

PAN301BSI-208 CMOS HIGH PERFORMANCE OPTICAL MOUSE SENSOR

General Description

The PAN301BSI-208 is a high performance CMOS process optical mouse sensor with DSP integration chip that serves as a non-mechanical motion estimation engine for implementing a computer mouse.

Feat	ures	Key Specificati	on
	Single 3.3 volt power supply		
	Precise optical motion estimation technology	Power Supply	Wide operating supply range 3.0V~3.6V
	Complete 2-D motion sensor		
	No mechanical parts	Optical Lens	1:1
	Accurate motion estimation over a wide range of surfaces	System Clock	18.432 MHz
	High speed motion detection up to 37 inches/sec and acceleration can be up to 20g	Speed	37 inches/sec
	High resolution up to 800cpi	Acceleration	20g
	Power down pin and register setting for low power dissipation.	Resolution	400/600/800cpi
	Power saving mode during times of no movement	Frame Rate	3000 frames/sec
	Serial Interface for programming and data		
	transfer I/O pin 5.0 volt tolerance	Operating Current	12mA @Mouse moving (Normal) 5mA @Mouse not moving (sleep1) 60uA @Power down mode
		Package	Shrunk DIP20
			·

Ordering Information

Order number	I/O	Resolution
PAN301BSI-208	CMOS output	800 cpi

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

CMOS Optical Mouse Sensor

1. Pin Description

Pin No.	Name	Туре	Definition
1	VSS_LED	GND	LED ground
2	LED	I/O	LED control
3	OSCOUT	OUT	Resonator output
4	OSCIN	IN	Resonator input
5	VDDD	PWR	Chip digital power, 3.0V
6	VSSD	GND	Chip digital ground
7	VSSA	GND	Chip analog ground
8	VDD	PWR	Chip power, 3.3V power supply
9	VDDA	PWR	Chip analog power, 3.0V
10	VRT	BYPASS	Analog voltage reference
11	YA	OUT	YA quadrature output
12	YB	OUT	YB quadrature output
13	XA	OUT	XA quadrature output
14	XB	OUT	XB quadrature output
15	NC	-	No connection
16	NC	-	No connection
17	NC	-	No connection
18	SCLK	IN	Serial interface clock
19	SDIO	I/O	Serial interface bi-direction data
20	PD	IN	Power down pin, active high

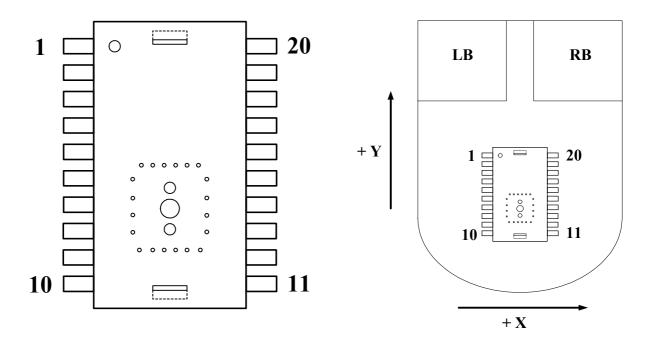
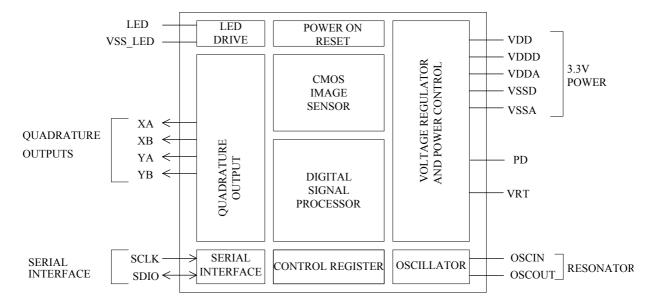



Figure 1. Top view pinout

Figure 2. Top view of mouse

CMOS Optical Mouse Sensor

2. Block Diagram and Operation

Figure 3. Block diagram

The PAN301BSI-208 is a high performance CMOS-process optical mouse sensor with DSP integration chip that serves as a non-mechanical motion estimation engine for implementing a computer mouse. It is based on new optical navigation technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The sensor is in a 20pin optical package. The output format is two-channel quadrature (X and Y direction), which emulates encoder phototransistors. The current X and Y information are also available in registers accessed via a serial port.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

3. Registers and Operation

The PAN301BSI-208 can be programmed through registers, via the serial port, and DSP configuration and motion data can be read from these registers. All registers not listed are reserved, and should never be written by firmware.

