eMCP Specification

Embedded MCP specification

P6408T2B5X2

Datasheet Preliminary Ver 1.0

Apollo Memory System Company

1

<Product Specification>

-Compatible Approved Vendor List-

Chipset AVL		Chipset Mod	lel	eMCP PN
Mediatek		MT6582		08EMCP08-EL2BV100
ompatible AVL upc	lated by 2014,Q4	1		
e Summary	-:			
e Summary		e 1 – Device	e Summary	
Product art number		e 1 – Device DRAM	Summary CH & CS For DRAM	Operating voltage

-System Performance

	Table 2 – e•MMC [™] Device Performance Typical value				
	Read Sequential (MB/s) Write Sequential (MB/s)				
P6408T2B5X2	70	4			

Note 2: Performance numbers might be subject to changes without notice.

eMCP Specification

< Embedded MMC[™] - NAND>

- Packaged NAND flash memory with *e*•MMC[™] 5.0 interface
- Compliant with *e*•MMC[™] Specification Ver.4.4, 4.41,4.5&5.0
- Supports three different data bus widths : 1 bit(default), 4 bits, 8 bits
- Data transfer rate: up to 52Mbyte/s (using 8 parallel data lines at 52 MHz)
- Single data rate : up to 200Mbyte/s @ HS200(Host clock @ 200MHz)
- Dual data rate : up to 104Mbyte/s @ 52MHz
- Enhanced Write Protection with Permanent and Partial protection options
- Supports Multiple User Data Partition with Enhanced User Data Area options
- Supports Background Operations & High Priority Interrupt (HPI)
- Error free memory access
 - Internal error correction code (ECC) to protect data communication
 - Internal enhanced data management algorithm
 - Solid protection of sudden power failure safe-update operations for data content
- Security
 - Support secure bad block erase commands
 - Enhanced write Protection with permanent and partial protection options
- Supports Field Firmware Update(FFU)
- Enhanced Device Life time
- Optimal Size
- Supports Production State Awareness
- Supports Power Off Notification for Sleep

<Low power DDR2>

- Density: 4Gbits
- Organization
 - × 32 bits: 16M words × 32 bits × 8 banks
 - Row Address: R0 ~ R13
 - Column Address: C0 ~ C9
- Power supply
 - VDD1 = 1.70V to 1.95V ,VDD2, VDDQ = 1.14V to 1.30V
- Data rate: 1066Mbps max. (RL = 8)
- Interface: HSUL 12
- Burst lengths (BL): 4, 8, 16
- Burst type (BT)
 - Sequential (4, 8, 16)
 - Interleave (4, 8)
- Read latency (RL): 5, 6, 7, 8
- Refresh cycles: 8192 cycles/28ms
 - Average refresh period: 3.4µs
 - Storage temperature range: -40°C to +110°C
 - Operating junction temperature range TJ = -15°C to +80°C

1. e•MMC[™] Device and System

1.1. e•MMC[™] System Overview

The $e \cdot MMC^{\mathbb{M}}$ specification covers the behavior of the interface and the Device controller. As part of this specification the existence of a host controller and a memory storage array are implied but the operation of these pieces is not fully specified.

The Apollo NAND Device contains a single chip MMC controller and NAND flash memory module. The micro-controller interfaces with a host system allowing data to be written to and read from the NAND flash memory module. The controller allows the host to be independent from details of erasing and programming the flash memory.

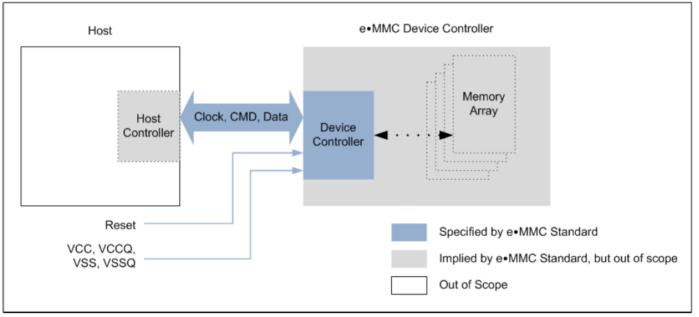


Figure $1 - e \bullet MMC^{T}$ System Overview

4

1.2. e•MMC[™] Device Overview

The *e*•MMC[™] device transfers data via a configurable number of data bus signals. The communication signals are:

1.2.1 Clock (CLK)

Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.

1.2.2 Command (CMD)

This signal is a bidirectional command channel used for Device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer. Commands are sent from the $e \cdot \text{MMC}^{\text{T}}$ host controller to the $e \cdot \text{MMC}^{\text{T}}$ Device and responses are sent from the Device to the host.

1.2.3 Input/Outputs (DAT0-DAT7)

These are bidirectional data channels. The DAT signals operate in push-pull mode. Only the Device or the host is driving these signals at a time. By default, after power up or reset, only DATO is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the $e \bullet MMC^{\text{TM}}$ host controller. The $e \bullet MMC^{\text{TM}}$ Device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering the 4-bit mode, the Device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering to the 8-bit mode the Device disconnects the internal pull-ups of lines DAT1-DAT7. The signals on the $e \bullet MMC^{\text{TM}}$ interface are described in Table 3.

Table 3 – <i>e</i> •MMC Interface				
Name	Type ¹	Description		
CLK	1	Clock		
DAT0	I/O/PP	Data		
DAT1	I/O/PP	Data		
DAT2	I/O/PP	Data		
DAT3	I/O/PP	Data		
DAT4	I/O/PP	Data		
DAT5	I/O/PP	Data		
DAT6	I/O/PP	Data		
DAT7	I/O/PP	Data		
CMD	I/O/PP/OD	Command/Response		
RST_n	I	Hardware reset		
VCC	S	Supply voltage for Core		
VCCQ	S	Supply voltage for I/O		
VSS	S	Supply voltage ground for Core		
VSSQ	S	Supply voltage ground for I/O		
Note1 : I: input; O	: output; PP : push-pull; OD : open	n-drain; NC: Not connected (or logical high); S: power supply.		

Table 3 – *e*•MMC[™] Interface

Each Device has a set of information registers (see also 0, Device Registers.)

Name	Width (bytes)	Description	Implementation
CID	16	Device Identification number, an individual number for identification.	Mandatory
RCA	2	Relative Device Address, is the Device system address, dynamically assigned by the host during initialization.	Mandatory
DSR	2	Driver Stage Register, to configure the Device's output drivers.	Optional
CSD	16	Device Specific Data, information about the Device operation conditions.	Mandatory
OCR	4	Operation Conditions Register. Used by a special broadcast command to identify the voltage type of the Device.	Mandatory
EXT_CSD	512	Extended Device Specific Data. Contains information about the Device capabilities and selected modes. Introduced in standard v4.0	Mandatory

Table 4 – $e \bullet MMC^{T}$ Registers

The host may reset the device by:

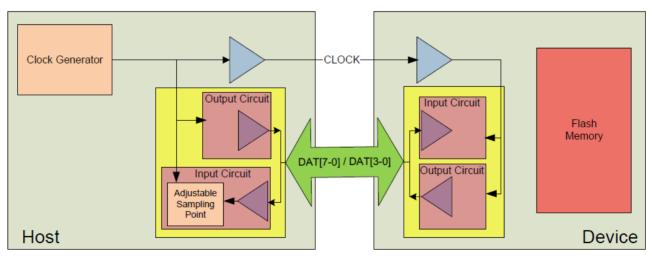
- Switching the power supply off and back on. The device shall have its own power-on detection circuitry which puts the device into a defined state after the power-on Device.
- A reset signal
- By sending a special command

1.3. Bus Speed Modes

 $e \bullet \mathsf{MMC}^{\mathsf{T}}$ defines several bus speed modes. **Table 5** summarizes the various modes.

Table 5— Bus Speed Modes							
Mode Name	Data Rate	IO Voltage	Bus Width	Frequency	Max Data Transfer (implies x8 bus width)		
Backwards Compatibility with legacy MMC card	Single	3.3/1.8V	1, 4, 8	0-26MHz	26MB/s		
High Speed SDR	Single	3.3/1.8V	4, 8	0-52MHz	52MB/s		
High Speed DDR	Dual	3.3/1.8V	4, 8	0-52MHz	104MB/s		
HS200	Single	1.8V	4, 8	0-200MHz	200MB/s		

Table 5— Bus Speed Modes


1.3.1 HS200 Bus Speed Mode

The HS200 mode offers the following features:

- SDR Data sampling method
- CLK frequency up to 200MHz Data rate up to 200MB/s
- 8-bits bus width supported
- Single ended signaling with 4 selectable Drive Strength
- Signaling levels of 1.8V
- Tuning concept for Read Operations

1.3.2 HS200 System Block Diagram

Figure 2 shows a typical HS200 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For write operations, clock and data direction are the same, write data can be transferred synchronous with CLK, regardless of transmission line delay. For read operations, clock and data direction are opposite; the read data received by Host is delayed by round-trip delay, output delay and latency of Host and Device. For reads, the Host needs to have an adjustable sampling point to reliably receive the incoming data.

2. e•MMC[™] Functional Description

2.1 e•MMC[™] Overview

All communication between host and device are controlled by the host (master). The host sends a command, which results in a device response. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

Five operation modes are defined for the $e \bullet MMC^{T}$ system (hosts and devices):

- Boot mode
- Device identification mode
- Interrupt mode
- Data transfer mode
- Inactive mode

2.2 Boot Operation Mode

In boot operation mode, the master ($e \bullet MMC^{T}$ host) can read boot data from the slave ($e \bullet MMC^{T}$ device) by keeping CMD line low or sending CMD0 with argument + 0xFFFFFFA, before issuing CMD1. The data can be read from either boot area or user area depending on register setting. For more details, refer to section 6.3 of the JEDEC Standard Specification No.JESD84-B50.

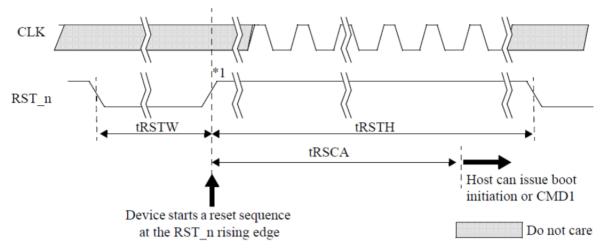
2.3 Device Identification Mode

While in device identification mode the host resets the device , validates operation voltage range and access mode, identifies the device and assigns a Relative device Address (RCA) to the device on the bus. All data communication in the Device Identification Mode uses the command line (CMD) only. For more details, refer to section 6.4 of the JEDEC Standard Specification No.JESD84-B50.

2.4 Interrupt Mode

The interrupt mode on the $e \cdot MMC^{T}$ system enables the master ($e \cdot MMC^{T}$ host) to grant the transmission allowance to the slaves (Device) simultaneously. This mode reduces the polling load for the host and hence, the power consumption of the system, while maintaining adequate responsiveness of the host to a Device request for service. Supporting $e \cdot MMC^{T}$ interrupt mode is an option, both for the host and the Device. For more details, refer to section 6.5 of the JEDEC Standard Specification No.JESD84-B50.

2.5 Data Transfer Mode


When the Device is in *Stand-by* State, communication over the CMD and DAT lines will be performed in push-pull mode. For more details, refer to section 6.6 of the JEDEC Standard Specification No.JESD84-B50.

