.DEL bit.

Final Product Data Sheet **Restricted Access**

MOST System On Chip

6.9 DSP Async. Source Ports

T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V \pm 5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; Load Capacitance = 30 pF.

Parameter	Symbol	Min	Тур	Max	Unit	Comment
FSYnx frequency	f _{fsy}	37.9	44.1	48.1	kHz	
SCKxn frequency	f _{sck}	1.2128		24.6272	MHz MHz	32×Fs at 37.9 kHz 512×Fs at 48.1 kHz
SCKxn and FSYxn Outputs (DSnC.C	KOE set):					•
SCKxn low time	t _{sckl}	15			ns	
SCKxn high time	t _{sckh}	15			ns	
FSYxn/SCKxn rise and fall time	t _{rsp,} t _{fsp}		5		ns	
SCKxn falling to FSYxn valid	t _{fsyv}	-15		15	ns	(Notes 1, 2)
SRxn valid to SCKxn rising	t _{srs}	15			ns	(Notes 1, 3)
SRxn hold from SCKxn rising	t _{srh}	15			ns	(Notes 1, 3)
SXxn valid from SCKxn falling	t _{sxv}			15	ns	(Notes 1, 3)
SCKxn and FSYxn Inputs (DSnC.CK	DE clear):			1		
SCKxn low time	t _{sckl}	15			ns	
SCKxn high time	t _{sckh}	15			ns	
FSYxn valid to SCKxn rising	t _{fsys}	15			ns	(Notes 1, 2)
FSYxn hold from SCKxn rising	t _{fsyh}	15			ns	(Notes 1, 2)
SRxn valid to SCKxn rising	t _{srs}	15			ns	(Notes 1, 3)
SRxn hold from SCKxn rising	t _{srh}	15			ns	(Notes 1, 3)
SXxn valid from SCKxn falling	t _{sxv}			15	ns	(Notes 1, 3)

Notes:

1. SCKxn active edge (edge where data is stable and not changing) is determined by the DSnC.EDG bit. The parameters and are illustrated with EDG set. If EDG is cleared, reverse the edge in the parameters above and invert SCKxn in the diagram below.

2. FSYxn polarity is determined by the DSnC.POL bit.

3. The MSB of SRxn and SXxn is the first or the second bit after FSYxn changes, based on the DSnC.DEL bit.

MOST System On Chip

6.10 Control and Debug Ports - SPI Mode

 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; Load Capacitance = 30 pF.

Slave mode (CPS.CPMM/DCPS.DPMM clear)							
Symbol	Min	Тур	Max	Unit			
f _{scl}			100	kHz			
t _{scll}	2			μs			
t _{sclh}	2			μs			
t _{skicsi}	500			ns			
t _{sklcsh}	2			μs			
t _{css}	2			μs			
t _{cdv}			2	μs			
t _{cht}	2			μs			
t _{sds}	500			ns			
t _{sdh}	500			ns			
t _{sdv}			3	μs			
t _{sdz}			2	μs			
	Symbol fscl tscll tsclh tsclh tsklcsh tsklcsh tcss tcdv tcht tsds tsds tsds	$\begin{tabular}{ c c c c } \hline Symbol & Min \\ \hline f_{SCl} & \\ \hline t_{SClh} & 2 \\ \hline t_{Sclh} & 2 \\ \hline t_{Sclh} & 2 \\ \hline t_{SklCsh} & 500 \\ \hline t_{sklCsh} & 2 \\ \hline t_{CSS} & 2 \\ \hline t_{CdV} & \\ \hline t_{CdV} & \\ \hline t_{cht} & 2 \\ \hline t_{Sds} & 500 \\ \hline t_{SdV} & \\ \hline t_{SdV} & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Symbol & Min & Typ \\ \hline f_{scl} & 2 \\ \hline t_{sclh} & 2 \\ \hline t_{sclh} & 2 \\ \hline t_{sklcsh} & 500 \\ \hline t_{sklcsh} & 2 \\ \hline t_{css} & 2 \\ \hline t_{cdv} & \\ \hline t_{cdv} & \\ \hline t_{cht} & 2 \\ \hline t_{sds} & 500 \\ \hline t_{sdv} & \\ \hline t_{s$	$\begin{tabular}{ c c c c c } \hline Symbol & Min & Typ & Max \\ \hline f_{scl} & 100 \\ \hline t_{scll} & 2 & 100 \\ \hline t_{sclh} & 2 & & \\ \hline t_{sklcsh} & 2 & & \\ \hline t_{sklcsh} & 500 & & \\ \hline t_{sklcsh} & 2 & & \\ \hline t_{css} & 2 & & \\ \hline t_{cdv} & 2 & & \\ \hline t_{cdv} & 2 & & \\ \hline t_{cht} & 2 & & \\ \hline t_{sds} & 500 & & \\ \hline t_{sdv} & 500 & & \\ \hline t_{sdv} & 500 & & \\ \hline t_{sdv} & 3 & \\ \hline \end{tabular}$			

Note:

1. In GSPI mode the SCLK polarity and phase are programmable. The parameters and are illustrated for GSPI mode with **CPS.CPOL = CPS.CPHA = 0**. See Section 2.3.3.3 on page 60 for more information.

 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz; Load Capacitance = 30 pF

	GSPI Master mode (CPS.CPMM/DCPS.DPMM set)								
Parameter	Symbol		Speed .FAST clear	Fast CPS/DCPS	Unit				
	-	Min	Max	Min	Max				
SCLK frequency (Note 2)	f _{scl}		100		350	kHz			
SCLK low time	t _{scll}	4		1		μs			
SCLK high time	t _{sclh}	4		1		μs			
SCLK low to \overline{CS} high setup	t _{sklcsh}	1		1		μs			
CS low to SCLK rise (Note 1)	t _{css}	1		1		μs			
CS low to SDOUT valid	t _{cdv}		250		250	ns			
CS high time	t _{cht}	1		0.25		μs			
SDIN valid to SCLK rising (Note 1)	t _{sds}	500		250		ns			
SDIN hold from SCLK rising (Note 1)	t _{sdh}	500		250		ns			
SCLK falling to SDOUT valid (Note 1)	t _{sdv}		1		0.5	μs			
CS high to SDOUT Hi-Z	t _{sdz}		1		1	μs			

Notes:

1. In GSPI mode the SCLK polarity and phase are programmable. The parameters and are illustrated for GSPI mode with **CPS.CPOL = CPS.CPHA =** 0. See Section 2.3.3.3 on page 60 for more information.

2. The typical clock frequency when **FAST** is clear is 88.2 kHz when Fs = 44.1 kHz, and 96 kHz when Fs = 48 kHz. When **FAST** is set, the typical clock frequency is 295.8 kHz when Fs = 44.1 kHz, and 310.6 kHz when Fs = 48 kHz.

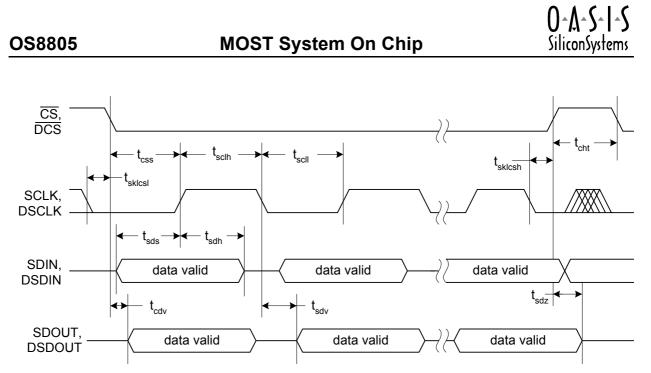


Figure 6-11: Control/Debug Port - SPI Timing

6.11 Control and Debug Ports - I²C Mode

T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz.

Parameter	Slav	Slave mode (CPS.CPMM/DCPS.DPMM clear)								
	Symbol	Min	Тур	Max	Unit					
SCL frequency	f _{scl}			100	kHz					
Bus free between transmissions (SDA high time between start and stop)	t _{buf}	4.7			μs					
Start condition hold time (SDA falling to SCL falling)	t _{stah}	4			μs					
SCL low	t _{scll}	4.7			μs					
SCL high	t _{sclh}	4			μs					
SDA input hold from SCL falling	t _{sdah}	0			μs					
SDA input valid to SCL rising	t _{sdas}	500			ns					
(repeated) start condition setup time	t _{stas}	4.7			μs					
SDA and SCL rise time	t _r			1	μs					
SDA and SCL fall time	t _f			300	ns					
Stop condition setup time (SCL rising to SDA rising)	t _{stps}	4			μs					

 T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz.

	Master mode (CPS.CPMM/DCPS.DPMM set)								
Parameter	Symbol	Slow Speed CPS/DCPS.FAST clear		Fast Speed CPS/DCPS.FAST set		Unit			
		Min	Max	Min	Max				
SCL frequency (Note 1)	f _{scl}		100		350	kHz			
Bus free between transmissions (SDA high time between start and stop)	t _{buf}	4.7		1.3		μs			
Start condition hold time (SDA falling to SCL falling)	t _{stah}	4		0.6		μs			
SCL low	t _{scll}	4.7		1.3		μs			
SCL high	t _{sclh}	4		0.6		μs			
SDA input hold from SCL falling	t _{sdah}	0		0		μs			
SDA input valid to SCL rising	t _{sdas}	500		300		ns			
Repeat Start condition setup time	t _{stas}	4.7		0.6		μs			
SDA and SCL rise time	t _r		1		0.3	μs			
SDA and SCL fall time	t _f		300		300	ns			
Stop condition setup time (SCL rising to SDA rising)	t _{stps}	4		0.6		μs			

Note:

1. The typical clock frequency when **FAST** is clear is 88.2 kHz when Fs = 44.1 kHz, and 96 kHz when Fs = 48 kHz. When **FAST** is set, the typical clock frequency is 295.8 kHz when Fs= 44.1 kHz, and 310.6 kHz when Fs = 48 kHz.

Figure 6-12: Control/Debug Port - I²C Timing

MOST System On Chip

6.12 Control and Debug Ports - USART mode

T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz; Load Capacitance = 30 pF.

Parameter	Symbol	Min	Тур	Max	Unit	Comments
UCKn frequency	f _{usart}			1	MHz	
UCKn low time	t _{uckl}	300			ns	
UCKn high time	t _{uckh}	300			ns	
URXn valid to UCKn rising	t _{ucrxs}	150			ns	
URXn hold from UCKn rising	t _{ucrxh}	150			ns	
UTXn valid from UCKn falling	t _{uctxv}			200	ns	

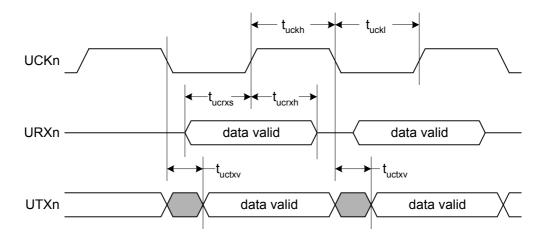


Figure 6-13: Control/Debug Port - USART Timing

6.13 Analog Performance

6.13.1 MPX ADC

 T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V ±5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; Gain set to 0 dB; unless otherwise noted.

Parameter	Min	Тур	Max	Unit
Analog Characteristics:				
Resolution	16			bits
Sample Rate		4Fs		Hz
Dynamic Range:				
20 Hz to 20 kHz bandwidth		87		dB FS
20 Hz to 60 kHz bandwidth		82		dB FS
THD+N (Note 1)		-80		dB FS
Full-scale Input		2.5		Vpp
Maximum Gain		24		dB
Gain Step Size	0.7	0.9	1.3	dB
Offset Error (Note 2)		3		codes
Input Resistance (Note 3)	10		332	kΩ
Input Capacitance			15	pF
Inter-channel Isolation:				
MPX to Audio		90		dB
MPX to MIC		100		dB
MPX to DACs		100		dB
Digital Characteristics:				
Passband	0.0001Fs		1.34Fs	Hz
Passband Ripple			±0.01	dB
Transition Band	1.34Fs		2.66Fs	Hz
Stop-band	2.66Fs			Hz
Stop-band Rejection	80			dB
Group Delay		constant		

Notes:

1. MPX ADC measured with -3 dB sine wave at 997 Hz, 20 Hz - 60 kHz bandwidth.

2. Independent of Gain setting.

3. Minimum when gain set to 26 dB; and maximum when gain set to 0 dB.

6.13.2 Audio ADCs

 T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V ±5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; Gain set to 0 dB; unless otherwise noted.

Parameter	Min	Тур	Max	Unit
Analog Characteristics:				L.
Resolution	16			bits
Sample Rate		Fs		Hz
Dynamic Range, 20 Hz to 20 kHz bandwidth		89		dB FS
THD+N (Note 1)		-88		dB FS
Full-scale Input		2.5		Vpp
Maximum Gain		13.7		dB
Gain Step Size	0.7	0.9	1.3	dB
Offset Error (Note 2)		3		codes
Input Resistance (Note 3)	10		80	kΩ
Input Capacitance			15	pF
Inter-channel Isolation: Left to Right Audio to MPX Audio to MIC Audio to DACs		90 100 100 100		dB dB dB dB
Inter-channel Gain mismatch			0.5	dB
Digital Characteristics:				
Passband: ±0.01 dB ±1.00 dB	0.00005Fs 0.0002Fs		0.36Fs 0.41Fs	Hz
Passband Ripple			±0.01	dB
Transition Band	0.4Fs		0.6Fs	Hz
Stop-band	0.6Fs			Hz
Stop-band Rejection	70			dB
Group Delay		constant		
ADCL to ADCR Group Delay		1 6.8Fs		S

Notes:

1. Audio ADC measured with -3 dB FS sine wave at 997 Hz, 20 Hz – 20 kHz bandwidth.

2. Independent of Gain setting.

3. Minimum when gain set to 15 dB; and maximum when gain set to 0 dB.

MOST System On Chip

6.13.3 Microphone ADC

T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V \pm 5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; Gain set to 0 dB; unless otherwise noted.

Parameter	Min	Тур	Max	Unit
Analog Characteristics:				
Resolution	16			bits
Sample Rate		0.25Fs		Hz
Dynamic Range, 20 Hz to 0.25Fs/2 bandwidth		87		dB FS
THD+N (Note 1)		-86		dB FS
Full-scale Input		2.5		Vpp
Maximum Gain		13.6		dB
Gain Step Size	0.7	0.9	1.3	dB
Offset Error (Note 2)		3		codes
Input Resistance (Note 3)	10		80	kΩ
Input Capacitance			15	pF
Inter-channel Isolation:				
MIC to MPX		100		dB
MIC to Audio		100		dB
MIC to DACs		100		dB
Digital Characteristics:	• •			
Passband: ±0.01 dB	0.0002Fs		0.1Fs	Hz
Transition Band	0.1Fs		0.15Fs	Hz
Stop-band	0.15Fs			Hz
Stop-band Rejection	60			dB
Group Delay		constant		

Notes:

1. Mic ADC measured with -3 dB FS sine wave at 997 Hz, 20 Hz – 0.25Fs/2 bandwidth.

2. Independent of Gain setting.

3. Minimum when gain set to 15 dB; and maximum when gain set to 0 dB.

6.13.4 Audio DACs

 T_J = -40 to 150 °C; VDDD,VDDA = 3.3 V ±5 %; GNDD,GNDA = 0.0 V; PLL locked at 44.1 kHz; Attenuation set to 0 dB; Differential ouput; unless otherwise noted.