3.1 Registers

Address	Name	R/W	Default	Data Type
0x00	Product_ID	R	0x30	Eight bits [11:4] number with the product identifier
0x01	Product_ID	R	0x1N	Four bits [3:0] number with the product identifier Reserved [3:0] number is reserved for future
0x02	Motion_Status	R	-	Bit field
0x03	Delta_X	R	-	Eight bits 2's complement number
0x04	Delta_Y	R	-	Eight bits 2's complement number
0x05	Operation_Mode	R/W	-	Bit field
0x06	Configuration	R/W	-	Bit field
0x07	Image_Quality	R	-	Eight bits unsigned integer

3.2 Register Descriptions

0x00		Product_ID									
Bit	7 6 5 4				3	1	0				
Field				PID[11:4]						
Usage	The value in OK.	The value in this register can't change. It can be used to verify that the serial communications link is OK.									
0x01				Produ	ict_ID						
Bit	7	6	5	4	3	2	1	0			
Field		PID	[3:0]			Reserve	ed [3:0]				
Usage	communica	0	OK. Reserve	d [3:0] is a va	an be used to lue between	2		sed to			

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

CMOS Optical Mouse Sensor

0x02				Motion	_Status						
Bit	7	6	5	4	3	2 1		0			
Field	Motion	Reserv	red[6:5]	DYOVF	DXOVF	RES[2:	1]	Reserved			
Usage	so, then the the motion l	user should buffers have	allows the user to determine if motion has occurred since the last time it was read. If ser should read registers 0x03 and 0x04 to get the accumulated motion. It also tells if ffers have overflowed since the last reading. The current resolution is also shown.								
	reading the	Delta_X and	register freezes the Delta_X and Delta_Y register values. Read this register before Delta_X and Delta_Y registers. If Delta_X and Delta_Y are not read before the motion ad a second time, the data in Delta_X and Delta_Y will be lost.								
Notes	Field Name	e Descr	iption								
		Motio	n since last re	eport or PD							
	Motion 0 = No motion (Default)										
		1 = M	otion occurre	d, data ready	for reading in	n Delta_X and I	Delta_Y re	registers			
	Reserved[6:	:5] Reserv	ved for future	:							
		Motio	n Delta Y ov	erflow, $\Delta Y b$	uffer has over	flowed since las	st report				
	DYOVF	$0 = \mathbf{N}$	o overflow (I	Default)							
			verflow has o								
				<i>,</i>	uffer has over	flowed since las	st report				
	DXOVF		o overflow (I	,							
			verflow has o								
			Resolution in counts per inch								
	RES[2:1]		0 = 800 (Default)								
		1 = 40									
		2 = 60	00								
	Reserved	Reserv	ved for future	1							

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

CMOS Optical Mouse Sensor

0x03	Delta_X									
Bit	7	6	5	4	3	2	1	0		
Field	1 X7 X6 X5 X4 X3 X2							X0		
Usage	X movement is counts since last report. Absolute value is determined by resolution. Reading clears the register. Report range –128~+127.									
	the register.	Report rang	C -120 - 127	•						
0x04		Report rang	c -120 ⁻¹ 127	· Delt	a_Y					
0x04 Bit	7	6	5		a_Y 3	2	1	0		
			1	Delt	a_Y 3 Y3	2 Y2	1 Y1	0 Y0		

CMOS Optical Mouse Sensor

0x05				Operation_	Mode					
Bit	7	6	5	4	3	2	1	0		
Field	LEDsht_enh	XY_enh	Reserved	Slp_enh	Slp2au	Slp2mu	Slp1mu	Wakeup		
Usage	_	vs the user to change the operation of the sensor. Shown below are the bits, their optional values.								
	Operation_Mode[4 "0xxxx"=Disable s "10xxx"=Enable sl "11xxx"=Enable sl "1x100"=Force ent "1x010"=Force ent "1x001"=Force wa	eep mode ¹ eep mode ² er sleep2 ³								
	Notes: 1. Enable sleep mo normal mode an sleep1 mode, an	d sleep1 m	ode. After 1 s	sec not mov	ing during no	ormal mode,	the chip will			
	2. Enable sleep mo mode. After 1 se mode until movi	ec not movi	ng during not	rmal mode,	chip will ent					
	And after 60 sec mode until detec	ct moving o	r force wake	up to norma	l mode.	_		p on sleep2		
	Mode		rate @3000fi	rame/sec		v cycle @300	0frame/sec			
	Sleep1 Sleep2	94/sec 3/sec			22% 2.24%					
Natas	 Only one of thes others have to b internal signal. 	e set to 0. A	After a period							
Notes	Field Name	Descripti								
	LEDsht_enh	0 = Disab	ter enable / di le l e (Default)	sable						
	XY_enh	0 = Disab	ature output e le le (Default)	enable/disat	le					
	Reserved	Reserved	for future							
	Slp_enh	0 = Disab	de enable/disa le l e (Default)	able						
	Slp2au		e enter sleep2 le (Default) e	mode enab	le/disable					
	Slp2mu	Manual er	nter sleep2 m	ode, set "1"	will enter slo	eep2 and this	bit will be re	eset to "0"		
	Slp1mu		nter sleep1 m			•				
	Wakeup	Manual w reset to "0	ake up from s	sleep mode,	set "1" will	enter wakeup	and this bit	will be		

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

PixArt Imaging Inc.