2.6 Inactive Mode

The device will enter inactive mode if either the device operating voltage range or access mode is not valid. The device can also enter inactive mode with GO_INACTIVE_STATE command (CMD15). The device will reset to *Pre-idle* state with power cycle. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

2.7 H/W Reset Operation

Note1: Device will detect the rising edge of RST_n signal to trigger internal reset sequence

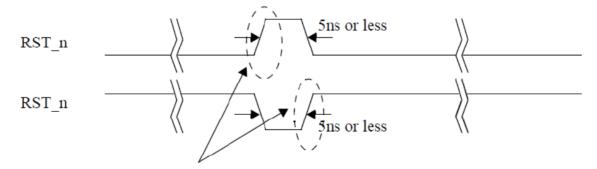

Figure 3 – H/W Reset Waveform

Table 6 – H/W Reset Timing Parameters

Symbol	Comment	Min	Max	Unit
tRSTW	RST_n pulse width	1		[us]
tRSCA	RST_n to Command time	200 ¹		[us]
tRSTH	RST_n high period (interval time)	1		[us]
Note1 : 74 cyc	les of clock signal required before issuing	CMD1 or CMD0 w	ith argument Ox	FFFFFFA

2.8 Noise Filtering Timing for H/W Reset

Device must filter out 5ns or less pulse width for noise immunity

Device must not detect these rising edge

Figure 4 – Noise Filtering Timing for H/W Reset

Device must not detect 5ns or less of positive or negative RST_n pulse. Device must detect more than or equal to 1us of positive or negative RST_n pulse width.

9

3. The e•MMC[™] bus

The $e \bullet MMC^{\text{\tiny M}}$ bus has ten communication lines and three supply lines:

- **CMD**: Command is a bidirectional signal. The host and Device drivers are operating in two modes, open drain and push/pull.
- DAT0-7 : Data lines are bidirectional signals. Host and Device drivers are operating in push-pull mode
- CLK: Clock is a host to Device signal. CLK operates in push-pull mode

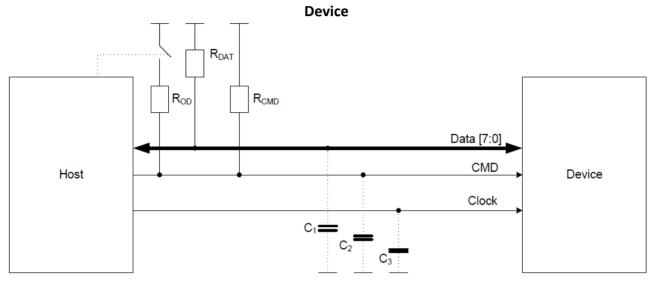


Figure 5 – Bus Circuitry Diagram

The R_{OD} is switched on and off by the host synchronously to the open-drain and push-pull mode transitions. The host does not have to have open drain drivers, but must recognize this mode to switch on the R_{OD} . R_{DAT} and R_{CMD} are pull-up resistors protecting the CMD and the DAT lines against bus floating device when all device drivers are in a high-impedance mode.

A constant current source can replace the R_{OD} by achieving a better performance (constant slopes for the signal rising and falling edges). If the host does not allow the switchable R_{OD} implementation, a fixed R_{CMD} can be used).

3.1. Power-up

3.1.1 e•MMC[™] power-up

An $e \cdot \text{MMC}^{\text{M}}$ bus power-up is handled locally in each device and in the bus master. Figure 6 shows the power-up sequence and is followed by specific instructions regarding the power-up sequence. Refer to section 10.1 of the JEDEC Standard Specification No.JESD84-B50 for specific instructions regarding the power-up sequence.

Supply voltage

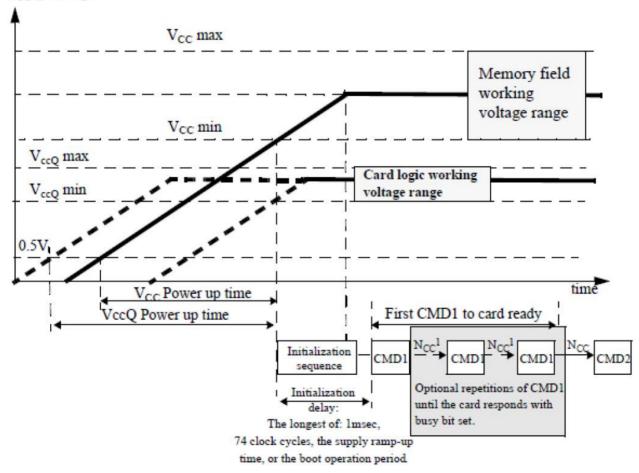


Figure 6 – $e \bullet MMC^{T}$ Power-up Diagram

3.1.2 *e*•*MMC*[™] Power Cycling

The master can execute any sequence of V_{CC} and V_{CCQ} power-up/power-down. However, the master must not issue any commands until V_{CC} and V_{CCQ} are stable within each operating voltage range. After the slave enters sleep mode, the master can power-down V_{CC} to reduce power consumption. It is necessary for the slave to be ramped up to V_{CC} before the host issues CMD5 (SLEEP_AWAKE) to wake the slave unit. For more information about power cycling see Section 10.1.3 of the JEDEC Standard Specification No.JESD84-B50.

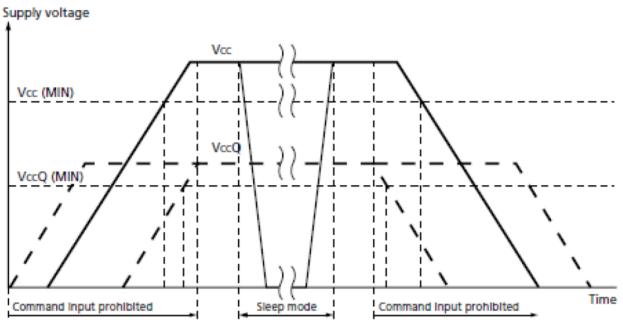


Figure 7 – The $e \bullet MMC^{\text{TM}}$ Power Cycle

3.1.3 Bus Operating Conditions

Parameter	Symbol	Min	Max.	Unit	Remark
Peak voltage on all lines		-0.5	VCCQ + 0.5	V	
All Inputs					
Input Leakage Current (before initialization sequence and/or the internal pull up resistors connected)		-100	100	μΑ	
Input Leakage Current (after initialization sequence and the internal pull up resistors disconnected)		-2	2	μA	
All Outputs					
Output Leakage Current (before initialization sequence)		-100	100	μΑ	
Output Leakage Current (after initialization sequence)		-2	2	μΑ	
Note1 : Initialization sequence is defined in section 10.1					

Table 7 – General Operating Conditions

3.1.4 Power supply: e•MMC[™]

In the $e \bullet MMC^{\text{T}}$, V_{CC} is used for the NAND flash device and its interface voltage; V_{CCQ} is for the controller and the MMC interface voltage shown in Figure 8. The core regulator is optional and only required when internal core logic voltage is regulated from V_{CCQ} . A C_{Reg} capacitor must be connected to the V_{Ddi} terminal to stabilize regulator output on the system.

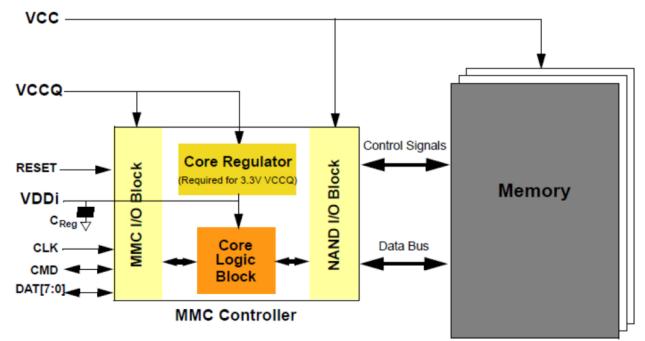


Figure 8 – *e*•MMC[™] Internal Power Diagram

3.1.5 *e*•MMC[™] Power Supply Voltage

The $e \bullet MMC^{\text{TM}}$ supports one or more combinations of VCC and VCCQ as shown in Table 8. The VCCQ must be defined at equal to or less than VCC. The available voltage configuration is shown in Table 9.

Table 8 – e •MINIC Power Supply Voltage					
Symbol	MIN	MAX	Unit	Remarks	
VCC	2.7	3.6	V		
	2.7	3.6	V		
VCCQ	1.65	1.95	V		
t _{PRUH}		35	ms		
t _{PRUL}		25	ms		
	Symbol VCC VCCQ t _{PRUH}	Symbol MIN VCC 2.7 VCCQ 2.7 VCCQ 1.65 t _{PRUH} t	$\begin{tabular}{ c c c c c c } \hline Symbol & MIN & MAX \\ \hline VCC & 2.7 & 3.6 \\ \hline VCCQ & \hline 2.7 & 3.6 \\ \hline 1.65 & 1.95 \\ \hline t_{PRUH} & 35 \\ \hline t_{PRUH} & 35 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Table 8 – $e \bullet MMC^{T}$ Power Supply Voltage

The $e \bullet MMC^{\text{M}}$ must support at least one of the valid voltage configurations, and can optionally support all valid voltage configurations (see Table 9).

		e mine voltage combination	5110			
	-	Vcc	2			
		1.65V-1.95V	2.7V-3.6V ¹			
Vcc	2.7V-3.6V	Valid	Valid			
Note1 : VccQ (I/O) 3.3 volt range is not supported in HS200 devices						

Table 9 – *e*•MMC[™] Voltage Combinations

eMCP Specification

3.1.6 Bus Signal Line Load

The total capacitance C_L of each line of the $e \bullet MMC^{\text{TM}}$ bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself, and the capacitance C_{DEVICE} of the Device connected to this line,

 $C_{L} = C_{HOST} + C_{BUS} + C_{DEVICE}$

and requiring the sum of the host and bus capacitances not to exceed 20 pF (see Table 10).

Parameter Symbol Min Max Unit Remark Pull-up resistance for CMD 4.7 R_{CMD} 50 Kohm to prevent bus floating Pull-up resistance for DAT0-7 10 50 Kohm to prevent bus floating R_{DAT} It is not necessary to put pull-up resistance on RST n (H/W rest) line 50 Kohm Pull-up resistance for RST_n 4.7 R_{RST} n if host does not use H/W reset. (Extended CSD register [162] = 0 b) Single Device Bus signal line capacitance CL 30 рF C_{BGA} 12 Single Device capacitance рF Maximum signal line inductance 16 nH Impedance on CLK / CMD / 45 55 ohm Impedance match DAT0~7 0 Serial's resistance on CLK line 47 ohm SR_{CLK} Serial's resistance on CMD / **SR**_{CMD} 0 47 ohm DAT0~7 line SR_{DAT0~7} It should be located as close as possible to the 2.2+0.1 4.7+0.22 balls defined in order to minimize connection parasitics CH1 should be placed adjacent to VccQ-VssQ balls VccQ decoupling capacitor μF (#K6 and #K4 accordingly, next to DAT [7..0] CH1 1 2.2 balls), It should be located as close as possible to the balls defined in order to minimize connection parasitics. It should be located as close as possible to the VCC capacitor value 1+0.1 4.7+0.22 μF balls defined in order to minimize connection parasitics To stabilize regulator output to controller core logics. It should be located as close as possible to V_{Ddi} capacitor value C_{REG} 1 4.7+0.1 μF the balls defined in order to minimize connection parasitics

Table 10 – Capacitance

3.1.7 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

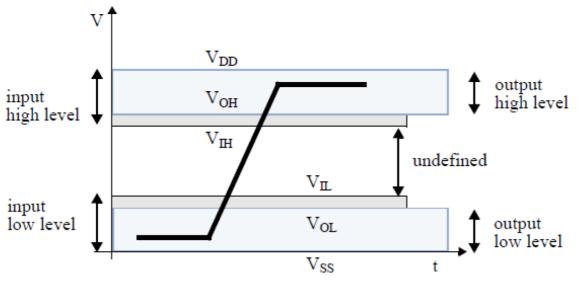


Figure 9 – Bus Signal Levels

3.1.8 Open-drain Mode Bus Signal Level

Table 11 – Open-drain Bus Signal Level

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	VDD - 0.2		V	IOH = -100 μA
Output LOW voltage	VOL		0.3	V	IOL = 2 mA

The input levels are identical with the push-pull mode bus signal levels.

