

CAN transceiver for 24 V systems.

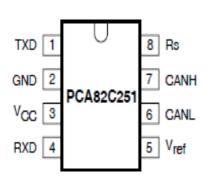
GENERAL DESCRIPTION

The PCA82C251 is the interface between the CAN protocol controller and the physical bus. It is primarily intended for applications (up to 1 Mbaud) in trucks and buses. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

FEATURES

- Fully compatible with the "ISO 11898-24 V" standard
- Slope control to reduce RFI
- Thermally protected
- Short-circuit proof to battery and ground in 24 V powered systems
- Low-current standby mode
- An unpowered node does not disturb the bus lines
- At least 110 nodes can be connected
- High speed (up to 1 Mb)
- High immunity against electromagnetic interference

QUICK REFERENCE DATA


SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{cc}	Supply Voltage		4.5	5.5	V
Icc	Supply Current	Standby Mode	-	275	μA
1/t _{bit}	Maximum Transmission Speed	Non Return To Zero	1	-	Mb
V _{CAN}	CANH, CANL In/Out Voltage		-36	+36	V
V _{diff}	Differential Bus Voltage		1.5	3	V
T _{amb}	Ambient Temperature		-40	+125	О°

ORDERING INFORMATION

TYPE NUMBER	TYPE NUMBER DESCRIPTION	
PCA52C251	plastic dual in-line package; 8 leads (300 mil)	DIP8
PCA52C251T	plastic small outline package; 8 leads body width 3.9 mm	SO8

PINNING

PIN	SYMBOL	DESCRIPTION
1	TXD	Transmit Data Input
2	GND	Ground
3	V _{cc}	Supply Voltage
4	RXD	Receive Data Output
5	V _{ref}	Reference Voltage Output
6	CANL	Low-Level CAN Voltage In/Out
7	CANH	High-Level CAN Voltage In/Out
8	Rs	Slope Resistor Input

FUNCTIONAL DESCRIPTION

The PCA82C251 is the interface between the CAN protocol controller and the physical bus.

It is primarily intended for applications up to 1 Mb in trucks and buses.

The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

It is fully compatible with the "ISO 11898-24 V" standard.

A current limiting circuit protects the transmitter output stage against short-circuit to positive and negative battery voltage.

Although the power dissipation is increased during this fault condition, this feature will prevent destruction of the transmitter output stage.

If the junction temperature exceeds a value of approximately 160 C, the limiting current of both transmitter outputs is decreased.

Because the transmitter is responsible for the major part of the power dissipation, this will result in a reduced power dissipation and hence a lower chip temperature.

All other parts of the IC will remain operating.

The thermal protection is particularly needed when a bus line is short-circuited.

The CANH and CANL lines are also protected against electrical transients which may occur in an automotive environment.

Pin 8 (Rs) allows three different modes of operation to be selected: high-speed, slope control or standby. For high-speed operation, the transmitter output transistors are simply switched on and off as fast as possible.

In this mode, no measures are taken to limit the rise and fall slope. Use of a shielded cable is recommended to avoid RFI problems.

The high-speed mode is selected by connecting pin 8 to ground.

The slope control mode allows the use of an unshielded twisted pair or a parallel pair of wires as bus lines. To reduce RFI, the rise and fall slope should be limited.

The rise and fall slope can be programmed with a resistor connected from pin 8 to ground. The slope is proportional to the current output at pin 8.

If a HIGH level is applied to pin 8, the circuit enters a low current standby mode. In this mode, the transmitter is switched off and the receiver is switched to a low current.

If dominant bits are detected (differential bus voltage >0.9 V), RXD will be switched to a LOW level.

The microcontroller should react to this condition by switching the transceiver back to normal operation (via pin 8). Because the receiver is slower in standby mode, the first message will be lost at higher bit rates.

