

Model Name: P460HVN04.3

Issue Date: 2016/05/24

(*)Preliminary Specifications

()Final Specifications

Customer Signature	Date	AUO	Date
Approved By		Approval By PM Director Kelly Kao	Willy blo
Note		Reviewed By RD Director Eugene CC Chen Reviewed By Project Leader Ming Yu WU Prepared By PM Travis Huang	

© Copyright AU Optronics Corp. 2013 All Rights Reserved.

Page 1 / 32

Contents

Conte	nts	2
Recor	d of Revision	3
1. G	eneral Description	4
1.	2. Optical Specification	5
1.	3 Mechanical Characteristics	8
3.	1 Placement suggestions:	8
Fr	ront View	9
В	ack View	10
2.	Absolute Maximum Ratings	. 11
3. Elec	ctrical Specification(12
	1.1 Electrical Characteristics	
3.	1.2 AC Characteristics	12
3.	3 Signal Timing Specification	17
3.	4 Signal Timing Waveforms	18
3.	5 Color Input Data Reference	19
3.	6 Power Sequence	20
	□ Power Sequence of LCD Power Sequence of backlight (LED)	20
	□ Power Sequence of backlight (LED)	21
3.	7 Backlight Specification	22
	3.7.1 Flactrical enecification	22
	3.7.2 Input Pin Assignment iability Test Items rnational Standard	23
4. Reli	iability Test Items	25
5. Inte	rnational Standard	26
5.	1 Safety	26
5.	2 EMC	26
6. Pac	king	27
6-	1 DEFINITION OF LABEL:	27
6-	2 PACKING METHODS:	28
6-	3 Pallet and Shipment Information	29
7. PRE	3 Pallet and Shipment Information	30
7-	1 MOUNTING PRECAUTIONS	30
7-	2 OPERATING PRECAUTIONS	30
7.		
7.	4 Electrostatic Discharge Control	31
7.	5 Precautions for Strong Light Exposure	32
7.	6 Storage	32
7.	7 Handling Precautions for Protection Film	32

Record of Revision

Version	Date	Page	Description
0.0	2016/04/06		First preliminary spec sheet release
0.1	2016/5/18	12	Correct BLU Consumption
		22	Correct input current and power
		23, 24	Correct Connector
		9 10	Drawing update
			29
			<u>,</u>
			~
			The state of the s
			5
			40'
			. 0
		7	

1. General Description

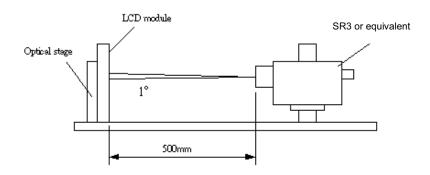
This specification applies to the 46.0 inch Color TFT-LCD Module P460HVN04.3. This LCD module has a TFT active matrix type liquid crystal panel 1,920x1,080 pixels, and diagonal size of 46.0 inch. This module supports 1,920x1080 resolution display. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot.

The P460HVN04.3 has been designed to apply the 10-bit 2 channel LVDS interface method. The main feature of P460HVN04.3 would be high brightness, high contrast, wide viewing angle, high color saturation, symmetry narrow bezel, edge LED backlight and high color depth. High Tni (110°C) liquid crystal and QWP (quarter wave plate) are also applied on this model.

* General Information

Items	Specification	Unit	Note
Active Screen Size	46.0	Inch	
Display Area	1018.08(H) x 572.67(V)	mm	
Outline Dimension	1044.08(H) x 598.67(V) x 9.9(D)	mm	1
Driver Element	a-Si TFT active matrix		S
Display Colors	10 bit (8bit+FRC), 1073.7M	Colors	5
Number of Pixels	1,920x1080	Pixel	
Pixel Pitch	0.53025 (H) x 0.53025(W)	mm	
Pixel Arrangement	RGB vertical stripe	, XX	
Display Operation Mode	Normally Black		
Display Orientation	Landscape/Portrait Enable	~	
Surface Treatment	Low Reflection, QWP		Reflectance≦1.45%

Note:


(1) Dmax: 26.5mm (Front bezel to Driver cover); Dmin: 9.9mm (Front bezel to Bezel back)

1.2. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25°C while panel is placed in the default position. The default position is T-con side as the top side of panel. The value specified is at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0° .

Fig.1 presents additional information concerning the measurement equipment and method.

