

Product Specification PE64908

Product Description

PE64908 is a DuNE[™] technology-enhanced Digitally Tunable Capacitor (DTC) based on Peregrine's UltraCMOS[®] technology.This highly versatile product supports a wide variety of tuning circuit topologies with emphasis on impedance matching and aperture tuning applications.

PE64908 offers high RF power handling and ruggedness while meeting challenging harmonic and linearity requirements enabled by Peregrine's HaRP[™] technology. The device is controlled through the widely supported 3-wire (SPI compatible) interface. All decoding and biasing is integrated on-chip and no external bypassing or filtering components are required.

DuNE[™] devices feature ease of use while delivering superior RF performance in the form of tuning accuracy, monotonicity, tuning ratio, power handling, size, and quality factor. With built-in bias voltage generation and ESD protection, DTC products provide a monolithically integrated tuning solution for demanding RF applications.

UltraCMOS[®] Digitally Tunable Capacitor (DTC) 100-3000 MHz

Features

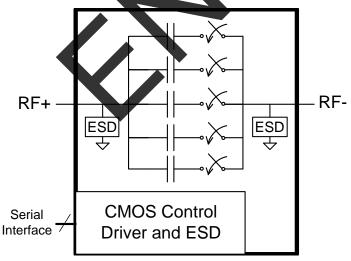

- 3-wire (SPI compatible) serial interface with built-in bias voltage generation and ESD protection
- DuNE[™] technology enhanced
- 5-bit 32-state Digitally Funable Capacitor
- Shunt configuration C = 2.15 pF to 7.7 pF (3.61 tuning ratio) in discrete 180 fF steps.
- High RF power handling (30 V_{pk} RF) and linearity
- Wide power supply range (2.3 to 4.8V) for and low current consumption (typ. 140 μA at 2.75V)
- High ESD tolerance of 2kV HBM on all pins
- Applications include:
 - Tunable antennas
 - Tunable matching networks
 - Tunable filter networks
 - Phase shifters

Figure 2. Package Type

10-lead 2 x 2 x 0.55 mm QFN

Figure 1. Functional Diagram

DOC-02169

Document No. DOC-30314-2 | www.psemi.com

Table 1. Electrical Specifications @ 25°C, V_{DD} = 2.75V (In shunt configuration, RF- connected to GND)

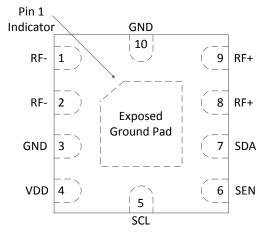
Parameter	Condition	Min	Тур	Max	Unit
Operating frequency		100		3000	MHz
Minimum capacitance (C _{min})	State 00000, 100 MHz	1.93	2.15	2.37	pF
Maximum capacitance (C _{max})	State 11111, 100 MHz	6.93	7.70	8.47	pF
Tuning ratio	C _{max} /C _{min} , 100 MHz		3.6:1		
Step size	5 bits (32 states), 100 MHz		0.180		pF
Quality factor at C _{min} ¹	698 - 960 MHz, with L _s removed 1710 - 2170 MHz, with L _s removed		41 24		
Quality factor at C _{max} ¹	698 - 960 MHz, with L _s removed 1710 - 2170 MHz, with L _s removed		15 6		
Self resonant frequency ⁵	State 00000 State 11111		3.9 2.1		GHz
Harmonics ²	2fo, 3fo: 698 - 915 MHz; P _{IN} +34 dBm, 50Ω 2fo, 3fo: 1710 - 1910 MHz; P _{IN} +32 dBm, 50Ω			-36 -36	dBm dBm
IMD3	Bands I,II,V/VIII, +20 dBm CW @ TX freq, -15 dBm CW @ 2Tx-Rx freq, 50 Ω			-105	dBm
Third order intercept point (IP3)	Shunt configuration derived from IMD3 spec IP3 = $(2P_{TX} + P_{block} - IMD3) / 2$		65		dBm
Switching time ^{3,4}	State change to 10/90% delta capacitance between any two states			12	μs
Start-up time ³	Time from V_{DD} within specification to all performances within specification			70	μs
Wake-up time ^{3,4}	State change from Standby mode to RF state to all performances within specification			70	μs

