TOLL-1L

PCSL016N08NL is 80V/ 1.6mΩ N-Channel SGT MOSFET

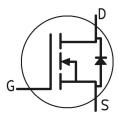
General Description

PingChuang SGT MOSFET is a new type of power semiconductor device. It has the advantages of low conduction losses of traditional, low switching losses. SGT MOSFET as a switching device is used in new energy electric vehicles, new photovoltaic power generation, energy-saving home appliances and other fields of motor drive systems, inverter systems and power management systems.

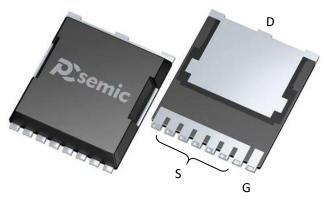
Semic 平创半导体

Features

- Low Gate Charge
- $\bullet \ Low \ C_{iss}$
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS 2.0 Compliant


Applications

- Motor Drive Systems
- Power Management Systems
- Inverter Systems


PCSL016N08NL Summary

Symbol	Value
V _{DS}	80V
R _{DS(on)type}	1.6mΩ
I _D @25°C	260A
I _D @100°C	184A
Q _{G(typ.)}	215nC

Equivalent Schematic

Package TOLL-1L

Package Marking

Product#	Marking	Package	
PCSL016N08NL	PCSL016N08NL	TOLL-1L	

Maximum Ratings ($T_C = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-Source Voltage	80	V
V _{GS}	Gate-Source Voltage	±20	V
ID	Continuous Drain Current	260	А
ID	Package Limited	300	А
ID	Continuous Drain Current($T_C = 100^{\circ}C$)	184	А
I _{D(pulse)}	Pulsed Drain Current	1040	А
Eas	Single Pulse Avalanche Energy	441	mJ
T _J ,T _{STG}	Operating Junction and Storage Temperature Range	-55 to +175	°C
Τ	Maximum Lead Temperature for Soldering Purposes, 1/8"from Case for 5 Seconds	260	°C

Thermal Characteristics

Symbol	Parameter	Value	Unit
R_{thJC}	Thermal Resistance, Junction to Case	0.65	°C/W
PD	Maximum Power Dissipation,T _C =25°C	230	W

Electrical Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	80			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =80V, V_{GS} =0V			1	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{DS}=0V, V_{GS}=20V$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{DS}=0V, V_{GS}=-20V$			-100	nA
V _{GS(th)}	Gate-Source Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	2.0	3.0	4.0	V
R _{DS(on)}	Drain-Source On-State Resistance	V _{GS} =10V, I _D =20A		1.6	2.2	mΩ
Ciss	Input Capacitance	V _{GS} =0V		13220		pF
Coss	Output Capacitance	V _{DS} =25V		2500		pF
C _{rss}	Reverse Transfer Capacitance	f=1 MHz		146		pF
t _{d(on)}	Turn-On Delay Time	$V_{DD}=40V$		38		ns
t _r	Turn-On Rise Time	V _{GS} =10V		132		ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 10\Omega$		126		ns
t _f	Turn-Off Fall Time	$R_L=1\Omega$		153		ns
Q _G	Total Gate Charge	V _{DS} =48V		215		nC
Q _{GS}	Gate to Source Charge	V _{GS} =10V		68		nC
Q _{GD}	Gate to Drain Charge	$I_D=20A$		46		nC
V _{SD}	Diode Forward Voltage	Is=20A,VGS=0V			1.2	V
t _{rr}	Reverse Recovery Time	$V_{DS}=30V, I_F=5A$		120		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt=100A/µs		281		nC

