POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specifica	ation	For Approval
Customer	:	
Model Type	:	LCD Module
Sample Code	:	PG12864LRU-JNN-H-P1
Mass Production	Code :	
Edit	:	_0_

Customer Sign	Sales Sign	Approved By	Prepared By

Free Datasheet http://www.datasheet4u.c

CONTENTS

1.SPECIFICATIONS

1.1	Features
1.2	Mechanical Specifications
1.3	Absolute Maximum Ratings
1.4	DC Electrical Characteristics
1.5	Optical Characteristics
1.6	Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3.RELIABILITY

3.1 Content of Reliability Test

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- 1/64 Duty, 1/9 bias
- STN LCD, positive
- Transflective LCD, yellow green
- 6 o'clock viewing direction
- 8 bits parallel data input
- LED Backlight

1.2 Mechanical Specifications

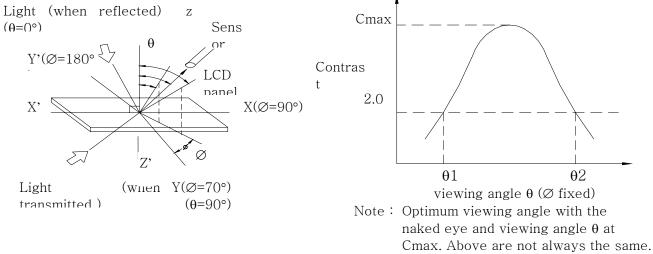
 Outline dimension 	:	75.0mm(L)*52.7mm(W)*8.4mm(H)

 Viewing area 	:	60.0mm	*32.6mm
• Active area	:	55.01mm	*27.49mm
• Dot size	:	0.39mm	* 0.39mm
• Dot pitch	:	0.43mm	* 0.43mm

1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	VDD	_	0	6.7	V
LCD drive Supply voltage	VDD-VLC	_	0	8.15	V
Input voltage	VIN	_	0	VDD+0.3	V
Operating temperature	TOPR	_	-20	+70	°C
Storage temperature	TSTG	_	-30	+ 80	°C
Humidity*1	HD	_	Ι	90	%RH

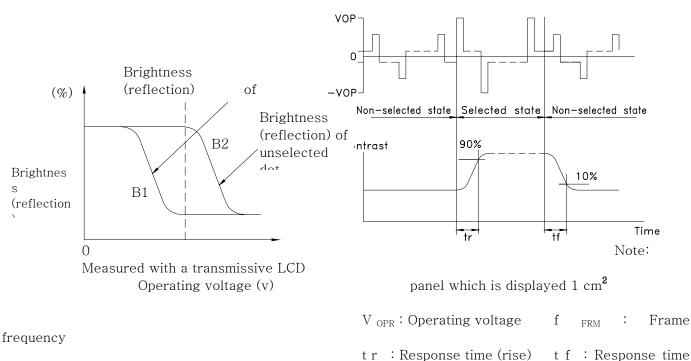
1.4 DC Electrical Characteristics


Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Logic Supply voltage	VDD	_	4.5	5	5.5	V
"H" input voltage	VIH	-	0.7VDD	-	VDD	V
"L" input voltage	VIL	-	0	-	0.3VDD	V
Supply current	IDD	VDD=5V	_	1.65	-	mA
LCD driving voltage	VOP	VDD-VLC	8.18	_	9.17	V

1/64 duty, 1/9 bias, Vopr=8.8V, Ta=25°C

Item Symbol Conditions Min. Тур. Max Reference _ Viewing angle C>2.0,Ø=0°C 30° _ Notes 1 & 2 θ С 2 θ=5°, Ø=0° 3 _ Note 3 Contrast _ _ Response time(rise) θ=5°, Ø=0° 82ms Note 4 tr Response time(fall) $\theta = 5^{\circ}, \ \emptyset = 0^{\circ}$ 163ms _ Note 4 tf _ Note 1: Definition of angles θ and \emptyset Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$

1.5 Optical Characteristics



Note 3: Definition of contrast C

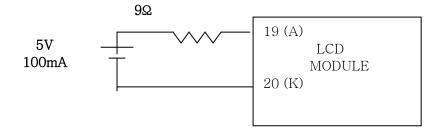
Note 4: Definition of response time

Brightness (reflection) of unselected dot (B2)

C = _____ Brightness (reflection) of selected dot (B1)

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

1.6 Backlight Characteristic


The LCD Module is backlight using a LED panel •.Maximum Ratings

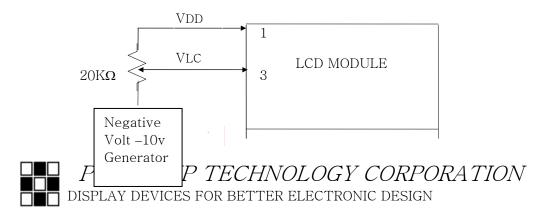
Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	-	250	MA
Reverse voltage	VR	TA=25°C	Ι	8	V
Power dissipation	РО	TA=25°C	Ι	1.1	W
Operating Temperature	TOPR	_	-20	70	°C
Storage temperature	TSTG	_	-40	80	°C