Parameter	Min	Тур	Max	Unit
Analog Characteristics:				
Resolution	16			bits
Sample Rate		Fs		Hz
Dynamic Range (Differential):				
Instantaneous (ADACn.ATTN[4:0] = 00h)		88		dB FS
Total (ADACn.ATTN[4:0] = 1Fh)		108		dB FS
Dynamic Range (Single-ended): (Note 1)				
Instantaneous (ADACn.ATTN[4:0] = 00h)		88		dB FS
Total (ADACn.ATTN[4:0] = 1Fh)		101		dB FS
THD+N: unloaded (Note 2)		-88		dB FS
$R_L = 2 k\Omega$		-86		dB FS
Full-Scale Output (Note 3)		3.6		Vpp
Minimum Attenuation		31		dB
Gain Step Size	0.7	1	1.3	dB
Offset Error		10	20	mV
Output Load Resistance (Note 4)	2			kΩ
Output Load Capacitance			100	pF
Inter-channel Isolation:				
DAC to DAC		100		dB
DAC to MPX		110		dB
DAC to MIC		110		dB
DAC to Audio		110		dB
Inter-channel Gain mismatch			0.5	dB
Out-of-Band Noise (20 kHz to 80 kHz)		56		dB FS
Digital Characteristics:				
Passband: ±0.01 dB	0		0.42Fs	Hz
±1.00 dB	0		0.45Fs	112
Passband Ripple			±0.01	dB
Transition Band	0.42Fs		0.58Fs	Hz
Stop-band	0.58Fs			Hz
Stop-band Rejection	60			dB
Group Delay		constant		
DAC[n] to DAC[n+1] Group Delay		$\frac{1}{4Fs}$		s

Notes:

1. ADACn.SEDE set and capacitors on VREFS as mentioned in the Data Sheet.

2. DACs measured with a -3 dB FS sine wave at 997 Hz, 20 Hz - 20 kHz bandwidth

3. Under no-load condition.

4. Measured between each DAC output pin and AGND.

MOST System On Chip

6.13.5 DC ADC

T_J = -40 to 150 °C; VDDD, VDDA = 3.3 V ±5 %; GNDD, GNDA = 0.0 V; PLL locked at 44.1 kHz; 12-bit conversions; unless otherwise noted

Parame	ter	Symbol	Min	Тур	Max	Unit
Resolution		N	5		12	Bits
Differential Non-Linearity	(Note 1)	DNL			±0.50	LSB
Center-scale (offset) Error	(Note 2)			±3		codes
Gain Error	(Note 3)			1.4		%
Gain Drift	(Note 3)			56		ppm/ºC
Peak-to-Peak Noise				3		codes
VREF (common mode and cer	nter voltage)		1.2	1.3	1.4	V
VREF Drift				100		ppm/ºC
Conversion Range			0		2×VREF	V
On-Channel input resistance:				10		MΩ
Off-Channel leakage current				1		μA
Acquition Time			<u>1</u> 192Fs		<u>1</u> 96Fs	s
Conversion Time				$\frac{2^{N}+2}{96Fs}$		s

Notes:

1. Monotanicity guaranteed.

2. The Center-scale error is the value produced when DCC.CAL is set.

3. Assumes center-scale error is subtracted out.

OS8805 MOST System On Chip 7 Pinout and Packaging

All pins configured as digital inputs or must not be left floating; therefore, they must be driven, have pullups or pull-downs, or be directly attached to power or ground.

7.1 Pin List

Pins listed as Type EGPIO can be programmed for D_{IN} , D_{OUTZ} , or D_{OUTD} .

$\begin{array}{ c c c c c c } \hline MA5 & D_{OUT} & External memory address bus bit 5 \\ \hline IOE5 & EGPIO \\ \hline IOE4 & GNDD0 & \hline \\ \hline IOE3 & EGPIO \\ \hline IOE3 & EGPIO \\ \hline IOE3 & EGPIO \\ \hline IOE2 & EGPIO \\ \hline IOE1 & EGPIO \\ \hline IOE0 & ECIPIO \\ \hline IOE0 & EGPIO \\ \hline IOE0 & EGPIO \\ \hline IOE1 & EGPIO \\ \hline IOE0 & EGPIO \\ \hline IOE1 & EGPIO \\ \hline IOE0 & EGPIO \\ \hline IOE & Control Port Address bus bit 0 \\ \hline IOE0 & EGPIO \\ \hline IOE0 & Control Port Address bit 0 input in I^2C mode \\ \hline IOA2 & EGPIO \\ \hline IOA2 & EGPIO \\ \hline IOA2 & EGPIO \\ \hline IOA3 & EGPIO \\ \hline IOA4 & D_{IN} & Control Port serial clock input in ISPI mode \\ \hline IOA3 & EGPIO \\ \hline IOA3 & EGPIO \\ \hline IOA4 & EGPIO \\ \hline IOA4 & EGPIO \\ \hline IOA5 & EGPIO \\ \hline IOA7 & D_{IVO} & Control Port serial clock input in USART (synchronous) mode \\ \hline IOA3 & EGPIO \\ \hline IOA4 & EGPIO \\ \hline IOA4 & EGPIO \\ \hline IOA4 & EGPIO \\ \hline IOA5 & EGPIO \\ \hline IOA6 & EGPIO \\ \hline IOA7 & D_{IVO} & Control Port serial clock input in SPI mode \\ \hline IOA8 & EGPIO \\ \hline IOA0 & E$	Pin	Name	Туре	Pin Description
$\begin{array}{ c c c c c c } C c c c c c c c c c c c c c c c c c c $	1	MA5	D _{OUT}	External memory address bus bit 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IOE5	EGPIO	
IDE4EGPIO3GNDS0Connect to digital ground4GNDD05VDDD06MA3 D_{OUT} External memory address bus bit 310E3EGPIO7MA2 D_{OUT} External memory address bus bit 210E2EGPIO8MA1 D_{OUT} External memory address bus bit 110E1EGPIO9MA0 D_{OUT} External memory address bus bit 010GNDD111VDDD14D0 D_{IIN} Control Port Address bit 0 input in I ² C modeSDIN D_{IN} Control Port Serial data input in SPI mode124MA0 D_{IN} Control Port Address bit 1 input in I ² C mode13GS D_{IN} Control Port Address bit 1 input in I ² C mode14SCL D_{IO} Control Port Address bit 1 input in SPI mode14 \overline{CS} D_{IN} Control Port Address bit 1 input in SPI mode14 \overline{CS} D_{IN} Control Port Serial clock input in SPI mode15 \overline{CS} D_{IN} Control Port serial clock input in SPI mode15 $\overline{DA0}$ D_{IO} Control Port serial data input and output in I ² C mode16A1EGPIO17 $\overline{DA0}$ Control Port serial clock input in SPI mode17 $\overline{DA0}$ $\overline{D_{IO}}$ Control Port serial clock input in SPI mode18 $\overline{OA0}$ EGPIO19 $DA0$	2	MA4	D _{OUT}	External memory address bus bit 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2			
	3			Connect to digital ground
	-			
	5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6			External memory address bus bit 3
7IOE2EGPIO8MA1 D_{OUT} External memory address bus bit 19IOE1EGPIO9MA0 D_{OUT} External memory address bus bit 010GNDD1External memory address bus bit 011VDDD1IOE012AD0 D_{IN} Control Port Address bit 0 input in I ² C mode11VDD112AD0 D_{IN} Control Port Serial data input in SPI modeI2IOA2I3GSAD1 D_{IN} Control Port Address bit 1 input in I ² C modeI3GSI4GSI74SCLI74DI/ODI75SDAI76DI/ODI77Control Port serial clock input in SPI modeI78IAD1I79DI/ODI70Control Port Serial clock input in USART (synchronous) modeI71IOA3I72SCLI73DI/ODI74SCLI74GSLI75SDAI70DoutI70Control Port serial clock input output in USART (synchronous) modeI73IOA0I74EGPIOI74SDAI75SDAI770DoutI770Control Port serial data input and output in I ² C modeI770DoutI770DoutI770Control Port serial data output in USART modeI770DoutI770D				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7			External memory address bus bit 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8			External memory address bus bit 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c cccc} OE0 & EGPIO \\ \hline \mbox{IOD1} & \mbox{IOD2} & $	9			External memory address bus bit 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ŭ		EGPIO	
$ \begin{array}{ c c c c c c } & AD0 & D_{IN} & Control Port Address bit 0 input in I^2C mode \\ \hline \\ SDIN & D_{IN} & Control Port Serial data input in SPI mode \\ \hline \\ URX0 & D_{IN} & Control Port data input in USART mode \\ \hline \\ IOA2 & EGPIO \\ \hline \\ 10A2 & EGPIO \\ \hline \\ 13 \\ \hline \\ 14 \\ \hline \\ 16 \\ \hline \\ 10 \\ 10 \\ 10 \\ \hline \\ 10 \\ 10 \\ 10 \\$				
12SDIN D_{IN} Control Port Serial data input in SPI mode12 $URX0$ D_{IN} Control Port data input in USART mode10A2EGPIO13 $AD1$ D_{IN} Control Port Address bit 1 input in I ² C mode13 \overline{CS} D_{IN} Control Port Chip select input in SPI mode14 $VR0$ $D_{I/O}$ Control Port Port frame input/output in USART (synchronous) mode10A3EGPIO*14 SCL $D_{I/O}$ $CONTOI Port Serial clock input in I2C modeSCLKD_{I/O}UCK0D_{I/O}IOA0EGPIO10A0EGPIO10A1D_{IOD}Control Port serial clock input in USART (synchronous) modeIOA0IOA0IOA0EGPIO15SDAD_{I/OD}IOA1EGPIO$	11			
12URX0 D_{IN} Control Port data input in USART modeIOA2EGPIO13 $AD1$ D_{IN} Control Port Address bit 1 input in I^2C mode13 \overline{CS} D_{IN} Control Port Chip select input in SPI mode13 $UFR0$ $D_{I/O}$ Control Port frame input/output in USART (synchronous) modeIOA3EGPIO*14 SCL $D_{I/O}$ Control Port serial clock input in I^2C mode*14 $SCLK$ D_{IN} Control Port serial clock input in SPI modeUCK0 $D_{I/O}$ Control Port serial clock input in USART (synchronous) modeIOA0EGPIO15 SDA $D_{I/OD}$ 16 $SDOUT$ D_{OUT} 17 D_{OUT} Control Port serial data output in SPI mode16 $ITX0$ D_{OUT} 17 $Control Port serial data output in SPI mode18ITX0D_{OUT}19ITX0D_{OUT}10A1EGPIO$				
$ \begin{array}{ c c c c c } & URX0 & D_{IN} & Control Port data input in USART mode \\ \hline IOA2 & EGPIO \\ \hline IOA2 & EGPIO \\ \hline \\ \hline \\ AD1 & D_{IN} & Control Port Address bit 1 input in I^2C mode \\ \hline \\ $	12	SDIN	D _{IN}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		URX0	D _{IN}	Control Port data input in USART mode
$\begin{array}{ c c c c c } \hline \hline CS & D_{IN} & Control Port Chip select input in SPI mode \\ \hline \hline UFR0 & D_{I/O} & Control Port frame input/output in USART (synchronous) mode \\ \hline IOA3 & EGPIO \\ \hline \hline IOA3 & EGPIO \\ \hline \hline SCL & D_{I/OD} & Control Port serial clock input in I^2C mode \\ \hline SCLK & D_{IN} & Control Port serial clock input in SPI mode \\ \hline UCK0 & D_{I/O} & Control Port clock input/output in USART (synchronous) mode \\ \hline IOA0 & EGPIO \\ \hline IOA0 & EGPIO \\ \hline 15 & SDOUT & D_{OUT} & Control Port serial data input and output in I^2C mode \\ \hline IOA1 & EGPIO \\ \hline \end{array}$		IOA2	EGPIO	
$ \begin{array}{ c c c c c } \hline 13 & UFR0 & D_{I/O} & Control Port frame input/output in USART (synchronous) mode \\ \hline IOA3 & EGPIO \\ \hline \\ \hline & 10A3 & EGPIO \\ \hline \\ \hline & SCL & D_{I/OD} & Control Port serial clock input in I^2C mode \\ \hline & SCLK & D_{IN} & Control Port serial clock input in SPI mode \\ \hline & UCK0 & D_{I/O} & Control Port clock input/output in USART (synchronous) mode \\ \hline & IOA0 & EGPIO \\ \hline & SDA & D_{I/OD} & Control Port serial data input and output in I^2C mode \\ \hline & SDOUT & D_{OUT} & Control Port serial data output in SPI mode \\ \hline & UTX0 & D_{OUT} & Control Port data output in USART mode \\ \hline & IOA1 & EGPIO \\ \hline \end{array} $		AD1	D _{IN}	Control Port Address bit 1 input in I ² C mode
UFR0 D _{I/O} Control Port frame input/output in USART (synchronous) mode IOA3 EGPIO *14 SCL D _{I/OD} Control Port serial clock input in I ² C mode SCLK D _{IN} Control Port serial clock input in SPI mode UCK0 D _{I/O} Control Port clock input/output in USART (synchronous) mode IOA0 EGPIO SDA D _{I/OD} Control Port serial data input and output in I ² C mode SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port serial data output in SPI mode IOA1 EGPIO	12	CS	D _{IN}	Control Port Chip select input in SPI mode
*14 SCL DI/OD Control Port serial clock input in I ² C mode *14 SCLK DIN Control Port serial clock input in SPI mode UCK0 DI/O Control Port clock input/output in USART (synchronous) mode IOA0 EGPIO SDA DI/OD Control Port serial data input and output in I ² C mode SDOUT DOUT Control Port serial data output in SPI mode UTX0 DOUT Control Port data output in USART mode IOA1 EGPIO	15	UFR0	D _{I/O}	Control Port frame input/output in USART (synchronous) mode
*14 *14 SCLK D _{IN} Control Port serial clock input in SPI mode UCK0 D _{I/O} Control Port clock input/output in USART (synchronous) mode IOA0 EGPIO 15 SDA D _{I/OD} Control Port serial data input and output in I ² C mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO		IOA3	EGPIO	
*14 UCK0 D _{I/O} Control Port clock input/output in USART (synchronous) mode IOA0 EGPIO 15 SDA D _{I/OD} Control Port serial data input and output in I ² C mode SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO		SCL	D _{I/OD}	Control Port serial clock input in I ² C mode
UCK0 D _{I/O} Control Port clock input/output in USART (synchronous) mode IOA0 EGPIO SDA D _{I/OD} Control Port serial data input and output in I ² C mode SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO	*17	SCLK	D _{IN}	Control Port serial clock input in SPI mode
IOA0 EGPIO SDA D _{I/OD} Control Port serial data input and output in I ² C mode SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO	14	UCK0	D _{I/O}	Control Port clock input/output in USART (synchronous) mode
15 SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO		IOA0		
SDOUT D _{OUT} Control Port serial data output in SPI mode UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO		SDA	D _{I/OD}	Control Port serial data input and output in I ² C mode
UTX0 D _{OUT} Control Port data output in USART mode IOA1 EGPIO	15	SDOUT	D _{OUT}	
IOA1 EGPIO	15	UTX0	D _{OUT}	Control Port data output in USART mode
		IOA1	EGPIO	
16 GNDD7	16	GNDD7		

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of \overline{RST}).

