SPECIFIC	SPECIFICATIONS				
CUSTOMER .					
SAMPLE CODE (Ver.) :					
MASS PRODUCTION CODE (Ver.)	PE12864LRF-004HC1Q (Ver.0)				
DRAWING NO. (Ver.)	PE-03007-008				

CDECIFICATIONS

Customer Approved

Date:

Approved	QC Confirmed	Designer
技術部 2006-5-0-4 跨線核		燕歌度406

- Approval For Specifications Only.
 - * This specification is subject to change without notice.

Please contact Powertip or it's representative before designing your product based on this specification.

Approval For Specifications and Sample.

POWERTIP TECH. CORP.

Headquarters:

No.8, 6th Road, Taichung Industrial Park,

Taichung, Taiwan

台中市 407 工業區六路 8 號

TEL: 886-4-2355-8168

FAX: 886-4-2355-8166

 $E\text{-mail:}\ \underline{sales@powertip.com.tw}$

Http://www.powertip.com.tw

RECORDS OF REVISION

Date	Rev.	Description	Note	Page
2005/12/11	0	PE12864LRF-004HC1Qis the ROHS compliant part number based on Powertip's standard PE12864LRF-004-HC1		

Total: 24 Page

Contents

1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

4. RELIABILITY TEST

4.1 Reliability Test Condition

5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- **5.4** Terms of Warranty

6. THIS PRODUCT CONFORMS THE ROHS OF PTC.

Note: For detailed information please refer to IC data sheet: SITRONIX---ST7565S

1. SPECIFICATIONS

1.1 Features

Item	Standard Value
Display Type	128 * 64 Dots
LCD Type	FSTN, Positive, Transflective Extended Temp
Driver Condition	1/65 Duty, 1/9 Bias
Viewing Direction	6 O'clock
Backlight	LED YG B/L
Weight	20 g
Interface	8 Bit Parallel data input
Other(controller/driver IC)	Driver IC: ST7565S

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outline Dimension	80.0 (L) * 54.0 (w) * 10.2 (H)(Max)	mm
Viewing Area	70.7 (L) * 38.8 (w)	mm
Active Area	66.52 (L) * 33.24 (w)	mm
Dot Size	0.48 (L) * 0.48 (w)	mm
Dot Pitch	0.52 (L) * 0.52 (w)	mm

Note: For detailed information please refer to LCM drawing

1.3 Absolute Maximum Ratings

	 				
Item	Symbol	Condition	Min.	Max.	Unit
Power Supply Voltage	$V_{ m DD}$	-	-0.3	5.0	V
LCD Driver Supply Voltage	V _{OUT,} V ₅	-	-18.0	0.3	V
Input Voltage	V_{IN}	-	-0.3	V _{DD} +0.3	V
Operating Temperature	T_{OP}	-	-20	70	°C
Storage Temperature.	T_{ST}	-	-30	80	°C
Storage Humidity	H_D	Ta < 40 °C	-	90	%RH

1.4 DC Electrical Characteristics

 $V_{DD} = 3.3 \text{ V} \pm 0.15 \text{V}, V_{SS} = 0 \text{V}, \text{ Ta} = 25^{\circ}\text{C}$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Logic Supply Voltage	$V_{ m DD}$	-	3.15	3.3	3.45	V
"H" Input Voltage	V_{IH}	-	0.8 Vdd	-	V_{DD}	V
"L" Input Voltage	V_{IL}	-	Vss	1	0.2 Vdd	V
"H" Output Voltage	V_{OH}	-	0.8 Vdd	-	V_{DD}	V
"L" Output Voltage	$V_{ m OL}$	-	Vss	-	0.2 Vdd	V
Supply Current	I_{DD}	$V_{DD} = 3.3 \text{ V}$	-	0.6	1.0	mA
		V _{C5} (-20°C)	-	-	-	
LCM Driver Voltage	V_{OP}	V _{C5} (25°C)	10.0	10.3	10.6	V
		V _{C5} (70°C)	-	-	-	

1.5 Optical Characteristics

LCD Panel: 1/65 Duty, 1/9 Bias, $V_{LCD} = 10.0$ V, Ta = 25°C

Item	Symbol	Conditions	Min.	Тур.	Max.	Reference
View Angle	θ	C≥2.0,Ø=0°	0°	-	40°	Notes 1 & 2
Contrast Ratio	С	θ=5°, Ø=0°	2	3	-	Note 3
Response Time(rise)	tr	θ=5°, Ø=0°	-	200 ms	300 ms	Note 4
Response Time(fall)	tf	θ=5°, Ø=0°	-	150 ms	225 ms	Note 4