Davamatas	Coursels al		Values		Olymit	Notes
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Contrast Ratio	CR	3200	4000	-0		1
Surface Luminance (White)	L _{WH}	1200	1500	20	cd/m ²	2
Luminance Variation	δ _{WHITE(9P)}			1.33		3
Response Time (G to G)	Тү		8		ms	4
Color Gamut	NTSC		72	y	%	
Color Coordinates			4			
Red	R _X		0.640			
	R _Y		0.330			
Green	G _X	Ċ	0.300			
	G _Y	Typ0.03	0.600	- Typ.+0.03		
Blue	B _X		0.150			
	B _Y	:0	0.060			
White	W _X		0.280			
	W _Y	6	0.290			
Viewing Angle						5
x axis, right(φ=0°)	θ,		89		degree	
x axis, left(φ=180°)	θι		89		degree	
y axis, up(φ=90°)	θ_{u}		89		degree	
y axis, down (φ=270°)	θ_{d}		89		degree	

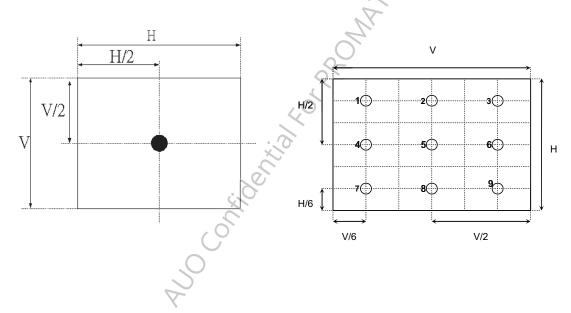
Note:

1. Contrast Ratio (CR) is defined mathematically as:

Contrast Ratio=
$$\frac{\text{Surface Luminance of L}_{on5}}{\text{Surface Luminance of L}_{off5}}$$

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. When lamp current $I_H = 11mA$. L_{WH} =Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δWHITE is defined (center of Screen) as:

 $\delta_{WHITE(9P)} = Maximum(L_{on1}, L_{on2}, ..., L_{on9}) / Minimum(L_{on1}, L_{on2}, ... L_{on9})$

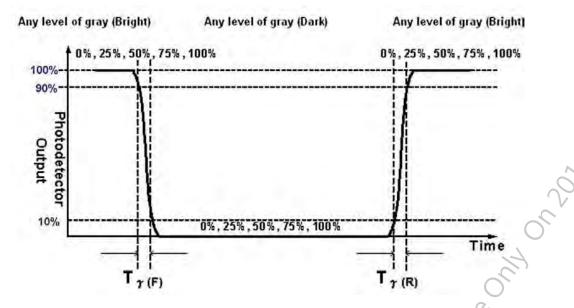

4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_v =60Hz to optimize.

 T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

,	,	J		0 0		,			
Me	asured	Target							
Respo	nse Time	0%	25%	50%	75%	100%			
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%			
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%			
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%			
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%			
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%				

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

FIG. 2 Luminance



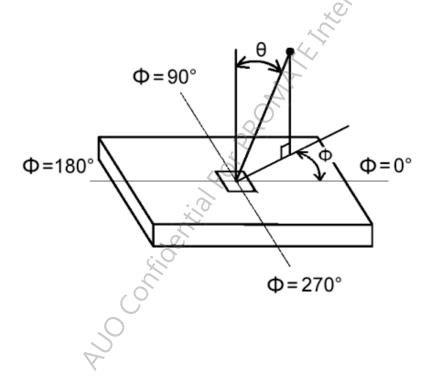
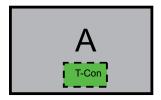


FIG.3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)".

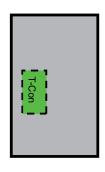
FIG.4 Viewing Angle

1.3 Mechanical Characteristics


The contents provide general mechanical characteristics for the model P460HVN04.3. In addition the figures in the next page are detailed mechanical drawing of the LCD.

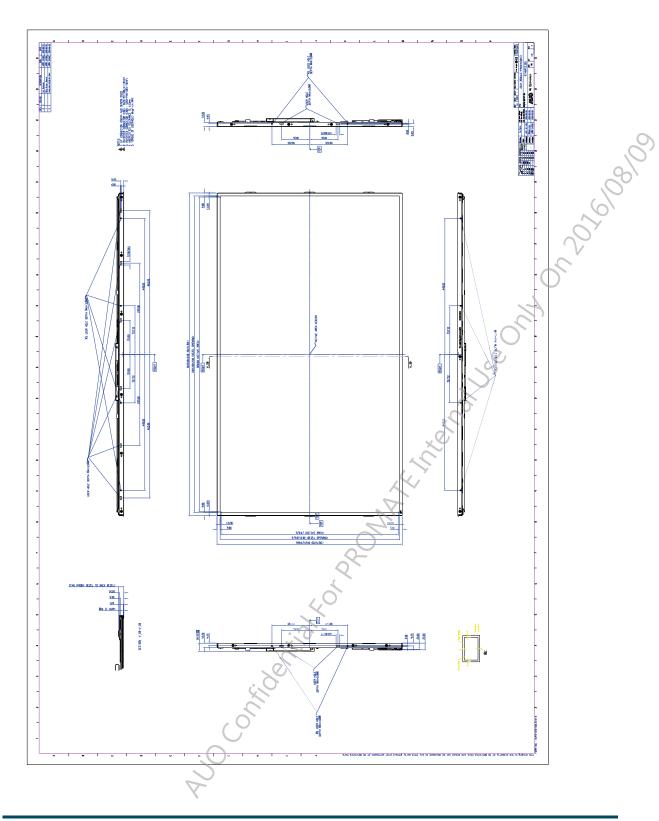
	Horizontal (typ.)	1044.08mm		
Outline Dimension	Vertical (typ.)	598.67mm		
	Depth (min.)	9.9 mm		
Bezel Opening Area	Horizontal (typ.)	1024.48mm		
Bezei Operiing Area	Vertical (typ.)	579.07 mm		
Active Display Area	Horizontal	1018.08 mm		
Active Display Alea	Vertical 572.67 mm			
Weight	11500(g)			