Table 7-1: Pinout List

O-A-S-I-S SiliconSystems

MOST System On Chip

O-A-S-I-S SiliconSystems

Pin	Name	Туре	Pin Description							
	MA16	D _{OUT}	External memory address bus bit 16							
17	IOD1	EGPIO								
4.0	SX0	D _{OUT}	Host Controller Source Port serial data output 0 (S/PDIF output also)							
18	IOC2	EGPIO								
10	SX1	D _{OUT}	Host Controller Source Port serial data output 1							
19	IOC4	DC4 EGPIO								
20	GNDD2									
21	VDDD2									
22	FSY D _{I/O} Host Controller Source Port frame sync									
	IOC1	EGPIO								
23	SCK	D _{I/O}	Host Controller Source Port serial bit clock							
20	IOC0	EGPIO								
24	SR0	D _{IN}	Host Controller Source Port serial data input 0 (S/PDIF input also)							
<u> </u>	IOC3	EGPIO								
25	SR1	D _{IN}	Host Controller Source Port serial data input 1							
	IOC5	EGPIO								
26	ТХ	D _{OUT}	MOST network transmitter output							
20	IOG2	EGPIO								
27	RX D _{IN} MOST network receiver input									
	IOG3 EGPIO									
28	RMCK D _{OUTZ} Recovered master clock output									
20	IOG0	GO EGPIO								
29	ERR	D _{OUT}	Error flag output							
	IOG1	EGPIO								
	IOG4	EGPIO								
*30	BOOT	D _{IN}	Boot-strapping reset vector (selects reset vector address)							
	PWM1	D _{OUT}	DSP0 PWM1 DAC output							
	IOB3	EGPIO								
31	DCS	D _{IN}	Debug Port chip select in SPI mode							
	UFR1	D _{I/O}	Debug Port frame input/output in USART (synchronous) mode							
32	RST	D _{IN}	Hardware reset input							
33	GNDA0									
34	GNDA1									
35	FLT	A _{IO}	PLL loop filter output							
36	GNDS1		Connect to analog ground							
37	VDDA0		PLL Power Supply							
38	POT7	A _{IN}	DC Measurement ADC analog input 7							
39	POT6	A _{IN}	DC Measurement ADC analog input 6							
40	POT5	A _{IN}	DC Measurement ADC analog input 5							
41	POT4	A _{IN}	DC Measurement ADC analog input 4							
42	POT3	A _{IN}	DC Measurement ADC analog input 3							
43	POT2	A _{IN}	DC Measurement ADC analog input 2							
44	POT1	A _{IN}	DC Measurement ADC analog input 1							
	1									

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of $\overline{\text{RST}}$).

MOST System On Chip

O-A-S-I-S SiliconSystems

		-	
Pin	Name	Туре	Pin Description
45	POT0	A _{IN}	DC Measurement ADC analog input 0
46	MIC	A _{AI}	Microphone ADC analog input
47	GNDA2	· .	
48	MPX	A _{AI}	MPX ADC analog input
49	VDDA1	· .	
50	AD2R	A _{AI}	Right analog 2 input to audio ADC
51	AD2L	A _{AI}	Left analog 2 input to audio ADC
50	GNDA3		
52	VREFS	A _{AI}	Reference voltage bypass for single-ended DAC operation. Requires two capacitors to ground.
53	VREF	A _{IO}	Voltage reference output
54	GNDA4		
55	AD1R	A _{AI}	Right analog 1 input to audio ADC
56	AD1L	A _{AI}	Left analog 1 input to audio ADC
57	VDDA2		
58	AD0R	A _{AI}	Right analog 0 input to audio ADC
59	AD0L	A _{AI}	Left analog 0 input to audio ADC
60	GNDA5		
61	DA3B	A _{AO}	Inverted analog output of DAC3
62	DA3	A _{AO}	Analog output of DAC3
63	DA2B	A _{AO}	Inverted analog output of DAC2
64	DA2	A _{AO}	Analog output of DAC2
65	DA1B	A _{AO}	Inverted analog output of DAC1
66	DA1	A _{AO}	Analog output of DAC1
67	GNDS2		Connect to analog ground
68	DA0B	A _{AO}	Inverted analog output of DAC0
69	DA0	A _{AO}	Analog output of DAC0
70	GNDA6		
71	TST0	D _{IN}	Test Mode enable. Must be grounded for normal operation.
72	TST1	D _{IN}	Test Mode enable. Must be grounded for normal operation.
	IOB0	EGPIO	
+=0	DSCL	D _{I/OD}	Debug Port clock input in I ² C mode
*73	DSCLK	D _{IN}	Debug Port clock input in SPI mode
1	UCK1	D _{I/O}	Debug Port clock input in USART (synchronous) mode
	IOB1	EGPIO	
	DSDA	D _{I/OD}	Debug Port data I/O in I ² C mode
74	DSDOUT	D _{OUTD}	Debug Port data output in SPI mode
	UTX1	D _{OUT}	Debug Port data output in USART mode
75	хто	A _{IO}	Crystal oscillator output
76	XTI	A _{IO}	Crystal oscillator input - or external CMOS clock input
		10	

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of RST).

MOST System On Chip

O-A-S-I-S SiliconSystems

Pin	Name	Туре	Pin Description							
77	GPD3	D _{I/OD} EGPIO	For Host Controller, with Interrupt capability For DSP1							
	SRB1	D _{IN}	DSP1, Source Port B1 - SR input							
78	GPD2	D _{I/OD} EGPIO	For Host Controller, with Interrupt capability For DSP1							
	SXB1	D _{OUT}	DSP1, Source Port B1 - SX output							
79	GPD1 D _{I/OD} EGPIO For Host Controller, with Interrupt capability 79 For DSP1									
	FSYB1	D _{I/O}	DSP1, Source Port B1 - Frame Sync							
80	GPD0	D _{I/OD} EGPIO	For Host Controller, with Interrupt capability For DSP1							
	SCKB1	D _{I/O}	DSP1, Source Port B1 - Serial Clock							
	GPC3	D _{I/OD} EGPIO	For Host Controller For DSP1							
81	TMR1	D _{OUTD}	Timer 1 output							
	SRB0	D _{OUT}	DSP1, Source Port B0 - SR input							
82	VDDD3									
83	GNDD3									
0.4	GPC2	D _{I/OD} EGPIO	For Host Controller For DSP1							
84	TMR0	D _{OUTD}	Timer 0 output							
	SXB0 D _{OUT} DSP1, Source Port B0 - SX output									
85	GPC1	D _{I/OD} EGPIO	For Host Controller For DSP1							
	FSYB0	D _{I/O}	DSP1, Source Port B0 - Frame Sync							
86	GPC0	D _{I/OD} EGPIO	For Host Controller For DSP1, with Interrupt capability							
	SCKB0	D _{I/O}	DSP1, Source Port B0 - Serial Clock							
87	GPB3	D _{I/OD} EGPIO	For Host Controller For DSP0							
	SRA1	D _{IN}	DSP0, Source Port A1 - SR input							
88	GPB2	D _{I/OD} EGPIO	For Host Controller For DSP0							
	SXA1	D _{OUT}	DSP0, Source Port A1 - SX output							
89	GPB1	D _{I/OD} EGPIO	For Host Controller For DSP0							
	FSYA1	D _{I/O}	DSP0, Source Port A1 - Frame Sync							
90	GPB0	D _{I/OD} EGPIO	For Host Controller For DSP0							
	SCKA1	D _{I/O}	DSP0, Source Port A1 - Serial Clock							
91	GPA3	D _{I/OD} EGPIO	For Host Controller For DSP0							
	SRA0	D _{IN}	DSP0, Source Port A0 - SR input							
92	GNDD4									

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of RST).

MOST System On Chip

O-A-S-I-S SiliconSystems

Pin	Name	Туре	Pin Description						
93	GPA2	D _{I/OD} EGPIO	For Host Controller For DSP0						
30	SXA0	D _{OUT}	DSP0, Source Port A0 - SX output						
94	GPA1	D _{I/OD} EGPIO	For Host Controller For DSP0						
34	FSYA0	D _{I/O}	DSP0, Source Port A0 - Frame Sync						
95	GPA0 D _{I/OD} For Host Controller								
	SCKA0	D _{I/O}	DSP0, Source Port A0 - Serial Clock						
06	MD7	D _{I/O}	External memory data bus bit 7						
96	IOF7	EGPIO							
97	MD6	D _{I/O}	External memory data bus bit 6						
97	IOF6	EGPIO							
98	PWM0	D _{OUT}	Pulse-width modulation DAC output						
90	IOD0	EGPIO							
	IOB2	EGPIO							
00	DAD0	D _{IN}	Debug Port address bit 0 in I ² C mode						
99	DSDIN	D _{IN}	Debug Port serial data input in SPI mode						
	URX1	D _{IN}	Debug Port data input in USART mode						
100	GNDS3		Connect to digital ground						
	MD5 Duo External memory data bus bit 5								
101	IOF5	EGPIO							
400	MD4	D _{I/O}	External memory data bus bit 4						
102	IOF4	EGPIO							
400	MD3	D _{I/O}	External memory data bus bit 3						
103	IOF3	EGPIO							
104	MD2	D _{I/O}	External memory data bus bit 2						
104	IOF2	EGPIO							
105	GNDS4		Connect to digital ground						
106	VDDD4								
107	MD1	D _{I/O}	External memory data bus bit 1						
107	IOF1	EGPIO							
108	MD0	D _{I/O}	External memory data bus bit 0						
100	IOF0	EGPIO							
	MWR	D _{OUT}	External Data memory write signal. Valid SRAM Data write cycle when low.						
109	PMW	D _{OUT}	External Program memory write signal. Low is write cycle, high is read cycle.						
	IOF8	EGPIO							
	MRD	D _{OUT}	External Data memory read signal. Valid SRAM Data read cycle when low.						
110	PA15	D _{OUT}	External Program memory address bus bit 15						
	IOE15	EGPIO							
	MRAS	D _{OUT}	DRAM row address select						
111	MCS	D _{OUT}	External data memory (SRAM) chip select						
	IOF9	EGPIO							

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of RST).

MOST System On Chip

O-A-S-I-S SiliconSystems

Pin	Name	Туре	Pin Description					
	MA14	D _{OUT}	External memory address bus bit 14					
112	MCAS D _{OUT} DRAM column address select							
	IOE14	EGPIO						
113	GNDS5		Connect to digital ground					
114	GNDD5							
115	GNDD6							
116	VDDD5							
	XME	D _{IN}	External Program memory enable (at Reset)					
*117	PCS	D _{OUT}	External Program memory chip select					
	SA15	D _{OUT}	External Data memory address bus bit 15					
	IOF10	EGPIO						
118	GNDS6		Connect to digital ground					
119	MA13	D _{OUT}	External memory address bus bit 13					
119	IOE13	EGPIO						
120	MA12	2 D _{OUT} External memory address bus bit 12						
120	IOE12	EGPIO						
121	MA11	D _{OUT}	External memory address bus bit 11					
121	IOE11	EGPIO						
122	MA10	D _{OUT}	External memory address bus bit 10					
122	IOE10	EGPIO						
123	MA9	D _{OUT}	External memory address bus bit 9					
123	IOE9	EGPIO						
124	MA8	D _{OUT}	External memory address bus bit 8					
124	IOE8	EGPIO						
125	GNDS7		Connect to digital ground					
126	GNDS8		Connect to digital ground					
127	MA7	D _{OUT}	External memory address bus bit 7					
121	IOE7	EGPIO						
128	MA6	D _{OUT}	External memory address bus bit 6					
120	IOE6	EGPIO						

* Requires a pull-up or pull-down as this pin sets an initial state on power-up (release of RST).

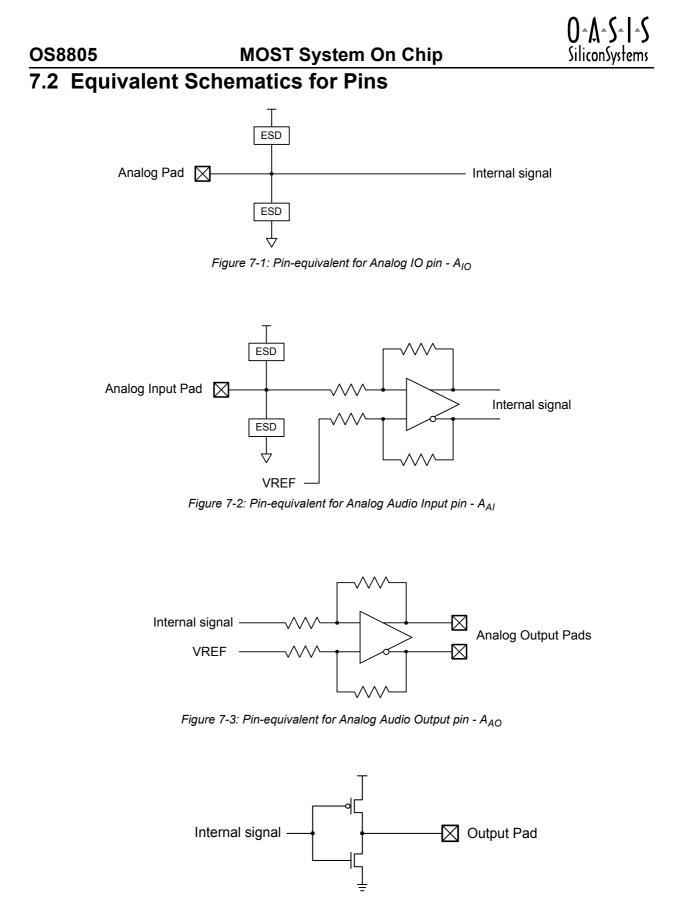


Figure 7-5: Pin-equivalent for Digital Output pin - D_{OUT}

MOST System On Chip

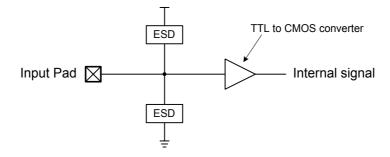


Figure 7-4: Pin-equivalent for Digital Input pin - D_{IN}

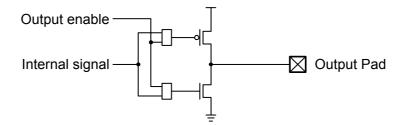


Figure 7-6: Pin-equivalent for Digital Output with high-Z control - D_{OUTZ}

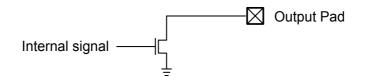


Figure 7-7: Pin-equivalent for Open-Drain Digital Output pin - D_{OUTD}

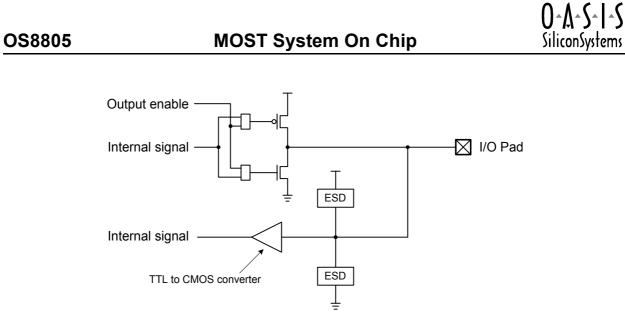


Figure 7-8: Pin-equivalent for Digital I/O pin - D_{I/O}

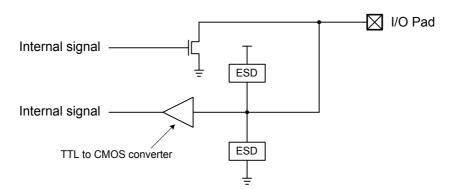


Figure 7-9: Pin-equivalent for Digital Input/Open-Drain Output pin - D_{I/OD}

7.3 Pinout

The package designators are:

