UNISONIC TECHNOLOGIES CO., LTD

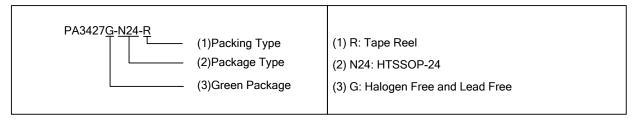
PA3427 Preliminary CMOS IC

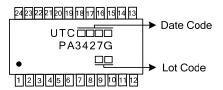
2W STEREO AUDIO AMPLIFIER

DESCRIPTION

The UTC **PA3427** is a stereo audio speaker operated on a single 5V supply. It is capable of delivering 2W of output power per channel in Bridge-Tied Load mode into 4Ω load with less than 1% THD+N.

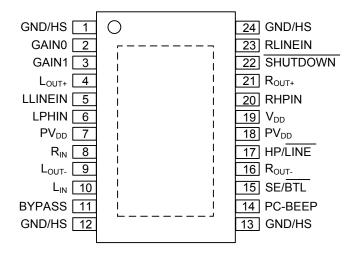
Two terminals (GAIN0 and GAIN1) can configure and control the amplifier gain. In order to simplify the design of audio system in the notebook application, the two modes of Bridge-Tied Load (BTL) and Single-End (SE) mode drive the speakers and headphone respectively. The UTC **PA3427** supports two input paths to choose two different amplitude AC signals through setting HP/ $\overline{\text{LINE}}$ pin.


The UTC **PA3427** is suitable for applications, such as stereo power amplifiers of notebooks or desktop computers, and multimedia monitors.


- * Depop circuitry integrated
- * BTL gain: 6dB, 10dB, 15.6dB, 21.6dB
- * SE gain: 4.1dB
- * Output power (THD+N:1%, supply voltage:5V)
- 2.0W into a 4Ω load
- 1.2W into a 8Ω load
- * With two mode :BTL and SE
- * Stereo input multiplexer
- * Fully differential input
- * Build-in gain control
- * PC-Beep input function
- * Thermal shutdown protection