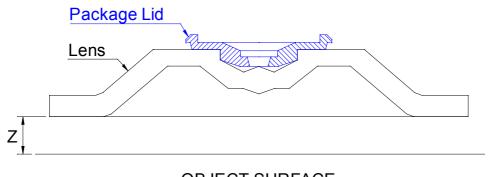
CMOS Optical Mouse Sensor

0x06				Config	uration					
Bit	7	6	5	4	3	2	1	0		
Field		Reser	ved[7:4]		PD	RES[2:1] Reserved				
Usage			ion register allows the user to change the configuration of the sensor. are the bits, their default values, and optional values.							
Notes	Field Name	Field Name Description								
	Reserved[7	:4] Reser	ved for future							
	PD	Power down mode 0 = Normal operation (Default) 1 = Power down mode								
	RES[2:1]	0 = 8 1 = 44 2 = 60	00	-						
	Reserved	Resei	ved for future							
0x07		1	1	Image_	Quality	T	1			
Bit	7	6	5	4	3	2	1	0		
Field				Imgq	a[7:0]					
Usage			is a quality level of the sensor in the current frame. Report range 0~255. The el for normally working is 45.							
Notes	Field Name	e Desc	ription							
	Imgqa[4:0]	Imag	e quality report	rt range: 0(w	orst) ~ 255(b	est).				

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

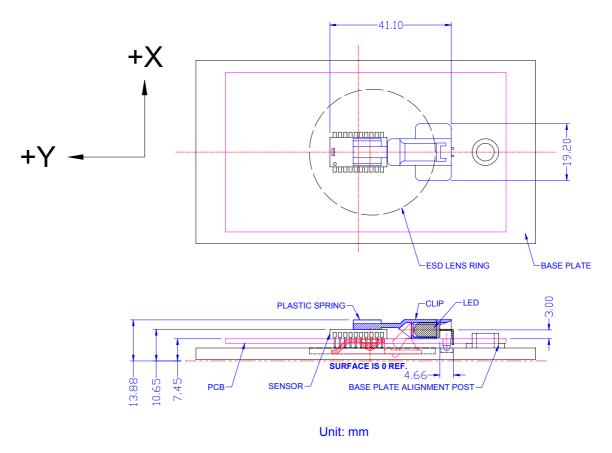
CMOS Optical Mouse Sensor

4. Specifications


Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{STG}	Storage temperature	-40	85	°C	
ТА	Operating Temperature	-15	55	°C	
	Lead Solder Temp		260	°C	For 10 seconds, 1.6mm below seating plane.
V_{DD}	DC supply voltage	-0.5	4.0	V	
ESD			2	kV	All pins, human body model MIL 883 Method 3015
V _{IN}	DC input voltage	-0.5	5.5	V	PD, SDIO, SCLK, XA, XB, YA, YB,VDD

Recommend Operating Condition


Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
T _A	Operating Temperature	0		40	°C	
V _{DD}	Power supply voltage	3.3		3.6	V	
V_{DDD}, V_{DDA}	Power supply voltage	3.0		3.6	V	
V _N	Supply noise			100	mV	Peak to peak within 0-100 MHz
F _{CLK}	Clock Frequency	12.000	18.432	24.576	MHz	Set by crystal or ceramic resonator.
FR	Frame Rate	1953	3000	4000	Frames/s	1953 frames/s @ F _{CLK} =12.000MHz 4000 frames/s @ F _{CLK} =24.567MHz
SCLK	Serial Port Clock Frequency			10	MHz	
Z	Distance from lens reference plane to surface	2.3	2.4	2.5	mm	Refer to Figure 4.
S	Speed	0	18	37	Inches/sec	
А	Acceleration			20	g	
R	Resolution		400	800	cpi	

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

OBJECT SURFACE

Figure 4. Distance from Lens Reference Plane to Surface

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

CMOS Optical Mouse Sensor

AC Operating Condition

Electrical Characteristics over recommended operating conditions. Typical values at 25 °C, V_{DD} =3.3 V, F_{CLK} =18.432MHz

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
t _{PD}	Power Down		500		us	From PD↑. (Refer to Figure 15)
t _{PDW}	PD Pulse Width	700			us	Pulse width to reset the serial interface. (Refer to Figure 15)
t _{PDR}	PD Pulse Register			333	us	One frame time maximum after setting bit 2 in the Configuration register @3000frame/sec. (Refer to Figure 17)
t _{pupd}	Power Up from PD↓	9		30.5	ms	From PD \downarrow to valid quad signals. After t _{PUPD} , all registers contain valid data from first image after PD \downarrow . Note that an additional 90 frames for Auto-Exposure (AE) stabilization may be required if mouse movement occurred while PD was high. (Refer to Figure 15)
t _{PU}	Power Up from V_{DD}	15		30.5	ms	From V _{DD} ↑ to valid quad signals. 500usec + 90frames.
t _{HOLD}	SDIO read hold time		3		us	Minimum hold time for valid data. (Refer to Figure 11)
t _{resync}	Serial Interface RESYNC.	1			us	@3000frame/sec (Refer to Figure 14)
t _{siwtt}	Serial Interface Watchdog Timer Timeout	1.7			ms	@3000frame/sec (Refer to Figure 14)
t _r ,t _f	Rise and Fall Times: SDIO		25, 20		ns	$C_L = 30 pf$
t _r , t _f	Rise and Fall Times: XA, XB, YA, YB		25, 20		ns	$C_{\rm L} = 30 \rm pf$
t _r , t _f	Rise and Fall Times: ILED		10, 10		ns	LED bin grade: R; R1=100ohm