3.1.9 Push-pull mode bus signal level— $e \bullet MMC^{T}$

The device input and output voltages shall be within the following specified ranges for any V_{DD} of the allowed voltage range

For 2.7V-3.6V V_{CCQ} range (compatible with JESD8C.01)

Table 12 – Push-	pull Signal Level—	∙High-voltage <i>e</i> •MMC [™]

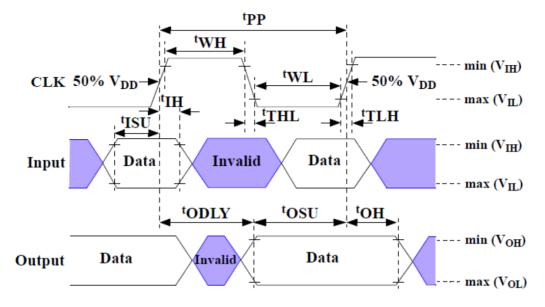
		1 0	0	0	
Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	0.75 * VCCQ		V	IOH = -100 μA @ VCCQ min
Output LOW voltage	VOL		0.125 * VCCQ	V	IOL = 100 μA @ VCCQ min
Input HIGH voltage	VIH	0.625 * VCCQ	VCCQ + 0.3	V	
Input LOW voltage	VIL	VSS – 0.3	0.25 * VCCQ	V	

For 1.65V – 1.95V VCCQ range (: Compatible with EIA/JEDEC Standard "EIA/JESD8-7 Normal Range" as defined in the following table.

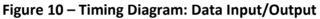
	Table 15 – Push-pull Signal Level – 1.65-1.95 VCCQ Voltage Range									
Parameter	Symbol	Min	Max. Unit		Conditions					
Output HIGH voltage	VOH	V V _{CCQ} – 0.45V		V	IOH = -2mA					
Output LOW voltage	VOL		0.45V	V	IOL = 2mA					
Input HIGH voltage	VIH	0.65 * V _{CCQ} ¹	V _{CCQ} + 0.3	V						
Input LOW voltage	VIL	$V_{ss} - 0.3$	$0.35 * V_{DD}^{2}$	V						
Note1 : 0.7 * V_{DD} for N	Note1 : 0.7 * V _{DD} for MMC [™] 4.3 and older revisions.									
Note2 : 0.3 * V_{DD} for N	/IMC™4.3 and	d older revisions.								

Table 13 – Push-pull Signal Level—1.65-1.95 VCCQ Voltage Range

3.1.10 Bus Operating Conditions for HS200


The bus operating conditions for HS200 devices is the same as specified in sections 10.4.1 of JESD84-B50through 10.4.2 of JESD84-B50. The only exception is that V_{CCQ} =3.3v is not supported.

3.1.11 Device Output Driver Requirements for HS200


Refer to section 10.4.4 of the JEDEC Standard Specification No.JESD84-B50.

3.2. Bus Timing

Data must always be sampled on the rising edge of the clock.

3.3. Device Interface Timings

Table 14 – High-speed Device Interface Timing								
Parameter	Symbol	Min	Max.	Unit	Remark			
Clock CLK ¹								
Clock frequency Data Transfer Mode (PP) ²	fPP	0	52 ³	MHz	CL ≤ 30 pF Tolerance:+100KHz			
Clock frequency Identification Mode (OD)	fOD	0	400	kHz	Tolerance: +20KHz			
Clock high time	tWH	6.5		ns	$CL \le 30 \text{ pF}$			
Clock low time	tWL	6.5		ns	$CL \le 30 \text{ pF}$			
Clock rise time ⁴	tTLH		3	ns	$CL \le 30 \text{ pF}$			
Clock fall time	tTHL		3	ns	$CL \le 30 \text{ pF}$			
Inputs CMD, DAT (referenced to CLK)								
Input set-up time	tISU	3		ns	$CL \le 30 \text{ pF}$			
Input hold time	tIH	3		ns	$CL \le 30 \text{ pF}$			
Outputs CMD, DAT (referenced to CLK)								
Output delay time during data transfer	tODLY		13.7	ns	$CL \le 30 \text{ pF}$			
Output hold time	tOH	2.5		ns	$CL \le 30 \text{ pF}$			
Signal rise time ⁵	tRISE		3	ns	$CL \le 30 \text{ pF}$			
Signal fall time	tFALL		3	ns	CL ≤ 30 pF			
Note1 · CLK timing is measured at 50% of VI	חר							

Note1 : CLK timing is measured at 50% of VDD.

Note2 : A $e \cdot MMC^{TM}$ shall support the full frequency range from 0-26Mhz or 0-52MHz

Note3 : Device can operate as high-speed Device interface timing at 26 MHz clock frequency.

Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5 : Inputs CMD DAT rise and fall times are measured by min (VIH) and max (VIL) and outputs CMD DAT rise and fall times are measured by min (VOH) and max (VOL). "

Table 15 – Backward-compatible Device Interface Timing								
Parameter	Symbol	Min	Max.	Unit	Remark ¹			
Clock CLK ²								
Clock frequency Data Transfer Mode (PP) ³	fPP	0	26	MHz	CL ≤ 30 pF			
Clock frequency Identification Mode (OD)	fOD	0	400	kHz				
Clock high time	tWH	10			CL ≤ 30 pF			
Clock low time	tWL	10		ns	CL ≤ 30 pF			
Clock rise time ⁴	tTLH		10	ns	CL ≤ 30 pF			
Clock fall time	tTHL		10	ns	$CL \le 30 \text{ pF}$			
Inputs CMD, DAT (referenced to CLK)								
Input set-up time	tISU	3		ns	$CL \le 30 \text{ pF}$			
Input hold time	tIH	3		ns	CL ≤ 30 pF			
Outputs CMD, DAT (referenced to CLK)								
Output set-up time ⁵	tOSU	11.7		ns	CL ≤ 30 pF			
Output hold time ⁵	tOH	8.3		ns	$CL \le 30 \text{ pF}$			

Note1: The Device must always start with the backward-compatible interface timing. The timing mode can be switched to high-speed interface timing by the host sending the SWITCH command (CMD6) with the argument for high-speed interface select.

Note2 : CLK timing is measured at 50% of VDD.

Note3 : For compatibility with Devices that support the v4.2 standard or earlier, host should not use > 26 MHz before switching to high-speed interface timing.

Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5 : tOSU and tOH are defined as values from clock rising edge. However, there may be Devices or devices which utilize clock falling edge to output data in backward compatibility mode. Therefore, it is recommended for hosts either to settWL value as long as possible within the range which will not go over tCK-tOH(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices. In this case, each devicewhich utilizes clock falling edge might show the correlation either between tWL and tOSU or between tCK and tOSU for the device in its own datasheet as a note or its application notes.

3.4. Bus Timing for DAT Signals During Dual Data Rate Operation

These timings applies to the DAT[7:0] signals only when the device is configured for dual data mode operation. In this dual data mode, the DAT signals operates synchronously of both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and therefore complies with the bus timing specified in section 10.5, therefore there is no timing change for the CMD signal.

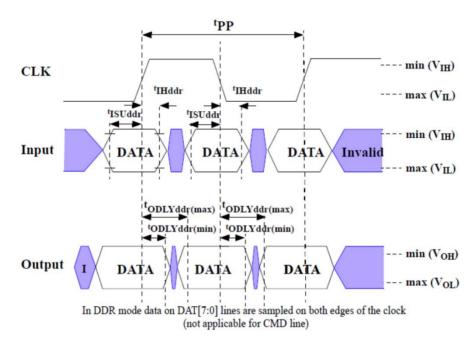
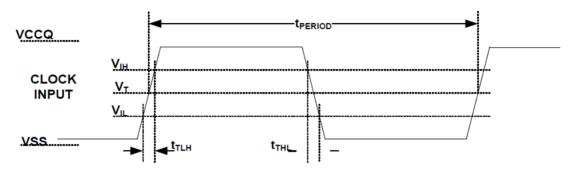


Figure 11 – Timing Diagram: Data Input/Output in Dual Data Rate Mode

6.1.1 Dual Data Rate Interface Timings

Table	16 – High-speed	– High-speed Dual Data Rate Interface Timing					
Parameter	Symbol	Min	Max.	Unit	Remark		
Input CLK ¹							
Clock duty cycle		45	55	%	Includes jitter, phase noise		
Input DAT (referenced to CLK-DDR mode)							
Input set-up time	tISUddr	2.5		ns	$CL \le 20 \text{ pF}$		
Input hold time	tlHddr	2.5		ns	$CL \le 20 \text{ pF}$		
Output DAT (referenced to CLK-DDR mode)						
Output delay time during data transfer	tODLYddr	1.5	7	ns	CL ≤ 20 pF		
Signal rise time (all signals) ²	tRISE		2	ns	CL ≤ 20 pF		
Signal fall time (all signals)	tFALL		2	ns	CL ≤ 20 pF		
Note1 : CLK timing is measured at 50% of V	/DD.						
Note2: Inputs CMD, DAT rise and fall time	s are measured by m	nin (V _{IH}) and m	ax (V _{IL}), and o	utputs CM	D, DAT rise and fall		
times are measured by min (V _{OH}) a	and max (V _{oL})						



3.5. Bus Timing Specification in HS200 Mode

3.5.1 HS200 Clock Timing

Host CLK Timing in HS200 mode shall conform to the timing specified in Figure 12 and **Table 17**. CLK input shall satisfy the clock timing over all possible operation and environment conditions. CLK input parameters should be measured while CMD and DAT lines are stable high or low, as close as possible to the Device.

The maximum frequency of HS200 is 200MHz. Hosts can use any frequency up to the maximum that HS200 mode allows.

Note1 : V_{IH} denote $V_{IH}(\text{min.})$ and V_{IL} denotes $V_{IL}(\text{max.}).$

Note2 : V_T =0.975V – Clock Threshold, indicates clock reference point for timing measurements.