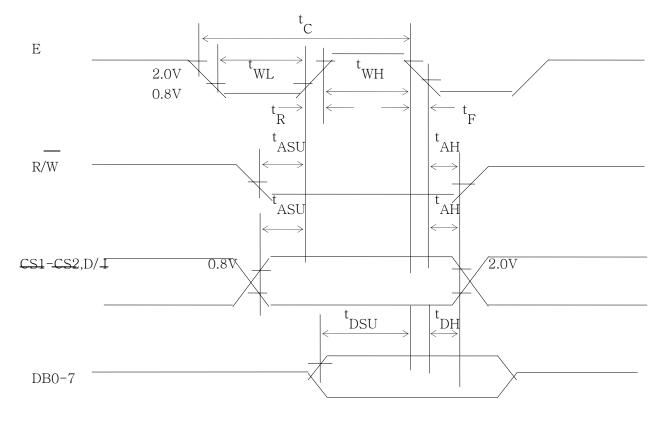
•.Electrical Ratings

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Forward voltage	VF	IF=100mA	_	4.1	4.4	V
Reverse current	IR	VR=8V	-	_	0.2	mA
Luminous intensity	IV	IF=100mA	-	16	-	cd/m ²
Wavelength	HUE	IF=100mA	571	_	576	nm
Color	Yellow Green					

•.Light LED Backlight

2. MODULE STRUCTURE

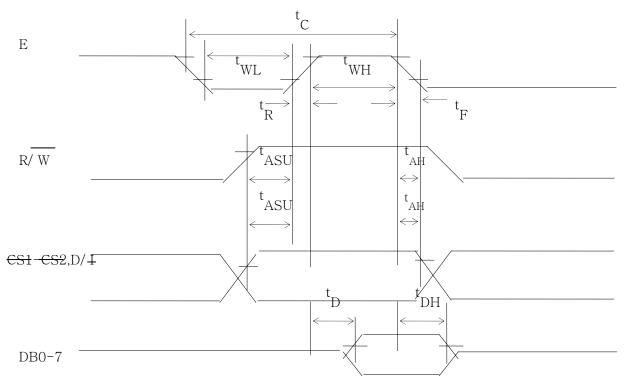

2.1 Counter Drawing


*See Appendix

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	VDD	Power supply for logic (+ 5V)
2	VSS	Signal ground (GND)
3	VLC	Operating voltage for LCD (variable)
4 -7	DB0~ DB3	Four low order bi-directional three-state data bus lines. Use for data transfer between the MPU and the LCD module. These four are not used during 4-bit operation.
8 -11	DB4~ DB7	For high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
12	/CS1	Chip enable for D2 (segment 1 to segment 64)
13	/CS2	Chip enable for D3 (segment 65 to segment 128)
14	RST	Reset signal
15	R/W	R/W signal input is used to select the read/write mode High =Read mode, Low =Write mode
16	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
17	E	Start enable signal to read or write the data
18	VSS	Ground
19	А	LED Backlight(+)
20	К	LED Backlight(-)

Contrast Adjust



2.3 Timing Characteristics

MPU Write timing

MPU Read timing

Characteristic	Symbol	Min.	Тур	Max	Unit
E Cycle	tC	1000	_	-	ns
E High Level Width	tWH	450	_	_	ns
E Low Level Width	tWL	450	_	_	ns
E Rise Time	tR	_	_	25	ns
E Fall Time	tF	_	_	25	ns
Address Set-Up time	tASU	140	_	_	ns
Address Hold Time	tAH	10	_	_	ns
Data Set-Up Time	tSU	200		_	ns
Data Delay Time	tD	-	_	320	ns
Data Hold Time (Write)	tDHW	10	_	_	ns
Data Hold Time (Read)	tDHR	20	-	-	ns

2.4 Display command

	Code													
Instructions	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Functions			
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls display on/off. RAM data and internal status are not affected. (0:OFF,1:ON)			
Display start line	0	0	1	1	Disj	olay	star	t line	e (0-	63)	Specifies the RAM line displayed at the top of the screen.			
Set Page (x address)	0	0	1	0	1	1	1	Page	e (0-7	7)	Sets the page (X address) of RAM at the page (X address) register.			
Set Y address	0	0	0	1	Y a	ddre	ss (()-63))		Sets the Y address in the Y address counter.			
Status read	1	0	Bus y	0	ON / Of F	Rese t	0	0	0	0	Reads the status. Reset 1: Reset 0: Normal ON/OFF 1: Display off 0: Display on Busy 1: Internal operation 0: Ready			
Write display data	0	1	Writ	e data	a						Writes data DB0 Has access to (LSB) to DB7 (MSB) the on the data bus into display display RAM RAM. specified in advance. After			
Read display data	1	1	Read	l data	l						Reads data DB0 (LSB) to DB7 (MSB) from the display RAM to the data bus.			