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

CMOS Optical Mouse Sensor

DC Electrical Characteristics

Electrical Characteristics over recommended operating conditions. Typical values at 25 °C, V_{DD} =3.3V

Symbol	Parameter	Min.	Тур.	Max.	Unit		
Type: P	Type: PWR						
I _{DD}	Supply Current Mouse moving (Normal)		12		mA	XA, XB, YA, YB, SCLK, SDIO = no load	
I _{DD}	Supply Current Mouse not moving (sleep1)		5		mA		
I _{DDPD}	Supply Current (Power Down)		60		uA	PD, SCLK, SDIO = high	
Type: S	Type: SCLK, SDIO, PD						
V _{IH}	Input voltage HIGH	2.0					
V _{IL}	Input voltage LOW			0.7	V		
V _{OH}	Output voltage HIGH	2.4			V	$@I_{OH} = 2mA (SDIO only)$	
V _{OL}	Output voltage LOW			0.6	V	$@I_{OL} = 2mA (SDIO only)$	
Type: O	Type: OSCIN						
V _{IH}	Input voltage HIGH	2.0			V	When driving from an external source	
V _{IL}	Input voltage LOW			0.7	V	When driving from an external source	
Type: L	Type: LED						
V _{OL}	Output voltage LOW			150	mV	$@I_{OL} = 25mA$	
Туре: Х	Type: XA, XB, YA, YB						
V _{OH}	Output voltage HIGH	2.4			V	$@I_{OH} = 2mA$	
V _{OL}	Output voltage LOW			0.6	V	$(@I_{OL} = 2mA)$	

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

5. Quadrature Mode

The quadrature state of the PAN301BSI-208 tells mouse controller which direction the mouse is moving in. The output format is two channels quadrature (X and Y direction), which emulates encoder phototransistors. The DSP generates the Δx and Δy relative displacement values that are converted into two channel quadrature signals. The following diagrams show the timing for positive X motion, to the right or positive Y motion, up.

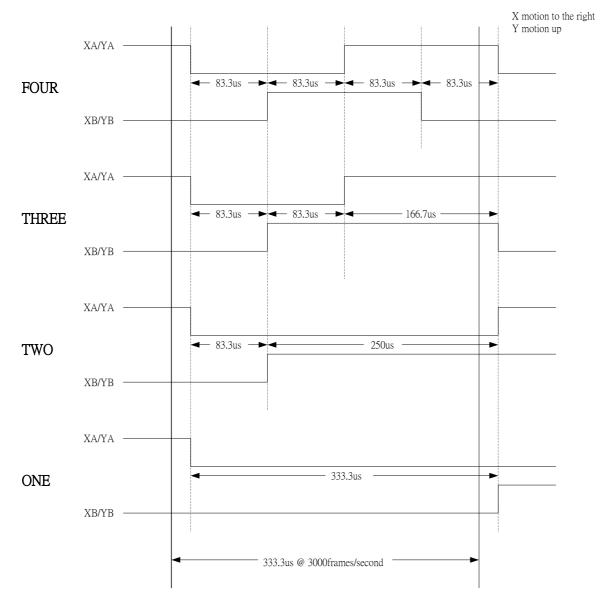


Figure 6. Quadrature output timing

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

5.2 Quadrature Output State Machine

The following state machine shows the states of the quadrature output pins. The three things to note are that state 0 is entered after a power on reset. While the PD pin is asserted, the state machine is halted. Once PD is de-asserted, the state machine picks up from where it left off. During times of mouse no movement will entry power saving mode, until mouse was moved.

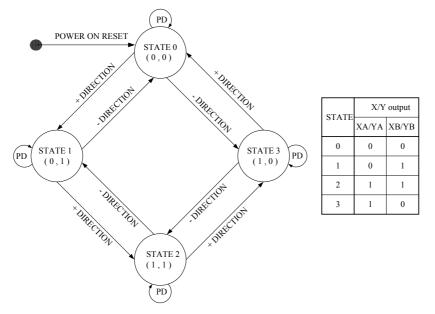


Figure 7. State machine

5.3 Quadrature Output Waveform

The following diagrams show the waveform of the two channel quadrature outputs. If the X, Y is motionless, the (XA, XB), (YA, YB) will keep in final state. Each state change (ex. STATE2 \rightarrow STATE3) is one count.

