

P1086 SERIES

P-Channel JFETs

The P1086 Series of low-cost p-channel analog switches is designed to provide low on-resistance and fast switching. It also works well in conjunction with Siliconix' J111 Series for complementary switching applications. The P1086 Series features a TO-92 package which is available with various lead-forms and/or tape and reel options. (See Section 8.)

For further design information please consult the typical performance curves PSCIA which are located in Section 7.

PART NUMBER	V _{GS(OFF)} MAX (V)	r _{ds} (ON) MAX (Ω)	I _{D(OFF)} TYP (pA)	t _{ON} TYP (ns)
P1086	10	75	-10	25
P1087	5	150	-10	25

TO-92

BOTTOM VIEW

- 1 SOURCE
- 2 DRAIN 3 GATE

SIMILAR PRODUCTS

- TO-18, See 2N5114 Series
- SOT-23, See SST174 Series
- Chips, Order P108XCHP

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage	V _{GD}	30	- v	
Gate-Source Voltage	V _{GS}	30		
Gate Current	IG	- 50	mA	
Power Dissipation	PD	360	mW	
Power Derating		3.27	mW/°C	
Operating Junction Temperature	TJ	-55 to 135		
Storage Temperature	T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)	TL	300		

P1086 SERIES

ELECTRICAL CHARACTERISTICS 1			LIMITS						
		TEST CONDITIONS			P1086		P1087		
PARAMETER	SYMBOL			TYP ²	MIN	MAX	MIN	МАХ	UNIT
STATIC									
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = 1μΑ, V _{DS} = 0 V		45	30		30		\ \
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = -15 V, I _D = -1μΑ				10		5	
Saturation Drain Current ³	I _{DSS}	V _{DS} = -20 V, V _{GS} = 0 V			-10		-5		mA
Gate Reverse Current	I _{GSS}	V _{GS} = 15 V V _{DS} = 0 V T	0500	0.01		2		2	
Gate Operating Current	IG	$V_{DS} = 0 V$ $T_A = 85^{\circ}C$ $V_{DG} = -15 V, I_D = -1 mA$		0.01					nA
	I _{D(OFF)}	V _{DS} = -15 V, V _{GS} = 10 V		-0.01		-10		-10	
		V _{DS} = -15 V, V _{GS} = 10 V T _A = 85°C		-0.001		-0.5		-0.5	ΑЦ
Drain-Source On-Resistance	r _{DS(ON)}	I _G = -1 mA, V _{GS} = 0 V				75		150	Ω
Gate-Source Forward Voltage	V _{GS(F)}	I _G = -1 mA, V _{DS} = 0 V		-0.7					٧
DYNAMIC									
Common-Source Forward Transconductance	g _{fs}	V _{DS} = -15 V, I _D = -1 mA f = 1 kHz		4.5					mS
Common-Source Output Conductance	g _{os}			20					г
Drain-Source On-Resistance	r _{ds(ON)}	$V_{GS} = 0 \text{ V, I}_D = 0 \text{ mA}$ f = 1 kHz				75		150	Ω
Common-Source Input Capacitance	C _{iss}	V _{DS} = -15 V, V _{GS} = 0 V f = 1 MHz		20		45		45	pF
Common-Source Reverse Transfer Capacitance	C _{rss}	V _{DS} = 0 V, V _{GS} = 10 V f = 1 MHz		5		10		10	
Equivalent Input Noise Voltage	ē _n	$V_{DS} = -10 \text{ V, I}_{D} = -1 \text{ mA}$ f = 1 kHz		20					nV
SWITCHING				-					-
Turn-on Time	t _{d(ON)}	V _{GS(ON)} = 0 V		10		15		15	T
011 111110	t _r	P/N V _{DD} V _{GS(OFF)}	S(OFF) RL	15		20		75	ns
Turn-off Time	t _d (OFF)	P1086 -6 V 12 V 910		10		15		25	""
	t _f	$P1087 - 6 $ \overrightarrow{V} $\overrightarrow{7}$ \overrightarrow{V} $1800 $ $\overrightarrow{\Omega}$		20		50		100	

NOTES: 1. $T_A = 25\,^{\circ}\text{C}$ unless otherwise noted. 2. For design aid only, not subject to production testing. 3. Pulse test; PW = 300 μ s, duty cycle $\leq 3\%$.