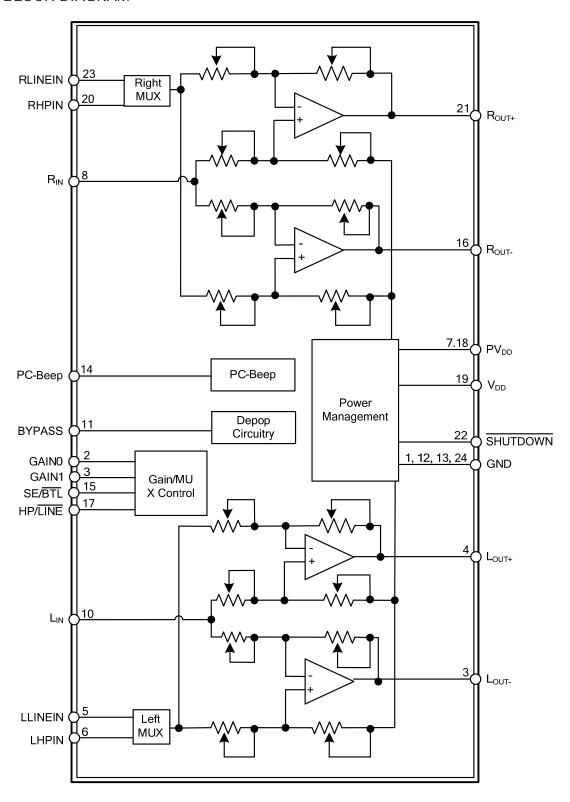
ORDERING INFORMATION

Ordering Number	Package	Packing
PA3427G-N24-R	HTSSOP-24	Tape Reel


■ MARKING

HTSSOP-24

www.unisonic.com.tw 1 of 7


■ PIN CONFIGURATION

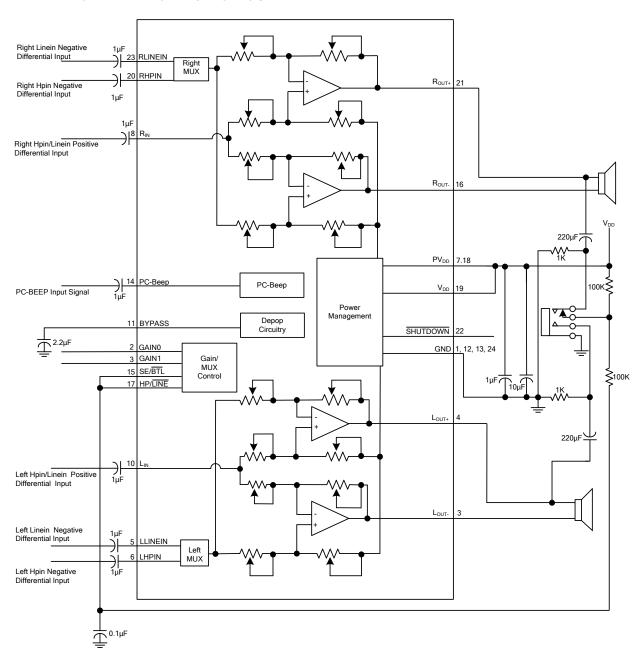
■ PIN DESCRIPTION

PIN NO	PIN NAME	I/O	DESCRIPTION	
1,12,13,24	GND/HS		Ground, directly connected to thermal pad.	
2	GAIN0	I	Bit 0 of gain control	
3	GAIN1	ı	Bit 1 of gain control	
4	L _{OUT} +	0	Positive output for Left channel in BTL mode, + output in SE mode.	
5	LLINEIN	I	Line input for left channel, selected when HP/LINE pin is held low.	
6	LHPIN	I	Left channel headphone input, selected when HP/LINE pin is held high.	
7,18	PV_{DD}	I	Supply voltage	
8	R _{IN}	I	Differential input for Right channel. AC ground for single-ended inputs.	
9	L _{OUT} -	0	Negative output for Left channel, and high impedance in SE mode.	
10	L _{IN}	I	Differential input for Left channel. AC ground for single-ended inputs.	
11	BYPASS		Tap to voltage divider for internal mid-supply bias generator	
14	PC-BEEP		The input for PC-BEEP mode. PC-BEEP is enabled when at least eight	
14	PU-BEEP	ı	continuous > 1-V _{PP} (peak to peak) square waves is input to PC-BEEP pin.	
15	SE/ BTL	I	Hold low for BTL mode, hold high for SE mode.	
16	R _{out} -	0	negative output for Right channel	
17			MUX control input, hold high to select headphone inputs (6, 20), hold low	
17	HP/LINE	ı	to select line inputs (5, 23).	
19	V_{DD}		Analog V _{DD} supply voltage	
20	RHPIN	I	Right channel headphone input, selected when HP/LINE pin is held high.	
21	R _{out} +	0	Positive output for right channel in BTL mode, positive output in SE mode.	
22	SHUTDOWN	I	In shutdown mode when held low, expect PC-BEEP remains active.	
23	RLINEIN	Ī	Line input for Right channel, selected when HP/LINE pin is held low.	