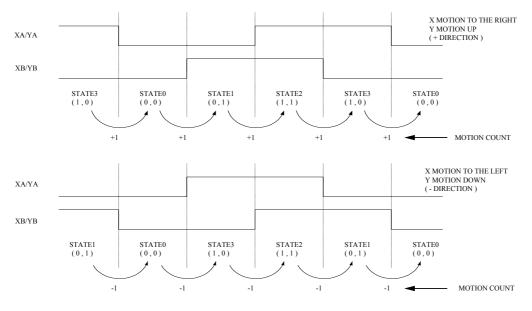


Figure 8. Quadrature output waveform

PixArt Imaging Inc.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

6. Serial Interface

The synchronous serial port is used to set and read parameters in the PAN301BSI-208, and can be used to read out the motion information instead of the quadrature data pins.

- SCLK: The serial clock line. It is always generated by the host micro-controller.
- **SDIO:** The serial data line used for write and read data.
- **PD:** A third line is sometimes involved. PD(Power Down pin) is usually used to place the PAN301BSI-208 in a low power mode to meet USB suspend specification. PD can also be used to force re-synchronization between the micro-controller and the PAN301BSI-208 in case of an error.

6.1 Transmission Protocol

The transmission protocol is a two-wire link, half duplex protocol between the micro-controller and PAN301BSI-208. All data changes on SDIO are initiated by the falling edge on SCLK. The host micro-controller always initiates communication; the PAN301BSI-208 never initiates data transfers.

The transmission protocol consists of the two operation modes:

- Write Operation.
- Read Operation.

Both of the two operation modes consist of two bytes. The first byte contains the address (seven bits) and has a bit7 as its MSB to indicate data direction. The second byte contains the data.

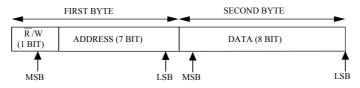
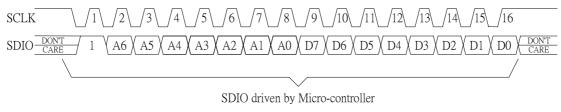



Figure 9. Transmission protocol

6.1.1 Write Operation

A write operation, which means that data is going from the micro-controller to the PAN301BSI-208, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The transfer is synchronized by SCLK. The micro-controller changes SDIO on falling edges of SCLK. The PAN301BSI-208 reads SDIO on rising edges of SCLK.

6.1.2 Read Operation

A read operation, which means that data is going from the PAN301BSI-208 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is written by the micro-controller, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by the PAN301BSI-208. The transfer is synchronized by SCLK. SDIO is

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

PixArt Imaging Inc.

CMOS Optical Mouse Sensor

changed on falling edges of SCLK and read on every rising edge of SCLK. The micro-controller must go to a high Z state after the last address data bit. The PAN301BSI-208 will go to the high Z state after the last data bit.

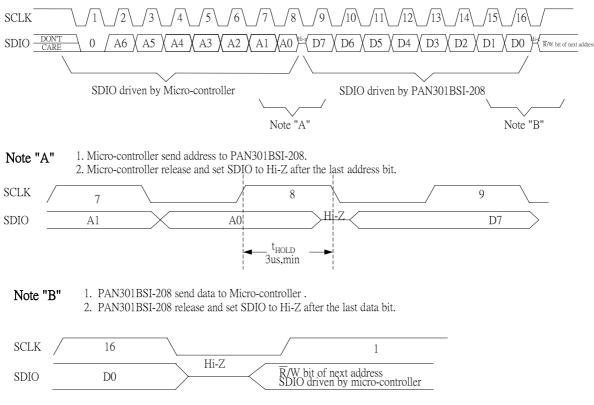


Figure 11. Read operation

6.2 Re-Synchronous Serial Interface

There are times when the SDIO line from the PAN301BSI-208 should be in the Hi-Z state. If the microprocessor has completed a write to the PAN301BSI-208, the SDIO line is Hi-Z, since the SDIO pin is still configured as an input. However, if the last operation from the microprocessor was a read, the PAN301BSI-208 will hold the D0 state on SDIO until a rising edge of SCLK. To place the SDIO pin into the Hi-Z state, first raise the PD line, and then toggle the SCLK line from high to low to high. The SDIO line will now be in the Hi-Z state. The PAN301BSI-208 and the micro-controller might get out of synchronization due to following condition.

PD	 lus,min	
SCLK	 ,	
SDIO	 Hi-Z	ADDRESS(R/W) DATA

Figure 12. Forcing PAN301BSI-208 SDIO line to the Hi-Z state

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

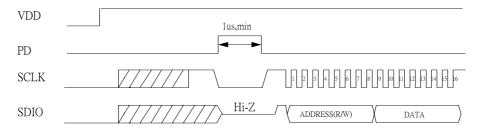
6.2.1 USB Suspend

Termination of a transmission by the micro-controller may sometimes be required (for example, due to a USB suspend interrupt during a read operation). To accomplish this the micro-controller should raise PD. The PAN301BSI-208 will not write to any register and will reset the serial port (but nothing else) and be prepared for the beginning of future transmissions after PD goes low.