Figure 12 – HS200 Clock Signal Timing

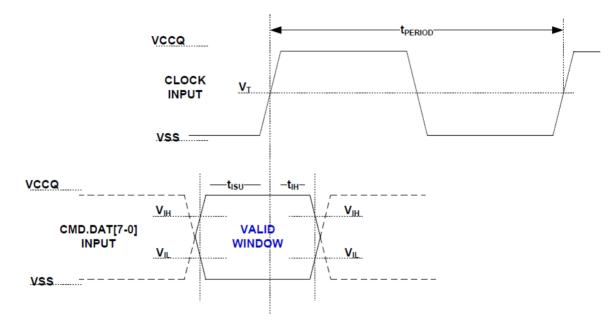

Table 17 – HS200 Clock Signal Timing							
Symbol	Min.	Max.	Unit	Remark			
t _{PERIOD}	5	-	ns	200MHz (Max.), between rising edges			
t _{tlh} , t _{thl}	-	0.2* t _{PERIOD}	ns	t _{TLH} , t _{THL} < 1ns (max.) at 200MHz, C _{BGA} =12pF, The absolute maximum value of t _{TLH} , t _{THL} is 10ns regardless of clock frequency.			
Duty Cycle	30	70	%				

Table 17 – HS200 Clock Signal Timing

3.5.2 HS200 Device Input Timing

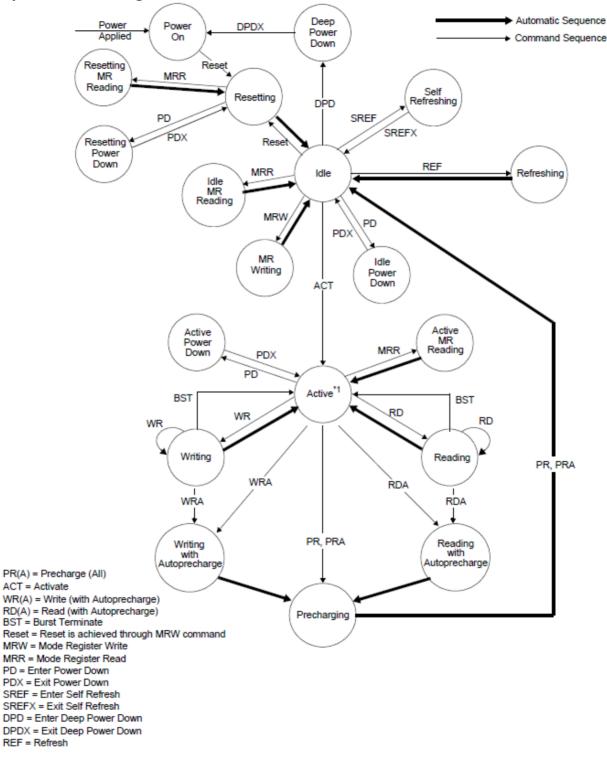
Figure 13 and Table 18 define Device input timing.

Note1: t_{ISU} and t_{IH} are measured at $V_{IL}(max.)$ and $V_{IH}(min.)$. Note2: V_{IH} denote $V_{IH}(min.)$ and V_{IL} denotes $V_{IL}(max.)$.

Figure 13 – HS200 Device Input Timing

	Table 18 – HS200 Device input Timing								
Symbol	Min.	Max.	Unit	Remark					
t _{ISU}	1.4	-	ns	5pF≤C _{BGA} ≤ 12pF					
t _{IH}	0.8		ns	5pF≤C _{BGA} ≤ 12pF					

Table 18 – HS200 Device Input Timing


4 LPDDR2 Interface

4.1. Pin Function and Descriptions

		Table 19 – Pin Function and Descriptions
Name	Туре	Description
CK_t, CK_c	Input	Clock: CK_t and CK_c are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled on both positive and negative edge of CK_t. Single Data Rate (SDR) inputs, CS_n and CKE, are sampled at the positive Clock edge. Clock is defined as the differential pair, CK_t and CK_c. The positive Clock edge is defined by the crosspoint of a rising CK_t and a falling CK_c. The negative Clock edge is defined by the crosspoint of a falling CK_t and a rising CK_c.
CKE	Input	Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and therefore device input buffers and output drivers. Power savings modes are entered and exited through CKE transitions. CKE is considered part of the command code. See Command Truth Table for command code descriptions. CKE is sampled at the positive Clock edge.
CS	Input	Chip Select: CS_n is considered part of the command code. See Command Truth Table for command code descriptions. CS_n is sampled at the positive Clock edge.
CA0 – CA9	Input	DDR Command/Address Inputs: Uni-directional command/address bus inputs. CA is considered part of the command code. See Command Truth Table for command code descriptions.
DQ0 – DQ31	I/O	Data Inputs/Output: Bi-directional data bus
DQS0_t – DQS3_t, DQS0_c – DQS3_c	1/0	Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write data) and differential (DQS_t and DQS_c). It is output with read data and input with write data. DQS_t is edge-aligned to read data and centered with write data. DQS0_t and DQS0_c correspond to the data on DQ0 – DQ7, DQS1_t and DQS1_c to the data on DQ8 – DQ15, DQS2_t and DQS2_c to the data on DQ16 – DQ23, DQS3_t and DQS3_c to the data on DQ24 – DQ31.
DM0 – DM3	Input	Input Data Mask: DM is the input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS_t. Although DM is for input only, the DM loading shall match the DQ and DQS (or DQS_c). DM0 is the input data mask signal for the data on DQ0-7, DM1 is the input data mask signal for the data on DQ8-15, DM2 is the input data mask signal for the data on DQ16-23, DM3 is the input data mask signal for the data on DQ24-31.
VDD1	Supply	Core Power Supply 1
VDD2	Supply	Core Power Supply 2
VDDCA	Supply	Input Receiver Power Supply: Power supply for CA0-9, CKE, CS_n, CK_t, and CK_c input buffers.
VDDQ	Supply	I/O Power Supply: Power supply for Data input/output buffers.
VREF(CA)	Supply	Reference Voltage for CA Command and Control Input Receiver: Reference voltage for all CA0-9, CKE, CS_n, CK_t, and CK_c input buffers.
VREF(DQ)	Supply	Reference Voltage for DQ Input Receiver: Reference voltage for all Data input buffers.
VSS	Supply	Ground
VSSCA	Supply	Ground for Input Receivers
VSSQ	Supply	I/O Ground
ZQ	I/O	Reference Pin for Output Drive Strength Calibration

4.2. Simplified State Diagram

Figure 14 — Simplified Bus Interface State Diagram

Note 1: For DDR2 Mobile RAM in the Idle state, all banks are precharged.

4.3. Electrical Conditions

All voltages are referenced to VSS (GND)

- Execute power-up and Initialization sequence before proper device operation is achieved.
- Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue.

4.3.1 Absolute Maximum Ratings

Table 20 Absolute Maximum Ratings									
Parameter	Symbol	min.	max.	Unit	Note				
VDD1 supply voltage relative to VSS	VDD1	-0.4	2.3	V	2				
VDD2 supply voltage relative to VSS	VDD2	-0.4	1.6	V	2				
VDDQ supply voltage relative to VSSQ	VDDQ	-0.4	1.6	V	2, 3				
Voltage on any ball relative to VSS	VIN, VOUT	-0.4	1.6	V					
Storage Temperature	TSTG	-40	110	°C					

Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 2. See Power-Ramp section "Power-up, initialization and Power-Off" on section7.6 for relationship between power supplies.
- 3. VREF \leq 0.6 x VDDQ; however, VREF may be \geq VDDQ provided that VREF \leq 300mV.
- 4. Storage Temperature is the case surface temperature on the center/top side of the DDR2 Mobile RAM Device. For the measurement conditions, please refer to JESD51-2 standard.

Caution

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 21 Recommended DC Operating Conditions(TJ = -15°C to +80°C)								
Parameter	Symbol	min.	max.	Unit	Note			
Core Power1	VDD1	1.7	1.8	1.95	V			
Core Power2, Input Buffer Power	VDD2	1.14	1.2	1.3	V			
I/O Buffer Power	VDDQ	1.14	1.2	1.3	V			

4.3.2 Recommended DC Operating Conditions

4.3.3 AC and DC Input Measurement Levels

4.3.3.1 AC and DC Input Levels for Single-Ended CA/CS Signals Table 22 Single-Ended AC and DC Input Levels for CA/CS Inputs

•			•			
Parameter	Symbol	Speed	min.	max.	Unit	Note
AC input logic high		533 to 1066	VREF + 0.220	Note 2		4.0
	VIHCA(AC)	400	VREF + 0.300	Note 2	V	1, 2
AC input logic low	VILCA(AC)	533 to 1066	– Note 2	VREF – 0.220	v	1 2
	VILCA(AC)	400	Note 2	VREF – 0.300	v	1, 2
DC input logic high	VIHCA(DC)	533 to 1066	VREF + 0.130	VDD2	V	1
De input logic llight	VINCA(DC)	400	VREF + 0.200	VDD2		T
DC input logic low		533 to 1066	– VSS	VREF – 0.130	v	1
DC input logic low	VILCA(DC)	400	v 33	VREF – 0.200	v	Т
Reference Voltage for CA/CS inputs	VREFCA(DC)		0.49 × VDD2	0.51 × VDD2	V	3, 4

Notes: 1. For CA/CS input only pins. VREF = VREFCA(DC).

2. See "Overshoot and Undershoot Specifications", please refer to JESD209-2F standard.

2. The ac peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD2 (for reference: 26dditio. ± 12 mV).

3. For reference: 26dditio. VDD2/2 \pm 12 mV.

4.3.3.2 AC and DC Input Levels for CKE

Table 23 Single-Ended AC and DC Input Levels for CKE

Parameter	Symbol	min.	max.	U	Init Note
CKE Input High Level	VIHCKE	0.8 × VDD2	Note 1	V	1
CKE Input Low Level	VILCKE	Note 1	0.2 × VDD2	V	1

Note: 1. See "Overshoot and Undershoot Specifications", please refer to JESD209-2F standard.

4.3.3.3 AC and DC Input Levels for Single-Ended Data Signals Table 24 Single-Ended AC and DC Input Levels for DQ and DM

Parameter	Symbol	Speed	min.	max.	Unit	Note
AC input logic high	VIHDQ(AC)	533 to 1066	VREF + 0.220	Note 2	V	1 2
AC input logic high	VINDQ(AC)	400	VREF + 0.300	Note 2	V	1, 2
AC input logic low	VILDQ(AC)	533 to 1066	- Note 2	VREF – 0.220	V	1 7
	VILDQ(AC)	400	- Note 2	VREF – 0.300	v	1, 2
DC input logic high		533 to 1066	VREF + 0.130	VDDQ	V	1
DC input logic high	VIHDQ(DC)	400	VREF + 0.200	VDDQ		1
DC input logic low		533 to 1066	- VSSQ	VREF – 0.130	V	1
DC input logic low	VILDQ(DC)	400	- vssq	VREF – 0.200	v	т
Reference Voltage for DQ, DM inputs	VREFDQ(DC)		0.49 × VDDQ	0.51 × VDDQ	V	3, 4

Notes: 1. For DQ input only pins. VREF = VREFDQ(DC).

2. See "Overshoot and Undershoot Specifications", please refer to JESD209-2F standard.

3. The ac peak noise on VREFDQ may not allow VREFDQ to deviate from VREFDQ(DC) by more than ± 1% VDDQ (for reference: 26dditio. ± 12 mV).

4. For reference: 26dditio. VDDQ \pm 12 mV.

4.3.3.4 Differential Swing Requirements for Clock (CK – /CK) and Strobe (DQS – /DQS) Table 25 Differential AC and DC Input Levels

Parameter	Symbol	min.	max.	Unit	Note
Differential input high	VIHdiff(DC)	2 × (VIH(DC) – VREF)	Note 3	V	1
Differential input low	VILdiff(DC)	Note 3	2 × (VIL(DC) – VREF)	V	1
Differential input high AC	VIHdiff(AC)	2 × (VIH(AC) – VREF)	Note 3	V	2
Differential input low AC	VILdiff(AC)	Note 3	$2 \times (VIL(AC) - VREF)$	V	2

Notes: 1. Used to define a differential signal slew-rate.