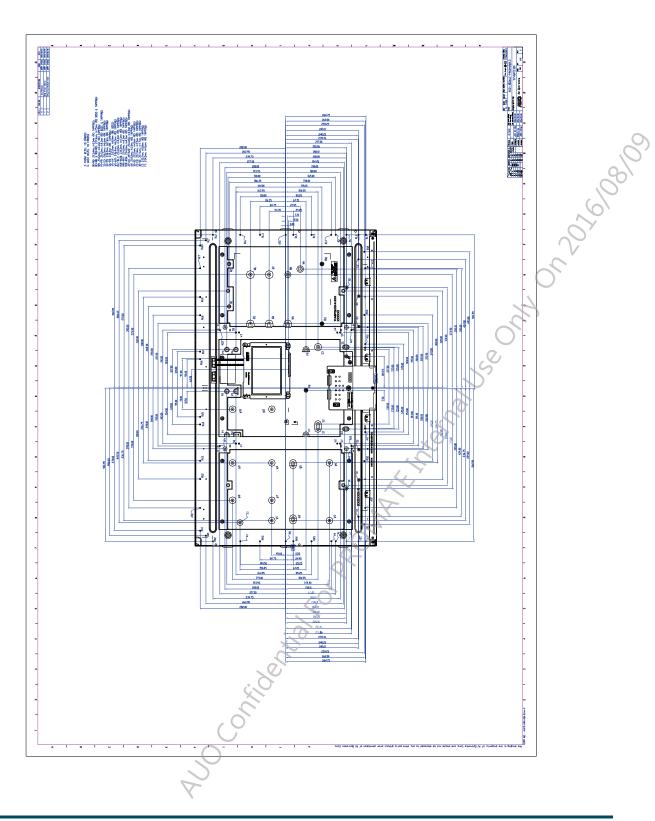
3.1 Placement suggestions:


1. Landscape Mode: The default placement is T-Con Side on the bottom side and the image is shown upright via viewing from the front.

Landscape (Front view)

2. Portrait Mode: The default placement is that T-Con side has to be placed on the left side via viewing from the front.

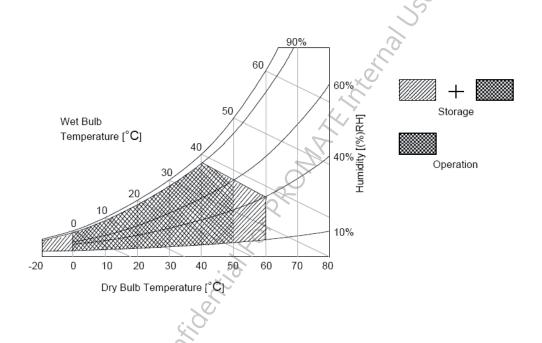

Portrait (Front view)


Front View

Back View

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		85	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be $39^{\circ}\!\mathbb{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50°C Dry condition

3. Electrical Specification

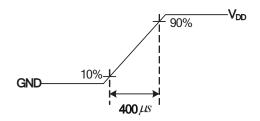
The P460HVN04.3 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second is employed for LED driver.