6.2.2 Firmware Flaws Error, or Others Error

The PAN301BSI-208 and the micro-controller might get out of synchronization due to micro-controller firmware flaws. The PD pin can stay high, with the PAN301BSI-208 in the shutdown state, or the PD pin can be lowered, returning the PAN301BSI-208 to normal operation.

If the microprocessor and the PAN301BSI-208 get out of sync, then the data either written or read from the registers will be incorrect. In such a case, an easy way to solve this is to raise PD to re-sync the parts after an incorrect read. The PAN301BSI-208 will reset the serial port but will not reset the registers and be prepared for the beginning of a new transmission.


6.2.3 Power On Problem

The problem occurs if the PAN301BSI-208 powers up before the microprocessor sets the SCLK and SDIO lines to be output.

6.2.4 ESD Events

The PAN301BSI-208 and the micro-controller might get out of synchronization due to ESD events.

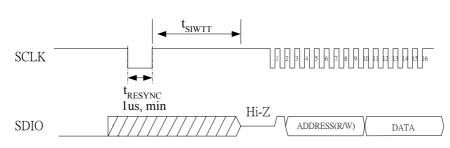
If the PAN301BSI-208 and the micro-controller might get out of synchronization due to power on problem or ESD events. An easy way to solve this is to soft reset the PAN301BSI-208.

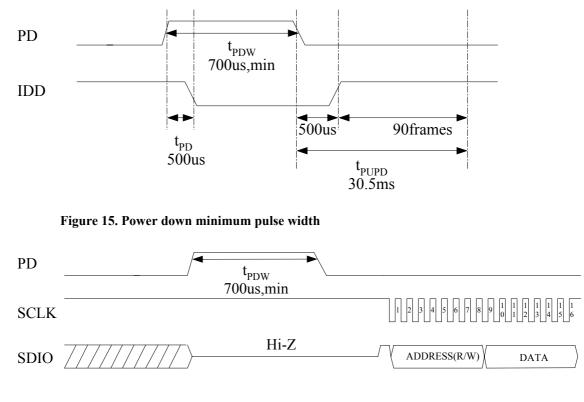
6.3 Collision Detection on SDIO

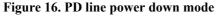
The only time that the PAN301BSI-208 drives the SDIO line is during a READ operation. To avoid data collisions, the micro-controller should release SDIO before the falling edge of SCLK after the last address bit. The PAN301BSI-208 begins to drive SDIO after the next falling edge of SCLK. The PAN301BSI-208 release SDIO of the rising SCLK edge after the last data bit. The micro-controller can begin driving SDIO any time after that. In order to maintain low power consumption in normal operation or when the PD pin is pulled high, the micro-controller should not leave SDIO floating until the next transmission (although that will not cause any communication difficulties).

6.4 Serial Interface Watchdog Timer Timeout

When there are only two pins to read register from PAN301BSI-208, and PD pin can't be used to resynchronous function. If the microprocessor and the PAN301BSI-208 get out of sync, then the data either written or read from the registers will be incorrect. In such a case, an easy way to solve this condition is to toggle the SCLK line from high to low to high and wait at least t_{SIWTT} to re-sync the parts after an incorrect read. The PAN301BSI-208 will reset the serial port but will not reset the registers and be prepared for the beginning of a new transmission.




Figure 14. Re-synchronous serial interface using watchdog timer timeout


6.5 Power Down Mode

There are two different ways to entry power down mode, using the PD line or register setting.

6.5.1 PD Line Power Down Mode

To place the PAN301BSI-208 in a low power mode to meet USB suspend specification, raise the PD line at least 700us. Then PD line can stay high, with the PAN301BSI-208 in the shutdown state, or the PD pin can be lowered, returning the PAN301BSI-208 to normal operation.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

6.5.2 Register Power Down Mode

PAN301BSI-208 can be placed in a power-down mode by setting bit 3 in the configuration register via a serial port write operation. After setting the configuration register, wait at least 1 frame times. To get the chip out of the power-down mode, clear bit 3 in the configuration register via a serial port write operation. In power-down mode, the serial interface watchdog timer is not available. But, The serial interface still can read/write normally. For an accurate report after leave power down mode, wait about 3ms before the micro-controller is able to issue any write/read operation to the PAN301BSI-208.

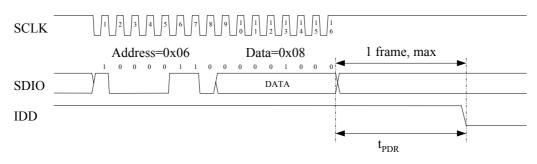


Figure 17. Power-down configuration register writing operation

6.6 Error Detection

- 1. The micro-controller can verify success of write operations by issuing a read command to the same address and comparing written data to read data.
- 2. The micro-controller can verify the synchronization of the serial port by periodically reading the product ID register.