Table 1 Truth table of the CAN transceiver

V _{cc}	тхт	CANH	CANL	BUS STATE	RXD
4.5 to 5.5 V	0	HIGH	LOW	dominant	0
4.5 to 5.5 V	1 (Floating)	floating	floating	recessive	1 ⁽²⁾
4.5 <v<sub>CC< 5.5 V</v<sub>	X ⁽¹⁾	floating if V_{Rs} >0.75 V_{CC}	Floating if V _{Rs} >0.75 V _{CC}	floating	1 ⁽²⁾
0 <v<sub>CC< 5.5 V</v<sub>	floating	floating	floating	floating	X ⁽¹⁾

Notes

- 1. X = don't care.
- 2. If another bus node is transmitting a dominant bit, then RXD is logic 0.

 Table 2 Pin R_s summary

CONDITION FORCED AT PIN R _s	MODE	RESULTING VOLTAGE OR CURRENT AT PIN R _s
V _{Rs} >0.75 V _{CC}	Standby	-I _{Rs} < 10 μΑ
10 μA < -I _{Rs} < 200 μA	Slope control	$0.4 V_{CC} < V_{Rs} < 0.6 V_{CC}$
$V_{Rs} > 0.3 V_{CC}$	High-speed	-I _{Rs} < 500 μΑ

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referenced to pin 2; positive input current.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{cc}	Supply Voltage		-0.3	+7	V
V _N	DC Voltage at Pin 1,4,5 And 8		-0.3	V _{CC} +3	V
		$0V < V_{CC} < 5.5 V$ TXD High or floating	-36	+36	V
V ₆	DC Voltage at Pin 6 (CANL)	0V < VCC < 5.5 V No time limit (note1)	-36	+36	V
		0V < VCC < 5.5 V No time limit (note2)	-36	+36	V
V ₇	DC Voltage at Pin 7 (CANH)	0V < VCC < 5.5 V No time limit	-36	+36	V
V _{tr}	Transient Voltage Pins 6 And 7		-200	+200	V
T _{stg}	Storage Temperature		-55	+150	°C
T _{amb}	Ambient Temperature		-40	+125	°C
T _{vi}	Virtual Junction Temperature	(note3)	-40	+150	°C
V .	Electrostatic Discharge Voltage	(note4)	-2500	+2500	V
V esd	Lectrostatic Discharge Voltage	(note5)	-250	+250	V

Notes

- 1. TXD is LOW. Short-circuit protection provided for slew rates up to 5 V/ms for voltages above +30 V
- 2. Short-circuit applied when TXD is HIGH, followed by TXD switched to LOW.
- In accordance with "IEC 60747-1". An alternative definition of virtual junction temperature is: Tvj = Tamb + Pd ´ Rth(vj-a), where Rth(vj-a) is a fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (Pd) and ambient temperature (Tamb).
- 4. Classification A: human body model; C = 100 pF; R = 1500 Ω ; V = ±2500 V.
- **5.** Classification B: machine model; C = 200 pF; $R = 0 \Omega$; $V = \pm 250 \text{ V}$.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER		CONDITIONS	VALUE	UNIT
Б	Thermal Resistance From	PCA82C251	In free oir	100	
R _{th(j-a)}	Junction to Ambient	PCA82C251T	In free air	160	K/W

CHARACTERISTICS

 $V_{CC} = 4.5$ to 5.5 V; $T_{amb} = -40$ to +125 °C; $R_L = 60 \Omega$; $I_8 > -10 \mu$ A; unless otherwise specified; all voltages referenced to ground (pin 2); positive input current; all parameters are guaranteed over the ambient temperature range by design, but only 100% tested at +25 °C.