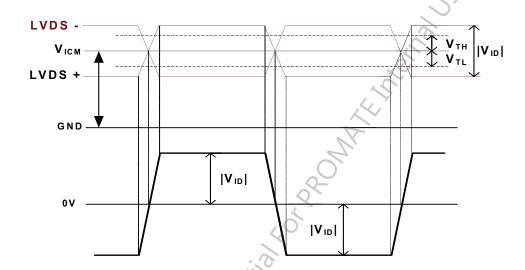
3.1.1 Electrical Characteristics

Parameter		Cymbol		Value	Unit	Note	
		Symbol	Min.	Тур.	Max	Unit	Note
LCD							
Power Sup	ply Input Voltage	V_{DD}	10.8	12	13.2	V_{DC}	0
Power Sup	ply Input Current	I _{DD}		0.9	1.08	А	10
Power Cor	sumption	Pc		10.8	12.96	Watt	P
Inrush Cur	rent	I _{RUSH}	-	-	5.5	Α (2
Permissible Ripple of Power Supply Input Voltage (for input power=12V)		V_{RP}			V _{DD} * 5%	mV _{pk-pk}	3
	Input Differential Voltage	V _{ID}	200	400	600	mV _{DC}	4
LVDS	Differential Input High Threshold Voltage	V _{TH}	+100	1	+300	mV _{DC}	4
Interface	Differential Input Low Threshold Voltage	V_{TL}	-300	1	-100	mV _{DC}	4
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V_{DC}	4
CMOS	Input High Threshold Voltage	V _⊪ (High)	2.7	3	3.3	V_{DC}	7
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0	A.R.	0.6	V _{DC}	
Backlight Power Consumption		P_{BL}	0-	155		W	
Life Time(N	/ITTF)		50000				8

3.1.2 AC Characteristics

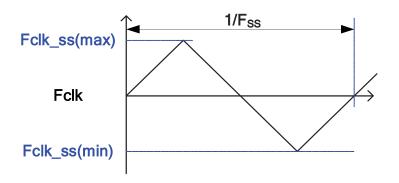
Parameter		Symbol				Unit	Note
	raiailletei	Symbol	Min.	Тур.	Max	Offic	Note
	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%		Fclk +3%	MHz	9
LVDS Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30		200	KHz	9
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5	 	0.4 0.5	ns	10


[©] Copyright AU Optronics Corp. 2013 All Rights Reserved.

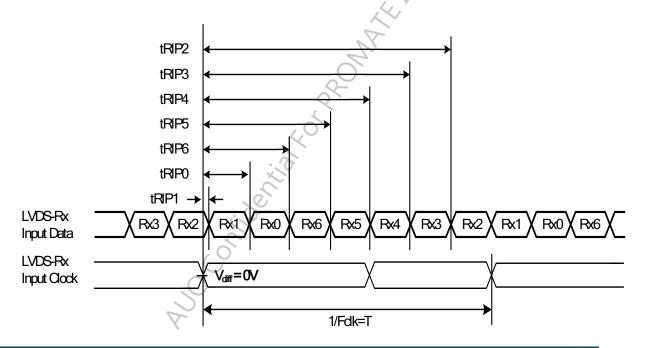


Note:

- 1. Test Condition:
 - (1) $V_{DD} = 12.0V$
 - (2) Fv = Type Timing, 60Hz, 120Hz or Other
 - (3) $F_{CLK} = Max freq.$
 - (4) Temperature = 25 °C
 - (5) Test Pattern: White Pattern
- 2. Measurement condition: Rising time = 400us


- 3. Test Condition:
 - (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
 - (2) Under Max. Input current spec. condition.
- **4.** $V_{ICM} = 1.25V$

- **5.** Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape.
- **6.** The relative humidity must not exceed 80% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C. When operate at high temperatures, the brightness of LED will drop and the life time of LED will be reduced.
- 7. The measure points of V_{IH} and V_{IL} are in LCM side after connecting the System Board and LCM.



- 8. The lifetime (MTTF) is defined as the time which luminance of the LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C]
 - 9. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures

10. Receiver Data Input Margin

Parameter	Cumbal	Rating				
Parameter	Symbol	Min	Туре	Max	Unit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	[tRMG]	ns	
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	

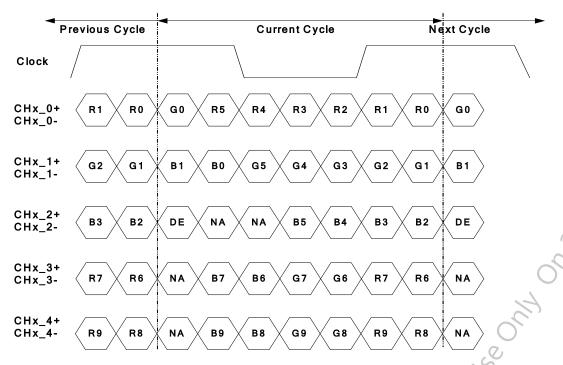
3.2 Interface Connections

■ LCD connector: FI-RTE51SZ-HF (JAE)