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

7. Referencing Application Circuit for Cordless Optical Mouse

7.1 27MHz RF TX Circuit with Internal Regulator

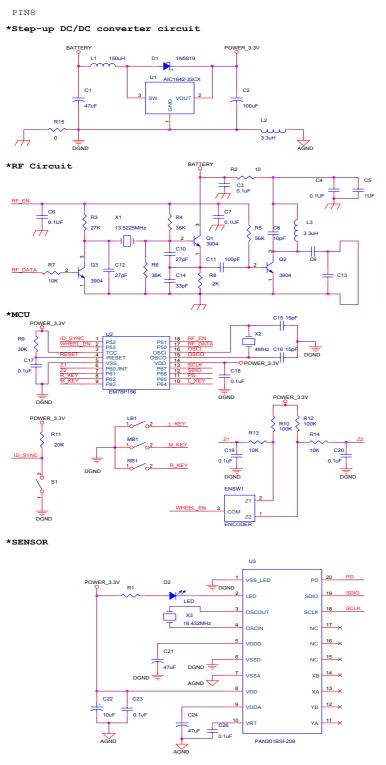


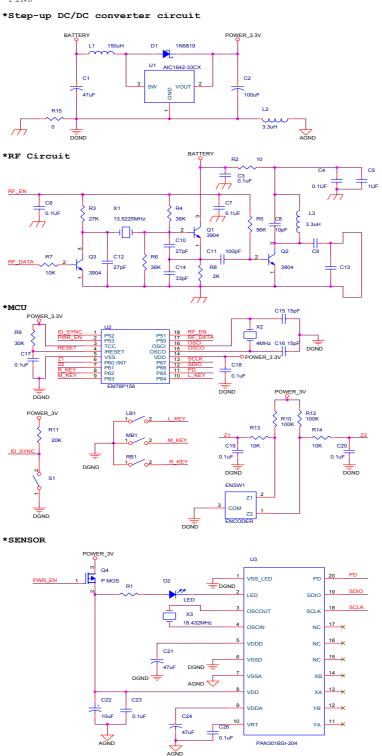
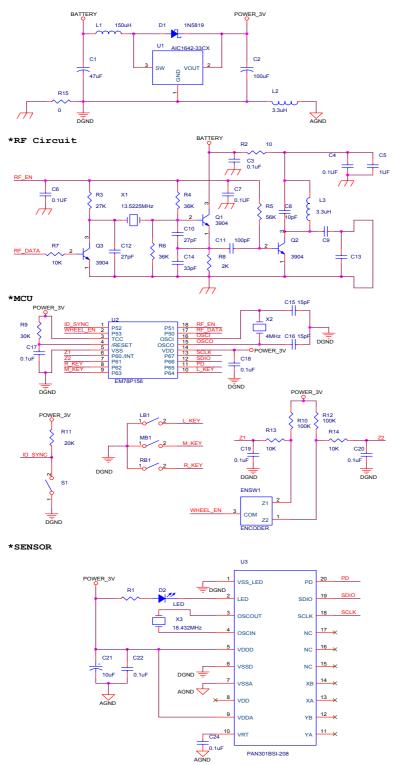
Figure 18. 27MHz RF transceiver circuit with internal regulator

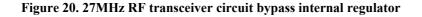
All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

PixArt Imaging Inc.

7.2 27MHz RF TX Circuit with Internal Regulator for Low Power Down Current

PIN8


Figure 19. 27MHz RF TX circuit with internal regulator for low power down current

CMOS Optical Mouse Sensor

7.3 27MHz RF TX Circuit Bypass Internal Regulator

*Step-up DC/DC converter circuit

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

PixArt Imaging Inc.

7.4 27MHz RF TX Circuit Bypass Internal Regulator for Low Power Down Current

*Step-up DC/DC converter circuit

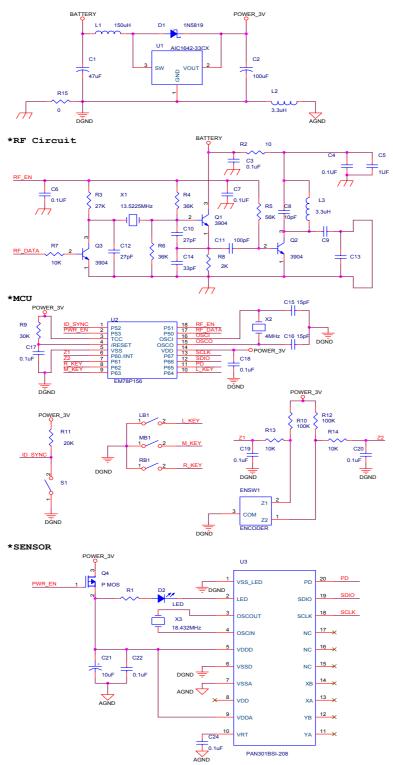
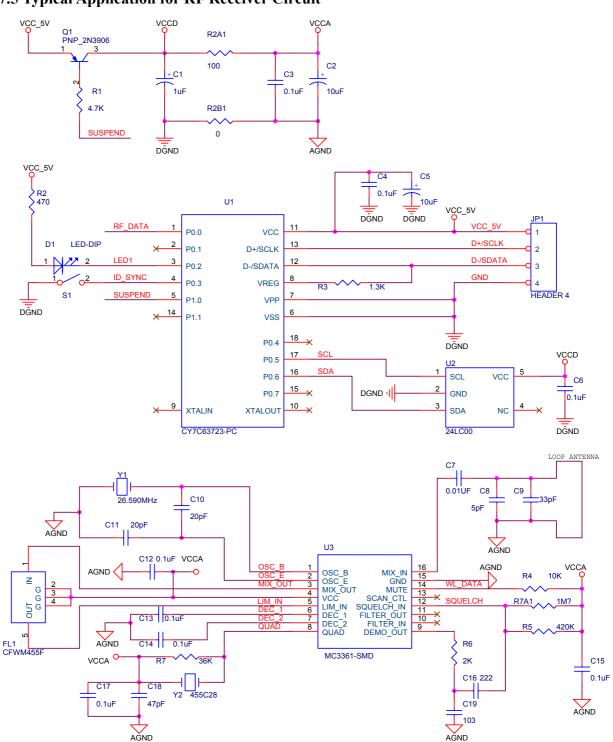



