

PDF-202 DUAL PROGRAMMABLE DATA FILTER

TYPE OF CIRCUITRY: The PDF-202 is a dual amplifying, 2 pole low pass filter. It is comprised of two individual channels each containing a programmable gain instrumentation amplifier followed by a 2 pole, resister programmable low pass filter. The following specifications are given for a single channel but they apply to both.

CHANNEL ISOLATION: ≥60dB

SIGNAL INPUT VOLTAGE RANGE: ±10 Vdc maximum.

DIFFERENTIAL INPUT IMPEDANCE: ≥100 megohms in parallel with 12 pF.

COMMON MODE INPUT IMPEDANCE: ≥100 meghoms in parallel with 12 pF.

INITIAL OFFSET: Less than 10 mV

INPUT BIAS CURRENT (either input): 60 nanoamperes maximum: from -25°C +85°C.

COMMON MODE REJECTION RATIO, DC TO 60 Hz: At Gain = 100, 100 dB Minimum. At Gain = 1, 70 dB Minimum.

GAIN RANGE: 1 to 1000, programmable by external resistor/pot combination.

FIXED GAIN:

Gain = $100 \leqslant \pm 0.5\%$. Factory Preset Jumper Selectable Gain = $1 \leqslant \pm 0.1\%$.

GAIN STABILITY: 0.03% @ G = 1. 0.35% @ G = 100

OFFSET CORRECTION RANGE ±50 mVdc programmable by external resistor/pot combination.

OFFSET CORRECTION TERMINAL:

- Input Resistance: 40 k Ω 20%.*
- Input Range: ±10 Vdc Maximum.
- Voltage Gain To Output: Unity, with positive sense.
- *If used, driver's source impedance must be less than 100 ohms.

OUTPUT NOISE:

2 mV P-P

OUTPUT CURRENT: ±25 mA typ.

OUTPUT IMPEDANCE: 0.1Ω Maximum

OUTPUT VOLTAGE SWING, 1 k Ω LOAD: \pm 10 Vdc.

OUTPUT NON-LINERARITY: ±0.2% Maximum.

DISTORTION: 0.2% Maximum @ fout ≥ BW, Vout ≤ 20 V P-P.

FILTER TYPE: Butterworth low pass.

CHARACTERISTICS: 2 Pole Butterworth with an output rolloff of -12dB/octave to within 2dB of the theoretical response.

CUTOFF FREQUENCY RANGE: 5Hz standard, programmable up to 5 kHz maximum by two equal valued resistors.

CUTOFF FREQUENCY POINT: -3.0dB ±1dB from the referenced mid-band response.

CUTOFF FREQUENCY ACCURACY: Initial, ±5% exclusive of external programming resistor drift. Over Operating Temperature, ±5% over the given range.

TEMPERATURE RANGE: Operating, -25°C to +85°C (For extended temperature range consult factory)

Storage, -55°C to +125°C

POWER SUPPLY INPUT VOLTAGE: +15V and -15 Vdc with 0.5% regulation recommended.

POWER SUPPLY CURRENT (Ea. Supply): 18 mA typ, 25 mA max., exclusive of output load current.

RESISTOR TABLE FOR GAIN PROGRAMMING

GAIN (RG) REQUIRED RESISTOR		
1.0	OPEN	
10.0	4440 Ω ±20%	
100	FACTORY PRESET JUMPER SELECTABLE	
1000	40 Ω ±20%	

ENVIRONMENTAL

VIBRATION: Capable of withstanding greater than 30g from 55 to 200 Hz in each major axis.

BURN-IN: 100% burn-in for 168 hours. Screened to MIL-STD-883B.

SHOCK: Capable of withstanding at least 20g shock in each major axis.

ACCELERATION: Capable of withstanding at least 100g acceleration in each major axis.

ALTITUDE: Unlimited.

HUMIDITY: 95% RH non-condensing.

WEIGHT: 13 grams

Recommended External Resistors For Gain:

Programming, Fixed; RN55C

Variable: Cermet, or Low T.C. Wirewound Type

Recommended External Resistors for Cutoff Frequency Programming (Resistors Equal Each Channel)

Type RN55C for values to 301 k Ω

Type CC (Cermet) Allen-Bradley for values to 22 megohms.

To calculate resistor values for cutoff frequencies other than those shown in the resistor table, use the following formula:

(Each channel may be set to a different cutoff frequency independent of the other channel)

Where: R = Resistor value for R_1 and R_2 or R_3 and R_4

FC = Desired cutoff frequency

For example, to calculate -3 dB point at 3400 Hz

FC = 3400 Hz

$$R = 1.875 \times 10^7 = 5522.8 \text{ ohms}$$

$$3400.5$$

Since the exact values are not always available you must round off to the nearest available value.

PIN	FUNCTION	PIN	FUNCTION
1	+INPUT A	13	+INPUT B
2	RG2A	14	RG2B
3	-INPUT A	15	-INPUT B
4	REF IN A	16	REF IN B
5	X100 A	17	X100 B
6	RG1A	18	RG1 B
7	GND	19	+vs
8	CHASSIS GND	20	-vs
9	оитрит в	21	OUTPUT A
10	PROG RB2	22	PROG RA2
11	сомм в	23	COMM A
12	PROG RBi	24	PROG RA1

NOTE 1) RGA, RGB out and * Jumper inplace GAIN = 100
2) RGA, RGB out and * Jumper out GAIN = 1
PDF-202 Block Diagram