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

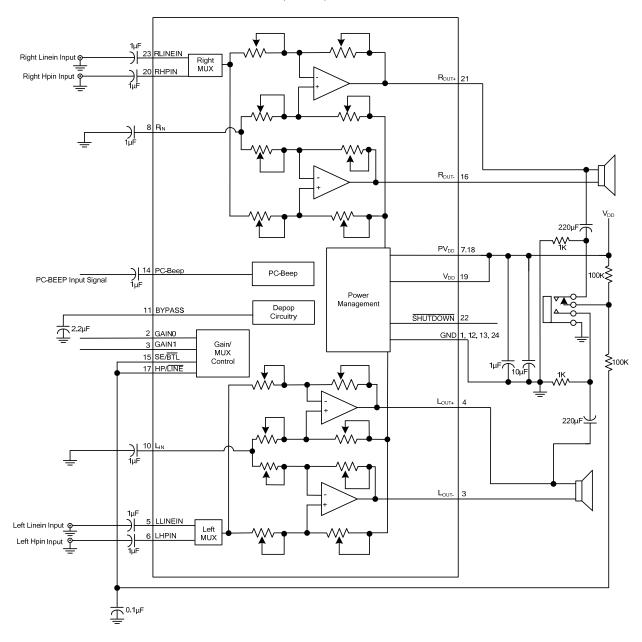
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	6	٧
Power Dissipation (T _A =25°C)	P_{D}	2.7	W
Junction Temperature	T_J	150	Ŝ
Operating Temperature	T_{OPR}	-40 ~ +85	Ŝ
Storage Temperature	T _{STG}	-65 ~ +150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS MIN		TYP	MAX	UNIT
DC ELECTRICAL CHARACTERISTICS (T _A =25°C)						
Supply voltage	V_{DD}		4.5	5	5.5	V
High-Level Input Voltage	V _{IH}	SE/BTL, HP/LINE, SHUTDOWN 2 GAIN0, GAIN1				V
Low-Level Input Voltage	V_{IL}	SE/BTL , HP/LINE , SHUTDOWN GAIN0, GAIN1			0.8	V
DC Differential Output Voltage	$V_{O(DIFF)}$	V _{DD} = 5V,Gain = 2V/V		5	50	mV
Supply Current in Mute Mede		V _{DD} = 5V, Stereo BTL		7.5	13	mA
Supply Current in Mute Mode	I _{DD}	V _{DD} = 5V, Stereo SE		4	7	mA
I _{DD} in Shutdown Mode	I _{SD}	V _{DD} = 5V		160	300	μA
AC ELECTRICAL CHARACTE	RISTICS (Ta=25	5° C, $V_{DD} = 5.0$ V, $R_{L} = 4\Omega$)				
		THD =1%, BTL, R_L = 4Ω , G =- $2V/V$		2		W
	P _{out}	THD =1%, BTL, R_L = 8 Ω , G=-2V/V		1.25		W
Output Power (Note)		THD =10%, BTL, R_L = 4Ω , G=- $2V/V$		2.5		W
		THD =10%, BTL, R_L = 8 Ω , G=-2V/V		1.6		W
		THD = 0.1%, SE, R_L = 32 Ω		85		mW
Total Harmonic Distortion Plus	THD+N	P_{OUT} = 1.6W, BTL, R_L = 4 Ω , G =-2V/V		100		m%
		P_{OUT} = 1W, BTL, R_L = 8 Ω , G =-2 V / V		60		m%
Noise		P_{OUT} = 75mW, SE, R_L = 32 Ω				m%
		V_{IN} = 1V, R_L = 10k Ω , SE		30		m%
Max Output Power Bandwidth	B _W	THD = 5%		>15		kHz
Power Supply Rejection	PSRR	F=1kHz,BTL,G=-2V/V, C _{BYP} =1µF		68		dB
Channel-to-Channel		f 41.11-		00		-10
Output Separation		f = 1kHz		80		dB
Line/HP Input Separation				80		dB
BTL Attenuation (SE mode)				85		dB
Signal-to-Noise Ratio	SNR	P _{OUT} = 500mW, BTL, G=2V/V		90		dB
Output Noise Voltage	E _N	BTL,G=2V/V, A Weighted filter		45		μVrms

Note: Output power is measured at the output terminals of the IC at 1kHz.


■ TYPICAL APPLICATION CIRCUIT

Application Circuit Using Differential Inputs

Note: $1\mu F$ ceramic capacitor must be placed much closely to the IC. For filtering lower frequency noise signals, a larger electrolytic capacitor of $10\mu F$ or greater should be placed as close as possible to the audio power amplifier.

■ TYPICAL APPLICATION CIRCUIT(Cont.)

Application Circuit Using Single-Ended Inputs

Note: 1µF ceramic capacitor should be placed as close as possible to the IC to filter the higher-frequency noise.

APPLICATION INFORMATION

1. Shutdown Mode Operating

INPUT			AMPLIFIER		
HP/LINE	SE/BTL	SHUTDOWN	INPUT	OUTPUT	
X	X	L	X	MUTE	
L	L	Н	LINE	BTL	
L	Н	Н	LINE	SE	
Н	L	Н	HEADPHONE	BTL	
Н	Н	Н	HEADPHONE	SE	

X: Don't care

L: Low

H: High

2. Gain setting (VS Gain0, Gain1 and R_{I,} SE/BTL)

Gain setting is determined by GAIN0 and GAIN1. The gains listed in the next table are realized by changing the taps on the input resistors inside the amplifier which will cause the internal input impedance(R_I) to be dependent on the gain setting as we can see listed in the next table.

A _V (dB)	GAIN0	GAIN1	SE/BTL	$R_{\perp}(k\Omega)$
6	0	0	0	90
10	0	1	0	70
15.6	1	0	0	45
21.6	1	1	0	30
4.1	X	Χ	1	-

X: Don't care

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.