

Cascadable Silicon Bipolar MMIC Amplifier

Description

The PHA-02170B is a low noise silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) feedback amplifier housed in a hermetic high reliability 70 mil microstrip package. This MMIC is designed for narrow or wide bandwidth industrial and military applications that require high gain amplification.

VO U is not the original device manufacturer. VO Uprocures commercial off the shelf product and UpScreens per the following process flow. For custom screening requirements, Quality Conformance Inspection, or additional electrical selection, please contact TO U.

PHA-02170B

70 mil Package Dimensions

NOTES: (Unless otherwise specified)
1. Dimensions are in inches
2. Tolerances: X.XXX = ±0.005

Technical Data PHA-02170B Suggested Maximum Ratings

Parameter	Suggested Maximum ^[1]			
Device Current	50 mA			
RF Input Power	+13 dBm			
Junction Temperature	+200°C			
Storage Temperature	-65 to +200°C			

NOTE:

1. Permanent damage may occur if any of these limits are exceeded.

Typical Biasing Configuration

Electrical Specifications [1]				-55°C		+25°C		+125°C	
Symb	Parameters and Test Conditions		Units	Min	Max	Min	Max	Min	Max
01			10	27.0	25.0	20.0	24.0	27.0	25.0
G_p	Small Signal Gain $(S_{21} ^2)$	(a) $f = .5 \text{ GHz}$	dB	27.0	35.0	29.0	34.0	27.0	35.0
NF	Noise Figure	@ f = .5GHz	dB				2.5		
V _d	Device Voltage	@ 35 mA	V	Ree	cord	4.0	7.0	Rec	ord
u	-	U U							

NOTE:

1. The recommended operating current range for this device is 30 to 40 mA.

Teledyne Cougar UpScreen

Table 2A 100% Screening						
Screening Test/Operation	MIL-STD-883 Method	Conditions				
Stabilization Bake	1008	Condition C, $Ta = +150 \degree C$ t= 24 hrs.				
Temperature Cycling	1010	Condition C, -65 to +150°C, 10 cycles minimum				
Constant Acceleration	2001	Condition E, 30,000 G, Y1 axis only				
Pre Burn-in Electrical Test (optional)		+25°C; G _p , NF and Vd				
Burn-in	1015	Condition B, $t = 160$ hrs., Ta = +125°C				
Final Electrical Test		+25°C; G _p , NF and Vd				
Percent Defective Allowable (PDA)		5% max.; applies to 25°C Final Electrical Test				
Hermeticity						
Fine Leak	1014	Condition A				
Gross Leak	1014	Condition C				
External Visual	2009					
Group A Inspection		n = 116, r = 1				
+125°C		$G_{n Vd}$				
-55 °C		G_{n^2} Vd				
Shipment Packaging		10 units per strip				

Marking: Manufacturer's marking (if applicable) will remain on devices. TMS individual packaging will be labeled with TMS Part Number and manufacturer date code. TMS shipment date code will appear on outer label and C of C. Certificate of Conformance (C of C) will be sent with each shipment. This document provides objective evidence of TMS testing and documents traceability to manufacturers wafer/lot identification.