Note 1: Definition of angles θ and \emptyset

Light (when reflected) $z (\theta=0^{\circ})$

Sensor $Y'(\varnothing=180^{\circ})$ X' Z' LCD panel $X(\varnothing=90^{\circ})$

Light (when transmitted) $Y(\varnothing=0^{\circ})$ $(\theta=90^{\circ})$

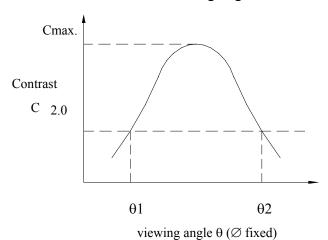
Note 3: Definition of contrast C

C = -

Brightness (reflection) of unselected dot (B2)

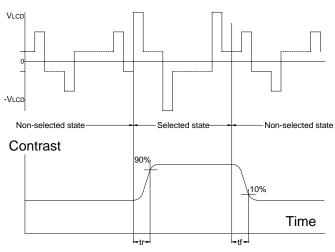
Brightness (reflection) of selected dot (B1)

Brightness (reflection) of selected dot


(%)

Brightness
(reflection) of unselected dot

(reflection)


operating voltage (v)

Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$

Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²

 $\begin{aligned} V_{LCD}: Operating \ voltage & f_{FRM}: Frame \ frequency \\ t_r & : Response \ time \ (rise) & t_f: Response \ time \ (fall) \end{aligned}$

1.6 Backlight Characteristics

LCD Module with LED Backlight

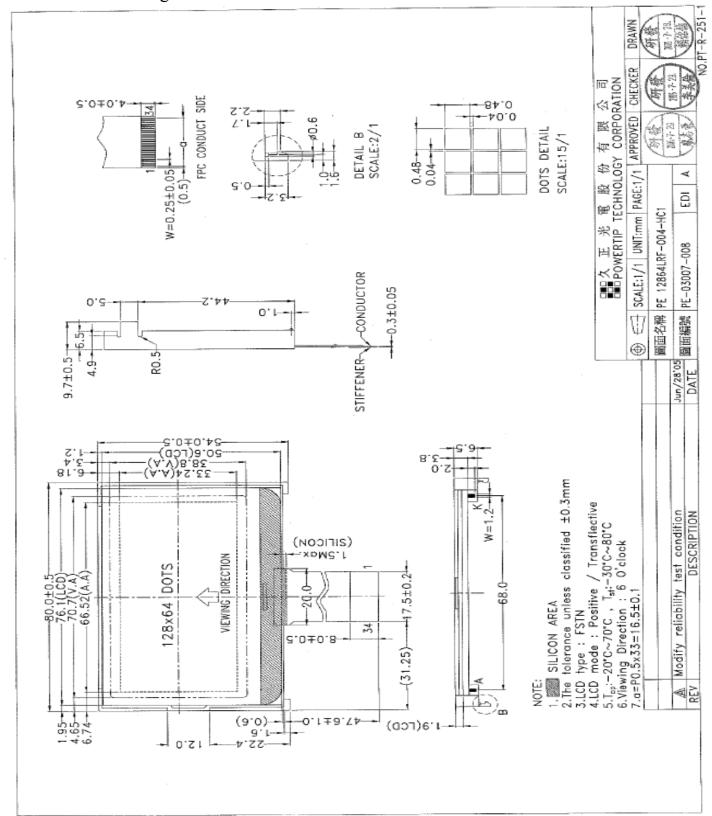
Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward Current	IF	Ta =25°C	-	200	Ma
Reverse Voltage	VR	Ta =25°C	-	8	V
Power Dissipation	РО	Ta =25°C	-	0.92	W

