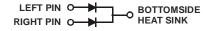


10A DUAL LOW VF SCHOTTKY BARRIER RECTIFIER PowerDI®5

Features


- Guard Ring Die Construction for Transient Protection
- Low Power Loss, High Efficiency
- Low Forward Voltage Drop
- Very Low Reverse Leakage Current
- For Use in Low Voltage, High Frequency Inverters, OR'ing, and Polarity Protection Applications
- High Forward Surge Current Capability
- Lead Free Finish, RoHS Compliant (Note 1)
- "Green" Molding Compound (No Br, Sb)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: PowerDI®5
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208 @3
- Polarity: See Diagram
- Weight: 0.096 grams (approximate)

Note: Pins Left & Right must be electrically connected at the printed circuit board.

Top View

Ordering Information (Note 2)

Part Number	Case	Packaging
PDS1040CTL-13	PowerDI [®] 5	5000/Tape & Reel

Notes:

- 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.
- 2. For packaging details, go to our website at http://www.diodes.com.

Marking Information

S1040CTL = Product type marking code ⊃;;= Manufacturers' code marking YYWW = Date code marking YY = Last digit of year (ex: 04 for 2004) WW = Week code (01 - 53) K = Factory Designator Code

Maximum Ratings @TA = 25°C unless otherwise specified

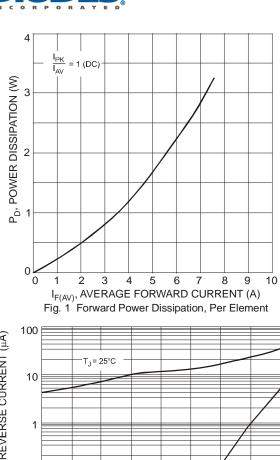
Single phase, half wave, 60Hz, resistive or inductive load.

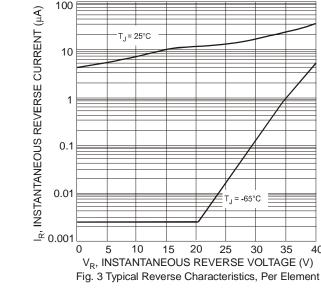
For capacitance load, derate current by 20%

Characteristic	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	40	V
RMS Reverse Voltage	V _{R(RMS)}	28	V
Average Rectified Output Current (See also Figure 5) per ele total de	1 10	5 10	А
Non-Repetitive Peak Forward Surge Current, per element 8.3ms Single half sine-wave Superimposed on Rated Load	I _{FSM}	110	А

Thermal Characteristics

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance Junction to Soldering Point	$R_{ heta}$ JS	_	2.0	°C/W
Thermal Resistance Junction to Ambient Air (Note 3)	$R_{ heta JA}$	95	_	°C/W
Thermal Resistance Junction to Ambient Air (Note 4)	$R_{ heta JA}$	75	_	°C/W
Thermal Resistance Junction to Ambient Air (Note 5)	$R_{ heta JA}$	50	_	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +150		°C


Electrical Characteristics @T_A = 25°C unless otherwise specified


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 6)	V _{(BR)R}	40			V	$I_R = 500 \mu A$
	V _F		0.465	0.50	V	$I_F = 5A, T_S = 25^{\circ}C$
			0.41	0.45		$I_F = 5A, T_S = 100^{\circ}C$
Forward Voltage Per Element			0.39	0.43		$I_F = 5A, T_S = 125^{\circ}C$
Forward Vollage Per Element			0.55	0.60		$I_F = 10A, T_S = 25^{\circ}C$
			0.53	0.57		I _F = 10A, T _S = 100°C
		_	0.52	0.56		$I_F = 10A, T_S = 125^{\circ}C$
	I _R		20	200	μΑ	$V_R = 40V, T_S = 25^{\circ}C$
			3	25	mA	$V_R = 40V, T_S = 100^{\circ}C$
Reverse Leakage Current (Note 6) Per Element			15	150	μΑ	$V_R = 35V, T_S = 25^{\circ}C$
			2.5	10	mA	$V_R = 35V, T_S = 100$ °C
			6	80	μΑ	$V_R = 17.5V, T_S = 25^{\circ}C$
		_	1	5	mA	$V_R = 17.5V, T_S = 100$ °C

Notes:

- 3. FR-4 PCB, 2 oz. Copper, minimum recommended pad layout per http://www.diodes.com.
- Polyimide PCB, 2 oz. Copper, minimum recommended pad layout per http://www.diodes.com.
 Polyimide PCB, 2 oz. Copper. Cathode pad dimensions 9.4mm x 7.2mm. Anode pad dimensions 2.7mm x 1.6mm.
- 6. Short duration pulse test used to minimize self-heating effect.

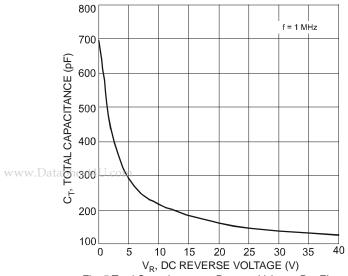
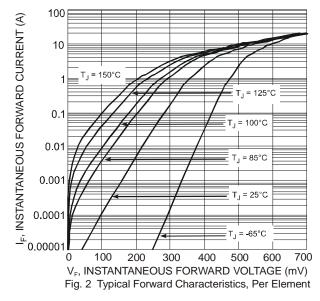
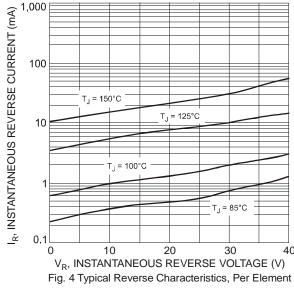




Fig. 5 Total Capacitance vs. Reverse Voltage, Per Element

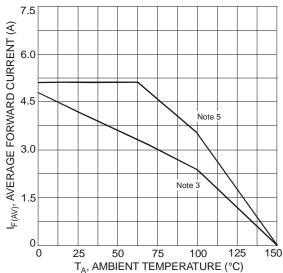
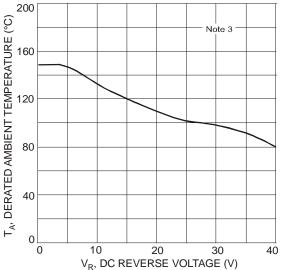
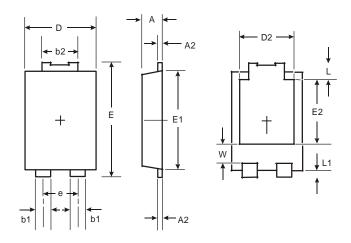
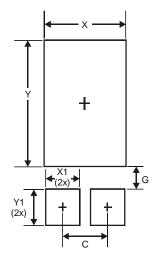


Fig. 6 Forward Current Derating Curve, Per Element


Fig. 7 Operating Temperature Derating, Per Element

Package Outline Dimensions

PowerDI [®] 5			
Dim	Min	Max	
Α	1.05	1.15	
A2	0.33	0.43	
b1	0.80	0.99	
b2	1.70	1.88	
D	3.90	4.05	
D2	3.054 Typ		
Е	6.40	6.60	
е	1.84	Тур	
E1	5.30	5.45	
E2	3.549	Тур	
٦	0.75	0.95	
L1	0.50	0.65	
W	1.10	1.41	
All Dimensions in mm			

Suggested Pad Layout

Dimensions	Value (in mm)
С	1.840
G	0.852
Х	3.360
X1	1.390
Υ	4.860
Y1	1.400

www.DataSheet4U.com

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2010, Diodes Incorporated

www.diodes.com