- Ill Lot Sequence Code
- r Chip Revision Letter (also see MMPC.REV[3:0])
- yy last two digits of Assembly Year
- ww Assembly Work Week

MOST System On Chip

O-A-S-I-S SiliconSystems

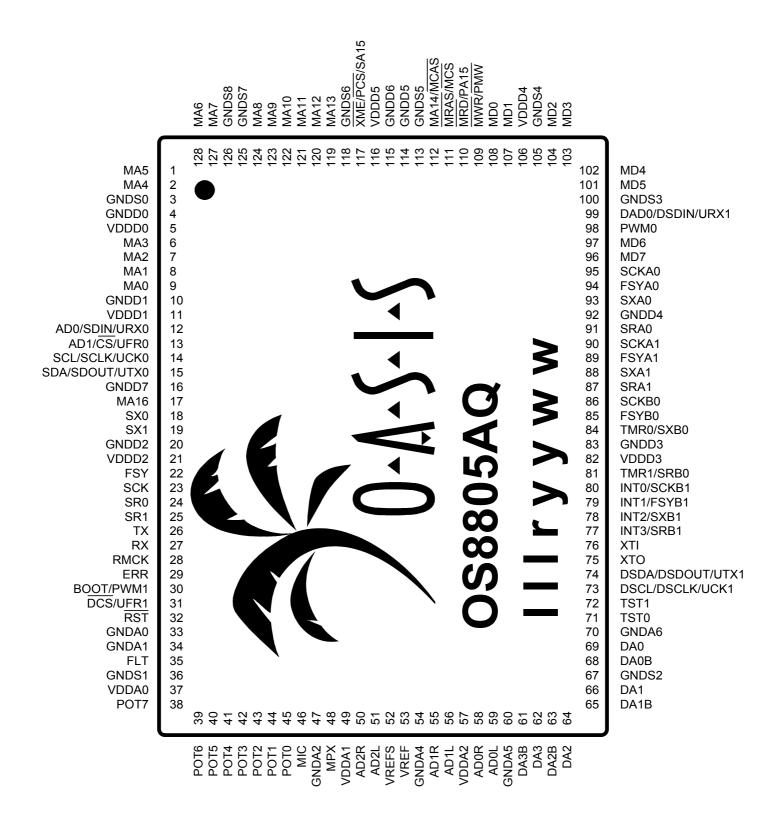
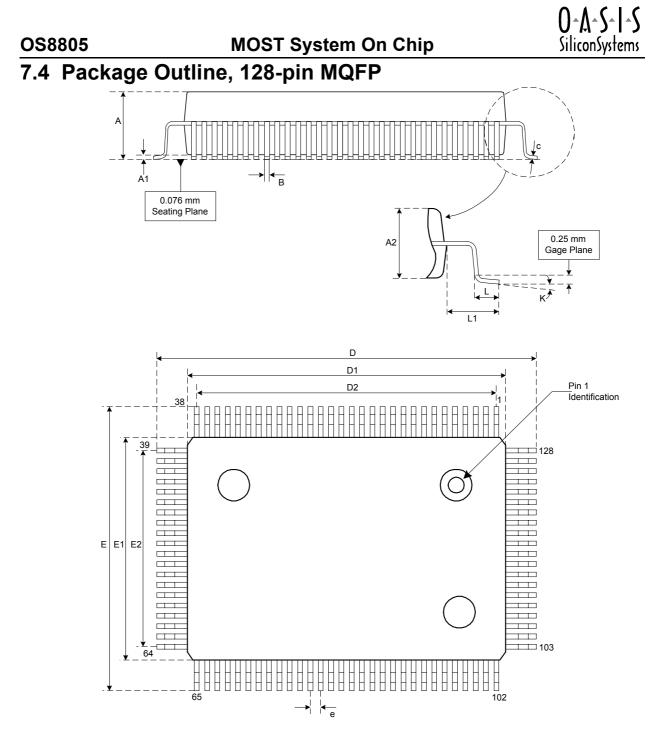


Figure 7-10: OS8805 Functional Pinout

Figure 7-11: OS8805 General Purpose I/O Pinout


Final Product Data Sheet Restricted Access

Downloaded from Arrow.com.

OS8805

MOST System On Chip

O-A-S-I-S SiliconSystems

	Α	A1	A2	В	С	D	D1	D2	е	Е	E1	E2	L	L1	K
Min		0.25	2.60	0.17	0.11	23.0	19.9			17.0	13.9		0.78		0 °
Тур		0.33	2.70	0.22		23.2	20.0	18.5	0.50	17.2	14.0	12.5	0.88	1.60	3.5 °
Max	3.40	0.50	2.80	0.27	0.17	23.4	20.1			17.4	14.1		1.03		7 °

Table 7-2: Package Outline Dimensions (mm)

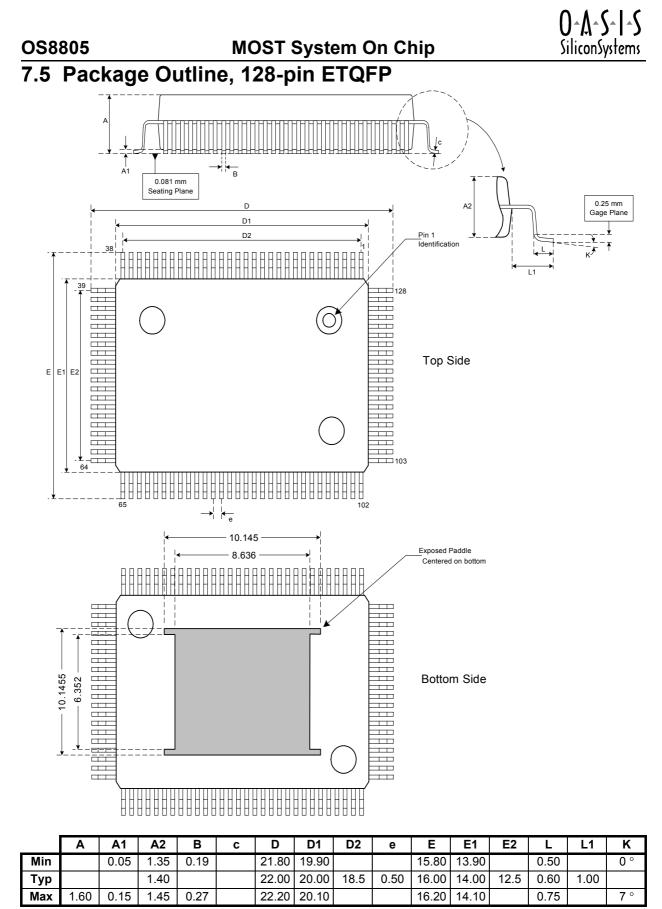


Table 7-3: Package Outline Dimensions (mm)

Final Product Data Sheet Restricted Access

8 Application Information

OS8805

8.1 Power Supplies and Analog Components

The following Figure illustrates the standard power arrangement for the OS8805. The 0.1 μ F capacitors should be placed as close as possible to the appropriate power supply pins.

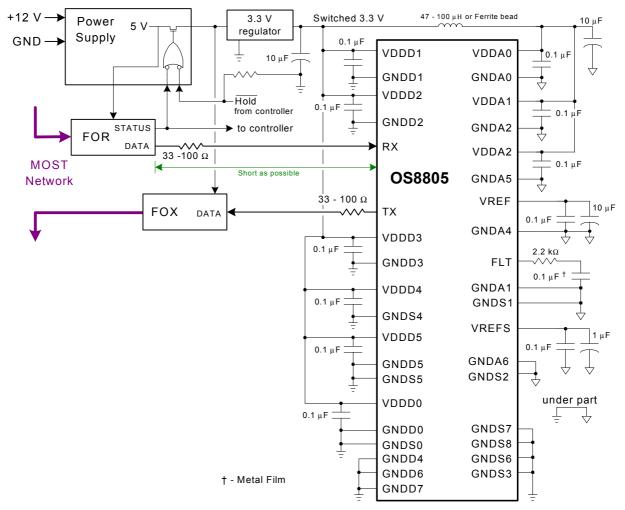


Figure 8-1: Power Supply Overview Diagram

The FLT, VREFS, and VREF components should be placed as close as possible to the GNDAn pins to minimize loop currents. To minimize vibration and shock effects on PLL locking, a metal-film capacitor (such as Panasonic ECPU 16VDC / 0805 / ECPU1C104MA5) should be connected to the FLT pin through the series resistor. Ceramic capacitors are more sensitive to shock and could cause unlock events in high-vibration environments. In addition, the FLT pin is a high-impedance node; therefore, leakage current should be kept below 1 μ A, or average pulse-width distortion tolerance could be adversely affected. Conformal coating is recommended for systems where condensation can occur. The analog and digital ground planes, if separated, should be connected at one point on the board, under the part.

The distance between the Fiber Optic Receiver (FOR) unit and the OS8805 should be as short as possible to minimize capacitance on the DATA line. Minimizing capacitance will shorten transition times out of the FOR, thereby minimizing pulse width distortion and jitter.

MOST System On Chip

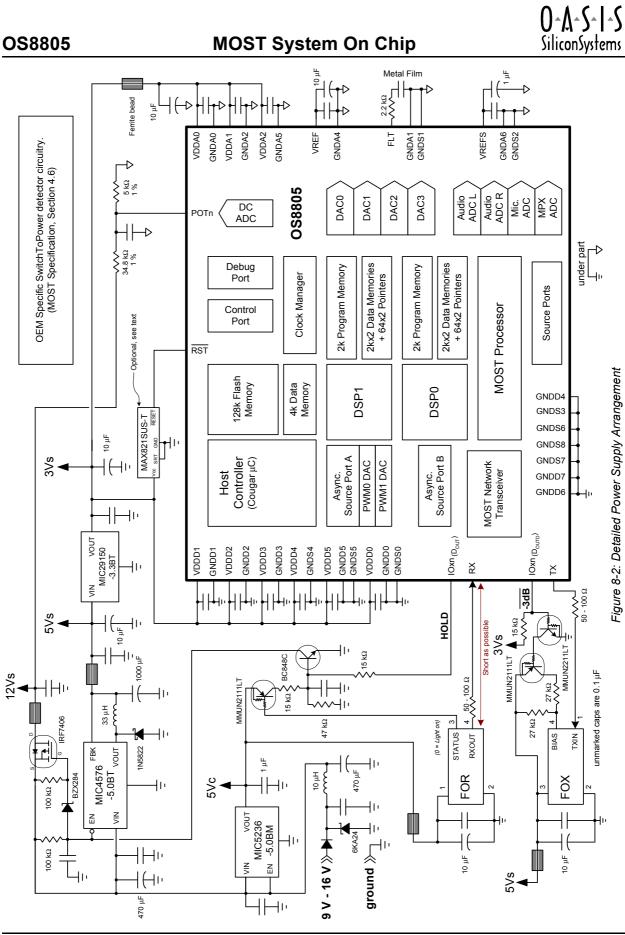
The series resistor in the TX and RX paths are for series-termination and should be as close as possible to the transmitting end. Since the RX input is 5 V tolerant, even when power is not applied, the series resistor value should be selected based on the board layout and should match the line impedance, which will help minimize reflections and lower EMI.

In the Figure above, the FOR unit controls the power to the node. All power supplies, except the FOR are on the *Switched 3 V* circuit. When there is no light at the FOR input, the STATUS output turns off the switched power supply to minimize power drain. The OS8805 has the option to delay power-down to allow an orderly shut-down of the local node. The OS8805 can apply power control (Hold) once normal operation has commenced. When the FOR loses light, STATUS goes high telling the OS8805 to perform a shut-down sequence. When the OS8805 has finished an orderly shut-down, it releases the Hold power control, causing the node to go into full power-down. The circuit illustrated is a conceptual schematic and does not include the decoupling needed between powered-off and powered devices.

Figure 8-2 illustrates a more detailed typical power supply arrangement for the OS8805. This diagram is provided as an example to illustrate how the OS8805 can be utilized to meet the *MOST Specification, Power Supply Area* (V2.1, Section 4.6), and is not guaranteed to meet all the requirements of a specific OEM.

Similar to the *Power Supply Overview Diagram*, Figure 8-1, the FOR controls power to the OS8805 and the rest of the node. The MIC5236 regulator supplies the 5 V continuous power (5Vc) to the FOR as well as the power-up circuit for the rest of the system. The power-up circuit controls the power supply for a 5 V supply (5Vs), the OS8805 3 V supply (3Vs), and a 12 V switched supply (12Vs) that can be used for high-powered peripherals. The 5 V switched supply powers the FOX as well as any analog circuitry that cannot run from the 3 V supply. The time between the FOR STATUS line going low and the 3Vs/5Vs power being stable should be well within t_{WakeUp} time (currently 6 ms), as listed in the MOST Spec. (V2.1, Section 3.8) for *light at FOR input to light out at FOX output* time.