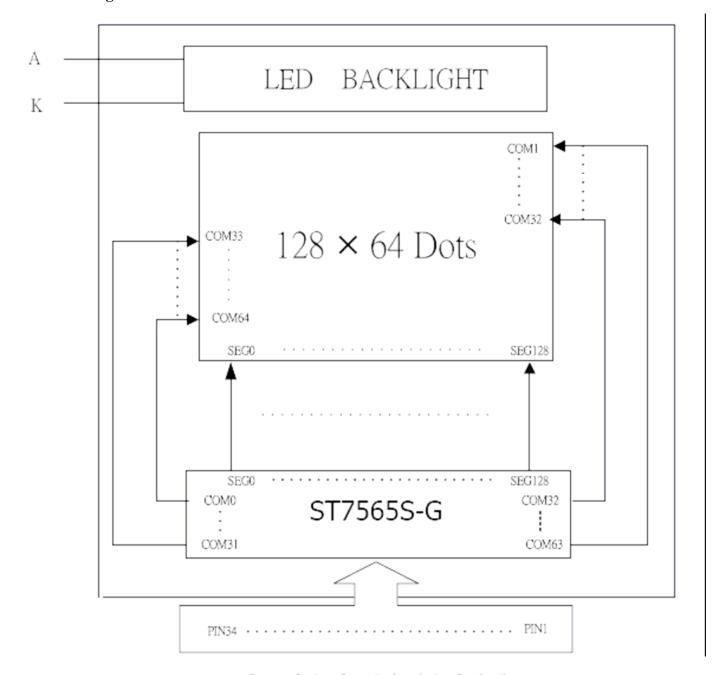
Electrical / Optical Characteristics

 $Ta = 25^{\circ}C$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	VF	IF=80 mA	-	4.2	4.6	V
Reverse Current	IR	VR=8V	-	-	0.2	mA
Average Brightness (Without LCD)	IV	IF=80 mA	0.5	2.0	-	cd/m ²
Uniformity	△EH*1	IF= 80 mA	70	-	-	%
Wavelength(With LCD)	Hue	IF= 80 mA	574	-	580	-
Color	Yellow-green					


