www.DataSheet4U.com

4-Channel Programmable LED Current Sink

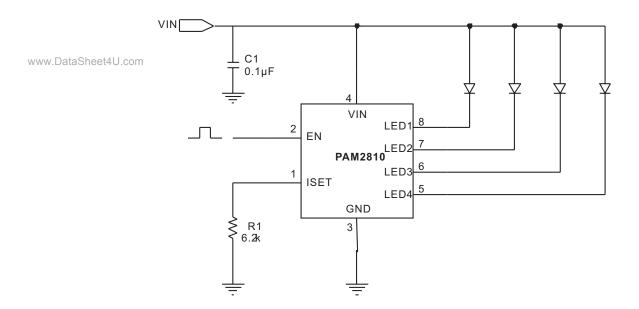
Features

- Cost Effective LED Driver
- Support up to 4 White LEDs
- Output Current up to 40mA per LED
- Low Dropout Voltage
- Ultra Low Quiescent Supply Current: 65µA (typ)
- No Noise and EMI
- Shutdown Current Less than 1µA
- Over Temperature Protection
- Small Packages : SOT23-8 and DFN 2mmx2mm
- Pb-free Package

Applications

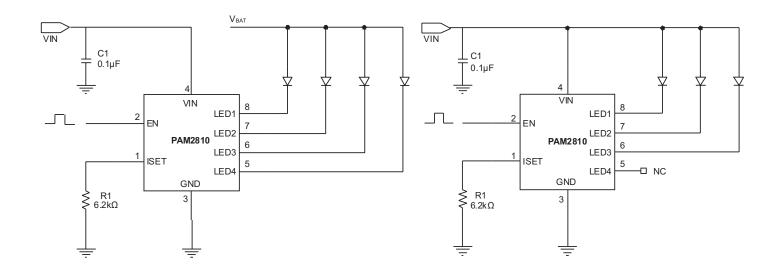
- White LED for LCD Display Backlights
- White LED Keypad Backlights
- 1-Cell Li-Ion Battery-operated Equipment Including PDAs, Hand-held PCs, Cellular Phone

Description

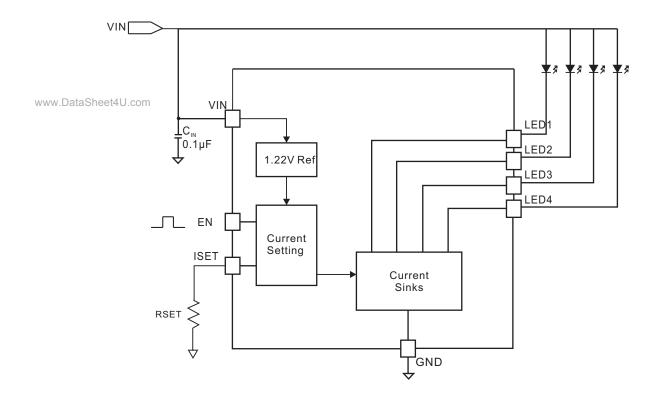

The PAM2810 provides 4 regulated current sinks, capable of sinking up to 40mA current to accommodate 4 white LEDs. It requires no charge pump, has no noise and EMI, and significantly improves the efficiency in Li bettery range.

LED brightness can be controlled by PWM techniques. The constant current sink is set with an external sense resistor.

Alternatively, a PWM signal applied to the EN pin can vary the anticipated brightness of the LED. The device is in shut down mode when the EN input is logic low.

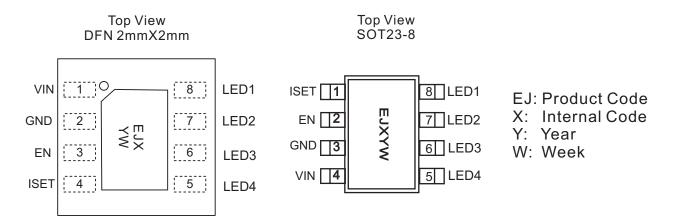

The PAM2810 is available in SOT23-8 and DFN 2mmX2mm Packages.