The IOxn pin, selected for the HOLD signal, must power up as an input. Since the OS8805 IOxn pins are 5 V tolerant (even with no applied power), no extra protection is needed while the OS8805 is powered down. Once the part is powered up, the IOxn should be configured as a digital output (CMOS-drive) and driven high to "hold" the power-supply from turning off when light disappears at the FOR. The **bCM2.NNAC** bit indicates when Network activity is lost, and should be periodically checked during normal operation. When **bCM2.NNAC** goes high, the node should perform an orderly shut-down and then drive HOLD low to allow the entire node to power-down.


The **POTn** input uses the DC ADC to measure the 12 V supply and react appropriately to the MOST-defined levels (MOST Spec. V2.1, Section 4.7):

- Normal Operation
- Super Voltage
- Critical Voltage
- Low Voltage

The reaction to different power levels varies with the application but could include powering down poweramps or motors in over- or under-voltage conditions to protect the devices.

The OS8805 internal Watchdog timer supports the Watchdog requirements of the MOST Spec (V2.1, Section 4.6). If the Watchdog timer register, WDT, isn't written before the timer counts down to 0, then the OS8805 is reset, causing the MOST Transceiver to switch to all-bypass mode (**bXCR.ABY** clear). In addition, assuming the IOxn pin selected is an input at power-up, the Watchdog reset will release the HOLD signal.

The \overline{RST} pin illustrated is controlled by a MAX821 Voltage monitor. This circuit is only required if the node must power up and initialize without any external stimulus on the RX or one of the GPAn pins. When the OS8805 initially powers up, the CMCS.PD bit will be set by the internal Voltage monitor circuit. The part will remain in power-down mode until two transitions occur on the RX or GPAn pins, as configured in the RGEN register. If the node must do some initialization at power-up, a transition on the \overline{RST} line will clear CMCS.PD causing the OS8805 to power up. The MAX821 illustrated has a nominal threshold of 2.93 V. The SRT pin

Final Product Data Sheet Restricted Access © Copyright 2001-2003 Oasis SiliconSystems

DS8805FP5 Page 237

MOST System On Chip

is set for a 1 ms $\overline{\text{RST}}$ low time. The $\overline{\text{RST}}$ low time should be small to allow the maximum amount of software initialize time (and power-supply ramp time) to meet the *FOR light-on to* **bXCR.ABY** set (t_{WaitNodes} in the MOST Spec. V2.1, Section 3.8 - currently 100 ms) time period.

The Switch-To-Power circuitry is not included since it varies with OEMs. The OEM should be contacted to determine the proper method to support Switch-To-Power. The Switch-To-Power detector is a diagnostic mode used to force the node into ring-break diagnostics (MOST Spec. V2.1, Section 3.2.2.4). If the ring is broken, then light will not be received at the node immediately down-stream from the break. No light causes the node to power-down. When diagnostics needs to be performed on the broken ring, a method is needed to override the power-down and cause the node to power-up even though no light is received at the FOR. This override event is labeled Switch-To-Power.

8.2 Power Supply Current

The power supply current can vary widely with different applications. The *DC Characteristics* table on page 200 gives typical and maximum values for the power supply current. The difference between the typical and maximum values shows how the power supply current depends on the application running on the device. The maximum figure was generated using a program that exercises all portions of the device with the maximum number of bit transitions per cycle. The typical value shows the power supply current when the device is running firmware that represents an actual application, using the Host Controller, both DSPs, the ADCs and DACs. This value is further broken down into the current used by each DSP, by the ADCs and DACs, and by the Host Controller.

The expected current for a given application can be calculated in either of two methods: the first is to add the supply current for each module used, and account for the temperature, power supply, and process factors given in *DC Characteristics*. For example, an application that uses one DSP, the ADCs and DACs, running at 85 °C and a supply voltage of 3.465 V would have an expected maximum digital supply current of:

 $((95 \text{ mA} + 35 \text{ mA} + 85 \text{ mA}) + (0.18 \text{ mA/°C}) \times (85 \text{ °C} - 70 \text{ °C}) + (133 \text{ mA/V}) \times (3.465 \text{ V} - 3.3 \text{ V})) \times 1.05 = 252 \text{ mA}$

plus an expected maximum analog supply current of:

(90 mA + (0.03 mA/°C) × (85 °C - 70 °C) + (5 mA/V) × (3.465 V - 3.3 V)) × 1.09 = 100 mA

for a total supply current of: 252 mA + 99 mA = 352 mA

The second approach uses the supply current measured in the user's application, running in the user's target system or on an Oasis SiliconSystems evaluation board. After subtracting the current used by any peripheral circuitry, such as amplifiers and memories, the measured digital and analog currents should be multiplied by the factors above to account for temperature and process variables to give the maximum expected supply current for that application. If the application firmware should change, then Table 8-1 can be used to predict the effect that the changes will have on the power supply current. Table 8-1 gives factors for the relative power supply current due to changes in the device configuration. For example, if the user measures the supply current for a given application, then changes the sample rate from 48 kHz to 44.1 kHz, the new supply current would be the measured current times (0.94). In another application, the if the user measures the supply current, then changes the DSP clock rate from 1344Fs to 960Fs, the new supply current would be the measured supply current times (0.81/0.94 = 0.86).

Parameter		Test Conditions					
Fs	44.1 kHz = 0.94				48 kH	3.3 V, 1344Fs	
VDDD, VDDA	3.36 V	= 0.94	1	3.465 V = 1			1344Fs, 44.1 kHz
DSP Clock Rate	768Fs = 0.75	960)Fs = 0.81	1344Fs =	0.94	1536Fs = 1	3.3 V, 44.1 kHz
DSPs Enabled	0 = 0.47		1 =	0.74 2 = 1		3.3 V, 1344Fs	

Table 8-1: Power Supply Current Derating Factors

Note that these are approximations based on a given application. Actual results will depend on the application firmware.

Final Product Data Sheet Page 238

Chip specifications and reliability are based on the junction temperature (T_J) of the device; that is, the temperature of the die. Because the die is in a package on a circuit board, the junction temperature can't be known exactly, but it can be estimated based on system measurements. For plastic packages, the most accurate methods are based either on the ambient temperature, or on the temperature of the top of the package. The heat flow from junction to case (θ_{JC}) is no longer used, because the measurement technique assumes that most heat flow is out of the top of the package. This isn't true for plastic packages: most of the heat flows out through the leads.

If ambient temperature is measured, the familiar constant θ_{JA} is used to estimate T_J . This parameter is measured with the part mounted on a standard board, with a thermal probe below the device. The board is mounted in a 1 m³ enclosure with a measured air flow. θ_{JA} is calculated from the equation:

$$\theta_{JA} = \frac{T_J - T_A}{P}$$

where T_A is the ambient temperature and P is the total of the analog and digital power dissipation of the device. Solving for T_J gives:

$$T_J = \theta_{JA} \times P + T_A$$

For the OS8805 in a typical application, the total power supply voltage and current might be:

V_{DD} = 3.465 V, I_{DD} = 352 mA

giving a power of:

 $P = I_{DD} \times V_{DD} = 1.2 \text{ W}$

For an OS8805 in a standard package at an ambient temperature of 85°C on a four-layer board, the estimated junction temperature would be (referring to *Thermal Characteristics* on page 199):

Estimating T_J with this technique in an application may be inaccurate due to differences between the test environment and the system being measured. The heat from other devices, the size and shape of the board and of the enclosure all corrupt the measurement. A more accurate measure of T_J can be made through the parameter Ψ_{JT} . The formula for Ψ_{JT} is:

$$\Psi_{JT} = \frac{T_J - T_T}{D}$$

where T_T is the temperature measured on the top of the package. The power dissipation of the device is calculated as above. Solving for T_J gives:

$$T_J = \Psi_{JT} \times P + T_T$$

For the OS8805 in the example above, the total power was:

 $\mathsf{P} = \mathsf{I}_{\mathsf{DD}} \times \mathsf{V}_{\mathsf{DD}} = 1.2 \ \mathsf{W}$

If T_T were measured at 128 °C, the estimated junction temperature would be (referring to *Thermal Characteristics*):

T_J = 2.5 °C/W * 1.2 W + 128 °C= 131 °C

It's possible to get a more accurate estimate of the junction temperature using Ψ_{JT} because the thermal probe is fastened to the device, so variations in the surrounding environment are less significant. Taking the actual measurement can be more difficult since it has to be done for every device for which an estimate of T_{J} is needed.

O-A-S-I-S SiliconSystems

O-A-S-I-S SiliconSystems

OS8805

MOST System On Chip

For both parameters, the number of layers in the PCB makes a significant difference. Both parameters are given for two-layer and four-layer boards to lessen this effect. In addition, there is a special board for devices in an exposed paddle that simulates the ground pad that would be underneath the device.

For more information, please refer to EIA/JEDEC standards JESD51-1, -2, -3, -5 and -7.

8.4 Crystal Oscillator Selection

Several factors must be considered when selecting a crystal. These include load capacitance, oscillator margin, cut, and operating temperature.

Oscillator margin is a measure of the stability of an oscillator circuit, and is defined as the ratio of the oscillator's negative resistance (R_{NEG}) to the crystal's ESR (R_{ESR}), or:

Margin =
$$\frac{|R_{NEG}|}{R_{ESR}} = \frac{|R_{VAR}| + R_{ESR}}{R_{ESR}}$$

The negative resistance can be measured by placing a variable resistor (R_{VAR}) in series with the crystal and finding the largest resistor value where the crystal still starts up properly. This point would be just below where the oscillator does not start-up or where the start-up time is excessively long.

Ideally oscillator margin should be greater than 10, and should be at least 5. Smaller oscillator margin can affect the ability of the oscillator to start up.

The load capacitor, specified when ordering the crystal, is the series combination of the capacitance on each leg of the crystal. This capacitance includes not only the added capacitors, but also PCB trace (shunt) capacitance and chip pin capacitance. Larger capacitors also have a negative affect on oscillator margin. In general, the external capacitors on each leg (C1 and C2) should be in the 12 to 22 pF range.

Name	Value	Description
Correlation	Parallel Resonant	Mode of oscillation
Osc. Mode	Fundamental	Oscillation mode or Operation mode.
CL	16-20 pF	Recommended Load Capacitance.
ESR	40 Ω 20 Ω	Recommended Maximum Equivalent Series Resistance: When crystal frequency is 256Fs or 384Fs When crystal frequency is 512Fs
Drive Level	50 μW	Typical Drive Level
T _A	-40 to 85 °C	Operating temperature range
cut	AT	AT cut produces the best temperature stability.
Tolerance	±50 ppm	Frequency tolerance at 25 °C. Typical value.

Table 8-2: Crystal Oscillator Specifications

The crystal cut and tolerance value listed in Table 8-2 are typical values and may be changed to suit differing system requirements. Higher ESR values, than those listed in the Table, run the risk of having start-up problems and should be thoroughly tested before being used. Contact the crystal manufacturer for more information.

Downloaded from Arrow.com.

OS8805 MOST System On Chip Appendix A: OS8805 vs. OS8804

This section is divided into two parts: Variances to the OS8804 chip and new features on the OS8805.

A.1 Variances to the OS8804

The following are differences between the OS8804 and the OS8805 that may cause changes in code or PCB development.

- Host Controller:
 - Debug Port Interrupt is maskable on the OS8805 and powers up disabled (IER.DIEN).
 - The OS8805 has a Watchdog timer that powers up enabled. Therefore, if an application does not want to use the Watchdog timer, it must explicitly set **RGEN.WDD**. The OS8804 did not have an internal Watchdog timer.
 - The OS8805 part ID MMPC.ID is 0010 (the OS8804 is 0001).
 - When using external Program memory with the Host Controller, the default setting for **MMPC.PCSC** is set in the OS8805 and clear in the OS8804.
 - The External Memory select bit **XME** has moved to the RGEN register (was in XMC on the OS8804).
 - PGMP, which holds the most significant address bits, must be set properly when accessing Program memory using AR1 indirectly.
 - When pushing or popping registers from the stack, the upper memory bits for SPC and DSPC are contained in new registers SPCH and DSPCH, respectively; which must also be pushed/popped.
 - When reading Program memory, PGMP must be programmed with the upper address (page) bits.
 - Interrupt Vector table changed from 3-byte to 4-byte vectors
 - The 3-byte long jump conditional instruction (11010xxx) changed from absolute to relative addressing
 - GP16-GP19: These GPIO pins are converted to EGPIO and supported through different registers GP16 is IOB1, GP17 is IOB0, GP18 is IOB3, and GP19 is IOG4 GPC.GPHIEN is no longer supported/needed.
 - GPIO2 register (3Ch) no longer exists see EGPD1 and EGPD3.
 - DDR2 register (3Bh) has changed functionality and is now GCTL see EDD1 and EDD3.
 - When using the Debug Port, the $\overline{\text{DINT}}$ pin does not exist on the OS8805.
 - When using external Program memory for the Host Controller, the OS8805 has 17 address bits, whereas the OS8804 had 16 address bits (A16 is new).
- DSPs:
 - Pointer memory changed from 24 to 25 bits wide, so the Address field supports the full address range of Data memory. Therefore, the Mod and Update fields are shifted up by one bit.
 - Although the Pointer memory address field increased to 11 bits, the pointer update ALU's are only 10 bits; therefore, the upper address bit selects between two 1K pages of Vector memory and pointer updates will not cross this page boundary. Vector memory data arrays should not cross the 1K page boundary if the pointers used to access the array use pointer updates to move the pointer.
 - Instruction change. The non-delayed jump to subroutine returns to the instruction immediately after the sub. call (in the OS8804 it returned to the fourth instruction after the call).
 - Instruction change. The TRAP instruction changed to call the (new) Debug interrupt vector instead of clearing the DnPCR.RUN bit.
 - For DSP0, GP8 (GPC0) is no longer connected, and IER.DD and IER.GPIO are not supported. For DSP0 GPIO interrupt capability, GPA0 can be used. See Figure 4-15.
 - For DSP1, although GP9 (GPC1) is connected to DSP1, it can no longer generate an interrupt, and IER.DD and IER.GPI0 are not supported. For DSP1 GPI0 interrupt capability, GPC0 can be used. See Figure 4-15.
 - Once **RGEN.XME** and **MMPC.XMQ** are set for DSP0 external memory port, the port must be explicitly enabled by setting **GCTL.EDMEN**.