Notes: 1. Q for a Shunt DTC based on a Series RLC equivalent circl Q = $X_C / R = (X - X_L) / R$, where $X = X_L + X_C$, $X_L = 2*pi*f*L$,

nich is equal to removing the effect of parasitic inductance L_{S} /cle, measured per 3GPP TS 45.005 1 / (2*pi*f*C

2. In Shunt between 50 Ω ports. Pulsed RF input with 4620 μ S p 50% dı

3. DC path to ground at RF- must be provided to achieve specified wing data word


4. State change activated on falling edge of

5. DTC operation above SRF is possible

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin #	Pin Name	Description
1	RF-	Negative RF port ¹
2	RF-	Negative RF port ¹
3	GND	Ground ²
4	V _{DD}	Power supply pin
5	SCL	Serial interface clock input
6	SEN	Serial interface latch enable input
7	SDA	Serial interface data input
8	RF+	Positive RF port ¹
9	RF+	Positive RF port ¹
10	GND	Ground ²
Pad	GND	Exposed pad: ground for proper operation ²

Notes: 1. For optimal performance, recommend ying Pins 1.2 and Pins 8-9 together on PCB
2. For optimal performance, recommend tying Pins 3, 11 and

2. For optimal performance, recommend tying Pins 3, 1 exposed ground pad together on POB

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE64908 in the 10-lead 2 x 2 x 0.55 mm QFN package is MSL1.

Table 3. Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{DD}	2.30	2.75	4.80	V
Supply current ($V_{DD} = 2.75V$)	I _{DD}		140	200	μA
Standby current ($V_{DD} = 2.75V$)	I _{DD}		25		μA
Digital input high	V _{IH}	1.2	1.8	3.1	V
Digital input low	VIL	0	0	0.57	V
RF input power (50Ω) ¹ 698 - 915 MHz 1710 - 1910 MHz				+34 +32	dBm dBm
$\begin{array}{c} \text{Peak operating RF voltage} \\ V_{P} \text{ to } V_{M} \\ V_{P} \text{ to } \text{RFGND} \end{array}$				30 30	Vpk Vpk
Operating temperature range	Top	-40	+25	+85	°C
Storage temperature range	T _{ST}	-65	+25	+150	°C

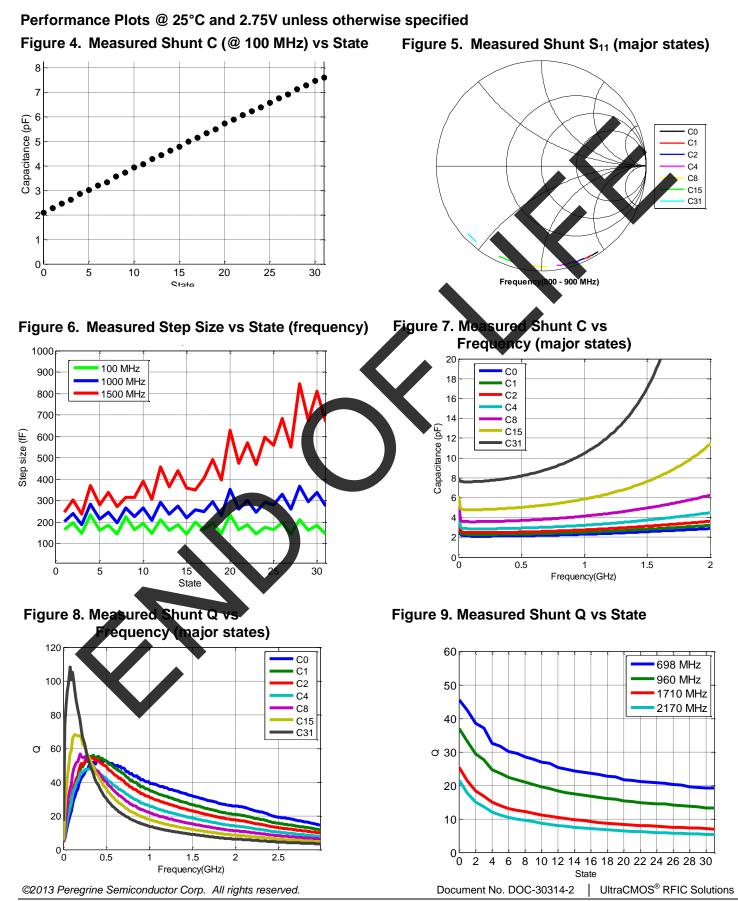
num power available from 50Ω source. Pulsed RF input with Notes: 1. period, 50% duty cycle, measured per 3GPP TS 45.005 462 en 50 Ω ports, RF- connected to GND measi n shunt b 2. Node vo per Equivalent Circuit Model Schematic de (Figure 13) TC is used as a part of reactive network, impedance tran formation may cause the internal RF voltages (V_P , V_M) to exceed peak operating RF voltage even with specified RF input power levels. For operation above about +20 dBm (100 mW), the complete RF circuit must be simulated using actual input power and load conditions, and internal node voltages (VP, VM in Figure 13) monitored to not exceed 30 Vpk

Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
ESD Voltage HBM ¹	V _{ESD}		2000	V

Note 1: Human Body Model (MIL-STD-883 Method 3015.7)

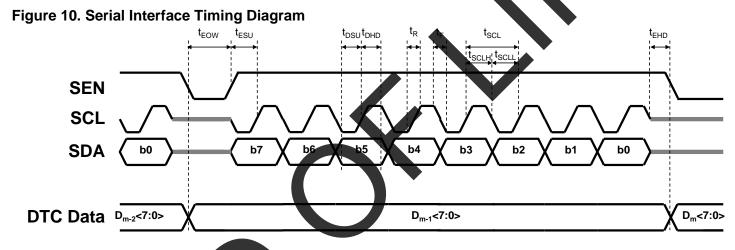
Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.


Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[®] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

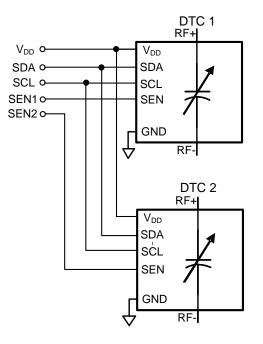
Unlike conventional CMOS devices, UltraCMOS[®] devices are immune to latch-up.



Serial Interface Operation and Sharing

The PE64908 is controlled by a three wire SPIcompatible interface with enable active high. As shown in *Figure 10*, the serial master initiates the start of a telegram by driving the SEN (Serial Enable) line high. Each bit of the 8-bit telegram (MSB first in) is clocked in on the rising edge of SCL (Serial Clock), as shown in *Table 5* and *Figure 10*. Transitions on SDA (Serial Data) are allowed on the falling edge of SCL. The DTC activates the data on the falling edge of SEN. The DTC does not count how many bits are clocked and only maintains the last 8 bits it received. More than 1 DTC can be controlled by one interface by utilizing a dedicated enable (SEN) line for each DTC. SDA, SCL, and V_{DD} lines may be shared as shown in *Figure 11*. Dedicated SEN lines act as a chip select such that each DTC will only respond to serial transactions intended for them. This makes each DTC change states sequentially as they are programmed.

Alternatively, a dedicated SDA line with common SEN can be used. This allows all DTCs to change states simultaneously but requires all DTCs to be programmed even if the state is not changed.


_					-	-		-
	b7	b6	b5	b4	b3	b2	b1	b0
	0 ¹	0 ¹	STB ²	d4	d3	d2	d1	d0
1	∫ ∕ISB (fir	rst in)					LSB	(last in)
			`		~~~			

Notes: 1. These bits are reserved and must be written to 0 for proper operation 2. The DTC is active when Yow (set to 0) and in low-current stand-by mode when high (set to 1)

Table 6. Serial Interface Timing Characteristics $V_{PP} = 2.75V$ $40.40 < T_A < +65 °C$ unless otherwise specified

Symbol	Parameter	Min	Max	Unit
t _{SCL}	Serial Clock Period	38.4		ns
t _{SCLL}	SCL Low Time	13.2		ns
t _{SCLH}	SCL High Time	13.2		ns
t _R	SCL, SDA, SEN Rise Time		6.5	ns
t _F	SCL, SDA, SEN Fall Time		6.5	ns
t _{ESU}	SEN rising edge to SCL rising edge	19.2		ns
t _{EHD}	SCL rising edge to SEN falling edge	19.2		ns
t _{DSU}	SDA valid to SCL rising edge	13.2		ns
t _{DHD}	SDA valid after SCL rising edge	13.2		ns
t _{EOW}	SEN falling edge to SEN rising edge	38.4		ns