Typical Application Circuit



PAIN 28 10

Typical Application Circuit


Block Diagram

4-Channel Programmable LED Current Sink

Pin Configuration

Pin Number		Name	Description
DFN2x2	SOT23-8	Name	Description
1	4	VIN	Input Voltage
2	3	GND	Ground
3	2	EN	Enable, Allow PWM Brightness Control, Active High
4	1	ISET	LED Current Adjustment Pin
5	5	LED4	LED4 Cathode Terminal
6	6	LED3	LED3 Cathode Terminal
7	7	LED2	LED2 Cathode Terminal
8	8	LED1	LED1 Cathode Terminal

www.DataSheet4U.com

4-Channel Programmable LED Current Sink

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Input Voltage Range0.3V to 6V	Operation Junction Temperature40°C to 125°C
PWM Pin voltage0.3V to (VIN+0.3V)/6V	Storage Temperature65°C to 150°C
Maximum Junction Temperature150°C	Soldering Temperature300°C,5sec

Recommended Operating Conditions

Input Voltage Range	2.7V to 5.5V	Operation Temperature Range	40°C to 85°C

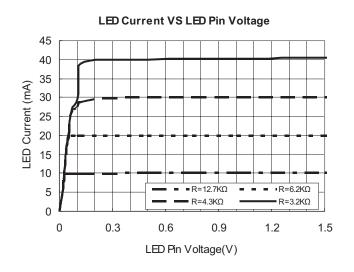
Thermal Information

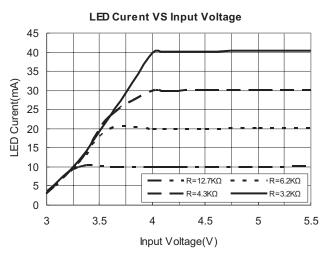
Parameter	Symbol	Package	Maximum	Unit
Thermal Resistance	Δ	SOT23-8	250	°C/W
(Junction to Ambient)	θ_{JA}	DFN	102	
Thermal Resistance	θ_{JC}	SOT23-8	130	*C/VV
(Junction to Case)		DFN	20	

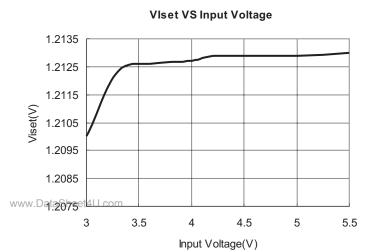
Electrical Characteristic

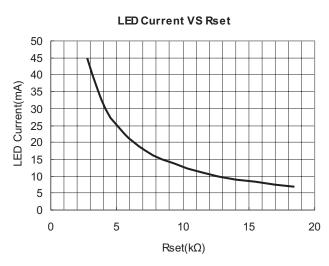
 $T_A = 25$ °C, $V_{IN} = 3.6$ V, $R_{SET} = 5.1$ k Ω , $V_{LEDX} = 0.5$ V, unless otherwise noted.

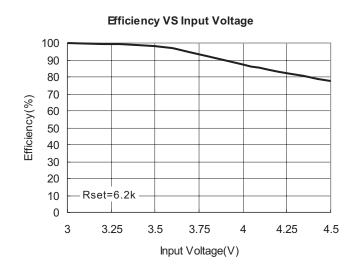
	PARAMETER	Symbol	CONDITIONS	MIN	TYP	MAX	UNITS
	Input Voltage	V _{IN}		Vf+V _{LED} (Note)	3.6	5.5	V
WWV	Output Current	ILEDX	V _{DD} =5V			40	mA
	Current Matching Between Any Two Outputs	ILED-MATCH				±5	%
	Current Sink Dropout	V _{DROPOUT}	Rset=3kΩ,I _{LEDX} =40mA			0.25	V
	ISET PIN Voltage	VSET			1.22		V
	Output Current to Current Set Ratio	ILEDX/ISET			100		
	Quiescent Supply Current	ΙQ	Rset=10MΩ,with no loads		65	80	μA
	Shutdown Supply Current	I _{SHDN}	EN=logic low		0.1	1	μA
	EN Input Logic High	VHI		1.4			V
	EN Input Logic Low	VLO				0.4	V
	EN Pin Current	ĪEN	V(EN) = 1.5V		0.1	1	μΑ
	LIVE III GUIIGIII	IEN	V(EN) = 0V		0.1	1	μΑ

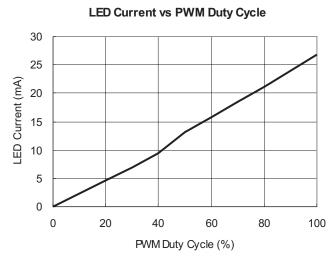

Note: Vf: LED forward voltage; V_{LED} : voltage of LEDx pins.


www.DataSheet4U.com




Typical Performance Characteristics


 T_A =25°C, V_{IN} =3.6V, R_{SET} =5.1k Ω , V_{LEDX} =0.5V, unless otherwise noted.



Application Information

The PAM2810 is a 4-channel programmable white-LED driver. The matched current regulators each have a 100:1 ratio between the LEDx outputs and the ISET current. The PAM2810 is capable of supplying 40mA per channel with the proper selection of the external RSET resistor, with a total of 160mA output current available. LED brightness control of PAM2810 can be achieved with a PWM signal.