O-A-S-I-S SiliconSystems

MOST System On Chip

A.2 OS8805 New Features

The following are features that are new to the OS8805 (not in the OS8804) and can be used, if desired. • Host Controller:

- Host Controller Program memory size is expanded to 128k Flash (was 64k ROM).
- Host Controller Data memory size is expanded to 4k bytes (was 2k).
- Internal Program memory can be written by the Host Controller when **RGEN.XME** and **MMPC.XMQ** are set for DSP0 external memory port.
- EGPIO support added to most digital pins.
- Program Counter based registers have new high registers to support the added address range: SPCH and DSPCH, and PGMP for Program memory accesses.
- Added instruction new 4-byte long conditional jump (1100111x) which supports absolute addressing over the entire address range.
- Added instruction Exchange ACCH/ACCL (10011111).
- Added instruction Clear ACC (1100000).
- The Control and Debug Ports can be operated as serial port masters for I²C and GSPI formats.
- The Control and Debug Ports can be operated in UART or USART formats.
- Added Debug COM ports to each DSP.
- Added a Watchdog timer (WDT).
- Added Reset Generation logic for low-power wake-up support (RGEN).
- Added a Power Supply Voltage monitor.
- When **RGEN.XME** and **MMPC.XMQ** are set for DSP0 external memory port, Host Controller writes to Program memory write the internal Flash memory or erase the entire page, based on **FMC.PER**.
- An optional software-controlled timing-master jitter tolerance circuit that can improve jitter tolerance of a timing master node dramatically (using bits in GTCL).
- Added support for Packet Data transfer across the MOST Network (and added RCS.AINT).
- When executing the RETI instruction, SR.GIE optionally gets set, based on the IER.DRI bit.
- DSPs:

OS8805

- Increased Program memory to 2k (from 1280 words).
- Increased Left/Right Vector memories to 2k (from 512 words).
- Increased Left/Right Pointer memories to 64 (from 32).
- The External Data memory port is expanded to support 128k of SRAM memory.
- Added support for doubling the throughput between the DSPs and the Routing bus, by remapping other ports.
- Added a FIFO port between DSPs.
- Added Dual Async. Source Ports between each DSP and the external system.
- Added an extra PWM DAC (PWM1) to DSP0.
- Added a Debug Interrupt vector (0x050) for the TRAP instruction as well as Host Controller debug interrupts (DDnCS.TRINT).
- Each DSP has access to eight EGPIO pins, if not used for the Async Source Ports.
- Both DSPs can control the volume for the ADCs and DACs.
- Source Converters:
 - Each Audio DAC can be operated in a single-ended mode (ADACn.SEDE). If any DAC is set for singleended mode, VREFS must be decoupled properly.
 - Each Audio DAC can be software muted (ADACn.MUTE).

O-A-S-I-S SiliconSystems

OS8805 MOST System On Chip Appendix B: Revision History

Sections	Description of Changes
DS8805AP1d4	
1d4	1. First Data Sheet. Draft Version
DS8805AP2	
	1. ERROR: DSP0 External Data Memory Port. XMC.RCP[1:0] decoding was wrong
	2. Clarified DSP0 External Data Memory Port timing
	3. Clarified Host Controller IFL writes - only when SR.GIE is clear.
	 Changed Flash 1K segments from "pages" to "partitions", to differentiate from Program or Data memory pages (256 bytes), such as SR.AP[3:0]
	5. ERROR: Corrected Control/Debug Port UART Parity UnC.PMD[1:0] bits.
	6. Documented Flash Power-down bit FMC.FPD.
	 Documented GCTL.RFPR and GCTL.MJCE for advanced timing-master software jitter control. Documented DSPs DTC.T1RSP and DPRE1 - for aligning S/PDIF transmit and receive interrupts ERROR: Table 4-30 on page 159 was incorrect. The FSYxn and SCKxn pins were swapped with respect to the associated GPIO pins.
	10. Clarified I ² C master operation, and GPIO usage as master chip select.
	11. Removed Debug Port DINT pin from documentation.
	12. ERROR: RGEN.WDD bit can be written to 1 or 0.
	13. Flash protection covers reading and writing, not just reading Flash memory.
	14. ERROR: When the DSP DSnC.SDOEN bit is low, the pin is high impedance, not always low.
	15. Fixed DSP ASP tables with respect to configuration settings.
	16. ERROR - Control and Debug Port SPI master mode - Chip select not needed or used, and STR and STOP bits not active.
	 Added timing for the Control/Debug Ports - master mode, USARTs, and DSP ASPs. Changed Control Port SPI slave timing to include unlock conditions.
DS8805AP3	
DOUUUAIO	4. Added Detroit's and channed Austin's OCC office address
	1. Added Detroit's and changed Austin's OSS office address
	 Added that the part powers up in power-down mode, CMCS.PD set. EGPIO sticky bits changed to indicate that it does not capture edges, but captures high/low pulses.
	4. Added that when the Host Controller's GPIO are configured as outputs, the corresponding DSP's IPOT register bits determine whether the output is open-drain or driven in both
Chapter 2	directions. 5. Added note in SR register description that SR cannot be written when SR.GIE is set.
	6. Control Port I ² C master operation clarified.
	7. Added Packet Data support bits RCS.AINT, and MMPC.RFS1
	8. Added EGPIO Enable Summary table which includes power-up state and how to enable GPIO.
	 Clarified that two transitions (falling then rising) are required to clear the power-down state (CMCS.PD set), based on the RGEN settings.
Charter 0	10. MOST registers reordered and MOST Control Message section expanded to include System
Chapter 3	Control message data 11. Added Packet Data Transfer section and associated bits, and bNC.APREN .
	 Added COM Port interrupt mask (bit 4 - DCS.CIM). EGPIO sticky bit modified to indicate that it does not capture edges, but captures high/low
Chapter 4	pulses, and that IPOT reg. controls output type for DSP or Host Controller.
	 Added note in IER register that Interrupt Priority bits cannot be changed when interrupts are enabled.
Chapter 8	15. Added more complete power supply description and an example power supply schematic.

Table B-1: Data Sheet Revision Summary

MOST System On Chip

Sections	Description of Changes
Section A.1	16. Added OS8804 variance that SPCH/DSPCH must be pushed or popped from the stack when SPC/DSPC are pushed or popped.
DS8805AP4	
Chapter 2	 Added IER.DRI bit Added that IOG3 (RX), when configured as a GPIO output, only supports open-drain (CMOS not supported). The IPOT3.GPPTG3 bit has no effect on IOG3. Changed the UnC.CKSL[1:0] = 11 setting to reserved. Clarified VREFS pin and DACn.SEDE usage.
Chapter 3	 Clarified usage of Control Message Transmit and Receive buffers. Added Routing Limitations Section to MOST Processor chapter
Chapter 4	7. The DDIV0 and DDIV1 DSP timer divider registers contain only 15 usable bits, DDIVn[14:0]. The MSB must be set to 0.
Chapter 5	8. Clarified VREFS pin and DACn.SEDE usage.
Chapter 6	 9. Changed operating temperature range from Ambient to Junction 10. Clarified Maximum Input Voltage in Section 6.1 for Digital I/O pins configures for inputs vs. outputs. 11. Updated thermal data 12. Changes operating supply variation to 5 % 13. Updated power consumption and PWD/Jitter numbers 14. Added Flash program/erase cycle numbers 15. Updated Analog specifications
DS8805FP5	
Chapter 2	 When the Control or Debug Ports are configured for I²C mode, added comment about initial power-up glitch on SDA, and added comment that CPS.STOP bits can occur before receiving the first start bit and address byte. Added comments about the SCK requirements for GTR to work properly.
Chapter 3	3. Added comments about the SCK requirements for GTR and Peripheral Routing to work properlyCorrected bGA default value.
Chapter 4	 Added comments about the SCK requirements for GTR and MOST routing to work properly Removed DS0C.CHAIN (bit 6) as it does nothing
Chapter 6	 6. Changed Ψ_{JT}, θ_{JA} specs. 7. Changed jitter tolerance spec. from the max to the min column; changed values for Pulse Width Variation and Average Pules Width Distortion. 8. Changed External Program Memory Interface, MMPC.PCSC = 1, t_{PCSC} to 115 from 126 ns; changed minimum values for t_{wpds} for MMPC.PCSC = 0. 9. Changed External Data Memory Interface minimum timing for t_{mars}, t_{macs}, t_{rascas}, t_{rash}, t_{casl}, t_{cash}, t_{cash}, t_{rasl}, t_{rcasi}; changed typical timing for t_{rash}. 10. Changed minimum timing for t_{mcsh}, t_{rdl}, t_{rdh}, t_{maws}, t_{mdws}, t_{mwh}; changed t_{mrldv} and t_{mavdv} to maximums; changed typical timing for t_{maws}. 11. Split timing of Source Port and Asynchronous Source Port into separate specs for FSY/SCK and FSYxn/SCKxn as outputs and inputs; changed minimums for t_{fsyh}, t_{srh}, t_{sxv}.
Chapter 8	 Added section on calculating power dissipation from the device configuration Added section on estimating junction temperature from system variables

Table B-1: Data Sheet Revision Summary (Continued)

MOST System On Chip INDEX

А

A16	
bit definition (PGMP - Host)	
A16 address pin	
A17	
bit definition (PGMP - Host)	
ABY	
bit definition (bXCR)	
AC, bit definition (bPCTS)	
ACR (Analog Control Register - Host)	
ACR2 (Analog Control Register 2 - Host)	90
AD0L/AD0R pins	22, 89, 198
AD1/AD0 pins	
AD1L/AD1R pins	
AD2L/AD2R pins	
ADAC0	,,
Audio DAC0 Volume reg DSPs	173
Audio DACO Volume reg Host	
ADAC1	
-	172
Audio DAC1 Volume reg DSPs	
Audio DAC1 Volume reg Host	91
ADAC2	
Audio DAC2 Volume reg DSPs	
Audio DAC2 Volume reg Host	91
ADAC3	
Audio DAC3 Volume reg DSPs	
Audio DAC3 Volume reg Host	
ADCs	
microphone	196
MPX	
Stereo Audio	
	176
Addressing group	117
logical	
physical	
addressing-DSPs	
direct	
external memory	
indirect	152
AF, bit definition (bPCTS)	
AI	
bit definition (D0PCR - Host)	
bit definition (D1PCR - Host)	93
AINT	
bit definition (RCS - Host)	129, 150, 151
ALC	
bit definition (bMSGS)	
AMS[1:0], bit definitions (ACR - Host)	
AP[3:0]	
bit definitions (SR - Host)	
APA[15:0], bit definitions (bAPAH/bAPAL)	
Applications Socket (NetServices)	24
APREN	
bit definition (bNC)	
AR0 (Address Register 0)	
AR1 (Address Register 1)	
ARE	
bit definition (XMC - Host)	
ARX, bit definition (bPCTS)	
ASC, bit definition (CMCS - Host)	130 17

ASP (Asynchronous Source Ports - DSPs)	
ASTX, bit definition (bPSTX)	
Asynchronous channel	
ATTN[4:0]	
bit definitions (ADAC3/2/1/0 - DSPs)	
bit definitions (ADAC3/2/1/0 - Host)	91
ATX, bit definition (bPCTS)	130

В

bAPAL/bAPAH (Alternate Packet Address regs - MOST)	
Basic Services (NetServices)	
bCM2	119
Clock Manager 2 reg MOST	118
bD0RP (DSP0 Primary Port Routing reg MOST)	
bD0RS (DSP0 Secondary Port Routing reg MOST)	133
bD1RP (DSP1 Primary Port Routing reg MOST)	134
bD1RS (DSP1 Secondary Port Routing reg MOST)	134
bFPR	134
Source Converter Routing reg MOST	133
bGA 123	124
Group Address reg MOST	117
bIE	122
Interrupt Enable reg MOST	117
block diagram	17
bMDR	122
Maximum Delay Register - MOST	118
bMPR	
Maximum Position Register - MOST	118
bMSGC	124
Message Control reg MOST	121
bMSGS	124
Message Status reg MOST	122
bNAH	124
Node Address High reg MOST	117
bNAL	124
Node Address Low reg MOST	118
bNC	
Network Control reg MOST	115
bNDR	
Node Delay Register - MOST	118
bNPR	
Node Position Register - MOST	117
BOOT pin	80
bPCTC (Packet Control register - MOST)	129
bPCTS (Packet Status register - MOST)	130
BPI[6:0]	
bit definitions (DS0C - DSPs)	
bit definitions (DSIC - DSPs)	
bPLDT (Transmit Packet Length register - MOST)	128
bPPI (Transmit Packet Priority register - MOST)	
bPSTX (Transmit Packet Start register - MOST)	129
bRSAH/bRSAL bytes	
bRTYP, byte definition	123
bSBC	
Synchronous Bandwidth Control reg MOST	110
bSDC1 110, 112,	
Source Port Control 1 reg MOST	
bSDC2 (Source Port Control 2 reg MOST)	137
BSH0 (Base Address 0 High reg DCD0)	120
BSH0 (Base Address 0 High reg DSP0) BSH1 (Base Address 1 High reg DSP0)	100
Dorn (Dase Address 1 mgn leg Dorv)	100

MOST System On Chip

BSL0 (Base Address 0 Low reg DSP0)179
BSL1 (Base Address 1 Low reg DSP0)
bSPR
Source Port Routing reg MOST
BW, bit definition (XMC - Host)94
bXCR 117, 118, 119, 121
Transceiver Control Register - MOST114
bXPRI byte124
bXRTY (Transmit Retry Register - MOST)123
bXSAH/bXSAL bytes124
bXSR (Transceiver Status Register - MOST)115
bXSR2 (Transceiver Status Register 2 - MOST)119
bXTIM (Transmit Retry Time reg MOST)123
bXTS
Transmit Status Register - MOST124
bXTYP byte

С

C, bit definition (SR - DSPs)	
CAL, bit definition (DCC - Host)	
CAP0 (Timer Capture 0 reg Host)	74
CAP1 (Timer Capture 1 reg Host)	74
CHAIN	
bit definition (DS1C-DSPs)	
CKMTR	
bit definition (U0C - Host)	69
bit definition (U1C - Host)	
СКОЕ	
bit definition (DS0C - DSPs)	
bit definition (DS1C-DSPs)	
CKSL[1:0]	
bit definitions (U0C - Host)	68
bit definitions (U1C - Host)	
Clock Manager	46
CM4 (Clock Manager 4 reg Host)	48
CMCS	
Clock Manager Control/Status reg Host	47
CMP0	
Timer Compare 0 reg Host	74
CMP1	76
Timer Compare 1 reg Host	
CNT	
Repeat Count reg DSP	
conventions	
CP (Control Port Data reg Host)	54
CPFD	
bit definition (CPS - Host)	
CPHA	
bit definition (CPS - Host)	
bit definition (DCPS - Host)	
CPHI	
bit definition (IER - DSPs)	1.10
CPMM	54 50 62
bit definition (CPS - Host)	
CPOL	
bit definition (CPS - Host)	
bit definition (CPS - Host)	
bit definition (DCPS - Host)	
CPS	
Control Port Status reg Host	
crystal oscillator	
frequencies	
specifications	
CS pin	

CSEL[1:0]	
bit definitions (DTC - DSPs)	