Notes

1. Repetitive Rating:pulse width limited by maximum junction temperature.

2. L=0.5mH,Rg=25 Ω , starting T_J=25°C.

3. Pulse width ≤300us; duty cycle ≤2%.

Typical Performance

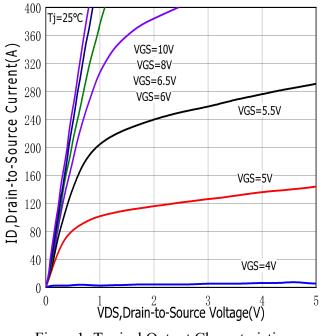


Figure1: Typical Output Characteristics

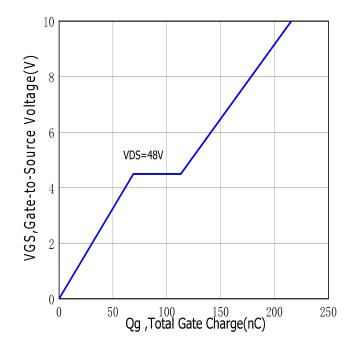
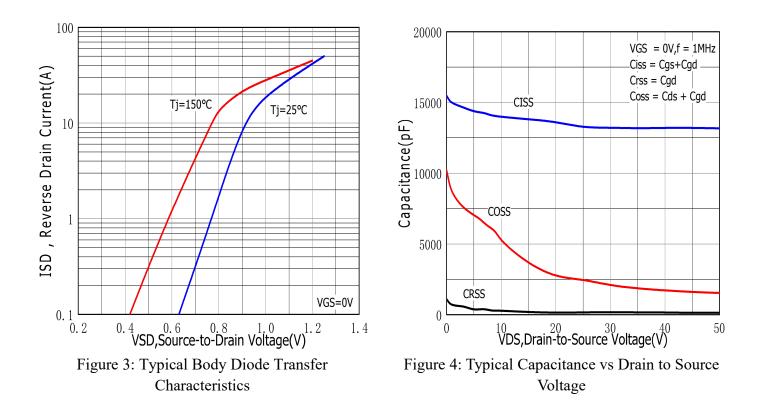