2. For CK – /CK use VIH/VIL(AC) of CA and VREFCA; for DQS – /DQS, use VIH/VIL(AC) of DQs and VREFDQ; if a reduced AC-high or AC-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined, however the single-ended signals CK, /CK, DQS, and /DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications", please refer to JESD209-2F standard

4. For CK and /CK, VREF = VREFCA(DC). For DQS and /DQS, VREF = VREFDQ(DC).

Table 26 Allowed Time	able 26 Allowed Time Before Ringback (tDVAC) for CK – /CK and DQS – /DQS									
Slew Rate [V/ns]	tDVAC [ps] @ VIH/Ldiff(AC) = 440mV	tDVAC [ps] @ VIH/Ldiff(AC) = 600mV								
	min.	min.								
> 4.0	175	75								
4	170	57								
3	167	50								
2	163	38								
1.8	162	34								
1.6	161	29								
1.4	159	22								
1.2	155	13								
1	150	0								
< 1.0	150	0								

4.3.3.5 Single-ended Requirements for Differential Signals Table 27 Single-ended Levels for CK, DQS, /CK, /DQS

	0		, ,,, ,,			
Parameter	Symbol	Speed	min.	max.	Unit	Note
Single-ended high-level for		533 to 1066	(VDDQ / 2) + 0.220	- Note 3	V	1 2
strobes		400	(VDDQ / 2) + 0.300	Note 5	v	1, 2
Single-ended high-level for	VSEH(AC)	533 to 1066	(VDD2 / 2) + 0.220	Note 3	V	1 0
СК, /СК		400	(VDD2 / 2) + 0.300	Note 3	v	1, 2
Single-ended low-level for		533 to 1066	- Note 3	(VDDQ / 2) – 0.220	V	1 0
strobes		400	- Note 3	(VDDQ / 2) - 0.300	V	1, 2
Single-ended low-level for	VSEL(AC)	533 to 1066	- Note 3	(VDD2 / 2) – 0.220	V	1 2
СК, /СК		400	- Note 3	(VDD2 / 2) – 0.300	v	1, 2

Notes: 1. For CK, /CK use VSEH/VSEL(AC) of CA; for strobes (DQS0, /DQS0, DQS1, /DQS1, DQS2, /DQS2, DQS3, /DQS3) use VIH/VIL(AC) of DQs.

2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VSEH(AC)/VSEL(AC) for CA is based on VREFCA; if a reduced Achigh or AC-low level is used for a signal group, then the reduced level applies also here

3. These values are not defined, however the single-ended signals CK, /CK, DQS0, /DQS0, DQS1, /DQS1, DQS2, /DQS2, DQS3, /DQS3 need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications", please refer to JESD209-2F standard.

4.3.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, /CK and DQS, /DQS) must meet the requirements in Table 28. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.

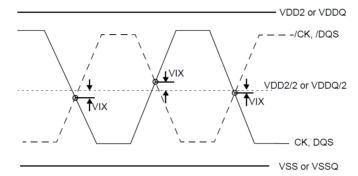


Figure 22 — VIX Definition

Table 28 Cross Point Voltage for Differential Input Signals (CK, DQS)

Parameter	Symbol	min.	max.	Unit	Note
Differential Input Cross Point Voltage relative to VDD2/2 for CK, /CK	VIXCA	-120	120	mV	1, 2
Differential Input Cross Point Voltage relative to VDDQ/2 for DQS, /DQS	VIXDQ	-120	120	mV	1, 2

Notes: 1. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device, and VIX(AC) is expected to track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross.

2. For CK and /CK, VREF = VREFCA(DC). For DQS and /DQS, VREF = VREFDQ(DC).

AC and DC Output Measurement Levels

4.3.4.1 Single Ended AC and DC Output Levels

Table 29 shows the output levels used for measurements of single ended signals.

Table 29 Single-ended AC and DC Output Levels

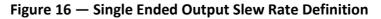
Parameter	Sy	mbol	Value	Unit	Note
DC output high measurement level (for IV curve linearity)	VO	H(DC)	0.9 × VDDQ	V	1
DC output low measurement level (for IV curve linearity)	VO)L(DC)	$0.1 \times VDDQ$	V	2
AC output high measurement level (for output slew rate)	VOH(AC)		VREFDQ + 0.12	V	
AC output low measurement level (for output slew rate)	VOL(AC)		VREFDQ – 0.12	V	
Output Leakage current (DQ, DM, DQS, /DQS)	IOZ	min.	-5	μΑ	
(DQ, DQS, /DQS are disabled; 0V . VOUT . VDDQ)	102	max.	5	μΑ	
Delta PON between null up and null down for DO /DM		min.	-15	%	
Delta RON between pull-up and pull-down for DQ/DM	MMPUPD	max.	15	%	

Notes: 1. IOH = -0.1mA. 2.IOL = 0.1mA.

4.3.4.2 Differential AC and DC Output Levels

Table 30 shows the output levels used for measurements of differential signals.

Table 30 Differential AC and DC Output Levels


Parameter	Symbol	Value	Unit	Note
AC differential output high measurement level (for output SR)	VOHdiff(AC)	+0.2 × VDDQ	V	
AC differential output low measurement level (for output SR)	VOLdiff(AC)	-0.2 × VDDQ	V	

4.3.4.3 Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 31 and Figure 16.

Measured Description Defined by from to Single-ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC) – VOL(AC)] / DeltaTRse VOL(AC) [VOH(AC) - VOL(AC)] / DeltaTFse Single-ended output slew rate for falling edge VOH(AC) DeltaTRse Single Ended Output Vollage (i.e. DQ) - VOH (AC) VREF VOL (AC) DeltaTFse

Table 31 Single-ended Output Slew Rate Definition

Table 32 Output Slew Rate (single-ended)

Parameter	Symbol	min.	max.	Unit
Single-ended Output Slew Rate (RON = $40\Omega \pm 30\%$)	SRQse	1.5	3.5	V/ns
Single-ended Output Slew Rate (RON = $60\Omega \pm 30\%$)	SRQse	1.0	2.5	V/ns
Output slew-rate matching Ratio (Pull-up to Pull-down)		0.7	1.4	

Remark: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), se: Single-ended Signals

Notes: 1. Measured with output reference load.

2. The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pulldown drivers due to process variation.

- 3. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).
- 4. Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic high and 1/2 of DQ signals per data byte driving logic low.

4.3.5 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 33 and Figure 17.

Table 33 Differential Output Slew Rate Definition

Description	Meas	sured	Defined by
	from	to	- Defined by
Differential output slew rate for rising edge	VOLdiff(AC)	VOHdiff(AC)	[VOHdiff(AC) – VOLdiff(AC)] / DeltaTRdiff
Differential output slew rate for falling edge	VOHdiff(AC)	VOLdiff(AC)	[VOHdiff(AC) – VOLdiff(AC)] / DeltaTFdiff

Note: 1. Output slew rate is verified by design and characterization, and may not be subject to production test.

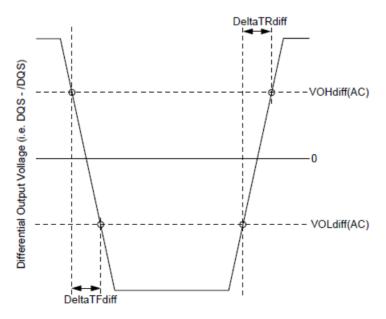


Figure 17 — Differential Output Slew Rate Definition

Table 34 Differential Output Slew Rate

Parameter	Symbol	min.	max.	Unit
Differential Output Slew Rate (RON = $40\Omega \pm 30\%$)	SRQdiff	3.0	7.0	V/ns
Differential Output Slew Rate (RON = $60\Omega \pm 30\%$)	SRQdiff	2.0	5.0	V/ns

Remark: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals

Notes: 1. Measured with output reference load.

2. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

3. Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic high and 1/2 of DQ signals per data byte driving logic low.

4.3.6 Overshoot and Undershoot Specifications Table 35 AC Overshoot/Undershoot Specification

Parameter	1066	933	800	667	533	400	Unit	
Maximum peak amplitude allowed for overshoot area.	Max.			0.3	35			V
Maximum peak amplitude allowed for undershoot area.	Max.			0.3	35			V
Maximum overshoot area above VDD*1.	max.	0.15	0.17	0.20	0.24	0.30	0.40	V-ns
Maximum undershoot area below VSS*2	max.	0.15	0.17	0.20	0.24	0.30	0.40	V-ns

Notes: 1. For CA0 – CA9, CK, /CK, /CS, and CKE, VDD stands for VDD2. For DQ, DM, DQS, and /DQS, VDD stands for VDDQ.

2. For CA0 – CA9, CK, /CK, /CS, and CKE, VSS stands for VSS. For DQ, DM, DQS, and /DQS, VSS stands for VSSQ.

3. Values are referenced from actual VDDQ, VDD2, VSSQ, and VSS levels.

4.3.6.1 RONPU and RONPD Characteristics with ZQ Calibration

Output driver impedance RON is defined by the value of the external reference resistor RZQ. Nominal RZQ is 240Ω .

4.3.6.2 RONPU and RONPD Characteristics without ZQ Calibration

Output driver impedance RON is defined by design and characterization as default setting.

4.4. Electrical Specifications

4.4.1. DC Characteristics 1 (For 4Gb)

(TJ = -15°C to +80°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

Table 36 IDD Specification Parameters and Operating Conditions

Cumhal	Power	1066	800		
Symbol	Supply	max.	max.	Unit	Parameter/Condition
IDD0_1	VDD1	8	8	mA	Operating one bank active-pecharge current:
IDD0_2	VDD2	50	45	mA	-tCK = tCK(avg)min; tRC = tRCmin; CKE is HIGH; /CS is HIGH between valid commands;
	VDDQ	0.6	0.6	m۸	CA bus inputs are SWITCHING;
IDD0_IN	VDDQ	0.0	0.0	mA	Data bus inputs are STABLE
IDD2P_1	VDD1	1	1	mA	Idle power-down standby current: -tCK = tCK(avg)min; CKE is LOW;
IDD2P_2	VDD2	2.25	2.25	mA	/CS is HIGH; All banks idle;
IDD2P_IN	VDDQ	0.2	0.2	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE
IDD2PS_1	VDD1	1	1	mA	Idle power-down standby current with clock stop:
					-CK = LOW, /CK = HIGH; CKE is LOW;
IDD2PS_2	VDD2	2.25	2.25	mA	/CS is HIGH; All banks idle;
IDD2PS_IN	VDDQ	0.2	0.2	mA	CA bus inputs are STABLE; Data bus inputs are STABLE
IDD2N_1	VDD1	0.6	0.6	mA	Idle non power-down standby current:
IDD2N_2	VDD2	13	11	mA	-tCK = tCK(avg)min; CKE is HIGH; /CS is HIGH; All banks idle;
					CA bus inputs are SWITCHING;
IDD2N_IN	VDDQ	0.6	0.6	mA	Data bus inputs are STABLE
IDD2NS_1	VDD1	0.6	0.6	mA	Idle non power-down standby current with clock stop: -CK = LOW, /CK = HIGH; CKE is HIGH;
IDD2NS_2	VDD2	6	6	mA	/CS is HIGH; All banks idle;
IDD2NS_IN	VDDQ	0.6	0.6	mA	CA bus inputs are STABLE;
					Data bus inputs are STABLE Active power-down standby current:
IDD3P_1	VDD1	0.8	0.8	mA	-tCK = tCK(avg)min; CKE is LOW;
IDD3P_2	VDD2	5	5	mA	/CS is HIGH; One bank active;
IDD3P_IN	VDDQ	0.1	0.1	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE
IDD3PS 1	VDD1	0.8	0.8	mA	Active power-down standby current with clock stop:
IDD3PS 2	VDD2	5	5	mA	-CK = LOW, /CK = HIGH; CKE is LOW; /CS is HIGH; One bank active;
					CA bus inputs are STABLE;
IDD3PS_IN	VDDQ	0.1	0.1	mA	Data bus inputs are STABLE
IDD3N_1	VDD1	1.2	1.2	mA	Active non power-down standby current: -tCK = tCK(avg)min; CKE is HIGH;
IDD3N_2	VDD2	19	17	mA	/CS is HIGH; One bank active;
IDD3N_IN	VDDQ	0.6	0.6	mA	CA bus inputs are SWITCHING;
_			-		Data bus inputs are STABLE