Note: $\triangle EH\% = B (MIN) \div B (MAX) \times 100\%$

2. MODULE STRUCTURE


2.1 Counter Drawing

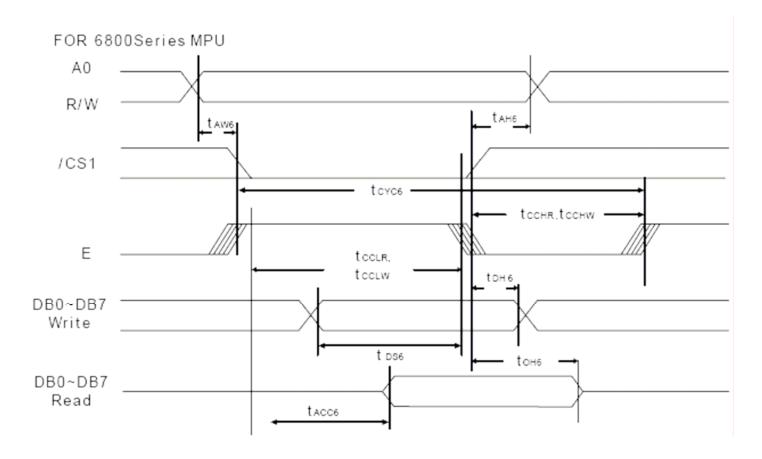
2.1.1 Mechanical Diagram

2.1.2 Block Diagram

Prese refer interface pin description for detail

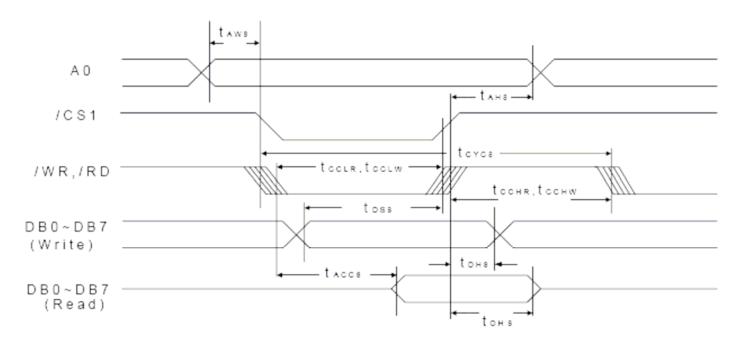
2.2 Interface Pin Description

Din Ma	ا مراجعین	Function
Pin No.	Symbol	Function
1 1	/CS1	This is the chip select signal. When /CS1 = "L", then the chip
		select becomes active, and data/command I/O is enabled.
2	/RES	/RES is set to "L", the settings are initialized.
		The /RES signal level performs the reset operation.
		This is connect to the least significant bit of the normal MPU
		address bus,
3	A0	and it determines whether the data bits are data or a command.
		A0 = "H": Indicates that DB0 to DB7 are display data.
		A0 = "L": Indicates that DB0 to DB7 are control data.
		When connected to an 8080 MPU, this is LOW active.
		This terminal connects to the 8080 MPU /WR signal.
		The signals on the data bus are latched at the rising edge of the
4	/WR	/WR signal.
4	4 (R/W)	When connected to a 6800 Series MPU :
		This is the read/write control signal input terminal.
		When R/W = "H" : Read.
		When R/W = "L" : Write.
		When connected to an 8080 MPU, this is LOW active.
		This pin is connected to the /RD signal of the 8080 MPU, and the
5	(DD/E)	ST7565S series data bus is in an output status when this signal is
9	/RD(E)	"L".
		When connected to a 6800 Series MPU , this is active HIGH.
		This is the 6800 Serier MPU enable clock input terminal.
6	D0	
_		\dashv
7	D1	This is an 8-bit bi-directional data bus that connects to an 8-bit or
8	D2	16-bit standard MPU data bus.
	_	When the serial interface is selected (PS = "L"), DB7 serves as
9	D3	the serial data input terminal (SI) and DB6 serves as the serial
10	D4	clock input terminal (SCL).
11	D5	


12	D6	At the same time, DB5 - 0 are set to high impedance. When the chip select is inactive, DB0 to DB7 are set to high			
13	D7	impedance.			
14	V _{DD}	Power Supply (V _{DD} =3.3)			
15	V _{SS}	Power Supply (V _{SS} =0)			
16	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and $V_{\mbox{\scriptsize SS}}$			
17	C5-	DC/DC voltage converter. Connect a capacitor between this terminal and C1+			
18	C3-	DC/DC voltage converter. Connect a capacitor between this terminal and C1+			
19	C1+	DC/DC voltage converter. Connect a capacitor between this terminal and C1-			
20	C1-	DC/DC voltage converter. Connect a capacitor between this terminal and C1+			
21	C2-	DC/DC voltage converter. Connect a capacitor between this terminal and C2+			
22	C2+	DC/DC voltage converter. Connect a capacitor between this terminal and C2-			
23	C4-	DC/DC voltage converter. Connect a capacitor between this terminal and C2+			
24	VRS	This is the internal-input VREG power supply for the LCD power supply			
25	V1	A multi-level power supply for the liquid crystal drive.			
26	V2	The voltage applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through			
27	V3	changing the impedance using an op. amp.			
28	V4	Voltage levels are determined based on Vob, and must maintain the relative magnitudes shown below.			
29	V5	$\forall DD (= V0) \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$			

		Output voltage regulator terminal. Provides the voltage between Vpp and V5 through a resistive voltage divider.					
30	٧R	IRS = "H" :The V5 voltage regulator internal resistors are not used					
		IRS = "L" :The V5 voltage regulator internal resistors are used					
		This is the MPU interface switch terminal.					
31	C86	C86 = "H": 6800 Series MPU interface.					
		C86 = "L": 8080 MPU interface.					
		This is the parallel data input/serial data input switch terminal.					
32	P/S	P/S = "H": Parallel data input.					
		P/S = "L": Serial data input.					
		This is the power cpntrol terminal for the power supply circuit for					
	(LIDNA	liquid crystal drive.					
33	/HPM	/HPM="H":Normal made					
		/HPM="L":High power mode					
		This terminal selects the resistors for the V5 voltage level					
		adjustment.					
	100	IRS = "H": Use the internal resistors.					
34	IRS	IRS = "L": Do not use the internal resistors.					
		The V5 voltage level is regulated by an external resistive voltage					
		divider attached to the VR terminal.					
		arrive accessed to the fit terminal.					