D

D0CF (DSP0 COM First/Last Data reg Host)	44
D0CM (DSP0 COM Middle Data reg Host)	
DOCS (DSP0 COM Status reg Host)	44
D0PC (DSP0 Program Counter reg Host)	
D0PCR (DSP0 Program Control reg Host)	92
D0PDL (DSP0 Pgm. memory Data Low reg Host)	
D0TSPC (DSP0 Trap Shadow Pgm. Counter reg Host)	46
D1CF (DSP1 COM First/Last Data reg Host)	
D1CM (DSP1 COM Middle Data reg Host)	
D1CS (DSP1 COM Status reg Host)	
D1PC (DSP1 Program Counter reg Host)	93
D1PCR (DSP1 Program Control reg Host)	93
D1PDL (DSP1 Program memory Data Low reg Host)	93
D1TSPC (DSP1 Trap Shadow Pgm. Counter reg Host)	
DA[3:0] pins	
DA[3:0]B pins	2, 195
DACs	
block diagram	195
peripherals	
DAD0 pin	
DADO più	05
Data Sheet revision history	
DCAP0 (Capture 0 reg DSPs)	
DCAP1 (Capture 1 reg DSPs)	160
DCC (DC Measurement ADC Control reg Host)	
DCD (COM Port Data reg DSPs)	156
DCD (DC Measurement ADC Data reg Host)	
DCD[11:0], bit definitions (DCD - Host)	
DCP (Debug Port Data reg Host)	66
DCPS (Debug Port Status reg Host)	64
DCS	
COM Port Status reg DSPs	
DCS pin	
DD0CF	156
DSP0 Debug COM First/Last Data reg Host	
DD0CM	5, 156
DSP0 Debug COM Middle Data reg Host	45
DD0CS	
DSP0 Debug COM Status reg Host	150
DSFU Debug COM Status leg Host	43
DD1CF	156
DSP1 Debug COM First/Last Data reg Host	
DD1CM	156
DSP0 Debug COM First/Last Data reg Host	46
DD1CS	5 156
DSP1 Debug COM Status reg Host	
DDCD (Debug COM Port Data reg DSPs)	150
DDCS (Debug COM Port Status reg DSPs)	
DDIV0	161
Divider 0 reg DSPs	159
DDIV1	
Divider 1 reg DSPs	
DDR (GPIO Data Direction Register - Host)	157
	/0
DEL	
bit definition (bSDC1)	137
bit definition (DS0C - DSPs)	167
bit definition (DS1C- DSPs)	
DEPTH[3:0]	
hit definitions (DELS_DCD-)	150
bit definitions (DFLS - DSPs)	
DFFS	
FIFO Port Far Status reg DSPs	157

Final Product Data Sheet Page 246

MOST System On Chip

DFLS
FIFO Port Local Status reg DSPs
DFRD (FIFO Port Read Data reg DSPs)
DFS[1:0]
bit definitions (D0PCR - Host)
bit definitions (D1PCR - Host)
DFSD (FIFO Port Start Data reg DSPs)
DFWD (FIFO Port Write Data reg DSPs)
DIEN
bit definition (IER - Host)
Digital
DM[25:16]
bit definitions (D1PCR - Host)
DMS[2:0], bit definitions (DCC - Host)
DPFD
DPMM, bit definition (DCPS - Host)
DR (MOST Routing Port Rx Data reg DSPs)
DR1 (Second MOST Routing Port Rx Data - DSPs)
DRAM memory94, 95, 174
DRI, bit definition (IER - Host)
DRMCK, bit definition (CMCS - Host)48
DS0C (Source Port 0 Control reg DSPs)167
DS0R0 (Source Port 0, Receive word 0 reg DSPs)
DS0R1 (Source Port 0, Receive word 1 reg DSPs)
DS0R2 (Source Port 0, Receive word 2 reg DSPs)
DS0R3 (Source Port 0, Receive word 3 reg DSPs)
DS0X0 (Source Port 0, Transmit word 0 reg DSPs)165
DS0X1 (Source Port 0, Transmit word 1 reg DSPs)
DS0X2 (Source Port 0, Transmit word 2 reg DSPs)
DS0X3 (Source Port 0, Transmit word 3 reg DSPs)
DS1C (Source Port 1 Control reg DSPs)
DS1R0 (Source Port 1, Receive word 0 reg DSPs)
DS1R1 (Source Port 1, Receive word 1 reg DSPs)
DS1R2 (Source Port 1, Receive word 2 reg DSPs)
DS1R3 (Source Port 1, Receive word 3 reg DSPs)
DS1X0 (Source Port 1, Transmit word 0 reg DSPs)
DS1X1 (Source Port 1, Transmit word 1 reg DSPs)
DS1X2 (Source Port 1, Transmit word 2 reg DSPs)
DS1X3 (Source Port 1, Transmit word 3 reg DSPs)
DSTAS (Source Fort 1, Hunshilt Word 5 reg. DSF3)
DSDA pin
DSP Peripherals
DSP0
DSF10
DSFT
Debug Shadow Program Counter reg Host
DSPCH
Debug Shadow Prog. Counter-High reg Host
DEbug Shadow Prog. Counter-High reg Host
DY (MOST Pouting Port Ty Data rag DSPa) 155
DX (MOST Routing Port Tx Data reg DSPs)
DX1 (Second MOST Routing Port Tx Data reg DSPs)155

EDD

Enhanced GPIO Data Direction reg DSP0	185
Enhanced GPIO Data Direction reg DSP1	189
EDD1 (Enhanced GPIO Data Direction reg. 1 - Host)	81
EDD2 (Enhanced GPIO Data Direction reg. 2 - Host)	81
EDD3 (Enhanced GPIO Data Direction reg. 3 - Host)	82

E

EDG	
bit definition (bSDC1)	
bit definition (DS0C - DSPs)	
bit definition (DS1C-DSPs)	
EDMEN	94, 98, 174
bit definition (GCTL - Host)	
EGPD	
Enhanced GPIO Data reg DSP0	
Enhanced GPIO Data reg DSP1	
EGPD1 (Enhanced GPIO Data reg. 1 - Host)	
EGPD2 (Enhanced GPIO Data reg. 2 - Host)	
EGPD3 (Enhanced GPIO Data reg. 3 - Host)	
EGPIO	
DSP0	
DSP1	
Host	
pin	
ENABLE instruction	
ENADL, bit definition (ACR - Host)	
ENADR, bit definition (ACR - Host)	
END (End Address reg DSP)	
ENDAC[3:0], bit definitions (ACR - Host)	
ENMIC, bit definition (ACR - Host)	
ENMPX, bit definition (ACR - Host)	
ENPWM	
bit definition (ACR - Host)	
ENPWM1	
bit definition (ACR2 - Host)	
ERR	
bit definition (bMSGS)	
bit definition (bXSR)	
ERRD, bit definition (GCTL - Host)	
ESL, bit definition (bXSR)	
EXL, bit definition (bXSR)	

F

FAST	57, 62
bit definition (CPS - Host)	
bit definition (DCPS - Host)	64
FB[15:0], bit definitions (FPBK - Host)	
FBIB, bit definition (FPBK - Host)	
FCP[1:0], bit definitions (FMC - Host)	
FE	
bit definition (U0RX - Host)	70
bit definition (U1RX - Host)	72
FIFO port	, 146, 147
FIFO, Inter-DSP Port	
Flash	
Handler	29, 32
memory	18, 29
FLT pin	
FMC (Flash Memory Control reg Host)	
FP[7:0]A\B, bit definitions (FPB16 - Host)	
FPB16 (Flash Protection-Flash Block 16 reg Host)	31
FPBK	
Flash Protection 8K Blocks reg Host	
FPCR, Source Converter Control reg Host	
FPD, bit definition (FMBK - Host)	
FPOL	
bit definition (DS0C - DSPs)	
bit definition (DS1C-DSPs)	
FPR[5:0], bit definitions (bFPR)	

MOST System On Chip

FPT[1:0]	
bit definitions (FMC - Host)	
FS1	
bit definitions (GTR - DSPs)	
bit definitions (GTR - Host)	
FS16TH	
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	
FS2	108, 146, 149
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	50
FS4	108, 146, 149
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	50
FS4TH	146, 149
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	50
FS8	146, 149
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	50
FS8TH	
bit definitions (GTR - DSPs)	
bit definitions (GTR - Host)	50
FSHALF	
bit definitions (GTR - DSPs)	154
bit definitions (GTR - Host)	
FSY pin	

G

G[3:0], bit definition (SR - DSPs)151
GA[7:0], bit definitions (bGA)
GADL
Left Audio ADC Volume reg DSPs174
Left Audio ADC Volume reg Host
GADR
Right Audio ADC Volume reg DSPs174
Right Audio ADC Volume reg Host90
GAIN[3:0]
bit definitions (GMIC/GADL/GADR - DSPs)174
bit definitions (GMIC/GADL/GADR - Host)90
GAIN[4:0]
bit definitions (GMPX - DSPs)174
bit definitions (GMPX - Host)90
Gazelle DSP141
GCTL (Global Control reg Host)77
GIE
bit definition (SR - Host)
Global Timer
GMIC
Mic ADC Volume reg DSPs174
Mic ADC Volume reg Host90
GMPX
MPX ADC Volume reg DSPs174
MPX ADC Volume reg Host90
GPA[3:0]
bit definitions (GPIO - Host)75
pins73, 77, 78, 158
GPA0 pin97, 146
GPA0D, bit definition (RGEN - Host)98
GPA1 pin
GPA1D, bit definition (RGEN - Host)
GPA2 pin97
GPA2D, bit definition (RGEN - Host)98

m On Chip	O-A-S-I-S SiliconSystems
GPAOE[3:0], bit definitions (DDR - Host)	76
GPB[3:0]	
bit definitions (GPIO - Host)	75
pins	
GPBOE[3:0], bit definitions (DDR - Host)	75, 77, 78, 158 76
GPC (General Purpose I/O Control reg He	
GPC[3:0]	03()
bit definitions (GPIO - Host)	75
pins	73 77 78 158
GPC0 pin	
GPC1 pin	
GPCOE[3:0], bit definitions (DDR - Host)	
GPD[3:0]	
bit definitions (GPIO - Host)	75
pins	73 76 77 78 158
GPDEn, bit definitions (EGPD2 - Host)	80
GPDOE[3:0], bit definitions (DDR - Host)	
GPDxn	
bit definitions (EGPD - DSP0)	185
bit definitions (EGPD - DSP1)	
bit definitions (EGPD1 - Host)	
bit definitions (EGPD3 - Host)	
GPIO	
GPIO (General Purpose I/O Data reg Hos	
GPOEn, bit definitions (EDD2 - Host)	
GPOL, bit definition (IER - DSPs)	
GPOxn	
bit definitions (EDD - DSP0)	185
bit definitions (EDD - DSP1)	
bit definitions (EDD1 - Host)	
bit definitions (EDD3 - Host)	
GPPTEn, bit definitions (IPOT2 - Host)	82.
GPPTxn	
bit definitions (IPOT - DSP0)	186
bit definitions (IPOT - DSP1)	
bit definitions (IPOT1 - Host)	
bit definitions (IPOT3 - Host)	83
GPSDEn, bit definitions (ISOD2 - Host)	83
GPSDxn	
bit definitions (ISOD - DSP0)	186
bit definitions (ISOD - DSP1)	
bit definitions (ISOD1 - Host)	
bit definitions (ISOD3 - Host)	
Group Address	
GSPI	
bit definition (CPS - Host)	
bit definition (DCPS - Host)	
master mode	
GTR	
Global Timer Register - DSPs	154
Global Timer Register - Host	

Η

Host Controller	 19,	25,	, 29
	 ,	,	< <u></u>

I

I ² C	
CP Master	
CP Slave	
Debug Port .	

Final Product Data Sheet Page 248

MOST System On Chip

00000	111001 0y3
I2CF	51 56 58 65
bit definition (CPS - Host)	53
bit definition (DCPS - Host)	
IADC	
bit definition (IFL - Host)	
IALC	
bit definition (bIE)	
ICP	
bit definition (IFL - Host)	
ID[3:0], bit definitions (MMPC - Host)	28
IE1FS, bit definition (IER - DSPs)	
IE2FS, bit definition (IER - DSPs)	1/10
IE4FS, bit definition (IER - DSPs)	
IE4TH, bit definition (IER - DSPs)	
IE64TH, bit definition (IER - DSPs)	
IE8FS, bit definition (IER - DSPs)	149
IEADC	
bit definition (IER - Host)	
IECP	
bit definition (IER - DSPs)	
bit definition (IER - Host)	34
IED[3:0]	
bit definitions (IER - Host)	
IEDSP[1:0], bit definitions (IER - Host)	
IEGP	
bit definition (IER - DSPs)	
IEMST, bit definition (IER - Host)	
IEPLL, bit definition (IER - Host)	
IER	
Interrupt Enable Register - DSP	148
Interrupt Enable Register - Host	34
IERR	
bit definition (bIE)	
IETMR0, bit definition (IER - Host)	
IFL (Interrupt Flag Register - Host)	
IMRX, bit definition (bIE)	
IMSK	
bit definition (DFLS - DSPs)	
IMTX, bit definition (bIE)	
Info Block, Flash memory	
Instruction Summary	
DSPs	153
Host Controller	
INT	
bit definition (D0CS - Host)	
bit definition (D1CS - Host)	
bit definition (DCS - DSPs)	
bit definition (RCS - Host)	
Interrupt Service Routines - DSPs	
interrupts	
INV	
bit definition (bXSR2)	119
IOA[3:0] pins	
IOA0 pin	
IOA3 pin	
IOB[3:0] pins	
IOC[5:0] pins	
IOD[1:0] pins	
IOE[15:0] pins	
IOF[10:0] pins	
IOG[4:0] pins	
IP[3:0], bit definitions (GPC - Host)	76
Le	

m On Chip	O-A-S-I-S SiliconSystems
IPOT	
EGPIO Input Polarity/Output Type reg.	- DSP0186
EGPIO Input Polarity/Output Type reg.	- DSP1189
IPOT1 (EGPIO In Polarity/Out Type reg. 1	
IPOT2 (EGPIO In Polarity/Out Type reg. 2	
IPOT3 (EGPIO In Polarity/Out Type reg. 3	
IRES[2:0], bit definitions (DCC - Host)	
ISOD	
EGPIO Input Sticky/Output Disable reg.	- DSP0
EGPIO Input Sticky/Output Disable reg.	DSP1189
ISOD1 (EGPIO In Sticky/Out Disable reg.	
ISOD2 (EGPIO In Sticky/Out Disable reg.	
ISOD3 (EGPIO In Sticky/Out Disable reg.	
ISPC	,
Interrupt Shadow Program Counter reg.	- DSP145
ITMR0	

TMDO	e	e	74 75
IMKU			
bit definition	(IFL - Host)		

L

L, bit definition (SR - DSPs)	151
Layer 1, Layer 2 (NetServices)	24
LEV, bit definition (IER - DSPs)	
LOCK	
bit definition (CMCS - Host)	
Logical address	
Packet Data	
LOK	
bit definition (bCM2)	
LV[3:0], bit definitions (GPC - Host)	