eMCP Specification

IDD3NS_1	VDD1	1.2	1.2 n		<pre>ive non power-down standby current with clock stop: = LOW, /CK = HIGH; CKE is HIGH;</pre>
IDD3NS_2	VDD2	12	12 n		is HIGH; One bank active;
IDD3NS_IN	VDDQ	0.6	0.6 n	~ ^	bus inputs are STABLE; a bus inputs are STABLE
	Table 37 ID	D Speci	fication	Param	neters and Operating Conditions (cont'd)
Sumbol	Power	1066	800	— Unit	Parameter/Condition
Symbol	Supply	max.	max.	- Onit	Parameter/Condition
IDD4R_1	VDD1	2	2	mA	Operating burst read current: tCK = tCK(avg)min; /CS is HIGH between valid commands; One bank active; BL = 4; RL = Rlmin;
IDD4R_2	VDD2	160	130	mA	CA bus inputs are SWITCHING; 50% data change each burst transfer; Values in parenthesis are for x16 bits;
IDD4W_1	VDD1	2	2	mA	Operating burst write current: tCK = tCK(avg)min; /CS is HIGH between valid commands;
IDD4W_2	VDD2	150	120	mA	One bank active; BL = 4; WL = Wlmin; CA bus inputs are SWITCHING;
IDD4W_IN	VDDQ	1	1	mA	50% data change each burst transfer; Values in parenthesis are for x16 bits;
IDD5_1	VDD1	20	20	mA	All Bank Auto Refresh Burst current: tCK = tCK(avg)min; CKE is HIGH between valid commands;
IDD5_2	VDD2	120	120	mA	tRC = tRFCabmin; Burst refresh;
IDD5_IN	VDDQ	0.6	0.6	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE;
IDD5AB_1	VDD1	2	2	mA	All Bank Auto Refresh Average current:
IDD5AB_2	VDD2	16	15	mA	—tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tREFI;
IDD5AB_IN	VDDQ	0.6	0.6	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE;
IDD5PB_1	VDD1	2	2	mA	Per Bank Auto Refresh Average current: —tCK = tCK(avg)min; CKE is HIGH between valid commands;
IDD5PB_2	VDD2	16	15	mA	tRC = tREFI/8;
IDD5PB_IN	VDDQ	0.6	0.6	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE;

Notes: 1. IDD values published are the maximum of the distribution of the arithmetic mean.

0. IDD current specifications are tested after the device is properly initialized.

Table 38 IDD6 Full and Partial Array Self-Refresh Current

Parameter		Symbol	Value	Unit	Condition
Self-Refresh Current		IDD6_1	1800	μΑ	CK = LOW, $/CK = HIGH$;
+45°C \leq TJ \leq +80°C	Full Arrav	IDD6_2	6400	μΑ	CKE is LOW;
	Full Allay		24		CA bus inputs are STABLE; Data
		IDD6_IN	24	μA	bus inputs are STABLE;

Note: 1. IDD values published are the maximum of the distribution of the arithmetic mean.

4.4.3. Pin Capacitance (For 4Gb)

(TA = +25°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

Table 39 Input/Output Capacitance

Parameter	Symbol	min.	max.	Unit	Note
Input capacitance, CK and /CK	ССК	1.0	2.0	рF	1, 2
Input capacitance delta, CK and /CK	CDCK	0	0.2	рF	1, 2, 3
Input capacitance, all other input-only pins	CI	1.0	2.0	рF	1, 2, 4
Input capacitance delta, all other input-only pins	CDI	-0.4	0.4	рF	1, 2, 5
Input/output capacitance, DQ, DM, DQS, /DQS	CIO	1.25	2.5	рF	1, 2, 6, 7
Input/output capacitance delta, DQS, /DQS	CDDQS	0	0.25	рF	1, 2, 7, 8
Input/output capacitance delta, DQ, DM	CDIO	-0.5	0.5	рF	1, 2, 7, 9
Input/output capacitance ZQ Pin	CZQ	0	2.5	рF	1, 2

Notes: 1. This parameter applies to die device only (does not include package capacitance).

 This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSSQ applied and all other pins floating.

3. Absolute value of CCK – C/CK.

4. CI applies to /CS, CKE, CA0 – CA9.

5. CDI = CI $- 0.5 \times (CCK + C/CK)$

6. DM loading matches DQ and DQS.

7. MR3 I/O configuration DS OP3-OP0 = 0001B (34.3 Ω typical)

8. Absolute value of CDQS and C/DQS.

9. CDIO = CIO $- 0.5 \times$ (CDQS + C/DQS) in byte-lane.

4.4.4. AC Characteristics

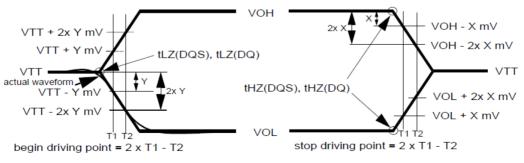
(TJ = -15°C to +80°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

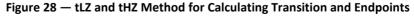
Table 40 AC Characteristics Table ^{*6}										
Parameter	Symbol	min. max.	min. tCK ^{*9}	1066	933	800	667	533	400	Unit
Max. Frequency ^{*4}			_	533	466	400	333	266	200	MHz
Clock Timing										
Average Clock Period	tCK(avg)	min.	_	1.875	2.15	2.5	3	3.75	5	ns ns
		max. min.	_	<u> </u>						
Average high pulse width	tCH(avg)	max.	_		0.45					tCK (avg)
Average low pulse width	tCL(avg)	min.	_				45			tCK
Abashuta Clask Deviad		max.	_	0.55 tCK(avg)(min.) + tJIT(per)(min.)						(avg)
Absolute Clock Period	tCK(abs)	min.	_		tCK(av			r)(min.)		ps
Absolute clock HIGH pulse width	tCH(abs),	min.	—	0.43						
(with allowed jitter)	allowed	max.	_	0.57						
Absolute clock LOW pulse width	tCL(abs), allowed	min.	—	0.43						
(with allowed jitter)		max.	_	0.57						
Clock Period Jitter (with allowed jitter)	tJIT(per), allowed	min.	_	-90	-95	-100	-110	-120	-140	- ps
		max.	_	90	95	100	110	120	140	
Maximum Clock Jitter between two consecutive clock cycles (with allowed jitter)	tJIT(cc), allowed	max.	_	180	190	200	220	240	280	ps
	tJIT(duty), allowed	min.	_							
Duty cycle Jitter (with allowed jitter)		max.	_	max((tCH(abs),max – tCH(avg),max), (tCL(abs),max – tCL(avg),max)) × tCK(avg)						
	tERR(2per), allowed	min.	_	-132	-140	-147	-162	-177	-206	– ps
Cumulative error across 2 cycles		max.	_	132	140	147	162	177	206	
Cumulative error across 3 cycles	tERR(3per), allowed	min.	_	-157	-166	-175	-192	-210	-245	- ps
		max.	_	157	166	175	192	210	245	
Cumulative error across 4 cycles	tERR(4per), allowed	min.	_	-175	-185	-194	-214	-233	-272	
		max.	_	175	185	194	214	233	272	- ps
	tERR(5per), allowed	min.	_	-188	-199	-209	-230	-251	-293	
Cumulative error across 5 cycles		max.	_	188	199	209	230	251	293	- ps
Cumulative error across 6 cycles	tERR(6per),	min.	_	-200	-211	-222	-244	-266	-311	ps

	allowed	max.	_	200	211	222	244	266	311		
Cumulative error across 7 cycles	tERR(7per),	min.	_	-209	-221	-232	-256	-279	-325	- ps	
	allowed	max.	—	209	221	232	256	279	325		
Cumulative error errors 9 sucles	tERR(8per),	min.	_	-217	-229	-241	-266	-290	-338	- ps	
Cumulative error across 8 cycles	allowed	max.	—	217	229	241	266	290	338		
	tERR(9per), allowed	min.	_	-224	-237	-249	-274	-299	-349	ps	
Cumulative error across 9 cycles		max.	_	224	237	249	274	299	349		
Cumulative error across 10 evelos	tERR(10per),	min.	_	-231	-244	-257	-282	-308	-359		
Cumulative error across 10 cycles	allowed	max.	_	231	244	257	282	308	359	ps	
Cumulative error ecross 11 eveles	tERR(11per),	min.	_	-237	-250	-263	-289	-316	-368	- ps	
Cumulative error across 11 cycles	allowed	max.	_	237	250	263	289	316	368		
Cumulative error ecross 12 eveles	tERR(12per),	min.	_	-242	-256	-269	-296	-323	-377	20	
Cumulative error across 12 cycles	allowed	max.	_	242	256	269	296	323	377	ps	
Current-thing array and a 12, 14	tERR(nper),	min.	_	tERR(nper),allowed,min. = (1 + 0.68ln(n)) × tJIT(per),allowed,min.							
Cumulative error across n = 13, 14 49, 50 cycles	allowed	max.		tERR(nper),allowed,max. =							
		max.		(1	+ 0.68ln(n)) × tJIT	[(per),all	owed,m	ax.		
Read Parameters		min.	_			25	00				
DQS output access time from CK, /CK	tDQSCK	max.	_	2500 5500						- ps	
DQSCK Delta Short ^{*15}	tDQSCKDS	max.	_	330	330 380 450 540 670 900				900	ps	
DQSCK Delta Medium ^{*16}	tDQSCKDM	max.	_	680	780	900	1050	1350	1800	ps	
DQSCK Delta Long ^{*17}	tDQSCKDL	max.	—	920	1050	1200	1400	1800	2400	ps	
DQS – DQ skew	tDQSQ	max.	_	200	220	240	280	340	400	ps	
Data hold skew factor	tQHS	max.	_	230	260	280	340	400	480	ps	
DQS Output High Pulse Width	tQSH	min.	_	tCH(abs) – 0.05						tCK (avg)	
DQS Output Low Pulse Width	tQSL	min.	_	tCL(abs) – 0.05						tCK	
									(avg) tCK		
Data Half Period	tQHP	min.	-	min(tQSH, tQSL)						(avg)	
DQ / DQS output hold time from DQS	tQH	min.	-	tQHP – tQHS							
Read preamble*12, ^{*13}	tRPRE	min.	_	0.9							
Read postamble*12, ^{*14}	tRPST	min.	_	tCL(abs) – 0.05				(avg) tCK			
DQS low-Z from clock ^{*12}	tLZ(DQS)	min.	_	tDQSCK(min.) – 300						(avg) ps	