■ Matching: FI-RE51HL

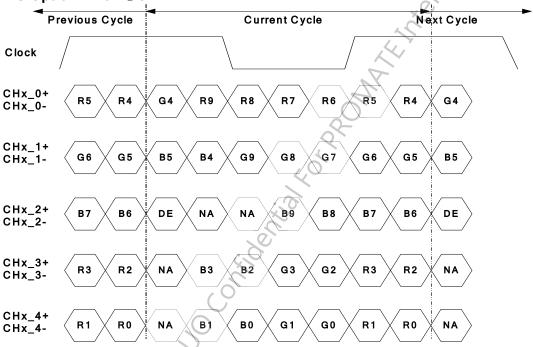
	■ Matching: FI-RE51HL								
PIN	Symbol	Description	PIN	Symbol	Description				
1	N.C.	AUO Internal Use Only	26	N.C.	AUO Internal Use Only				
2	N.C.	AUO Internal Use Only	27	N.C.	AUO Internal Use Only				
3	N.C.	AUO Internal Use Only	28	CH2_0-	LVDS Channel 2, Signal 0-				
4	N.C.	AUO Internal Use Only	29	CH2_0+	LVDS Channel 2, Signal 0+				
		LVDS 8/10 bit input selection							
5	BITSEL	Low(GND): 8bits	30	CH2_1-	LVDS Channel 2, Signal 1-				
		Open/High(3.3V): 10bits			9				
6	N.C.	N.C.	31	CH2_1+	LVDS Channel 2, Signal 1+				
7	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA	32	CH2_2-	LVDS Channel 2, Signal 2-				
8	N.C.	No connection	33	CH2_2+	LVDS Channel 2, Signal 2+				
9	N.C.	No connection	34	GND	Ground				
10	N.C.	No connection	35	CH2_CLK-	LVDS Channel 2, Clock -				
11	GND	Ground	36	CH2_CLK+	LVDS Channel 2, Clock +				
12	CH1_0-	LVDS Channel 1, Signal 0-	37	GND	Ground				
13	CH1_0+	LVDS Channel 1, Signal 0+	38	CH2_3-	LVDS Channel 2, Signal 3-				
14	CH1_1-	LVDS Channel 1, Signal 1-	39	CH2_3+	LVDS Channel 2, Signal 3+				
15	CH1_1+	LVDS Channel 1, Signal 1+	40	CH2_4-	LVDS Channel 2, Signal 4-				
16	CH1_2-	LVDS Channel 1, Signal 2-	41	CH2_4+	LVDS Channel 2, Signal 4+				
17	CH1_2+	LVDS Channel 1, Signal 2+	42	N.C.	AUO Internal Use Only				
18	GND	Ground	43	N.C.	No connection				
19	CH1_CLK-	LVDS Channel 1, Clock -	44	GND	Ground				
20	CH1_CLK+	LVDS Channel 1, Clock +	45	GND	Ground				
21	GND	Ground	46	GND	Ground				
22	CH1_3-	LVDS Channel 1, Signal 3-	47	N.C.	No connection				
23	CH1_3+	LVDS Channel 1, Signal 3+	48	V_{DD}	Power Supply, +12V DC Regulated				
24	CH1_4-	LVDS Channel 1, Signal 4-	49	V _{DD}	Power Supply, +12V DC Regulated				
25	CH1_4+	LVDS Channel 1, Signal 4+	50	V_{DD}	Power Supply, +12V DC Regulated				
			51	V_{DD}	Power Supply, +12V DC Regulated				

Note: N.C.: please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).


Note 1: All GND (ground) pins should be connected together and should also be connected to the LCD's metal frame.

Note 2: All V_{DD} (power input) pins should be connected together.

Note 3: All NC (no connection) pins should be open without voltage input.



LVDS Option = High/Open→NS

Note: x = 1, 2, 3, 4...

LVDS Option = Low→JEIDA

Note: x = 1, 2, 3, 4...

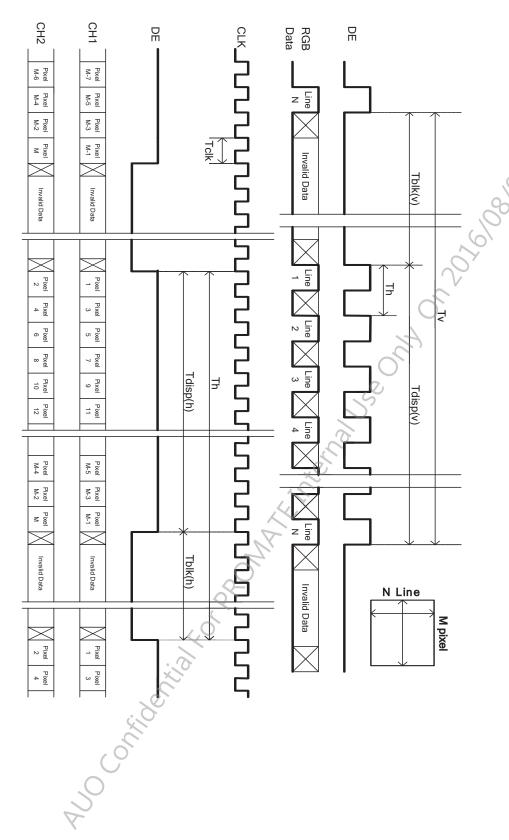
3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Vertical Frequency Range (60Hz)