Figure 2: Typical Gate Charge vs Gate to Source Voltage

PSemic 平创半导体

Typical Performance

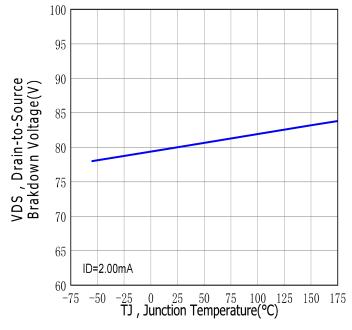


Figure 5: Typical Breakdown Voltage vs Junction Temperature

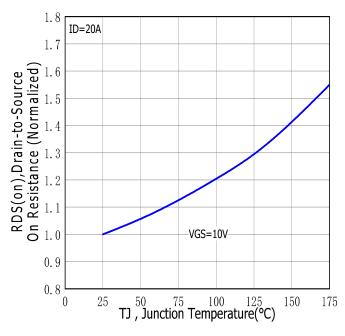


Figure 6: Typical Drain to Source on Resistance vs Junction Temperature

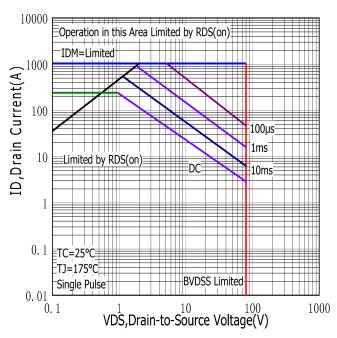


Figure 7: Maximum Forward Bias Safe Operating Area

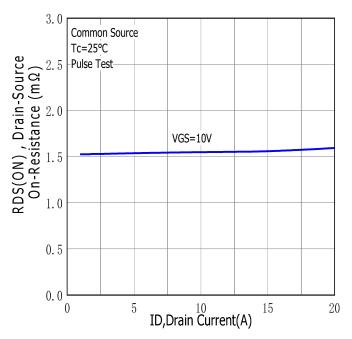


Figure 8: Typical Drain to Source on Resistance vs Drain Current

Typical Performance

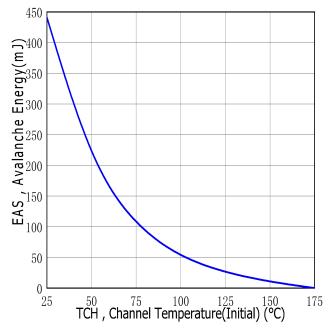


Figure 9: Maximum EAS vs Channel Temperature

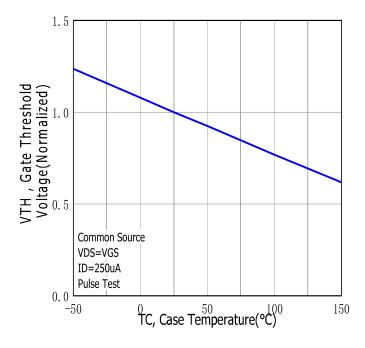


Figure 10: Typical Threshold Voltage vs Case Temperature

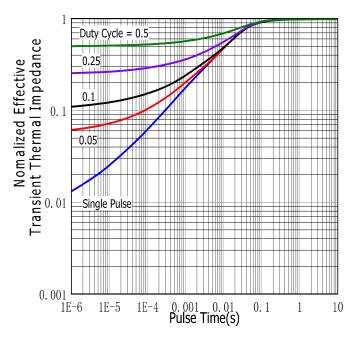


Figure 11: Maximum Effective Thermal Impedance , Junction to Case

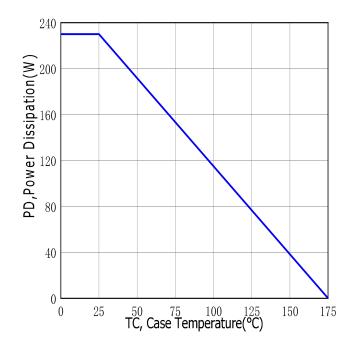
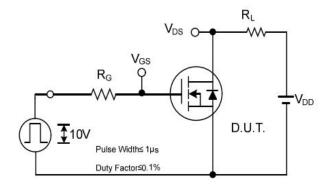
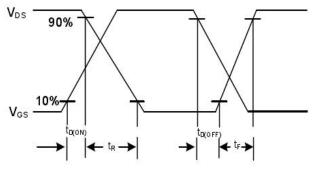
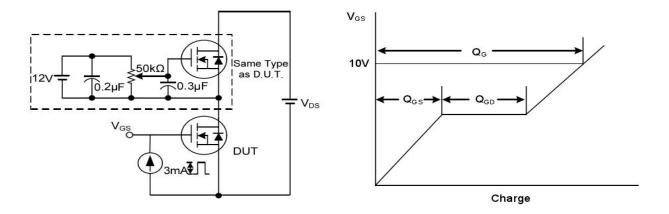
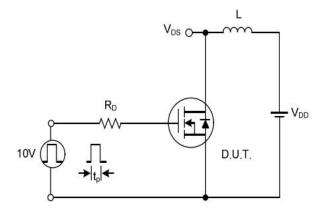




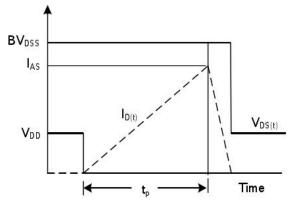
Figure 12: Maximum Power Dissipation vs Case Temperature