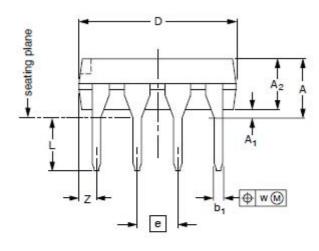
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT			
Supply	Supply								
	Supply Current	Dominant; $V_1 = 1 V$ $V_{CC} < 5.1V$	-	-	78				
		Dominant; $V_1 = 1 V$ $V_{CC} < 5.25V$	-	-	80	~ ^			
l ₃		Dominant; $V_1 = 1 V$ $V_{CC} < 5.5V$	-	-	85	mA			
		recessive; $V_1 = 4 V$ $R_8 = 47 k\Omega$	-	-	10				
		Standby, Note1	-	-	275	μA			

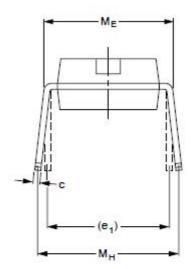
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT			
DC bus tra	DC bus transmitter								
V _{IH}	High-Level Input Voltage	Output recessive	$0.7V_{CC}$	-	V _{CC} +0.3	V			
VIL	LOW-Level Input Voltage	Output dominant	-0.3	-	$0.3V_{CC}$	V			
I _{IH}	HIGH-Level Input Current	$V_1 = 4 V$	-200	-	+30	μA			
IIL	LOW-Level Input Current	$V_1 = 1 V$	-100	-	-600	μA			
V _{6,7}	Recessive Bus Voltage	$V_1 = 4 V$, no load	2	-	3	V			
-	Off-State Output Leakage	$-2 V < (V_6, V_7) < 7 V$	-2	-	+2	A			
LO	Current	-5 V < (V ₆ ,V ₇) < 36 V	-10	-	+10	mA			
		V ₁ = 1 V	3	-	4.5				
V ₇	CANH Output Voltage	$V_{\rm CC} = 4.75$ to 5.5 V	Ŭ			V			
- 1	er an e apar volage	$V_1 = 1 V$ $V_{CC} = 4.5 \text{ to } 4.75 V$	2.75	-	4.5				
V ₆	CANL Output Voltage	$V_1 = 1 V$	0.5	-	2	V			
	Difference Between Output	$V_1 = 1 V$	1.5	-	3	V			
$\Delta V_{6,7}$	Difference Between Output	$V_1 = 1 V, R_L = 45 \Omega$	1.5	I	-	V			
-	Voltage at Pins 6 And 7	$V_1 = 4 V$, no load	-500	-	+50	mA			
I _{SC7}	Short-Circuit CANH Current	V ₇ = -5 V	-	-	-200	mA			
ISC7		V ₇ = -36 V	-	-100	-	ША			
I _{SC6}	Short-Circuit CANL Current	$V_6 = 36 V$	-	-	200	mA			

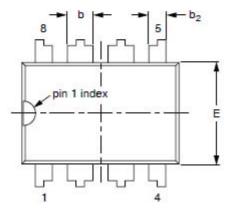
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
DC bus receiver $[V_1 = 4 V; pins 6 and 7 externally driven; -2 V < (V_6, V_7) < 7 V; unless otherwise specified]$								
V _{diff(r)}	Differential Input Voltage (Recessive) Note 2	-7 V < (V ₆ ,V ₇) < 12 V	-1 -1	-	+0.5	V		
		$-7 v < (v_6, v_7) < 12 v$	0.9	-	+0.4			
V	V _{diff(d)} Differential Input Voltage (Dominant)	$-7 V < (V_6, V_7) < 12 V$ Not standby mode	1	-	5	V		
V diff(d)		Standby mode	0.97	-	5	v		
		V_{CC} = 4.5 to 5.1 V Standby mode	0.91	-	5			
V _{diff(hys)}	Differential Input Hysteresis		-	150	-	mV		
V _{он}	High-Level Output Voltage (Pin4)	I ₄ = 100 μA	$0.8V_{CC}$	-	V _{cc}	V		
V	LOW-Level Output Voltage	$I_4 = 1 \text{ mA}$	0	-	$0.2V_{CC}$	V		
V _{OL}	(Pin4)	I ₄ = 10 mA	0	-	1.5	v		
R _i	CANH, CANL Input Résistance		5	-	25	KΩ		
R _{diff}	Differential Input Resistance		20	-	100	kΩ		