DQ low-Z from clock ^{*12}	tLZ(DQ)	min.	—		tDQSCK(min.) –(:	1.4 × tQI	HS(max.))	ps
DQS high-Z from clock ^{*12}	tHZ(DQS)	max.	_		t[DQSCK(m	nax.) – 1	00		ps
DQ high-Z from clock ^{*12}	tHZ(DQ)	max.	_	tDQSCK(max.) +(1.4 × tDQSQ(max.))						ps
Write Parameters ^{*11}										
DQ and DM input hold time (VREF based)	tDH	min.	_	210	235	270	350	430	480	ps
DQ and DM input setup time (VREF based)	tDS	min.	—	210	235	270	350	430	480	ps
DQ and DM input pulse width	tDIPW	min.	_			0.	35			tCK (avg)
Write command to 1 st DQS latching transition	tDQSS	min. max.	_						tCK (avg)	
DQS input high-level width	tDQSH	min.	_	0.4					tCK (avg)	
DQS input low-level width	tDQSL	min.	_			0	.4			tCK (avg)
DQS falling edge to CK setup time	tDSS	min.	_	0.2					tCK (avg)	
DQS falling edge hold time from CK	tDSH	min.	_	0.2					tCK (avg)	
Write postamble	tWPST	min.	_	- 0.4					tCK (avg)	
Write preamble	tWPRE	min.	_			0.	35			tCK (avg)
CKE Input Parameters										
CKE min. pulse width (high and low pulse width)	tCKE	min.	3				3			tCK (avg)
CKE input setup time	tISCKE*2	min.	_			0.	25			tCK (avg)
CKE input hold time	tIHCKE*3	min.	_			0.	25			tCK (avg)
Command Address Input Parameters ^{*11}										
Address and control input setup time (VREF based)	tlS*1	min.	_	220	250	290	370	460	600	ps
Address and control input hold time (VREF based)	tIH*1	min.	_	220	250	290	370	460	600	ps
Address and control input pulse width	tIPW	min.	—			0.	40			tCK (avg)
Boot Parameters (10 MHz – 55 MHz) ^{*5,*7,*8}										
Clock Cycle Time	tCKb	max. min.	- 100 - 18					- ns		
CKE Input Setup Time	tISCKEb	min.	_			2	.5			ns
CKE Input Hold Time	tIHCKEb	min.	_			2	.5			ns

Address & Control Input Setup Time	tISb	min.	_			11	.50			ps
Address & Control Input Hold Time	tIHb	min.	_			11	50			ps
DQS Output Data Access Time fromCK, /CK	tDQSCKb	min. max.	_				.0).0			– ns
Data Strobe Edge to Ouput Data Edge tDQSQb – 1.2	tDQSQb	max.	_				.2			ns
Data Hold Skew Factor	tQHSb	max.	_			1	.2			ns
Mode Register Parameters										
Mode Register Write command period	tMRW	min.	5			I S	5			tCK (avg)
Mode Register Read command period	tMRR	min.	2			2	2			tCK (avg)
DDR2 Mobile RAM Core Parameters ^{*9}										
Read Latency	RL	min.	3	8	7	6	5	4	3	tCK (avg)
Write Latency	WL	min.	1	4	4	3	2	2	1	tCK (avg)
ACTIVE to ACTIVE command period	tRC	min.	_			ab (with ob(with p				ns
CKE min. pulse width during Self-Refresh (low pulse width during Self-Refresh)	tCKESR	min.	3		·	1	.5		•	ns
Self-refresh exit to next valid command delay	tXSR	min.	2			tRFCa	b + 10			ns
Exit power down to next valid command delay	tXP	min.	2			7	.5			ns
CAS to CAS delay	tCCD	min.	2			-	2			tCK (avg)
Internal Read to Precharge command delay	tRTP	min.	2			7	.5			ns
RAS to CAS Delay	tRCD	min.	3			1	8			ns
Row Precharge Time (single bank)	tRPpb	min.	3			1	8			ns
Row Precharge Time (all banks)	tRPab	min.	3			2	1			ns
Row Active Time	tRAS	min.	3				2			ns
Write Recovery Time	tWR	max. min.	3				0 .5			μs ns
Internal Write to Read Command Delay	tWTR	min.	2				.5			ns
Active bank A to Active bank B	tRRD	min.	2				.0			ns
Four Bank Activate Window	tFAW	min.	8				0			ns
Minimum Deep Power Down Time	tDPD	min.	_				00			μs
DDR2 Mobile RAM Refresh Requirement Pa										·


38



Refresh Window	tREFW	max.	—	32	
Required number of REFRESH commands	R	min.	_	8192	— ms
Average time between REFRESH commands (for reference only)	tREFI	max.	—	3.9	μs
tREFIpb		max.	—	0.4875	μs
Refresh Cycle time	tRFCab	min.	_	130	ns
Per Bank Refresh Cycle time	tRFCpb	min.	_	60	ns
Burst Refresh Window = 4 × 8 × tRFCab	tREFBW	min.	_	4.16	μs
ZQ Calibration Parameters*9					
Initialization Calibration Time	tZQINIT	min.	_	1	μs
Long Calibration Time	tZQCL	min.	6	360	ns
Short Calibration Time	tZQCS	min.	6	90	ns
Calibration Reset Time	tZQRESET	min.	3	50	ns

Notes: 1. Input set-up/hold time for signal(CA0 – CA9, /CS).

- 2. CKE input setup time is measured from CKE reaching high/low voltage level to CK, /CK crossing.
- 3. CKE input hold time is measured from CK, /CK crossing to CKE reaching high/low voltage level.
- 4. Frequency values are for reference only. Clock cycle time (tCK) shall be used to determine device capabilities.
- 5. To guarantee device operation before the DDR2 Mobile RAM Device is configured a number of AC boot timing parameters are defined in the Table 40. Boot parameter symbols have the letter b appended, e.g. tCK during boot is tCKb.
- 6. Frequency values are for reference only. Clock cycle time (tCK or tCKb) shall be used to determine device capabilities.
- 7. The DDR2 Mobile RAM will set some Mode register default values upon receiving a RESET (MRW) command as specified in "Mode Register Definition", please refer to JESD209-2F standard.
- 8. The output skew parameters are measured with Ron default settings into the reference load.
- 9. These parameters should be satisfied with both specification, analog (ns) value and min. tCK.
- 10. All AC timings assume an input slew rate of 1V/ns.
- 11. Read, Write, and Input Setup and Hold values are referenced to VREF.
- 12. For low-to-high and high-to-low transitions the timing reference will be at the point when the signal crosses VTT. tHZ and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ)), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ)). Figure 28 shows a method to calculate the point when device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.

eMCP Specification

The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and tRPST are determined from the differential signal DQS-/DQS.

- 13. Measured from the start driving of DQS /DQS to the start driving the first rising strobe edge.
- 14. Measured from the from start driving the last falling strobe edge to the stop driving DQS /DQS.
- 15. tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a contiguous sequence of bursts within a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter.
- 16. tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a 1.6μs rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter.
- 17. tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter.</p>

4.5. Power-up, initialization and Power-Off

DDR2 Mobile RAM Devices must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation.

4.5.3. Power Ramp and Device Initialization

The following sequence shall be used to power-up an DDR2 Mobile RAM Device. Unless specified otherwise, these steps are mandatory.

4.5.1.1 Power Ramp

While applying power (after Ta), CKE shall be held at a logic low level ($\leq 0.2 \times VDD2$), all other inputs shall be between VILmin and VIHmax. The DDR2 Mobile RAM Device will only guarantee that outputs are in a high impedance state while CKE is held low.

On or before the completion of the power ramp (Tb) CKE must be held low.

DQ, DM, DQS and /DQS voltage levels must be between VSSQ and VDDQ during voltage ramp time to avoid latch-up. CK, /CK, /CS and CA inputs levels must be between VSS and VDD2 during voltage ramp up to avoid latch-up.

The following conditions apply:

Ta is the point where any power supply first reaches 300mV.

After Ta is reached, VDD1 must be greater than VDD2 – 200mV.

After Ta is reached, VDD1 and VDD2 must be greater than VDDQ – 200mV.

After Ta is reached, VREF must always be less than all other supply voltages.

The voltage difference between any of VSS and VSSQ pins may not exceed 100mV.

The above conditions apply between Ta and power-off (controlled or uncontrolled).

Tb is the point when all supply and reference voltages are within their respective min/max operating conditions.

For supply and reference voltage operating conditions.

Power ramp duration tINITO (Tb – Ta) must be no greater than 20ms.

Note: VDD2 is not present in some systems. Rules related to VDD2 in those cases do not apply.

eMCP Specification

		Table 4	+T IIUUU	ig Parameters for initialization
Symbol	min.	max.	Unit	Comment
tINIT0	_	20	ms	Maximum Power Ramp Time
tINIT1	100	—	ns	Minimum CKE low time after completion of power ramp
tINIT2	5	—	tCK	Minimum stable clock before first CKE high
tINIT3	200	_	μs	Minimum Idle time after first CKE assertion
tINIT4	1	—	μs	Minimum Idle time after Reset command
tINIT5	_	10	μs	Maximum duration of Device Auto-Initialization
tZQINIT	1	_	μs	ZQ Initial Calibration
tCKb	18	100	ns	Clock cycle time during boot

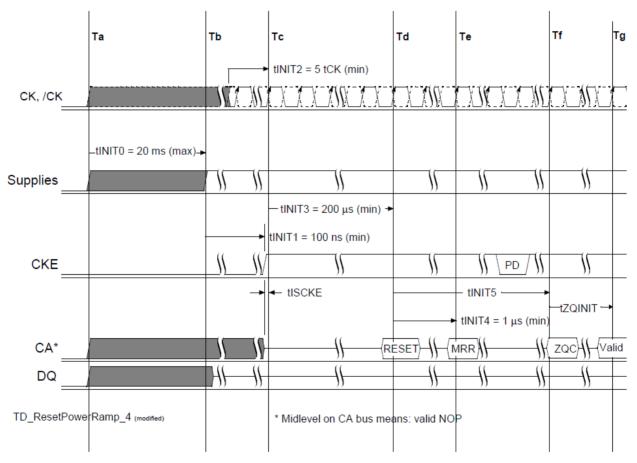


Figure 19 — Power Ramp and Initialization Sequence

4.5.4. Initialization After Reset (without Power Ramp):

If the RESET command is issued outside the power-up initialization sequence, the re-initialization procedure shall begin with step 3 (Td).

4.5.5. Power-Off Sequence

The following sequence shall be used to power-off the DDR2 Mobile RAM Device. Unless specified otherwise, these steps are mandatory.

While removing power, CKE shall be held at a logic low level ($\leq 0.2 \times VDD2$), all other inputs shall be between VILmin and VIHmax. The DDR2 Mobile RAM Device will only guarantee that outputs are in a high impedance state while CKE is held low.

DQ, DM, DQS and /DQS voltage levels must be between VSSQ and VDDQ during power-off sequence to avoid latch-up.

CK, /CK, /CS and CA input levels must be between VSS and VDD2 during power-off sequence to avoid latch-up.

Tx is the point where any power supply decreases under its minimum value specified in the DC operating condition table.