Μ

MA[16:0] pins		, 95,	174
MAP (Memory Address Pointer)	42, 54,	103,	107
mARP (Asynchronous Receive Packet buffer	- MOS	Г)	130
master (timing-master)		19,	114
mAXP (Asynchronous Transmit Packet buffer	- MOS	ST)	131
MCAS pin			174
mCRA (Channel Resource Allocation table) .			119
MCS pin			
MD[7:0] pins			29
ME, bit definition (bXSR)			115
mechanical drawing		232,	233
MIC pin		22,	193
Microphone ADC	90,	174,	193
MJCE, bit definition (GCTL - Host)			
MMPC (Mode Control reg Host)			28
MMS, bit definition (XMC - Host)			95
MOD[1:0]			
bit definitions (bSDC1)			137
MOD0	177,	179,	182
Modulo 0 reg DSP0			181
MOD1	177,	182,	183
Modulo 1 reg DSP0			181
MOST			
definition			15
NetServices API			24
Network			
Processor			18
Routing Addresses (MRA)			104
Routing bus			
Routing port			
Routing Table (MRT)			

MOST System On Chip

O-A-S-I-S SiliconSystems

MPX ADC	74, 190
MPX pin	22.190
MRA (MOST Routing Addresses)	104
MRAS pin	174
mRCMB (Receive Control Message Buffer - MOST)	123
MRD pin	174
MRT (MOST Routing Table)	.20, 104
MRX	17, 121
bit definition (bMSGS)	122
MSL	140
bit definition (bXSR)	115
MT	
bit definition (XMC - Host)	94
MTR 1	
bit definition (bXCR)	114
MTX 1	17, 121
bit definition (bMSGS)	122
MUT, bit definition (bSDC1)	137
MUTE	
bit definition (bSDC2)	137
bit definitions (ADAC3/2/1/0 - DSPs)	173
bit definitions (ADAC3/2/1/0 - Host)	91
MWR pin	174
MWW, bit definition (XMC - Host)	94
MX[1:0]	14, 136
bit definitions (CMCS - Host)	48
mXCMB (Transmit Control Message Buffer)	124
MXL, bit definition (bXSR)	

Ν

NA[15:0], bit definitions (bNAH/bNAL)	
NACK	54, 57, 62, 66
bit definition (CPS - Host)	
bit definition (DCPS - Host)	64
NBR[1:0]	
bit definitions (bSDC1)	
NETD	79
bit definition (GCTL - Host)	77
NetServices software	
NMEN, bit definition (bXCR)	
NP[7:0], bit definitions (bNPR)	

0

O hit definition (CD DCDs) 151
O, bit definition (SR - DSPs)151
OE
bit definition (bXCR)114
bit definition (U0RX - Host)70
bit definition (U1RX - Host)72
OFF0 (Offset 0 reg DSP0)
OFF0+- (Offset 0, Start Read reg DSP0)178
OFF0++ (Offset 0, Start Read w/ Post Incr. reg DSP0)178
OFF1 (Offset 1 reg DSP0)
OFF1+- (Offset 1, Start Read reg DSP0)
OFF1++ (Offset 1, Start Read w/ Post Incr. reg DSP0)178
OP[1:0]
bit definitions (GPC - Host)
ordering information2
OS8804, differences from OS8805
oscillator
specifications
OSPI (Oasis-specific SPI)

Р	
package outline	232 233
Packet Data Transfer	
Part ID (MMPC.ID[3:0] bits - Host)	
PC	
Program Counter reg DSP	
PCI	
Program Counter Interrupt reg DSP	
PCS pin	
PCSC, bit definition (MMPC - Host)	
PD	
bit definition (CMCS - Host)	
PDN, bit definition (DCC - Host)	
PE	
bit definition (U0RX - Host)	
bit definition (U1RX - Host)	72
PEN	
bit definition (U0C - Host)	69
bit definition (U1C - Host)	71
PER, bit definition (FMC - Host)	
PGMP	
Program Memory Page register - Host	
Physical Address	
PLD, bit definition (CMCS - Host)	47
PMD[1:0]	
bit definitions (UOC - Host)	
bit definitions (U1C - Host)	
Pointer memory-DSPs	
POL, bit definition (bSDC1)	
POT[7:0] pins	
PRI[2:0]	
bit definitions (IER - DSPs)	
Program memory	
DSPs	
Host Controller	
Program memory, DSPs PWM0 DAC	
PWM0 DAC PWM1 DAC	
PWM1D (PWM1 DAC Data reg DSP0)	
PWM10E	
bit definition (ACR2 - Host)	
PWMD (PWM DAC Data reg DSP0)	
PWMOE	
bit definition (ACR - Host)	

Q

quadlets		119
----------	--	-----

R

RAC, bit definition (bPCTC)	129
RAF, bit definition (bPCTC)	129
RALC	
bit definition (bMSGC)	121
RARX, bit definition (bPCTC)	129
RATX, bit definition (bPCTC)	129
RB	70
bit definition (U0RX - Host)	70
bit definition (U1RX - Host)	72
RBE	
bit definition (bMSGC)	121

MOST System On Chip

	-] -
RBS	
bit definition (bMSGS)	122
RCD[7:0], bit definitions (XMC - Host)	94
RCF (MOST COM First/Last Data reg Host)	44
RCM (MOST COM Middle Data reg Host)	44
RCP[1:0]	176
bit definitions (XMC - Host)	
RCS (MOST COM Status reg Host)	43
RD	55, 156
bit definition (CPS - Host)	
bit definition (D0PCR - Host)	
bit definition (D1PCR - Host)	
bit definition (DCS - DSPs)	
bit definition (DDCS - DSPs)	156
RD[2:0], bit definitions (CMCS - Host)	
RD0 (Read 0 reg DSP0)	
RD0+- (Read 0, Start Read reg DSP0)	179
RD0++ (Read 0, Start Read w/ Post Incr. reg DSP0)	179
RD1 (Read 1 reg DSP0)	179
RD1+- (Read 1, Start Read reg DSP0)	179
RD1++ (Read 1, Start Read w/ Post Incr. reg DSP0)	179
RDF	
bit definition (U0RX - Host)	
bit definition (U1RX - Host)	
RDY, bit definition (DCC - Host)	85
Register Summary	
DSP0	
DSP1	
Host Controller	
MOST Processor	
RERR	
bit definition (bMSGC)	
RES, bit definition (bMSGC)	
RES[2:0], bit definitions (DCD - Host)	
RET instruction	
RETI (Return-From-Interrupt) instruction	
REV[3:0], bit definitions (MMPC - Host)	
revision history (Data Sheet)	
revisions	•
MMPC.REV[3:0] bits	
package marking	
RFPR, bit definition (GCTL - Host)	
RFS11 bit definition (MMPC - Host)	15, 127
RGEN (Reset Generator Control/Status reg Host)	
RMCK pin	,
RMRX	
bit definition (bMSGC)	
RMTX	
bit definition (bMSGC)	
RSGPA0, bit definition (RGEN - Host)	
RSGPA1, bit definition (RGEN - Host)	
RSGPA2, bit definition (RGEN - Host)	
RSHC, bit definition (RGEN - Host)	
RSRST, bit definition (RGEN - Host)	
RSRX, bit definition (RGEN - Host)	
RST pin	, 03, 9/
RSTD, bit definition (MMPC - Host)	
RSWD, bit definition (RGEN - Host)	
RUN	
bit definition (D0PCR - Host)	
bit definition (D1PCR - Host)	
bit definition (FPCR - Host)	ðð

em On Chip	O-A-S-I-S SiliconSystems
RWD	
bit definition (bNC)	
RX pin	20, 22, 46, 97, 104
RXD, bit definition (RGEN - Host)	
RXEN	
bit definition (U0C - Host)	
bit definition (U1C - Host)	
RXI	
bit definition (U0C - Host)	
bit definition (U1C - Host)	

S

SA15 pin	174
SAC[3:0], bit definitions (bSBC)	119
SACCH (Shadow Accumulator High reg I	
SACCL (Shadow Accumulator Low reg D	OSP)151
SAI, bit definition (bMSGC)	
SAM, bit definition (DCC - Host)	
SBY	
bit definition (bXCR)	
SCK pin	.46, 104, 110, 137
SCL pin	
SCLK pin	.51, 56, 58, 59, 65
SDA pin	
SDIN pin	
SDOEN	
bit definition (DS0C - DSPs)	
bit definition (DS1C- DSPs)	
SDOUT pin	
SEDE	91 195
bit definitions (ADAC3/2/1/0 - Host)	91
Source Converters	195
Source Port	
registers	161
routing	108
S/PDIF	
timing	
SP (Stack Pointer reg Host)	
SPORXI, bit definition (DTC - DSPs)	
SPOTXL bit definition (DTC - DSPs)	101
SP0TXI, bit definition (DTC - DSPs) SP1RXI, bit definition (DTC - DSPs)	100
SP1TXI, bit definition (DTC - DSPs)	100
SPC (Shadow Program Counter reg Host)	
SPCH (Shadow Program Counter - High reg	
SPEN	
bit definition (DS0C - DSPs)	
bit definition (DSIC-DSPs)	
SPLK	
bit definition (DS0C - DSPs)	167
SPR[5:0], bit definitions (bSPR)	
SR [5.0], bit definitions (051 K)	
Status Register - DSP	151
Status Register - Host	
SR[1:0] pins	
SR0 pin	
SRAM memory SSPC (Subroutine Shadow Prog. Counter re	
SSR (Shadow Status Register - DSP)	
bit definition (CPS - Host)	
bit definition (CPS - Host)	
bit definition (DCPS - Host)	

MOST System On Chip

STR	41, 52, 54, 56, 57, 61, 149
bit definition (CPS - Host)	
bit definition (DCPS - Host)	
bit definition (DCS - DSPs)	
bit definition (DDCS - DSPs)	
bit definition (DFLS - DSPs)	
STRT (Start Address reg DSPs)	
STX	
bit definition (bMSGC)	
SX[1:0] pins	
SYEN	
bit definition (U0C - Host)	
bit definition (U1C - Host)	
synchronous data	
SYSL	
bit definition (U0C - Host)	
bit definition (U1C - Host)	
SYTX	
bit definition (U0C - Host)	
bit definition (U1C)	

Т

TOCAD Lit Jafaitian (DTC DODa)	171
TOCAP, bit definition (DTC - DSPs)	
TOD2E	159, 169, 170
bit definition (DTC - DSPs)	
T0EN, bit definition (DTC - DSPs)	
TORSD, bit definition (DTC - DSPs)	
T1CAP, bit definition (DTC - DSPs)	
T1D2E	
bit definition (DTC - DSPs)	
T1EN, bit definition (DTC - DSPs)	
timing - master	
TMOD (GP Timer Modulo reg Host)	
TMR (GP Timer Value reg Host)	
TMR[1:0] pins	
TOE0, bit definition (GPC - Host)	
TOE1, bit definition (GPC - Host)	
TRAP instruction	36, 146, 149
TSB	
bit definition (U0TX - Host)	70
bit definition (UITX - Host)	70
bit definition (U1TX - Host)	72
bit definition (U1TX - Host) TSSR	72 149
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host)	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host)	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) TXI	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) TXI bit definition (U0C - Host)	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) TXI bit definition (U0C - Host) bit definition (U1C - Host)	72 149 152 20, 117 68 71 68 71
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) bit definition (U0C - Host) bit definition (U1C - Host) TXR	
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) TXI bit definition (U0C - Host) bit definition (U1C - Host) bit definition (U1C - Host) bit definition (bMSGS)	72 149 152 20, 117 68 71 68 71 68 71 121, 124 122
bit definition (UITX - Host) TSSR Trap Shadow Status Register - DSP TX pin TXEN bit definition (U0C - Host) bit definition (U1C - Host) bit definition (U0C - Host) bit definition (U1C - Host) TXR	72 149 152 20, 117 68 71 68 71 68 71 121, 124 122

U

U0C (USART0 Configuration reg Host)	68
U0DV (USART0 Divider reg Host)	69
U0RX (USART0 Receive reg Host)	70
U0TX (USART0 Transmit reg Host)	70
U1C (USART1 Configuration reg Host)	70
U1DV (USART1 Divider reg Host)	72
U1RX (USART1 Receive reg Host)	72

Final Product Data Sheet Page 252

U1TX (USART1 Transmit reg Host)	
UCK0 pin	
UFR0 pin	
URD[7:0]	
bit definitions (U0RX - Host)	
bit definitions (U1RX - Host)	
USEN	
bit definition (U0C - Host)	
bit definition (U1C - Host)	
UTD[7:0]	
bit definitions (U0TX - Host)	
bit definitions (U1TX - Host)	

V

Vector memory, DSPs	143, 152
VREF pin	
VREFS pin	

W

WDD
bit definition (RGEN - Host)
WDT (Watchdog Timer reg Host)
WR
bit definition (CPS - Host)
bit definition (D0PCR - Host)
bit definition (D1PCR - Host)
bit definition (DCPS - Host)
bit definition (DCS - DSPs)
bit definition (DDCS - DSPs)
bit definition (DFFS - DSPs)
bit definition (DFLS - DSPs)
WR0+- (Write 0, Start Write reg DSP0)
WR0++ (Write 0, Start Write w/ Post Incr. reg DSP0) 180
WR1+- (Write 1, Start Write reg DSP0)
WR1++ (Write 1, Start Write w/ Post Incr. reg DSP0) 180

Х

XMC	174
DSP0 External Data Memory Control reg Host .	94
XME	27, 28, 38
bit definition (RGEN - Host)	
<u>XMQ</u>	
bit definition (MMPC - Host)	
XTL[1:0]	
bit definition (CMCS - Host)	
XTO pin	
XTS[7:0], bit definitions (bXTS)	

Ζ

Notes:

Notes:

Notes:

Further Information

For more information on Oasis SiliconSystems products, including integrated circuits, software, and MOST development tools and modules, contact one of our offices below, or visit our web site:

www.oasis.com

Oasis SiliconSystems, Inc.

1120 Capital of Texas Highway South Building 2, Suite 100 Austin, Texas 78746 USA

Tel: (+1) 512 306-8450 Fax: (+1) 512 306-8442

OSS@oasis.com

Oasis SiliconSystems, Inc.

38600 Van Dyke Avenue Suite 220 Sterling Heights, Michigan 48312 USA

Tel: (+1) 586 795-0545 Fax: (+1) 586 795-8950

Oasis SiliconSystems AG Bannwaldallee 48 D-76185 Karlsruhe Germany

Tel: (+49) (0) 721 6 25 37 - 0 Fax: (+49) (0) 721 6 25 37 - 119

OSS@oasis.de

Oasis SiliconSystems AG Japan Shin-Yokohama UU Bldg. 5F 2.5.2 Shin Yokohama, Kohoku ku

2-5-2 Shin-Yokohama, Kohoku-ku Yokohama 222-0033, Japan

Tel: (+81) 45-470 2240 Fax: (+81) 45-470 2242

Detroit@oasis.com

Japan@oasis.com

Technical Support

For technical support please refer to one of the following e-mail addresses:

support@oasis.de support@oasis.com

O-A-S-I-S SiliconSystems