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Tv	1100	1125	1480	Th
Vertical Section	Active	Tdisp (v)		1080		
	Blanking	Tblk (v)	20	45	400	Th
	Period	Th	1040	1100	1328	Tclk
Horizontal Section	Active	Tdisp (h)		960		
	Blanking	Tblk (h)	80	140	368	Tclk
Clock	Frequency	Fclk=1/Tclk	53	74.25	82	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz


Notes:

- (1) Display position is specific by the rise of DE signal only.
 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2)Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

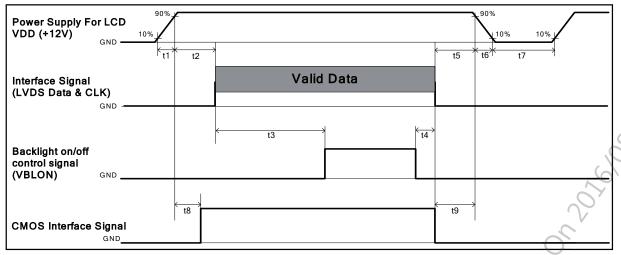
3.4 Signal Timing Waveforms

Support by:

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

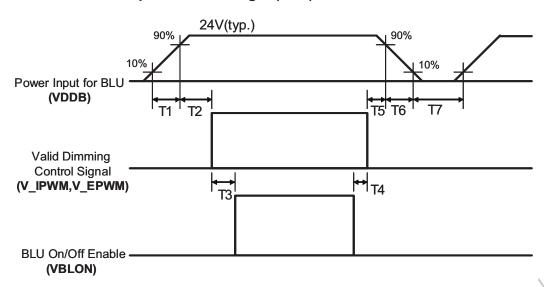

														In	put	Col	or [Data	l												
	Color					RE	Đ								(GRE	ΞEΝ	ı								BL	UE				
ı	00101	MS	B							L	SB	M	SB							LS	SB	MS	В							L	SB
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	В7	В6	В5	В4	ВЗ	В2	B1	ВО
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	71	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																					2										
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
G																	\overline{A}														
	GREEN(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1)1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	Q	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В												пьони вес					11111														
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

3.6 Power Sequence

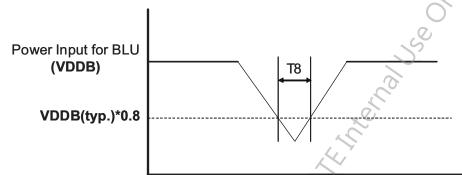
◆ Power Sequence of LCD

Davarantan		Values)
Parameter	Min.	Type.	Max.	Unit
t1	0.4		30 🗸	ms
t2	0.1		50	ms
t3	450			ms
t4	0 ^{*1}			ms
t5	0			ms
t6		4	*2	ms
t7	500	\[\tau\]		ms
t8	10		50	ms
t9	0			ms

Note:


⁽¹⁾ t4=0 : concern for residual pattern before BLU turn off.

⁽²⁾ t6: voltage of VDD must decay smoothly after power-off. (customer system decide this value)



Power Sequence of backlight (LED)

Dip condition

Downwater		Units				
Parameter	Min	Тур	Max	Offics		
T1	20	- 8	-	ms ^{*1}		
T2	500	-	-	ms		
T3	250	₹,0	-	ms		
T4	0	6	-	ms		
T5	1	×2	-	ms		
T6		0 -	-	ms		
Т8	- 0	-	10	Ms		

3.7 Backlight Specification

The backlight unit contains 240pcs LED.

3.7.1 Electrical specification

	láone	Item Symbol				Spec		Unit	Note
	item	Syli	IDOI	Condition	Min	Тур	Max	Unit	Note
1	Input Voltage	VD	DB	-	22.8	24	25.2	VDC	-
2	Input Current	I _{DI}	DB	VDDB=24V		6.45		ADC	1
3	Input Power	P _D	DB	VDDB=24V		155		W	1
4	Inrush Current	I _{RL}	ISH	VDDB=24V	-	-	13.2	ADC	2
_	0.10%		ON	\/DDD 04\/	2	-	5.5	\/D0	0-
5	On/Off control voltage	V_{BLON}	OFF	VDDB=24V	0	-	0.8	VDC	-
6	On/Off control current	I _{BL}	ON	VDDB=24V	-	-	1.5	mA	-
	External PWM	==	MAX		2	-	5.5		-
7	Control Voltage	V_EPWM	MIN	VDDB=24V	0	-	0.8	VDC	-
8	External PWM Control Current	I_EP	PWM	VDDB=24V	-	-	2	mADC	-
9	External PWM Duty ratio	D_EF	PWM	VDDB=24V	5	- 2	100	%	3
10	External PWM Frequency	F_EPWM		VDDB=24V	90	180	240	Hz	-
11	DET status signal	DET	НІ	VDDB=24V	Open Colle		ctor	VDC	-
	DE. Status digital		LO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	-	0.8	VDC	-
12	Input Impedance	R	in	VDDB=24V	300			Kohm	-