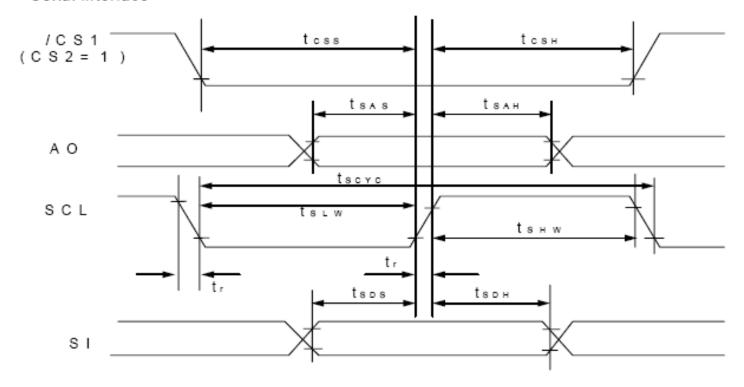
2.3 Timing Characteristics



 $(VDD = 3.3v, Ta = 25^{\circ})$

Item	Signal	Symbol	Condition	Raf	Units	
item	Signal	Symbol	Condition	Min	Max	Units
Address hold time		t _{AH6}	-	0	-	
Address setup time	A0	t _{AW8}	-	0	-	
System cycle time		toyos	-	240	-	
Control L pulse width (Write)	WR	tockw	-	80	-	
Control H pulse width (Write)	VVIC	t _{cchw}	-	80	-	
Control L pulse width (Read)	RD	tcclr	-	80	-	ns
Control H pulse width (Read)	ND.	tochr	-	140	-	
WRITE Data setup time		t _{DS6}	-	40	-	
WRITE Address hold time	DD0 4- DD7	t _{DH6}	-	0	-	
READ access time	DB0 to DB7	t _{ACC8}	C _L =100pF	-	70	
READ Output disable time		t _{oH6}	C _L =100pF	5	50	

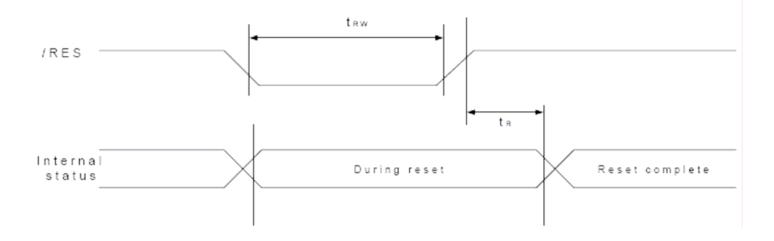
FOR 8080 Series MPU



$$(VDD = 3.3v, Ta = 25^{\circ})$$

Item	Signal	Symbol	Condition	Rat	Units	
Item	Signal	Symbol	Condition	Min	Max	Offics
Address hold time		t _{AH8}	-	0	-	
Address setup time	A0	t _{AW8}	-	0	-	
System cycle time		toyes	-	240	-	
Control L pulse width (Write)	WR	t _{CCLW}	-	80	-	
Control H pulse width(Write)	VVK	t _{cchw}	-	80	-	
Control L pulse width (Read)	RD	toole	-	140	-	ns
Control H pulse width (Read)	KD.	toohr	-	80	-	
WRITE Data setup time		t _{osa}	-	40	-	
WRITE Address hold time	DD0 4- DD7	t _{DH8}	-	0	-	
READ access time	DB0 to DB7	t _{ACC8}	C _L =100pF	1	70	
READ Output disable time		tons	C _L =100pF	5	50	

Serial Interface



(VDD = 3.3v , $Ta = 25^{\circ}$)

Item	Signal	Symbol	Condition	Ra	Units	
item	Signal	Symbol	Condition	Min	Max	Offics
Serial Clock Period		tscyc		20	-	
SCL "H" pulse width	SCL	tshw		75	-	
SCL "L" pulse width		tstw		75	-	
Address setup time	A0	tsas		50	-	
Address hold time	7 40	tsah		50	-	ns
Data setup time	SI	tsps		50	-	
Data hold time	31	tsрн		50	-	
CS-SCL time	/CS1	tcss		50		
CS-SCL time	7 /031	tssh		150		