Figure 11. Recommended Bus Sharing

Parasitic Elements

C_{P2}

0.61

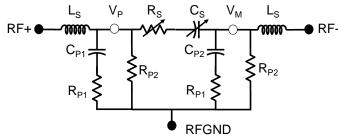
0.62

0.63

C_{P1}

0.55

0.54


0.54

Equivalent Circuit Model Description

The DTC Equivalent Circuit Model includes all parasitic elements and is accurate in both Series and Shunt configurations, reflecting physical circuit behavior accurately and providing very close correlation to measured data. It can easily be used in circuit simulation programs.

For V_P and V_M max operating limits, refer to *Table 3*.

Figure 12. Equivalent Circuit Model Schematic

Table 7. Equivalent Circuit Model Parameter

Variable	Equation (state = 0, 1, 231)	Unit
Cs	0.185*state + 1.6	pF
Rs	20/(state+20/(state+0.7)) + 0.7	Ω
R _{P1}	8+0.5*state	Ω
R _{P2}	25000+3*state^3	Ω
C _{P1}	-0.0061*state + 0.55	pF
C _{P2}	0.0096 State + 0.61	pF
Ls	0.35	nH

an easily be used0x000000001.600x010000111.790x020001021.970x030001132.160x040010042.340x050010152.530x060011062.190x070011172.900x080100083.080x090100193.270x0A01010103.450x0C01101113.640x0C011011134.01

Hex

Table 8. Equivalent Circuit Data

Dec

State

Bin

DTC Core

R_s [Ω]

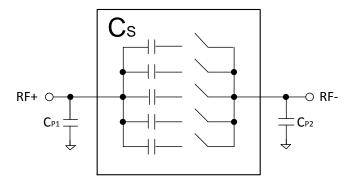
1.40

2.83

C_s [pF]

0x03	00011	3	2.16	3,08	0.53	0.64
0x04	00100	4	2.34	3.12	0.53	0.65
0x05	00101	5	2.53	3.05	0.52	0.66
0x06	00110	6	2.71	2.93	0.51	0.67
0x07	00111	7	2.90	2.78	0.51	0.68
0x08	01000	8	3.08	2.64	0.50	0.69
0x09	01001	9	3.27	2.51	0.50	0.70
0x0A	01010	10	3.45	2.39	0.49	0.71
0x0B	01011	11	3.64	2.27	0.48	0.72
0x0C	01100	12	3.82	2.17	0.48	0.73
0x0D	01101	13	4.01	2.08	0.47	0.73
0x0E	01110	14	4.19	2.00	0.46	0.74
0x0F	01111	15	4.38	1.93	0.46	0.75
0x10	10000	16	4.56	1.86	0.45	0.76
0x11	10001	17	4.75	1.80	0.45	0.77
0x12	10010	18	4.93	1.75	0.44	0.78
0x13	10011	19	5.12	1.70	0.43	0.79
0x14	10100	20	5.30	1.65	0.43	0.80
0x15	10101	21	5.49	1.61	0.42	0.81
0x16	10110	22	5.67	1.57	0.42	0.82
0x17	10111	23	5.86	1.54	0.41	0.83
0x18	11000	24	6.04	1.51	0.40	0.84
0x19	11001	25	6.23	1.48	0.40	0.85
0x1A	11010	26	6.41	1.45	0.39	0.86
0x1B	11011	27	6.60	1.42	0.39	0.87
0x1C	11100	28	6.78	1.40	0.38	0.88
0x1D	11101	29	6.97	1.37	0.37	0.89
0x1E	11110	30	7.15	1.35	0.37	0.90
0x1F	11111	31	7.34	1.33	0.36	0.91

©2013 Peregrine Semiconductor Corp. All rights reserved.


Document No. DOC-30314-2 | UltraCMOS[®] RFIC Solutions

Series Operation

In Series configuration, the effective capacitance between RF+ and RF- ports is represented by C_s and tuning ratio as C_{Smax}/C_{Smin} .

Figure 13. Effective Capacitance Diagram

Shunt Configuration (looking into RF+ when RF- is grounded) will have higher total capacitance at RF+ due to parallel combination of Cs with parasitic capacitance C_{P1} ($C_S + C_{P1}$), as demonstrated in *Figure 14* and *Table 9.*

Figure 14. Typical Capacitance vs. State

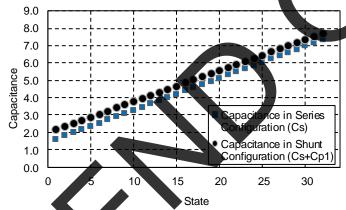
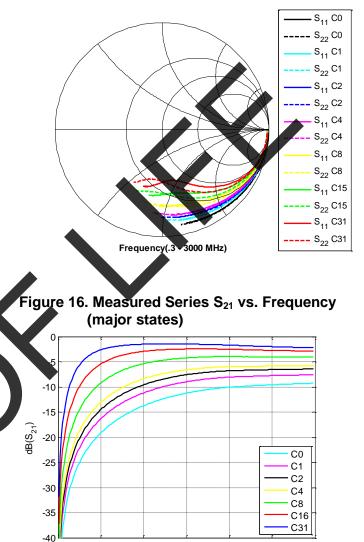



Table 9. Effective Capacitance Summary

Configuration	Effective Capacitance	C _{min} (state 0)	C _{max} (state 31)	Tuning Ratio
Series (RF+ to RF-)	Cs	1.60	7.34	4.59:1
Shunt (RF+ to GND)	$C_{S} + C_{P1}$	2.15	7.7	3.6:1

 S_{11} and S_{21} for series configuration is illustrated in *Figures 15* and *16*. S_{21} includes mismatch and dissipative losses and is not indicative of tuning network loss. Equivalent Circuit Model can be used for simulation of tuning network loss.

When the DTC is used as a part of a reactive network, impedance transformation may cause the internal RF voltages (V_P and V_M in *Figure 12*) to exceed peak operating RF voltage. The complete RF circuit must be simulated using actual input power and load conditions to ensure neither V_P nor V_M exceeds 30 Vpk.

1.5

Frequency (GHz)

2

25

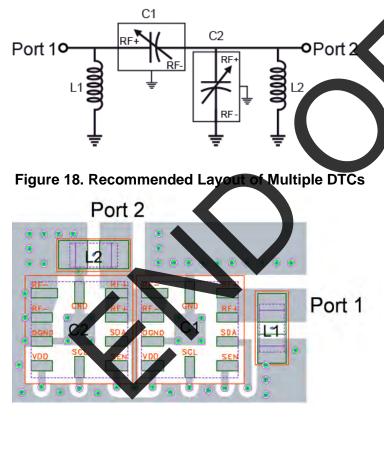
3

Document No. DOC-30314-2 | www.psemi.com

©2013 Peregrine Semiconductor Corp. All rights reserved.

'n

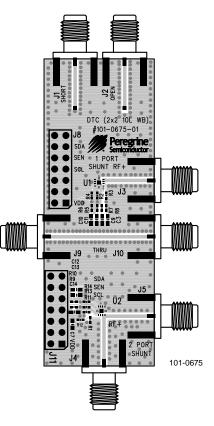
0.5


1

Layout Recommendations

For optimal results, place a ground fill directly under the DTC package on the PCB. Layout isolation is desired between all control and RF lines. When using the DTC in a shunt configuration, it is important to make sure the RF-pin is solidly grounded to a filled ground plane. Ground traces should be as short as possible to minimize inductance. A continuous ground plane is preferred on the top layer of the PCB. When multiple DTCs are used together, the physical distance between them should be minimized and the connection should be as wide as possible to minimize series parasitic inductance.

Figure 17. Recommended Schematic of Multiple DTCs



Evaluation Board

The 101-0675 Evaluation Board (EVB) was designed for accurate measurement of the DTC impedance and loss. Two configurations are available: 1 Port Shunt (J3) and 2 Port Shunt (J4, J5). Three calibration standards are provided. The open (J2) and short (J1) standards (104 ps delay) are used for performing port extensions and accounting for electrical length and transmission line loss. The Thru (J9, J10) standard can be used to estimate PCB transmission line losses for scalar de-embedding of the 2 Port Series configuration (J4, J5).