Note 1 : Dimming ratio= 100% (MAX) (Ta=25 \pm 5 $^{\circ}$ C , Turn on for 45minutes)

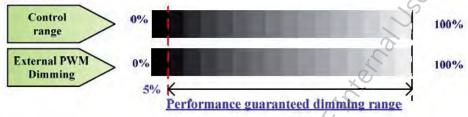
Note 2: Measurement condition Rising time = 20ms (VDDB : 10%~90%) and at dimming ration = 100%

Note 3: Less than 10% dimming control is functional well and no backlight shutdown happened

3.7.2 Input Pin Assignment

LED driver board connector: CI0114M1HRL-NH(CviLux)


Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	DET	BLU status detection: Normal : 0~0.8V ; Abnormal : Open collector (Recommend Pull high R>10K, VDD=3.3V)
12	VBLON	BLU On-Off control: BL On : High/Open (2V~5.5V); BL off : Low (0~0.8V/GND)
13	NC	NC .
14	PDIM	External PWM (5%~100% Duty, open for 100%)



LED driver board connector: CI0112M1HRL-NH(CviLux)

Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	NC	No connection
12	NC	No connection

(Note*) IF External PWM function includes 5% dimming ratio. Judge condition as below:

- (1) Backlight module must be lighted ON normally.
- (2) All protection function must work normally.
- (3) Uniformity and flicker could NOT be guaranteed

4. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60℃ , 500hrs
2	Low temperature storage test	3	-20℃, 500hrs
3	High temperature operation test	3	50°C, 500hrs
4	Low temperature operation test	3	-10℃, 500hrs
			Wave form: random
			Vibration level: 1.0G RMS
5	Vibration test (non-operation)	3	Bandwidth: 10-300Hz,
			Duration: X, Y, Z 10min per axes
			X,Y,Z : Vertical
			Shock level: 50G (±X, ±Y)
6	Shock test (non-operation)	3	Shock level: 35G (±Z)
0	Shock test (non-operation)		Waveform: half since wave, 11ms
			Direction: ±X, ±Y, ±Z, One time each direction
7	Vibration test (With carton)	1 (PKG)	Random wave (1.04G RMS, 2-200Hz) 20 mins per each X,Y,Z axes PSD(G^2/Hz) at different frequency show as below 2Hz, 0.0010 4Hz, 0.0300 8Hz, 0.0300 40Hz, 0.0030 55Hz, 0.0100 75Hz, 0.0100 200Hz, 0.0008
8	Drop test (With carton)	1 (PKG)	Drop Height: 25.4cm, Surround four flats and bottom flat twice (ASTMD4169)

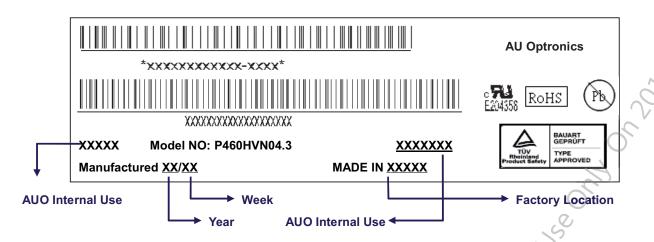
5. International Standard

5.1 Safety

- UL 60950-1, UL 60065; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1 : 2001, IEC 60065:2001 ; Standard for Safety of International Electro technical Commission
- (3) EN 60950 : 2001+A11, EN 60065:2002+A1:2006; European Committee for Electro technical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment

5.2 EMC

- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electro technical Standardization. (CENELEC), 1998