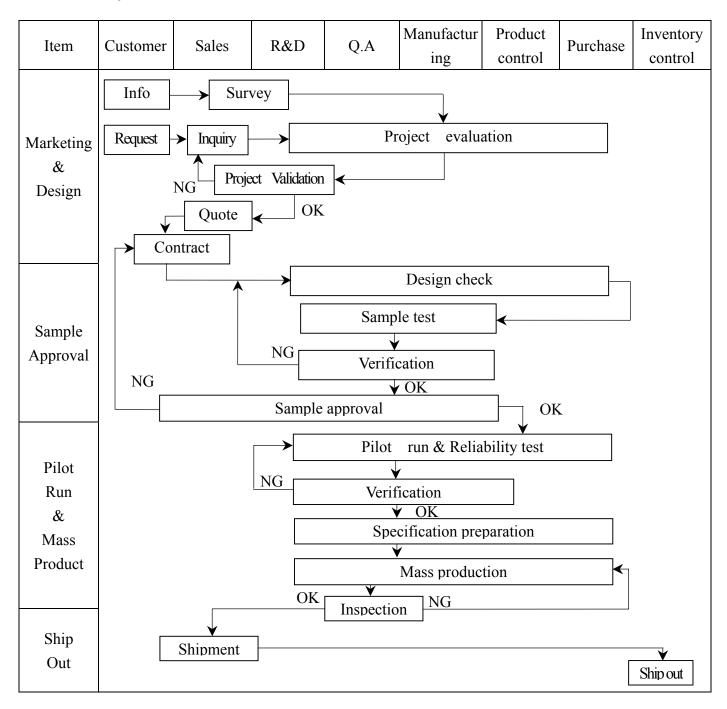
Reset Timing

 $(V_{pp} = 3.3 \text{ V}, \text{ Ta} = -20 \text{ to } 70^{\circ}\text{C})$

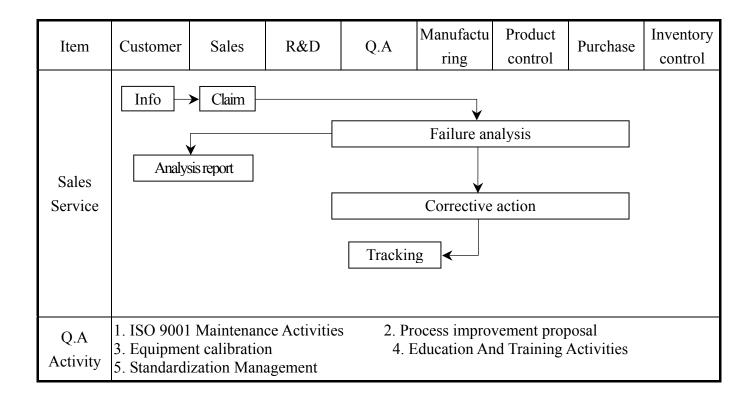
			/ V DD	- J.J V	, ra – -	20 10 7	0 0/
Item	Signal Symbol		Condition		Units		
Item			Condition	Min	Тур	Max	Offics
Reset time	-	t _R		-	1	0.5	μs
Reset "L" pulse width	/RES	t _{RW}		0.5	-	-	μs

2.4 Display Command

Command Code								Function						
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D2	D0	runction		
(1) D: 1 ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON/OFF		
(1) Display ON/OFF											1	0:OFF, 1:ON		
(2) Display start line set	0	1	0	0	1	1	Dienl	av et	art ad	drace	,	Sets the display RAM display		
(2) Display start line set	0	1	U	U	1		Dispi	ay su	art au	iuics	•	start line address		
(3) Page address set	0	1	0	1	0	1	1	P	age a	ddres	SS	Sets the display RAM page		
(6) 1 uge unu1455 544		-		-			-					address		
(4) Column address set								Mo	st sig	gnific	ant	Sets the most significant 4 bits of		
upper bit	0	1	0	0	0	0 1		0 1		Most significant column address				the display RAM column
11												address.		
Column address set								Lea	ast sig	nific	ant	Sets the least significant 4 bits of		
lower bit	0	1	0	0	0	0	0	Least significant column address				the display RAM column		
								•				address.		
(5) Status read	0	0	1		Sta	itus		0	0	0	0	Reads the status data		
(6) Display data write	1	1	0				Write	data	l			Writes to the display RAM		
(7) Display data read	1	0	1				Read	data	,			Reads from the display RAM		
	0	1	0	1	0	1	0	0	0	0	0	Sets the display RAM address		
(8) ADC select											1	SEG output correspondence		
												0: normal, 1: reverse Sets the LCD display RAM		
(9)Display normal/	0	1	0	1	0	1	0	0	1	1	0	normal/reverse		
reverse											1	0: normal, 1: reverse		
(10) Display all points	0	1	0	1	0	1	0	0	1	0	0	Display all points		
(10) Display all points ON/OFF											1	0: normal display,		
											1	1: all points ON		
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0	Sets the LCD drive voltage bias ratio		
(11) LCD blas set											1	0: 1/9, 1:1/7		
												Column address increment		
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	At write: +1		
												At read: 0		
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write		
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset		