Output Current Capability

The PAM2810 is capable of providing up to 40mA per LED under an input voltage of 2.7V to 5.5V. An external resistor is used to set the output current, as approximated with the following equation:

$$R_{SET} = 100 * (1.22 V / I_{LEDX})$$

In order that the output currents could be regulated properly, the LEDx pin voltage(V_{LEDX}) must be larger than the dropout voltage of the current sink(V_{DROPOUT}). To ensure the desired current is obtained, apply the following equation to determine the minimum input voltage:

$$V_{IN} - V_{DIODE} = V_{LEDX} \geqslant V_{DROPOUT}$$

 $V_{\mbox{\tiny DIODE}}$ is the diode forward voltage, and some typical value of $V_{\mbox{\tiny DROPOUT}}$ can be found from the following table.

www.DataSheet4U.com
Table 1. I_{LED} , R_{SET} and $V_{DROPOUT}$

I _{LED}	R _{SET}	V _{DROPOUT}
10mA	12.7kΩ	40mV
20mA	6.2kΩ	80mV
30mA	4.3kΩ	120mV
40mA	3.2kΩ	150mV

PWM Brightness Control

Brightness control can be realized by applying a PWM signal to the EN pin. The constant current is set by the external resistor selected using the RSET equation. The LED brightness is proportional to the duty cycle (D) of the PWM signal. The PWM frequency (f) should be limited to accommodate the start-up time ($50\mu s$) of the device.

 $D * (1/f) > 50 \mu s$

Table 2. PWM Frequency and Duty cycle

Frequency	Cycle	Duty-Cycle Request
100Hz	10ms	> \frac{0.5}{100}
1kHz	1ms	> \frac{5}{100}
2 kHz	500µs	> 10/100
4 kHz	250µs	> \frac{20}{100}
8 kHz	125µs	> \frac{40}{100}
10 kHz	100µs	> \frac{50}{100}

The maximum PWM frequency can be selected according to the table above.

If the PWM frequency is much less than 100Hz, flickering may be seen in the LEDs. For the PAM2810, zero duty cycle will turn off the LEDs and a 50% duty cycle will result in an average ILED being half of the programmed LED current. For example, if RSET is set to program 20mA, a 50% duty cycle will result in an average ILED of 10mA. RSET should be chosen not to exceed the maximum current capability of the device.

Shutdown

When the EN pin is logic low, the PAM2810 will be in shutdown mode. While disabled, the PAM2810 typically draws $0.1\mu A$ current form the power supply. There is no internal pull-up or pull-down on the EN pin.

Over Temperature Protection

The PAM2810 equips over temperature protection. When the junction temperature $(T_{\rm J})$ exceeds +150°C, the current source turns off automatically. The device will turn on again after the IC's $T_{\rm J}$ cools down under +125°C. Operating at absolute maximum temperature is not recommended.

4-Channel Programmable LED Current Sink

Parallel LEDx Outputs for Increased Current Drive

Output pins LED1 to LED4 may be connected together in any combination to sink higher current through fewer LEDs. For example in Figure 1, outputs LED1 and LED2 are connected together to drive one LED while LED3 and LED4 are connected together to drive a second LED.

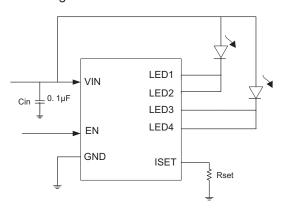


Figure 1. Two Parallel Connected LEDs

With this configuration, two parallel current sinks of equal value both provide current to each LED. If the current sink provides 10mA each, every LED can be drived with 20mA and gets double brightness. Other combinations of parallel outputs can be implemented similarly, such as in Figure 2.

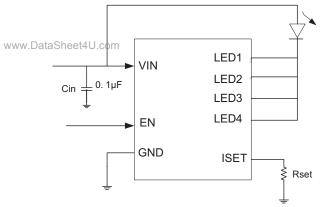


Figure 2. One Parallel Connected LED

Connecting outputs in parallel does not affect internal operation of the PAM2810 and has no impact on the electrical characteristics.

If less than four LEDs connected, the left pin can be floating or connected to GND, as shown in Typical Application Circuit on page 2.Connecting to GND is recommended. The current calculating method is the same as the RSET equation mentioned.