6. Packing

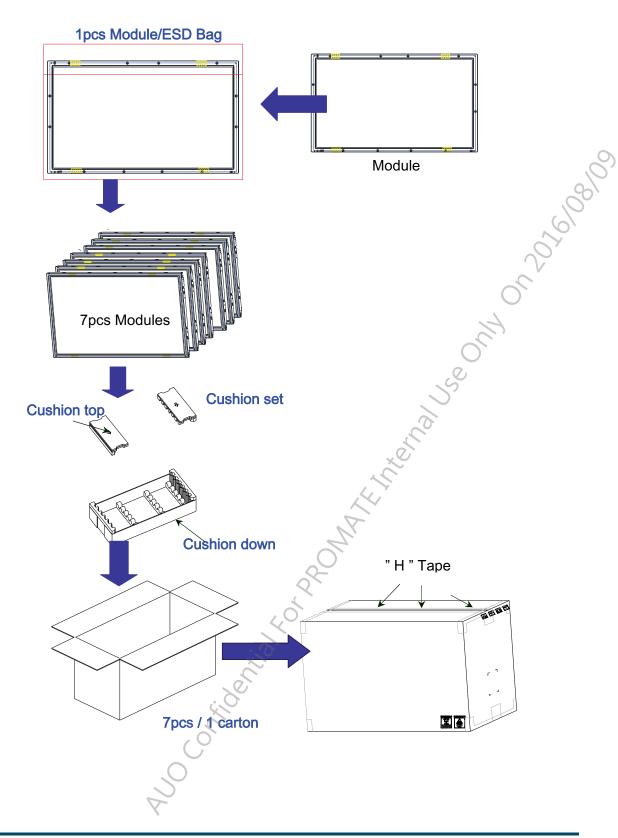
6-1 DEFINITION OF LABEL:

A. Panel Label:

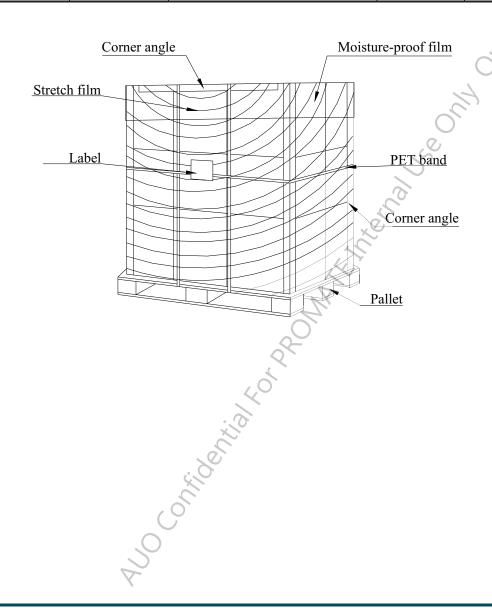
Green mark description

- (1) For Pb Free Product, AUO will add hor identification.
- (2) For RoHs compatible products, AUO will add RoHS for identification.

Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.)


B. Carton Label: (TBD)

6-2 PACKING METHODS:



P460HVN04.3 Product Specification Rev. 0.1

6-3 Pallet and Shipment Information

			Specification							
	Item	Qty.	Dimension	Weight (kg)	Remark					
1	Packing Box	7pcs/box	1160(L)mm*375(W)mm*690(H)mm	82.3						
2	Pallet	1	1180(L)mm*1150(W)mm*132(H)mm	18						
3	Boxes per Pallet	3 boxes/Pallet (By	boxes/Pallet (By Air) ; 3 Boxes/Pallet (By Sea)							
4	Panels per Pallet	21pcs/pallet(By Ai	ir) ; 21 pcs/Pallet (By Sea)							
5	Pallet	21(by Air)	1180(L)mm*1150(W)mm*822(H)mm	264.9 (by Air)						
	after packing		(by Air)							
		63(by Sea)	1180(L)mm*1150(W)mm*2466(H)mm	794.7(by Sea)	40ft HQ					
			(by Sea)		4011110					

7. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

7-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer.

 Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

7-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for PID application
- (2) The spike noise causes the miss-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of LED depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.

P460HVN04.3 Product Specification Rev. 0.1

(7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

7.3 Operating Condition for Public Information Display

The device listed in the product specification is designed and manufactured for PID (Public Information Display) application. To optimize module's lifetime and function, below operating usages are required.

- (1) Normal operating condition
 - Operating temperature: 0~40°C
 - 2. Operating humidity: 10~90%
 - Display pattern: dynamic pattern (Real display).
 Note) Long-term static display would cause image sticking.
- (3) Operation usage to protect against image sticking due to long-term static display.
 - (1) Suitable operating time: 20 hours a day or less.(* The moving picture can be allowed for 20 hours a day)
 - (2) Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image.
 - (3) Periodically change background and character (image) color.
 - (4) Avoid combination of background and character with large different luminance.
- (3) Periodically adopt one of the following actions after long time display.
 - A. Running the screen saver (motion picture or black pattern)
 - B. Power off the system for a while
- (4) LCD system is required to place in well-ventilated environment. Adapting active cooling system is highly recommended.
- (5) Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions, such as high temperature/ humidity, display stationary patterns, or long operation time etc..., it is strongly recommended to contact AUO for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

7.4 Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

7.5 Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

7.6 Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

7.7 Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.