(15) Common output	0	1	0	1	1	0	0	0	*	*	*	Select COM output scan direction						
mode select								1				0: normal direction, 1: reverse direction						
(16) Power control set	0	1	0	0	0	1	0	1	-	oerati mode	_	Select internal power supply operating mode						
(17) V5 voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0			Resistor ratio				Resistor ratio		ratio	Select internal resistor ratio (Rb/Ra) mode
(18) Electronic volume mode set	0	1	0	1	0	0	0	0	0	0	1							
Electronic volume register set	0	1	0	*	*	El	ectro	nic v	olum	e val	ue	Set the V5 output voltage electronic volume register.						
(19) Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0	0: OFF 1: ON						
Static indicator register set	1	0	1	*	*	*	*	*	*	Мо	ode	Set the flashing mode						
(20) Power saver								Display OFF and display all points ON compound command										
(21) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation						
(22) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command						

(Note) *: disabled data



3. QUALITY ASSURANCE SYSTEM

3.1 Quality Assurance Flow Chart

3.2 Inspection Specification

Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level II

Equipment: Gauge, MIL-STD, Powertip Tester, Sample

IQC Defect Level: Major Defect AQL 0.4; Minor Defect AQL 1.5

FQC Defect Level: 100% Inspection OUT Going Defect Level: Sampling

Specification:

NO	Item	Specification	Judge	Level
1	Part Number	The part number is inconsistent with work order of production	N.G.	Major
2	Quantity	The quantity is inconsistent with work order of production	N.G.	Major
	Electronic	The display lacks of some patterns.	N.G.	Major
	characteristics of	Missing line.	N.G.	Major
3	LCM	The size of missing dot, A is $> 1/2$ Dot size	N.G.	Major
	A=(L+W)/2	There is no function.	N.G.	Major
	11 (2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Output data is error	N.G.	Major
		Material is different with work order of production	N.G.	Major
		LCD is assembled in inverse direction	N.G.	Major
		Bezel is assembled in inverse direction	N.G.	Major
	Appearance of	Shadow is within LCD viewing area + 0.5 mm	N.G.	Major
	LCD	The diameter of dirty particle, A is > 0.4 mm	N.G.	Minor
4	A=(L+W)/2	Dirty particle length is > 3.0mm, and 0.01mm < width ≤ 0.05mm	N.G.	Minor
4	Dirty particle	Display is without protective film	N.G.	Minor
	(Including	Conductive rubber is over bezel 1mm	N.G.	Minor
	scratch bubble) Polarizer exceeds over viewing area of LCD	Polarizer exceeds over viewing area of LCD	N.G.	Minor
	seracen bacone y	Area of bubble in polarizer, $A > 1.0$ mm, the number of bubble is > 1 piece.	N.G.	Minor
		0.4mm < Area of bubble in polarizer, A < 1.0mm, the number of bubble is > 4 pieces.	N.G.	Minor
		Burned area or wrong part number is on PCB	N.G.	Major
		The symbol, character, and mark of PCB are unidentifiable.	N.G	Minor
		The stripped solder mask, A is > 1.0mm	N.G.	Minor
	Appearance of	0.3mm < stripped solder mask or visible circuit,	N.G.	Minor
5	PCB	A < 1.0mm, and the number is ≥ 4 pieces	NC	Minon
	A = (L + W)/2	There is particle between the circuits in solder mask The circuit is peeled off or cracked	N.G N.G	Minor Minor
		There is any circuits risen or exposed.		Minor
			N.G	IVIIIIOI
		0.2 mm < Area of solder ball, A is ≤ 0.4 mm The number of solder ball is ≥ 3 pieces	N.G	Minor
		The magnitude of solder ball, A is > 0.4mm.	N.G	Minor