Tz is the point where all power supplies are below 300mV. After Tz, the device is powered off.

The time between Tx and Tz (tPOFF) shall be less than 2s.

The following conditions apply:

Between Tx and Tz, VDD1 must be greater than VDD2 – 200mV.

Between Tx and Tz, VDD1 and VDD2 must be greater than VDDQ – 200mV.

Between Tx and Tz, VREF must always be less than all other supply voltages.

The voltage difference between any of VSS and VSSQ pins may not exceed 100mV.

For supply and reference voltage operating conditions.

	Table 42 Timing Parameters for Power-Off									
Symbol	min.	max.	Unit	Comment						
tPOFF	—	2	S	Maximum Power-Off ramp time						

4.6. Truth Tables

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the specified initialization sequence before normal operation can continue. Table 43 provides the command truth table.

				Tab	le 43 C	omma	nd Tru	th Tabl	е					
		Command	Pins					DDR CA	pins (10)				
Command	Ck CK(n-1)	CK(n)	/CS	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CK EDGE
MRW	н	н		L	L	L	L	MA0	MA1	MA2	MA3	MA4	MA5	_
	п	п	L	MA6	MA7	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	_₹_
MRR	н	н	I	L	L	L	Н	MA0	MA1	MA2	MA3	MA4	MA5	
WINK	п	п	L	MA6	MA7				2	x				_▲
Refresh	н	н	L	L	L	Н	L			2	x			
(per bank)	п	П	L					2	x					_
Refresh (all	н	н	1	L	L	Н	Н			2	x			_
bank)	п	п	L					2	x					_▲
Enter Self-	н	1		L	L	н				х				_
Refresh	п	L	L					2	x					_▲_
Activate				L	Н	R8	R9	R10	R11	R12	BAO	BA1	BA2	_
(bank)	Н	Н	L	RO	R1	R2	R3	R4	R5	R6	R7	R13	RFU	_▲_
) (with the self)				Н	L	L	RFU	RFU	C1	C2	BAO	BA1	BA2	_
Write (bank)	Н	Н	L	AP ^{*3}	C3	C4	C5	C6	C7	C8	C9	RFU	RFU	_►
				Н	L	Н	RFU	RFU	C1	C2	BAO	BA1	BA2	_
Read (bank)	Н	Н	L	AP ^{*3}	C3	C4	C5	C6	C7	C8	C9	RFU	RFU	_▲
Precharge				Н	Н	L	Н	AB	х	х	BAO	BA1	BA2	
(bank)	Н	Н	L	Х	х	х	х	х	х	х	х	х	Х	_₹_
DCT				Н	Н	L	L			2	x			_
BST	Н	Н	L					2	x					_
Enter Deep				Н	Н	L				х				_
Power Down	Н	L	L					2	x					₹

NOD				Н	Н	Н	Х	
NOP	Н	Н	L				X	_₹_
Maintain				Н	Н	Н	Х	
PD, SREF, DPD(NOP)	L	L	L				Х	
NOP	н	Н	н				Х	_
NOP	п	П	п				Х	_₹_
Maintain PD, SREF,	L	L	н				Х	
DPD(NOP)	L	L	п				Х	_₹_
Enter Power	Н	L	н				Х	_
Down	п	L	п				Х	_₹_
Exit PD,		Н	н				Х	_
SREF, DPD	L	п	п				Х	

Notes: 1. All commands are defined by states of /CS, CA0, CA1, CA2, CA3, and CKE at the rising edge of the clock.

2. Bank addresses determine which bank is to be operated upon.

3. AP "high" during a READ or WRITE command indicates that an auto-precharge will occur to the bank associated with the READ or WRITE command.

4. "X" means "H or L (but a defined logic level)"

5. Self-refresh exit and Deep Power Down exit are asynchronous.

6. VREF must be between 0 and VDDQ during Self-Refresh and Deep Power Down operation.

7. Caxr refers to command/address bit "x" on the rising edge of clock.

8. Caxf refers to command/address bit "x" on the falling edge of clock.

9. /CS and CKE are sampled at the rising edge of clock.

10. The least-significant column address C0 is not transmitted on the CA bus, and is implied to be zero.

11. RFU needs to input "H" or "L" (but a defined logic level).

4.7. Mode Register Definition

Each register is denoted as "R" if it can be read but not written and "W" if it can be written but not read. Mode Register Read command shall be used to read a register. Mode Register Write command shall be used to write a register.

		5	Table 4	4 Mod	e Regis	ter Ass	signme	nt				
MR#	MA <7:0>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	Link
0	00H	Device Info.	R		(RFU)		RZ	QI	(RFU)	DI	DAI	MR#0
1	01H	Device Feature 1	W	n∖	VR (for A	.P)	WC	BT		BL		MR#1
2	02H	Device Feature 2	W		(RF	U)			RL &	WL		MR#2
3	03H	I/O Config-1	W		(RF	U)			D	S		MR#3
4	04H	Refresh Rate	R	TUF		(RI	FU)		Re	fresh Ra	ate	MR#4
5	05H	Basic Config-1	R				Manufa	cturer ID				MR#5
6	06H	Basic Config-2	R			Revis	sion ID1	(Die Revi	ision)			MR#6
7	07H	Basic Config-3	R			I	Revision	ID2 (RFU)			MR#7
8	08H	Basic Config-4	R	I/O width Density Type						MR#8		
9	09H	Test Mode	W	Vendor-Specific Test Mode								
10	0AH	IO Calibration	W				Calibrat	ion Code				MR#10
11:15	0BH~0FH	(Reserved)		(RFU)								
16	10H	PASR_Bank	W	Bank Mask						MR#16		
17	11H	PASR_Seg	W	Segment Mask						MR#17		
18:19	12H~13H	(Reserved)						FU)				
32	20H	DQ Calibration	R	See "DC	Q Calibrat	tion" of	"DDR2 N	1obile RA	M Gene	ral Func	tionality	MR#32
52	2011	Pattern A	N		а	nd Elect	rical Con	dition" c	latasheet			10111#32
33:39	21H~27H	(Do Not Use)										
40	28H	DQ Calibration	R	See "DC					M Gene		tionality	MR#40
		Pattern B			а	nd Elect	rical Con	dition" c	latasheet			
41:47	29H~2FH	(Do Not Use)										
48:62	30H~3EH	(Reserved)					(R	FU)				
63	3FH	Reset	W					x				MR#63
64:126	40H~7EH	(Reserved)		(RFU)								
127	7FH	(Do Not Use)										
128:190	80H~BEH	(Reserved)					(R	FU)				
191	BFH	(Do Not Use)										
192:254	COH~FEH	(Reserved)					(R	FU)				
255	FFH	(Do Not Use)										

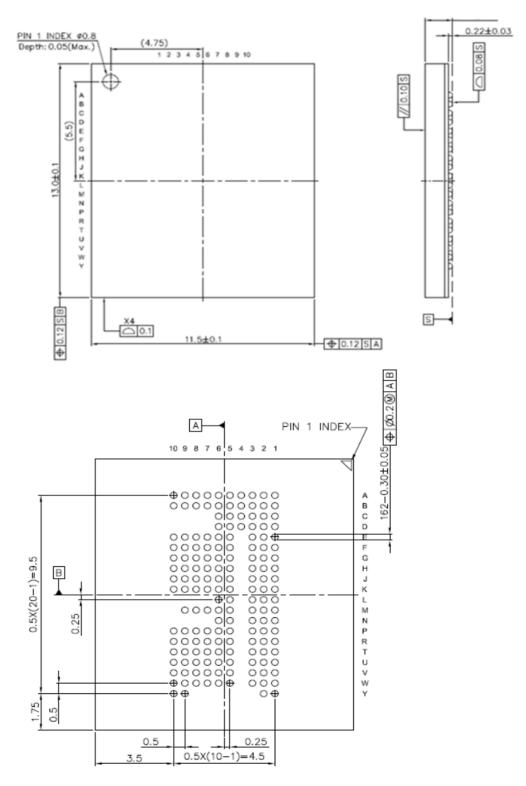
Notes: 1. RFU bits shall be set to '0' during Mode Register writes.

2. RFU bits shall be read as '0' during Mode Register reads.

3. All Mode Registers that are specified as RFU or write-only shall return undefined data when read and DQS, /DQS shall be toggled.

4. All Mode Registers that are specified as RFU shall not be written.

5. Writes to read-only registers shall have no impact on the functionality of the device.


MR#5_Basic Configuration 1 (MA<7:0> = 05H): Read-only

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Manufa				
		OP<7	7:0> 0000	0011B (El	pida)		

5. Package Mechanical

5.1 162 ball FBGA 11.5 x 13.0 x (0.9mm ± 0.1mm, Max 1.0mm)

eMCP Specification

6. Ball Assignment

6.1 162 ball assignment

	1	2	3	4	5	6	7	8	9	10	
A	DNU	DNU	DAT0	DAT6	VDDi	DAT5	DAT3	VCC	DNU	DNU	А
В	DNU	VCC	DAT1	DAT7	CLK	DAT4	DAT2	VCCQ	VSS	DNU	В
С	RST_n	NC	VSSQ	NC	CMD	NC					С
D	NC	NC	NC	NC	NC	NC					D
Е	VSS	NC	NC		V DD2	VDD1	DQ31	DQ29	DQ26	DNU	Е
F	VDD1	LP2 VSS	ZQ1		LP2 VSS	LP2 VSSQ	VDDQ	DQ25	LP2 VSSQ	VDDQ	F
G	VSS	VDD2	ZQ0		VDDQ	DQ30	DQ27	DQS3	/DQS3	LP2 VSSQ	G
н	VSSCA	CA9	CA8		DQ28	DQ24	DM3	DQ15	VDDQ	LP2 VSSQ	Н
J	VDDCA	CA6	CA7		LP2 VSSQ	DQ11	DQ13	DQ14	DQ12	VDDQ	J
к	VDD2	CA5	Vref(CA)		/DQS1	DQS1	DQ10	DQ9	DQ8	LP2 VSSQ	K
L	VDDCA	LP2 VSS	/CLK		DM1	VDDQ					L
М	LP2 VSSCA	NC	CLK		LP2 VSSQ	VDDQ	VDD2	LP2 VSS	VREF(DQ)		М
Ν	CKE0	CKE1	NC		DM0	VDDQ					Ν
Р	CS0_n	CS1_n	NC		/DQS0	DQS0	DQ5	DQ6	DQ7	LP2 VSSQ	Ρ
R	CA4	CA3	CA2		LP2 VSSQ	DQ4	DQ2	DQ1	DQ3	VDDQ	R
Т	LP2 VSSCA	VDDCA	CA1		DQ19	DQ23	DM2	DQ0	VDDQ	LP2 VSSQ	Т
U	LP2 VSS	VDD2	CA0		VDDQ	DQ17	DQ20	DQS2	/DQS2	LP2 VSSQ	U
V	VDD1	LP2 VSS	NC		LP2 VSS	LP2 VSSQ	VDDQ	DQ22	LP2 VSSQ	VDDQ	V
W	DNU	NC	NC		VDD2	VDD1	DQ16	DQ18	DQ21	DNU	W
Y	DNU	DNU							DNU	DNU	Y
	1	2	3	4	5	6	7	8	9	10	

Figure 20 – Top View–Ball Down

7. Revision History

Rev.	History	Date	Remark
1.0	Preliminary	Dec. / 2014	