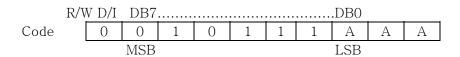
Detailed Explanation

Display On/Off

R/V	V D/I	DB7						.DB0		
Code	0	0	0	0	1	1	1	1	1	D
		MSB						LSB		

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

Display Start Line


R/V	VD/I	DB7						.DB0		
Code	0	0	1	1	А	А	А	А	А	А
		MSB						LSB		

Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of

total line number of LCD screen, from the line specifiedNO.PG12864LRU-JNN-H-P1 by display start line instruction, is displayed. See figure 1.

Set page (X address)

X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

Set Y Address

Y address AAAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

• Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

Shows the liquid crystal display conditions: on condition or off condition.

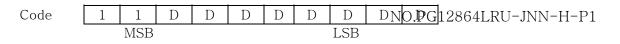
When on/off is 1, the display is in off condition. When on/off is 0, the display is in on condition.

• RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.

RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data


R/Y	W D/I	DB7						.DB0	-	
Code	0	1	D	D	D	D	D	D	D	D
		MSB						LSB		

Write 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

R/W D/I DB7.....DB0

Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

A TION
111011
-

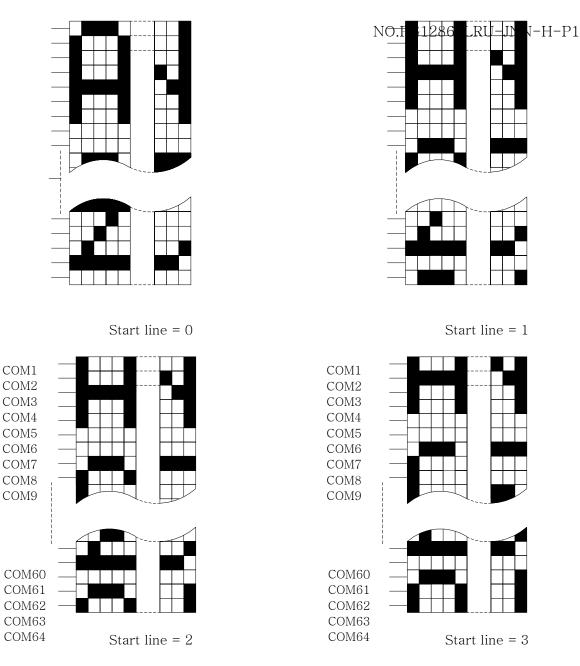
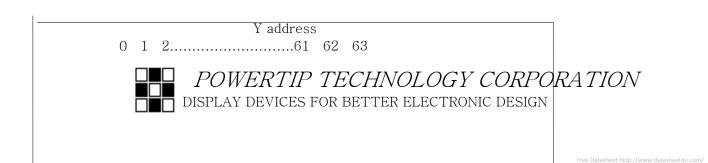



Figure 1 Relation between Start Line and Display

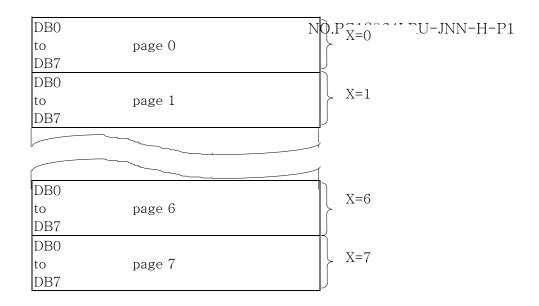


Figure 2 Address Configuration of Display Data RAM

3. RELIABILITY

3.1 Content of Reliability Test

NO.PG12864LRU-JNN-H-P1

	Environmental Test									
NO	Test Item	Content of Test	Test Condition							
	High temperature	Endurance test applying the high	70℃							
1	storage	storage temperature for a long time.	100 hrs							
0	Low temperature	Endurance test applying the high	−30°C							
2	storage	storage temperature for a long time.	100 hrs							
	High temperature	Endurance test applying the electric	70℃							
3	operation	stress (Voltage & Current) and the	100 hrs							
		thermal stress to the element for a								
		long time.								
	Low temperature	Endurance test applying the electric	−20°C							
4	operation	stress under low temperature for a	100 hrs							
		long time.								
		Endurance test applying the	70℃,90%RH							
5	/Humidity Storage	high humidity storage for a long	50 hrs							
		time.								
	0 1	Endurance test applying the electric	,							
6	/Humidity	stress (Voltage & Current) and	50 hrs							
	=	temperature / humidity stress to the								
		element for a long time.								
		Endurance test applying the low and								
7	Temperature Cycle	high temperature cycle.	10 cycle							
		$-25^{\circ}\mathbb{C} \rightarrow 25^{\circ}\mathbb{C} \rightarrow 75^{\circ}\mathbb{C}$								
		30min ← 5min ← 30min								
		\leftarrow 1 cycle \rightarrow								
		1 Cycle								