NO	Item	Specification	Judge	Level
		The shape of modeling is deformed by touching.	N.G.	Major
	Appearance of	Insufficient epoxy: Circuit or pad of IC is visible	N.G.	Minor
6	molding $A=(L+W)/2$	Excessive epoxy: Diameter of modeling is > 20mm or height is > 2.5mm	N.G.	Minor
		The diameter of pinhole in modeling, A is > 0.2 mm.	N.G.	Minor
		The folding angle of frame must be $> 45^{\circ}+10^{\circ}$	N.G.	Minor
7	Appearance of frame	The area of stripped electroplate in top-view of frame, A is > 1.0mm.	N.G.	Minor
/	A=(L+W)/2	Rust or crack is (Top view only)	N.G.	Minor
		The scratched width of frame is > 0.06mm. (Top view only)	N.G.	Minor
	Electrical	The color of backlight is nonconforming	N.G.	Major
	characteristic of	Backlight can't work normally.	N.G.	Major
8	backlight	The LED lamp can't work normally	N.G.	Major
	A=(L+W)/2	The unsoldering area of pin for backlight, A is > 1/2 solder joint area.	N.G.	Minor
	A (L + W)/ 2	The height of solder pin for backlight is > 2.0mm	N.G.	Minor
		The mark or polarity of component is unidentifiable.	N.G.	Minor
		The height between bottom of component and surface of the PCB is floating > 0.7mm	N.G.	Minor
10	Assembly parts A=(L+W)/2	D > 1/4W W D D D D D D D	N.G.	Minor
	N (L · W)/ 2	End solder joint width, D' is > 50% width of component termination or width of pad	N.G.	Minor
		Side overhang, D is > 25% width of component termination.	N.G.	Minor
		Component is cracked, deformed, and burned, etc.	N.G.	Minor
		The polarity of component is placed in inverse direction.	N.G.	Minor
		Maximum fillet height of solder extends onto the component body or minimum fillet height is < 0.5mm.	N.G.	Minor

4. RELIABILITY TEST

4.1 Reliability Test Condition

NO	Item	Test Condition							
1	High Temperature	Storage at $80 \pm 2^{\circ}\text{C}$ 96~100 hrs	rage at normal condition						
1	Storage	Surrounding temperature, then storage at normal condition 4hrs							
	I avy Tammaratura	Storage at $-30 \pm 2^{\circ}\text{C}$ 96~100 hrs							
2	Low Temperature	Surrounding temperature, then stor	rage at normal condition						
	Storage	4hrs							
		1.Storage $96\sim100 \text{ hrs } 60 \pm 2^{\circ}\text{C}, 90$	~95%RH surrounding						
		temperature, then storage at nor	mal condition 4hrs.						
3	High Temperature	(Excluding the polarizer).							
3	/Humidity Storage	or							
		2.Storage $96 \sim 100 \text{ hrs } 40 \pm 2^{\circ}\text{C}, 90$	~95%RH surrounding						
		temperature, then storage at nor	mal condition 4 hrs.						
		-20°C → 25°C -	\rightarrow 70°C \rightarrow 25°C						
4	Temperature Cycling	(30mins) (5mins) (30mins) (5mins)							
	Temperature Cyening	10 Cycle							
5	Vibration	10~55Hz (1 minute) 1.5mm							
3	Violation	X,Y and Z direct	tion * (each 2hrs)						
		Air Discharge:	Contact Discharge:						
		Apply 6 KV with 5 times	Apply 250V with 5 times						
	EGD T. 4	discharge for each polarity +/-	discharge for each polarity +/-						
6	ESD Test	T. (: 1 .:	Testing location:						
		Testing location:	1.Apply to bezel.						
		Around the face of LCD	2.Apply to Vdd, Vss.						
		Packing Weight (Kg)	Drop Height (cm)						
		0 ~ 45.4	122						
7	Drop Test	45.4 ~ 90.8	76						
		90.8 ~ 454	61						
		Over 454	46						

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So, please handle it very carefully, do not touch, push or rub the exposed polarizing with anything harder than an HB pencil lead (glass, tweezers, etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.
- 5.2.8 To control temperature and time of soldering is $320 \pm 10^{\circ}$ C and 3-5 sec.
- 5.2.9 To avoid liquid (include organic solvent) stained on LCM.

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

5.4 TERMS OF WARRANTY

5.4.1 Applicable warrant period

The period is within thirteen months since the date of shipping out under normal using and storage conditions.

5.4.2 Unaccepted responsibility

This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.