Power Dissipation

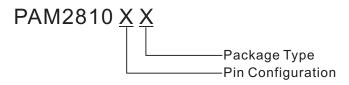
The maximum allowable power dissipation that the package is capable of handling can be determined as follows:

$$P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$$

Where T_{JMAX} is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance of the specified package. The DFN 2x2 package has a θ_{JA} of 80°C/W and the SOT23-8 250°C/W. This value of θ_{JA} is highly dependant upon the layout of the PCB. The actual power dissipated by the PAM2810 follows the equation:

$$P_{\text{DISS}} = (V_{\text{IN}} * I_{\text{IN}}) - N(V_{\text{DIODE}} * I_{\text{LEDX}})$$

Where N equals the number of active outputs, V_{DIODE} is the LED forward voltage, and I_{LEDX} is the current supplied to the LEDx.


Input Capacitor Selection

The PAM2810 is designed to work under a stable input voltage. To ensure the stability of input, it may be necessary to add a small input capacitor to help filter out any noise that probably appears on the line. Surface-mount multi-layer ceramic capacitors are recommended, which are small and inexpensive. A capacitance of $0.1\mu F$ is typically sufficient.

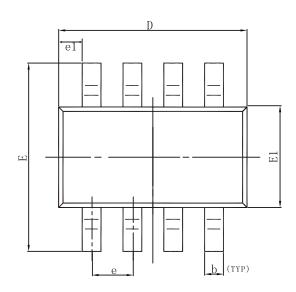
PAIVIZO 10

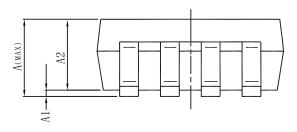
Ordering Information

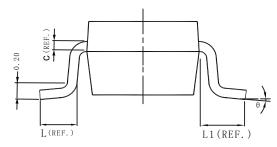
Pin Configuration		Package Type
A:	B:	A: SOT23-8
1: VIN	1: ISET	G: DFN 2x2-8
2: GND	2: EN	
3: EN	3: GND	
4: ISET	4: VIN	
5: LED4	5: LED4	
6: LED3	6: LED3	
7: LED2	7: LED2	
8: LED1	8: LED1	

Part Number	Marking	Package	Shipping
PAM2810AG	EJXYW	DFN 2x2-8	3,000 units/Tape & Reel
PAM2810BA	EJXYW	SOT23-8	3,000 units/Tape & Reel

Please consult PAM sales office or authorized distributors for more details.

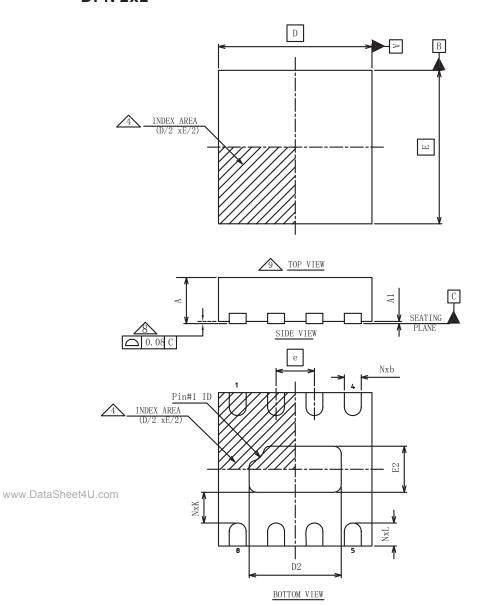

www.DataSheet4U.com




PAWW.DataSheet4U.com

Outline Dimensions

SOT23-8



www.DataSheet4U.com

Symbol	Dimensions I	n Millimet ers	Cymphol	Dimensions In Millimeters	
	Min	Max	Symbol	Min	Max
Α	1.45	MAX	L	0.30	0.60
A1	0	0.10	L1	0.60 (REF)	
A2	1.10	1.30	θ	0°	10°
С	0.12 ((REF)	b	0.22	0.38
D	2.70	3.10	е	0.65 (REF)	
E	2.60	3.00	e1	0.33 (REF)	
E1	1.40	1.80			

Outline Dimensions DFN 2x2

	COMMON DIMENSION				
SYMBOL	MIN	NOM	MAX		
A	0.70	0. 75	0.80		
A1	0.00	0.02	0.05		

Summary Table						
Lead Pitch (e)	Lead Count	Body Size	Pin #1 ID			
0.50	Count 8	2X2	RO. 20			

Unit: Millimeters

D BSC		2.00
E BSC		2.00
b	MIN	0.18
	NOM	0. 25
	MAX	0.30
D2	MIN	1.05
	NOM	1.20
	MAX	1.30
E2	MIN	0.45
	NOM	0.60
	MAX	0.70
L	MIN	0. 20
	NOM	0.30
	MAX	0.40
Ň		8