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT		
Reference output								
Vrof	Vref Reference Output Voltage	V ₈ = 1 V, I ₅ < 50 μA	$0.45V_{CC}$	-	$0.55V_{CC}$	V		
VIEI		V ₈ = 5 V, I ₅ < 5 μA	$0.4V_{CC}$	-	$0.6V_{CC}$	v		

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Timing (R _L =	= 60 Ω ; C _L = 100 pF, unless othe	rwise specified)		•	•	•
t _{bit}	Minimum Bit Time	$R_8 = 0 \Omega$	-	-	1	μs
t _{onDXD}	Delay TXD to Bus Active	$R_8 = 0 \Omega$	-	-	50	Ns
t_{offTXD}	Delay TXD to Bus Inactive	$R_8 = 0 \Omega$	-	40	80	Ns
t _{onRXD}	Delay TXD to Receive Active	R ₈ = 0 Ω	-	55	120	Ns
	Delay TXD to Receive	$R_8 = 0 \Omega$, Tamb < 85°C VCC = 4.5 to 5.1 V	-	80	150	
t _{offRXD}		$R_8 = 0 \Omega$ VCC = 4.5 to 5.1 V	-	80	170	Ns
onna	Inactive	R ₈ = 0 Ω, Tamb < 85°C	-	90	170	
		$R_8 = 0 \Omega$	-	90	190	1
		$R_8 = 47 \Omega$	-	290	400	
t _{onRXD}	Delay TXD to Receive Active	R ₈ = 47 Ω	-	440	550	Ns
SR	CANH, CANL Slew Rate	R ₈ = 47 Ω	-	7	-	V/µs
t _{WAKE}	Wake-Up Time From Standby (via pin 8)		-	-	20	μs
t _{dRXDL}	Bus Dominant to RXD LOW	$V_8 = 4V$	-	-	3	μs

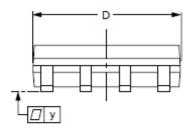

SYMBOL	PARAMETER	CONDITIONS	MIN	ΤΥΡ	MAX	UNIT							
Standby/slope control (pin 8)													
V _{stb}	Input Voltage For Standby Mode		0.75V _{CC}	-	-	V							
I _{slope}	Slope Control Mode Current		-10	-	-200	μA							
V _{slope}	Slope Control Mode Voltage		$0.4V_{CC}$	-	0.6V _{CC}	V							

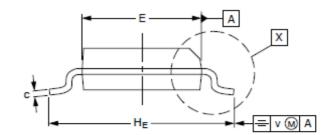

Notes

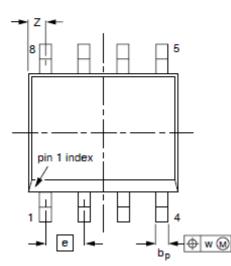

1. $I_1 = I_4 = I_5 = 0$ mA; $0 \vee < V_6 < V_{CC}$; $0 \vee < V_7 < V_{CC}$; $V_8 = V_{CC}$; $T_{amb} < 90$ °C. 2. This is valid for the receiver in all modes: high-speed, slope control and standby

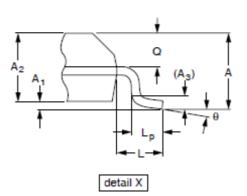
C O M S E T S E M I C O N D U C T O R S

PACKAGE DIP 8




DIMENSIONS


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	с	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	м _н	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.14	0.53 0.38	1.07 0.89	0.36 0.23	9.8 9.2	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15
inche	0.17	0.020	0.13	0.068 0.045	0.021 0.015	0.042 0.035	0.014 0.009	0.39 0.36	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.045



PACKAGE SO 8

DIMENSIONS

UNIT	A max.	A ₁	A ₂	A ₃	bp	с	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Revised december 2014

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com