Figure 21. 27MHz RF TX circuit bypass internal regulator for low power down current

7.5 Typical Application for RF Receiver Circuit

Figure 22. Application circuit for RF receiver circuit

7.6 PCB Layout Consideration

- 1. Caps for pins 8, 9, 10 MUST have trace lengths LESS than 5mm.
- 2. The trace lengths of OSCOUT, OSCIN must less than 6mm.

7.7 Recommended Value for R1

Radiometric intensity of LED

Bin limits (mW/Sr at 20mA)

	/		
LED Bin grade	Min.	Тур.	Max.
N	14.7		17.7
Р	17.7		21.2
Q	21.2		25.4

Note: Tolerance for each bin will be $\pm 15\%$

R1 value (ohm), VDD=3.3V

LED bin grade	Min.	Тур.	Max.
Ν	12	22	
Р	12	22	
Q	12	22	

- 8. Package Information
- 8.1 Package Outline Drawing

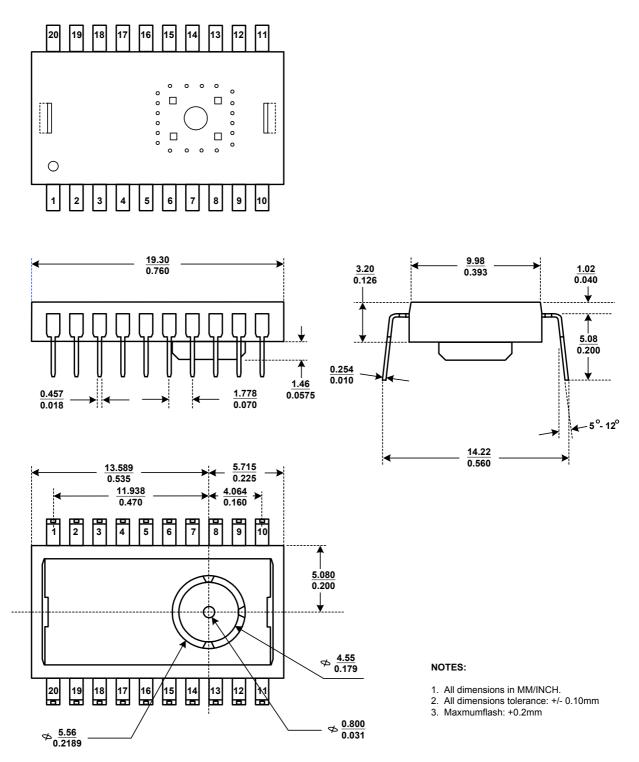
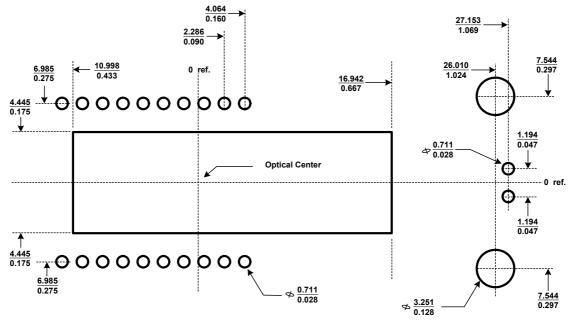



Figure 23. Package outline drawing

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.

8.2 Recommended PCB Mechanical Cutouts and Spacing

All Dimensions : mm / inch

Figure 24. Recommended PCB mechanical cutouts and spacing

9. Update History

Version	Update	Date
V1.0	Creation, Preliminary 1 st version	05/10/2004
V1.1	7.1 27MHz RF TX Circuit with Internal Regulator7.2 27MHz RF TX Circuit with Internal Regulator for Low Power Down Current	05/26/2004

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission.