

Product Specification PE9763

3.2 GHz Delta-Sigma modulated Fractional-N Frequency Synthesizer for Low Phase Noise Applications

Features

- 3.2 GHz operation
- ÷10/11 dual modulus prescaler
- Selectable phase detector or charge pump output
- Serial or Direct mode access
- Frequency selectivity: Comparison frequency / 218
- Low power —- 25 30 mA at 3V (phase detector / charge pump)
- Rad-Hard
- Ultra-low phase noise
- 68-lead CQFJ or Die

Product Description

Peregrine's PE9763 is a high performance fractional-N PLL capable of frequency synthesis up to 3.2 GHz. The device is designed for superior phase noise performance while providing an order of magnitude reduction in current consumption, when compared with the existing commercial space PLLs.

The PE9763 features a 10/11 dual modulus prescaler, counters, a delta sigma modulator, a phase comparator and a charge pump as shown in Figure 1. Counter values are programmable through either a serial interface or directly hardwired.

PE9763 is optimized for commercial space applications. Single Event Latch up (SEL) is physically impossible and Single Event Upset (SEU) is better than 10-9 errors per bit / day. Fabricated in Peregrine's patented UTSi® (Ultra Thin Silicon) CMOS technology, the PE9763 offers excellent RF performance and intrinsic radiation tolerance.

Figure 1. Block Diagram

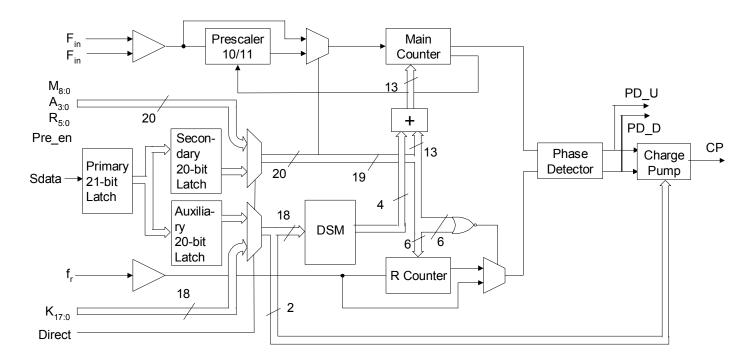
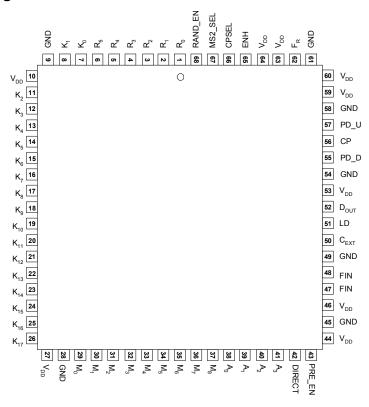



Figure 2. Pin Configuration

Table 1. Pin Descriptions

Pin No.	Pin Name	Valid Mode	Туре	Description
1	R ₀	Direct	Input	R Counter bit0 (LSB).
2	R ₁	Direct	Input	R Counter bit1.
3	R ₂	Direct	Input	R Counter bit2.
4	R ₃	Direct	Input	R Counter bit3.
5	R ₄	Direct	Input	R Counter bit4.
6	R ₅	Direct	Input	R Counter bit5 (MSB).
7	K ₀	Direct	Input	K Counter bit0 (LSB).
8	K ₁	Direct	Input	K Counter bit1.
	GND		Downbond	Digital core ground.
9	GND		Downbond	ESD ground.
40	V_{DD}		(Note 1)	ESD V _{DD} .
10	V_{DD}		(Note 1)	Digital core V _{DD} .
11	K ₂	Direct	Input	K Counter bit2.
12	K ₃	Direct	Input	K Counter bit3.
13	K ₄	Direct	Input	K Counter bit4.
14	K ₅	Direct	Input	K Counter bit5.
15	K ₆	Direct	Input	K Counter bit6.

	Di-	Valid		
Pin No.	Pin Name	Valid Mode	Туре	Description
16	K ₇	Direct	Input	K Counter bit7.
17	K ₈	Direct	Input	K Counter bit8.
18	K ₉	Direct	Input	K Counter bit9.
19	K ₁₀	Direct	Input	K Counter bit10.
20	K ₁₁	Direct	Input	K Counter bit11.
21	K ₁₂	Direct	Input	K Counter bit12.
22	K ₁₃	Direct	Input	K Counter bit13.
23	K ₁₄	Direct	Input	K Counter bit14.
24	K ₁₅	Direct	Input	K Counter bit15.
25	K ₁₆	Direct	Input	K Counter bit16.
26	K ₁₇	Direct	Input	K Counter bit17 (MSB).
27	V _{DD}		(Note 1)	Digital core V _{DD} .
	V _{DD}		(Note 1)	ESD V _{DD} .
28	GND		Downbond	Digital core ground.
	GND		Downbond	ESD ground.
29	M _o	Direct	Input	M Counter bit0 (LSB).
30	M ₁	Direct	Input	M Counter bit1.
31	M ₂	Direct	Input	M Counter bit2
32	M ₃	Direct	Input	M Counter bit3.
	M ₄	Direct	Input	M Counter bit4.
33	S_WR	Serial	Input	Serial load enable input. While S_WR is "low", Sdata can be serially clocked. Primary register data are transferred to the secondary register on S_WR or Hop_WR rising edge.
	M ₅	Direct	Input	M Counter bit5.
34	SDATA	Serial	Input	Binary serial data input. Input data entered MSB first.
	M ₆	Direct	Input	M Counter bit6.
35	SCLK	Serial	Input	Serial clock input. SDATA is clocked serially into the 20-bit primary register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of Sclk.
36	M ₇	Direct	Input	M Counter bit7.
37	M ₈	Direct	Input	M Counter bit8 (MSB).
38	A ₀	Direct	Input	A Counter bit0 (LSB).
	A ₁	Direct	Input	A Counter bit1.
39	E_WR	Serial	Input	Enhancement register write enable. While E_WR is "high", Sdata can be serially clocked into the enhancement register on the rising edge of Sclk.
40	A ₂	Direct	Input	A Counter bit2.
41	A ₃	Direct	Input	A Counter bit3 (MSB).
42	DIRECT	Both	Input	Direct mode select. "High" enables direct mode. "Low" enables serial mode.
43	Pre_en	Direct	Input	Prescaler enable, active "low". When "high", Fin bypasses the prescaler.
44	V _{DD}		(Note 1)	Digital core V _{DD} .
45	GND		Downbond	Digital core ground.
40	GND		Downbond	ESD ground.

Pin No.	Pin Name	Valid Mode	Туре	Description
	V_{DD}		(Note 1)	ESD V _{DD} .
46	V_{DD}		(Note 1)	Prescaler V _{DD} .
47	F _{in}	Both	Input	Prescaler input from the VCO. 3.2 GHz max frequency.
48	F _{in}	Both	Input	Prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected in series with a 50 W resistor directly to the ground plane.
	GND		Downbond	Prescaler ground.
49	GND		Downbond	Prescaler ground.
	GND		Downbond	Output driver/charge pump ground.
50	CEXT	Both	Output	Logical "NAND" of PD_U and PD_D terminated through an on chip, 2 kW series resistor. Connecting Cext to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.
51	LD	Both	Output	Lock detect and open drain logical inversion of CEXT. When the loop is in lock, LD is high impedance, otherwise LD is a logic low ("0").
52	D _{OUT}	Both	Output	Data out function, enabled in enhancement mode.
53	V_{DD}		(Note 1)	Output driver/charge pump V _{DD} .
54	GND		Downbond	Output driver/charge pump ground.
55	PD_D	Both	Output	PD_D pulses down when f_p leads f_c . PD_U is driven to GND when CPSEL = "High".
56	СР	Both	Output	Charge pump output. Selected when CPSEL = "1". Tristate when CPSEL = "Low".
57	PD_U	Both	Output	PD_U pulses down when f_c leads f_p . PD_D is driven to GND when CPSEL = "High".
58	GND		Downbond	Output driver/charge pump ground.
59	V_{DD}		(Note 1)	Output driver/charge pump V _{DD} .
	GND		Downbond	Phase detector GND.
	V_{DD}		(Note 1)	Phase detector V _{DD} .
60	V_{DD}		(Note 1)	ESD V _{DD} .
	GND		Downbond	ESD ground.
61	GND		Downbond	Reference ground.
62	f _r	Both	Input	Reference frequency input.
63	V_{DD}		(Note 1)	Reference V _{DD} .
64	V_{DD}		(Note 1)	Digital core V _{DD} .
	GND		Downbond	Digital core ground.
65	ENH	Both	Input	Enhancement mode. When asserted low ("0"), enhancement register bits are functional.
66	CPSEL	Both	Input	Charge pump select. "High" enables the charge pump and disables pins PD_U and PD_D by forcing them "low". A "low" Tri-states the CP and enables PD_U and PD_D.
67	MS2_SEL	Both	Input	MASH 1-1 select. "High" selects MASH 1-1 mode. "Low" selects the MASH 1-1-1 mode.
68	RND_SEL	Both	Input	K register LSB toggle enable. "1" enables the toggling of LSB. This is equivalent to having an additional bit for the LSB of K register. The frequency offset as a result of enabling this bit is the phase detector comparison frequency / 2^{19} .

All V_{DD} pins are connected by diodes and must be supplied with the same positive voltage level. Note 1:

Note 2: All digital input pins have 70 k Ω pull-down resistors to ground.

Table 2. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Supply voltage	-0.3	4.0	V
Vı	Voltage on any input	-0.3	V _{DD} + 0.3	V
l _l	DC into any input	-10	+10	mA
Io	DC into any output	-10	+10	mA
T_{stg}	Storage temperature range	-65	150	ç

Table 3. Operating Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Supply voltage	2.85	3.15	V
T _A	Operating ambient temperature range	-40	85	ç

Table 4. ESD Ratings

Symbol	Parameter/Conditions	Level	Units
V _{ESD}	ESD voltage human body model (Note 1)	1000	V

Note 1: Periodically sampled, not 100% tested. Tested per MIL-STD-883, M3015 C2

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS™ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 4.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS™ devices are immune to latch-up.

Table 5. DC Characteristics

 V_{DD} = 3.0 V, -40° C < TA < 85° C, unless otherwise specified

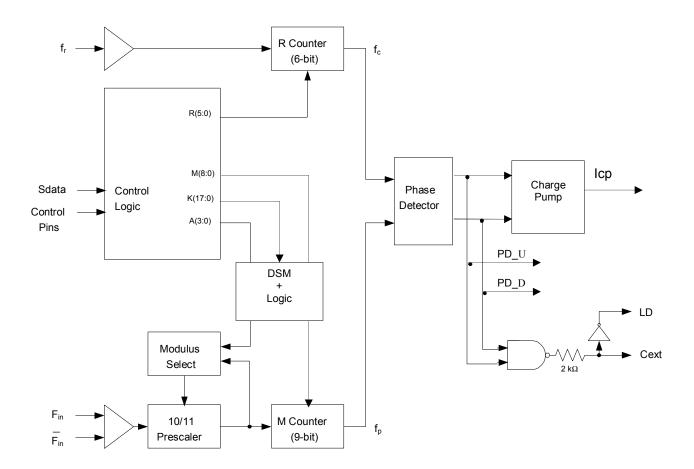
Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD}	Operational supply current;	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$				
	Prescaler enabled, charge pump disabled			25		mA
I _{DD}	Operational supply current;	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$		30		
	Prescaler enabled, charge pump enabled					mA
I _{DD}	Operational supply current;	$V_{DD} = 2.85 \text{ to } 3.15 \text{ V}$		10		
	Prescaler disabled, charge pump disabled					mA
I _{DD}	Operational supply current;	V _{DD} = 2.85 to 3.15 V		15		
	Prescaler disabled, charge pump enabled					mA
All Digital input	s: K[17:0], R[5:0], M[8:0], A[3:0], Direct, Pre_en, Ra	and_en, M2_sel, Cpsel, Enh (cont	tains a 70 kΩ pu	II-down resi	stor)	
V _{IH}	High level input voltage	V _{DD} = 2.85 to 3.15 V	0.7 x V _{DD}			V
VIL	Low level input voltage	V _{DD} = 2.85 to 3.15 V			0.3 x V _{DD}	V
I _{IH}	High level input current	$V_{IH} = V_{DD} = 3.15 \text{ V}$			+100	μA
I _{IL}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15 \text{ V}$	-1			μA
Reference Divi	der input: f _r		<u> </u>			l .
I _{IHR}	High level input current	$V_{IH} = V_{DD} = 3.15 \text{ V}$			+100	μA
I _{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15 \text{ V}$	-100			μA
Counter and ph	nase detector outputs: PD_D, PD_U		l l			
V _{OLD}	Output voltage LOW	I _{out} = 6 mA			0.4	V
V_{OHD}	Output voltage HIGH	I _{out} = -3 mA	V _{DD} - 0.4			V
Digital test outp	outs: Dout		l l		<u> </u>	
V _{OLD}	Output voltage LOW	I _{out} = 200 μA			0.4	V
V_{OHD}	Output voltage HIGH	I _{out} = -200 μA	V _{DD} - 0.4			V
Charge Pump of	output: CP					l
I _{CP} - Source	Drive current	$V_{CP} = V_{DD} / 2$	-2.6	2	-1.4	mA
I _{CP} -Sink	Drive current	$V_{CP} = V_{DD} / 2$	1.4	2	2.6	mA
I _{CPL}	Leakage current	1.0 V < V _{CP} < V _{DD} - 1.0 V	-1		1	μΑ
I _{CP} - Source	Sink vs. source mismatch	$V_{CP} = V_{DD} / 2$			25	%
vs. I _{CP} - Sink		T _A = 25° C				
I _{CP} vs. V _{CP}	Output current magnitude variation vs. voltage	1.0 V < V _{CP} < V _{DD} - 1.0 V			15	%
		T _A = 25° C				
Lock detect out	tputs: (Cext, LD)	-	<u> </u>		•	•
V _{OLC}	Output voltage LOW, Cext	I _{out} = 0.1 mA			0.4	V
V _{OHC}	Output voltage HIGH, Cext	I _{out} = -0.1 mA	V _{DD} - 0.4			V

Table 6. AC Characteristics

 V_{DD} = 3.0 V, -40° C < TA < 85° C, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Control Interfac	e and Latches (see Figures 3, 4))			
f _{Clk}	Serial data clock frequency	(Note 1)			10	MHz
t _{ClkH}	Serial clock HIGH time		30			ns
t _{ClkL}	Serial clock LOW time		30			ns
t _{DSU}	Sdata set-up time to Sclk rising edge		10			ns
t _{DHLD}	Sdata hold time after Sclk rising edge		10			ns
t _{PW}	S_WR pulse width		30			ns
t _{CWR}	Sclk rising edge to S_WR rising edge		30			ns
t _{CE}	Sclk falling edge to E_WR transition		30			ns
t _{WRC}	S_WR falling edge to Sclk rising edge		30			ns
t _{EC}	E_WR transition to Sclk rising edge		30			ns
	Main Divider	(Including Prescaler) (Note 4)		•		•
Fin	Operating frequency		275		3200	MHz
P_{Fin}	Input level range	External AC coupling	-5		5	dBm
	Main Divider	(Prescaler Bypassed) (Note 4)		•		•
Fin	Operating frequency		50		300	MHz
P_{Fin}	Input level range	External AC coupling	-5		5	dBm
	1	Reference Divider		•		•
f _r	Operating frequency	(Note 3)			100	MHz
P _{fr}	Reference input power (Note 2)	Single ended input	-2			dBm
		Phase Detector	•	•		•
f _c	Comparison frequency	(Note 3)			50	MHz
<u>'</u>	SSB Phase Noise (F _{in} = 1.9 GHz, f _r = 20 MHz, f	t_c = 10 MHz, LBW = 50 kHz, V_{DD}	= 3.0 V, Tem	p = 25° C) (N	lote 4)	•
Φ_{N}	Phase Noise	1 kHz Offset		-88		dBc/Hz
Φ_{N}	Phase Noise	10 kHz Offset		-92		dBc/Hz

- fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify fclk Note 1: specification.
- CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 Vp-p. For optimum Note 2: phase noise performance, the reference input falling edge rate should be faster than 80mV/ns.
- Parameter is guaranteed through characterization only and is not tested. Note 3:
- Parameter below are not tested for die sales. These parameters are verified during the element evaluation per the die flow. Note 4:


Functional Description

The PE9763 consists of counters, a prescaler, an 18-bit delta-sigma modulator (DSM), a phase detector and a charge pump. The dual modulus prescaler divides the VCO frequency by either 10 or 11, depending on the value of the modulus select. Counters "R" and "M" divide the reference and prescaler output, respectively, by integer values stored in a 20-bit register. An additional counter ("A") is used in the modulus select logic.

The DSM modulates the "A" counter outputs in order to achieve the desired fractional step.

The phase-frequency detector generates up and down frequency control signals. These signals can be configured to drive a tri-state charge pump. Data is written into the internal registers via the three wire serial bus. There are also various operational and test modes and a lock detect output

Figure 3. Functional Block Diagram

Main Counter Chain

Normal Operating Mode

Setting the Pre_en control bit "low" enables the ÷10/11 prescaler. The main counter chain then divides the RF input frequency (Fin) by an integer or fractional number derived from the values in the "M", "A" counters and the DSM input word K. The accumulator size is 18 bit, so the fractional value is fixed from the ratio K/2¹⁸. There is an additional bit in the DSM that acts like an extra bit (19th bit). This bit is enabled by asserting the pin RAND_SEL to "high". Enabling this bit has the benefit of reducing the spurious levels. However, a small frequency offset will occur. This positive frequency offset is calculated with the following equation.

$$f_{\text{offset}} = (f_r / (R + 1)) / 2^{19}$$
 (1)

All of the following equations do not take into account of this frequency offset. If this offset is important to a specific frequency plan, appropriate account needs to be taken.

In the normal mode, the output from the main counter chain (f_n) is related to the VCO frequency (F_{in}) by the following equation:

$$f_p = F_{in} / [10 \times (M+1) + A + K/2^{18}]$$
 (2)
where $A \le M+1$, $1 \le M \le 511$

When the loop is locked, F_{in} is related to the reference frequency (f_r) by the following equation:

$$F_{in} = [10 \times (M + 1) + A + K/2^{18}] \times (f_r / (R+1))$$
 (3) where $A \le M + 1$, $1 \le M \le 511$

A consequence of the upper limit on A is that F_{in} must be greater than or equal to 90 x (f_r / (R+1)) to obtain contiguous channels. The A counter can accept values as high as 15, but in typical operation it will cycle from 0 to 9 between increments in M.

Programming the M counter with the minimum allowed value of "1" will result in a minimum M counter divide ratio of "2".

Prescaler Bypass Mode (*)

Setting the frequency control register bit Pre_en "high" allows F_{in} to bypass the ÷10/11 prescaler. In this mode, the prescaler and A counter are powered down, and the input VCO frequency is divided by the M counter directly. The following equation relates F_{in} to the reference frequency f_r:

$$F_{in} = (M + 1) \times (f_r / (R+1))$$
 (4) where $1 \le M \le 511$

(*) Only integer mode

In frequency bypass mode, neither A counter or K counter is used. Therefore, only integer-N operation is possible.

Reference Counter

The reference counter chain divides the reference frequency f, down to the phase detector comparison frequency f_c.

The output frequency of the 6-bit R Counter is related to the reference frequency by the following equation:

$$f_c = f_r / (R + 1)$$
 (5)
where $0 \le R \le 63$

Note that programming R with "0" will pass the reference frequency (f_r) directly to the phase detector.

Register Programming

Serial Interface Mode

While the E_WR input is "low" and the S_WR input is "low", serial input data (Sdata input), B₀ to B₂₀, are clocked serially into the primary register on the rising edge of Sclk, MSB (B₀) first. The LSB is used as address bit. When "0", the contents from the primary register are transferred into the secondary register on the rising edge of either S_WR according to the timing diagrams shown in Figure 4. When "1", data is transferred to the auxiliary register according to the same timing diagram. The secondary register is used to program the various counters, while the auxiliary register is used to program the DSM.

Data are transferred to the counters as shown in Table 8 on page 10.

While the E_WR input is "high" and the S_WR input is "low", serial input data (Sdata input), Bo to B₇, are clocked serially into the enhancement register on the rising edge of Sclk, MSB (B₀) first. The enhancement register is double buffered to prevent inadvertent control changes during serial loading, with buffer capture of the serially entered data performed on the falling edge of E_WR according to the timing diagram shown in Figure 4. After the falling edge of E_WR, the data provide control bits as shown in Table 9 on page 10 will have their bit functionality enabled by asserting the Enh input "low".

Direct Interface Mode

Direct Interface Mode is selected by setting the "Direct" input "high".

Counter control bits are set directly at the pins as shown in Table 7 and Table 8.

Table 7. Secondary Register Programming

Interface Mode	Enh	R ₅	R ₄	M ₈	M ₇	Pre_en	M ₆	M ₅	M ₄	M ₃	M ₂	M ₁	M ₀	R ₃	R ₂	R ₁	R ₀	A_3	A ₂	A ₁	A ₀	Addr
Direct	1	R ₅	R ₄	M ₈	M ₇	Pre_en	M ₆	M ₅	M ₄	M ₃	M ₂	M ₁	M ₀	R_3	R ₂	R ₁	R_0	A_3	A ₂	A ₁	A ₀	Х
Serial*	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	0

^{*}Serial data clocked serially on Sclk rising edge while E_WR "low" and captured in secondary register on S_WR rising edge.

(last in) LSB

Table 8. Auxiliary Register Programming

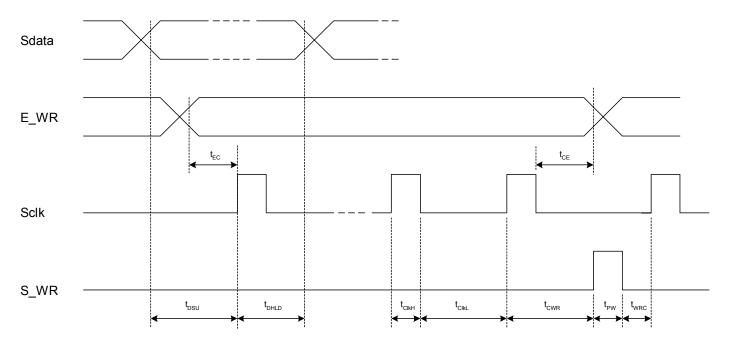
Interface Mode	Enh	K ₁₇	K ₁₆	K ₁₅	K ₁₄	K ₁₃	K ₁₂	K ₁₁	K ₁₀	K ₉	K ₈	K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀	Rsrv	Rsrv	Addr
Direct	1	K ₁₇	K ₁₆	K ₁₅	K ₁₄	K ₁₃	K ₁₂	K ₁₁	K ₁₀	K ₉	K ₈	K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K_0	Х	Х	Х
Serial*	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	1

^{*}Serial data clocked serially on Sclk rising edge while E_WR "low" and captured in secondary register on S_WR rising edge.

(last in) LSB

Table 9. Enhancement Register Programming

Interface Mode	Enh	Reserved	Reserved	f _p output	Power Down	Counter load	MSEL output	f _c output	LD Disable	
Serial*	0	B ₀	B ₁	B_2	B ₃	B ₄	B ₅	B ₆	B ₇	


^{*}Serial data clocked serially on Sclk rising edge while E_WR "high" and captured in the double buffer on E_WR falling edge.

(last in) LSB

Figure 4. Serial Interface Mode Timing Diagram

Enhancement Register

The functions of the enhancement register bits are shown below with all bits active "high".

Table 10. Enhancement Register Bit Functionality

E	Bit Function	Description
Bit 0	Reserve **	Reserved.
Bit 1	Reserve **	Reserved.
Bit 2	f _p output	Drives the M counter output onto the Dout output.
Bit 3	Power down	Power down of all functions except programming interface.
Bit 4	Counter load	Immediate and continuous load of counter programming.
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.
Bit 6	f _c output	Drives the reference counter output onto the Dout output.
Bit 7	LD Disable	Disables the LD pin for quieter operation.

^{**} Program to 0

Phase Detector and Charge Pump

The phase detector is triggered by rising edges from the main Counter (f_D) and the reference counter (f_c). It has two outputs, namely PD U, and PD D. If the divided VCO leads the divided reference in phase or frequency (f_p leads f_c), PD_D pulses "low". If the divided reference leads the divided VCO in phase or frequency (f_c leads f_p), PD U pulses "low". The width of either pulse is directly proportional to phase offset between the two input signals, f_p and f_c.

For the UP and DOWN mode, PD_U and PD_D drive an active loop filter which controls the VCO tune voltage. The phase detector gain is equal to VDD / 2 п.

PD U pulses cause an increase in VCO frequency and PD D pulses cause a decrease in VCO frequency, for a positive Kv VCO.

For the charge pump mode, the phase detector outputs are used internally to drive a tri-state charge pump. However, the PD U, and PD D output pins will be drive statically to GND. The charge pump will drive a fixed 2 mA of current.

A lock detect output, LD is also provided, via the pin Cext. Cext is the logical "NAND" of PD_U and PD D waveforms, which is driven through a series $2 k\Omega$ resistor. Connecting Cext to an external shunt capacitor provides low pass filtering of this signal. Cext also drives the input of an internal inverting comparator with an open drain output. Thus LD is an "AND" function of PD_U and PD_D.

Figure 5. Typical Phase Noise

A typical phase noise plot is shown below. Phase noise results for "Trace 2" is the average values.

Test Conditions: Fout = 1.9202 GHz, Fcomparison = 20 MHz, MASH 1-1, VDD = 3 V, Temp = 25 C, Loop bandwidth = 80 KHz.

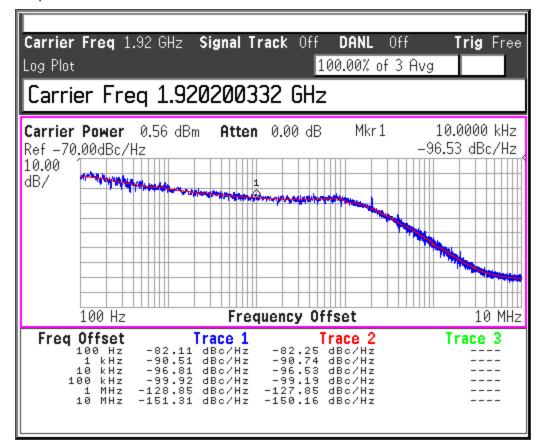


Figure 6. Typical Spurious Plot

Test Conditions: Frequency step = 200 KHz, Loop bandwidth = 80 KHz, Fout = 1.9202 GHz, Fcomparison = 20 MHz, MASH 1-1, V_{DD} = 3 V, Temp = 25 C.

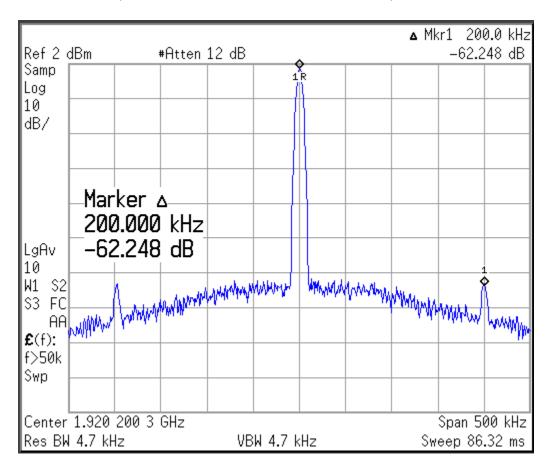
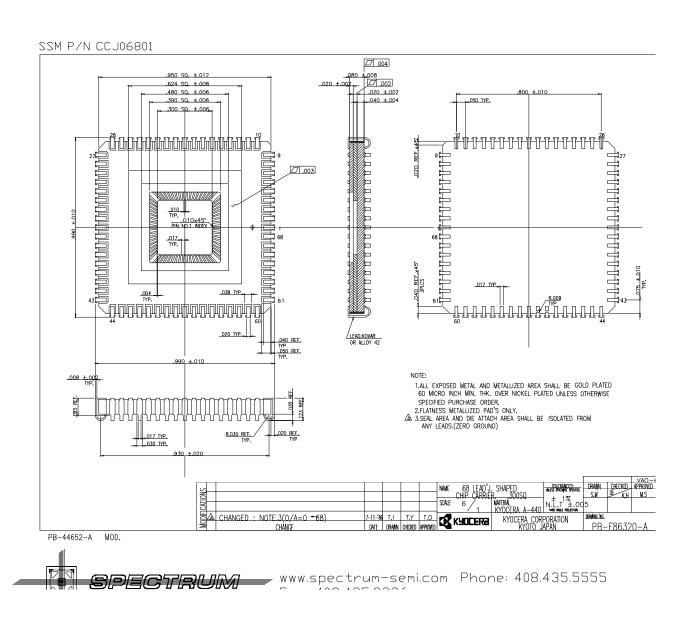



Figure 7. Package Drawing

Package dimensions: 68-lead CQFJ

Table 11. Ordering Information

Order Code	Park Marking	Description	Packaging	Shipping Method
9763-01	PE9763 ES	Engineering Samples	68-lead CQFJ	Tray
9763-11	PE9763	Flight Units	68-lead CQFJ	Tray
9763-00	PE9763 EK	Evaluation Kit		1/Box

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9450 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-47-41-91-73 Fax: +33-1-47-41-91-73

Space and Defense Products

Americas:

Tel: 858-731-9453 Europe, Asia Pacific: 180 Rue Jean de Guiramand 13852 Aix-En-Provence Cedex 3, France Tel: +33(0) 4 4239 3361

Teikoku Hotel Tower 10B-6

North Asia Pacific

1-1-1 Uchisaiwai-cho, Chiyoda-ku

Peregrine Semiconductor K.K.

Tokyo 100-0011 Japan Tel: +81-3-3502-5211 Fax: +81-3-3502-5213

Peregrine Semiconductor, Korea

#B-2402, Kolon Tripolis, #210 Geumgok-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-480 S. Korea

Tel: +82-31-728-4300 Fax: +82-31-728-4305

South Asia Pacific

Peregrine Semiconductor, China

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

Fax: +33(0) 4 4239 7227

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a DCN (Document Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS and HaRP are trademarks of Peregrine Semiconductor Corp.