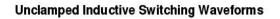

Test Circuit and Waveform



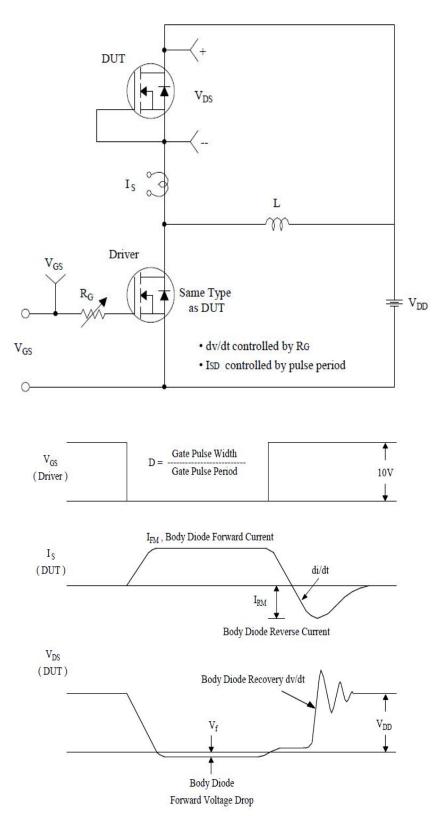
Switching Test Circuit

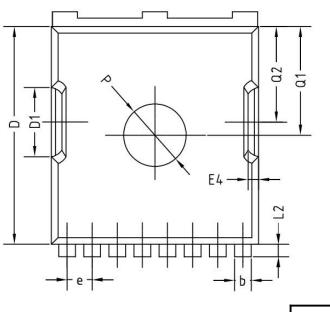
Switching Waveforms



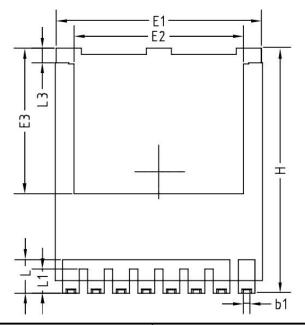

Gate Charge Test Circuit

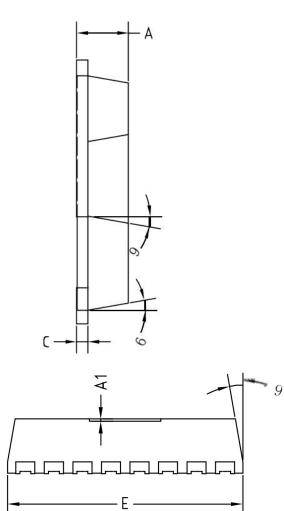
Unclamped Inductive Switching Test Circuit


Gate Charge Waveform



Test Circuit and Waveform





Package Dimensions

TO-TOLL-1L

DIM	MILLIMETERS			INCHES		
DIM	MIN	NOR	MAX	MIN	NOR	MAX
А	2.20	2.30	2.40	0.087	0.091	0.094
A1	0.05	0.10	0.20	0.00	0.004	0.008
b	0.65	0.80	0.85	0.026	0.031	0.033
b1	0.30	0.40	0.50	0.012	0.016	0.020
С	0.35	0.46	0.65	0.014	0.018	0.026
D	10.35	10.55	10.70	0.407	0.415	0.421
D1	3.15	3.30	3.45	0.124	0.130	0.136
Е	9.80	9.90	10.00	0.386	0.390	0.394
E1	9.65	9.80	9.95	0.380	0.386	0.392
E2	7.90	8.10	8.30	0.311	0.319	0.327
E3	6.80	7.00	7.20	0.268	0.276	0.283
E4	0.30	0.50	0.75	0.012	0.02	0.03
e	1.15	1.20	1.25	0.045	0.047	0.049
L	1.35	1.60	1.85	0.053	0.063	0.073
L1	0.95	1.20	1.35	0.037	0.045	0.053
L2	0.40	0.60	0.80	0.016	0.024	0.031
L3	0.60	0.70	0.85	0.024	0.024	0.031
θ	7°	10°	12°	7°	10°	12°
Р	2.90	3.00	3.10	0.114	0.118	0.122
Q	4.50	4.60	4.70	0.177	0.181	0.185
Q1	5.10	5.20	5.30	0.201	0.205	0.209
Н	11.55	11.70	11.95	0.455	0.461	0.470

UNIT:mm

IMPORTANT NOTICE

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

For more information on technology, delivery terms and conditions and prices, please contact the nearest <u>PingChuang</u> Technologies Office (<u>www.pcsemic.com</u>).