The board consists of a 4 layer stack with 2 outer layers made of Rogers 4350B ($\varepsilon_r = 3.48$) and 2 inner layers of FR4 ($\varepsilon_r = 4.80$). The total thickness of this board is 62 mils (1.57 mm). The inner layers provide a ground plane for the transmission lines. Each transmission line is designed using a coplanar waveguide with ground plane (CPWG) model using a trace width of 32 mils (0.813 mm), gap of 15 mils (0.381 mm), and a metal thickness of 1.4 mils (0.051 mm).

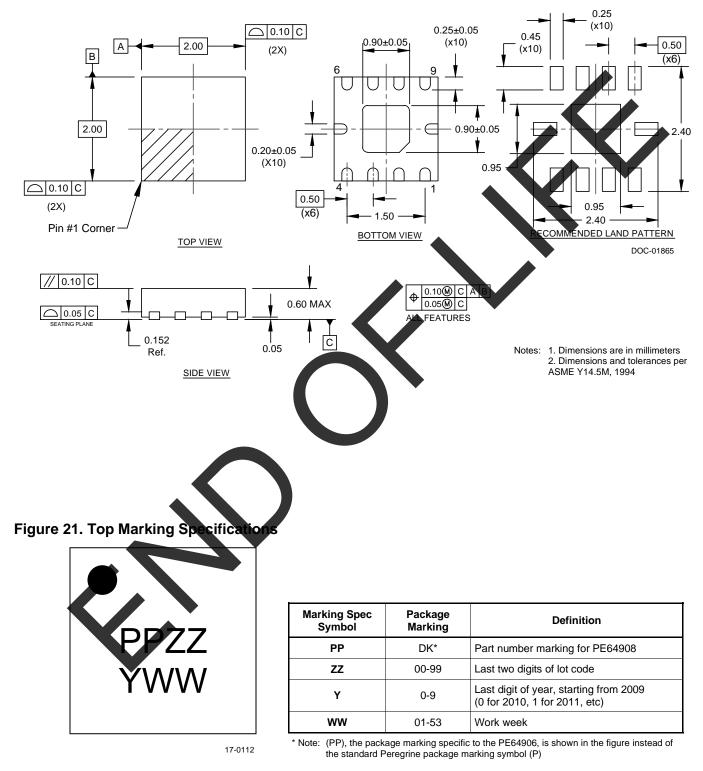
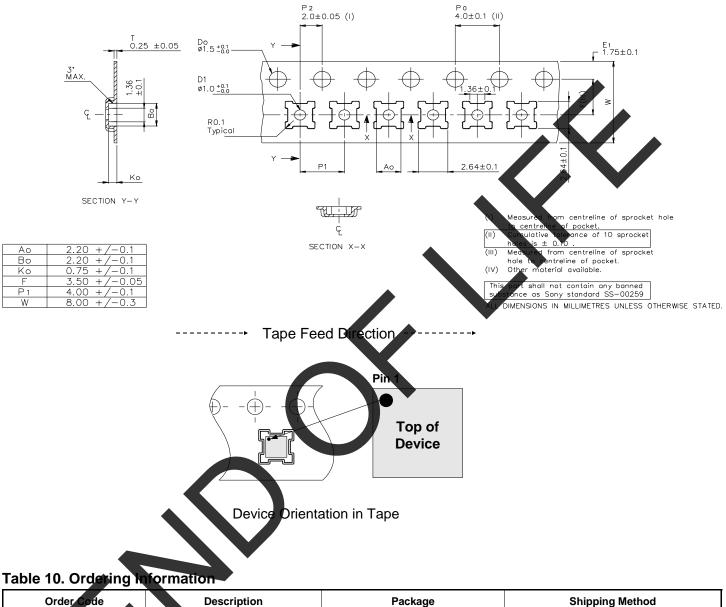

Figure 19. Evaluation Board Layout

Figure 20. Package Drawing


10-lead 2 x 2 x 0.55 mm QFN

Document No. DOC-30314-2 | www.psemi.com

Figure 22. Tape and Reel Specifications

Order Code	Description	Package	Shipping Method
PE64908MLAA-Z	PE64908 DTC	10-lead 2x2 mm QFN	3,000 units/T&R
EK64908-11	PE64908 Evaluation kit	Evaluation kit	1 set/box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSI are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

©2013 Peregrine Semiconductor Corp. All rights reserved.

Document No. DOC-30314-2 | UltraCMOS[®] RFIC Solutions

Page 10 of 10