

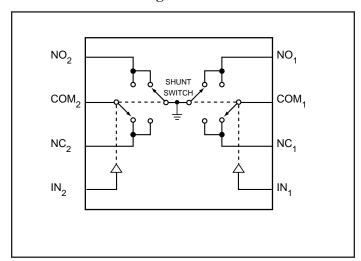
Small Plastic Package, Dual SPDT Analog Switch with -1.5V Signal Support for AC Coupled Audio Signals and D-Class Audio Signals

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 0.6Ω .
- Wide V_{DD} Range: 2.8 to 4.2
- High Off Isolation: -80dB @ 100kHz
- Crosstalk Rejection Reduces Signal Distortion:
 - -80dB @ 100kHz
- Input signals can be from -1.5V up to VDD without distortion.
- · Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to 85°C
- Packaging (Pb-free & Green):
 - -10-contact TQFN (ZM10) 1.4×1.8

Applications

- · Cell Phones
- PDAs
- MP3 players
- · Portable Instrumentation
- Computer Peripherals
- · Speaker Headset Switching
- · Power Routing
- · Relay Replacement
- · Audio and Video Signal Routing
- PCMCIA Cards
- Modems


Description

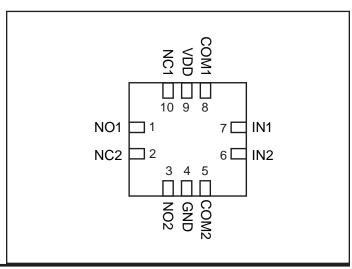
Pericom Semiconductor's PI3A268C is a dual, fast single-pole double throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch.

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

With the use of 3rd party headsets, AC coupling is required to protect against EOS damage caused by DC offsets. Pericom's PI3A268C can support these AC coupled audio signals, since the switch can tolerate signals down to -1.5V without a negative power supply.

Functional Block Diagram

Pin Description


Pin#	Name	Description		
1, 3	NO_X	Data Port (Normally open)		
4	GND Ground			
2, 10	NC_X	Data Port (Normally closed)		
5, 8	COM _X Common Output / Data Port			
9	9 V _{DD} Positive Power Supply			
6, 7	INX	Logic Control		

Logic Function Table

Logic Input (IN _X)	Function
0	NC _X Connected to COM _X
1	NO _X Connected to COM _X

Note: x = 1 or 2

Pin Configuration (top view)

Absolute Maximum Ratings ⁽¹⁾	Recommended Operating Conditions ⁽³⁾
Supply Voltage V _{DD}	Supply Voltage Operating (V_{DD}) 2.8V to 4.2V ± 5%
DC Input Voltage (V _{IN}) ⁽²⁾ 1.5V to V _{DD}	Control Input Voltage (V_{IN})0V to V_{DD} Switch Input Voltage (V_{INPUT})1.5V to V_{DD}
Continuous Current NO_NC_COM±300mA Peak Current NO_NC_COM±400mA	Operating Temperature (T_A)
(pulsed at 1ms 50% duty cycle)±400mA Peak Current NO_NC_COM_	Control Input $V_{DD} = 2.3V - 3.6V$
(pulsed at 1ms 10% duty cycle)±500mA Storage Temperature Range (T _{STG})65°C to +150°C	Lead Temperature (soldering 10s) +300°C
Junction Temperature under Bias (T _J)150°C	Bump Temperature (soldering notes) Infared (15s)+220°C
Junction Lead Temperature (T _L) (Soldering, 10 seconds)	Vapor Phase (60ns)

Notes:

- 1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 3. Control input must be held HIGH or LOW; it must not float.

Power Supply

Parameter	Symbol	Test Conditions		Тур	Max	Units
Supply Current	ICC	$V_{DD} = 2.7V$, $V_{IN} = 0V$ to V_{DD}			20	μA
		$V_{DD} = 3.3V$, $V_{IN} = 0V$ to V_{DD}			36	μA
		$V_{DD} = 4.2V$, $V_{IN} = 0V$ to V_{DD}			80	μΑ

DC Electrical Characteristics

 $(V_{DD} = 2.7 \text{V to } 3.3 \text{V}, T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}, \text{ unless otherwise noted.}$ Typical values are at 25°C.)

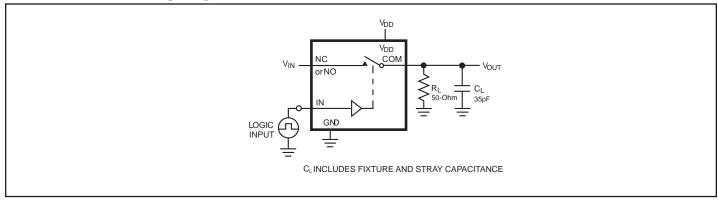
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Analog Switch						
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}		-1.5		V _{DD}	V
NC On-Resistance	R _{ON(NC)}	$V_{DD} = 2.7V, I_{COM} = 100 \text{mA}, V_{NC} = -1.5V \text{ to } V_{DD}$		0.7		
NO On-Resistance	R _{ON(NO)}	$V_{DD} = 2.7V, I_{COM} = 100mA,$ $V_{NO} = -1.5V \text{ to } V_{DD}$		0.7		
On-Resistance Match Between Channels	$\Delta R_{ m ON}$	$V_{DD} = 2.7 \text{V I}_{COM} = 100 \text{mA},$ V_{NO} or $VNC = -1.5 \text{V to V}_{DD}$		0.1		Ω
NC On-Resistance Flatness	R _{ONF(NC)}	$V_{DD} = 2.7V, I_{COM} = 100 \text{mA}, V_{NC} = -1.5V \text{ to } V_{DD}$		0.2		
NO On-Resistance Flatness	R _{ONF(NO)}	$V_{DD} = 2.7V, I_{COM} = 100 \text{mA}, V_{NO} = -1.5V \text{ to } V_{DD}$		0.2		
NO or NC Off Leakage Current	I _{OFF} (NO) or I _{OFF} (NC)	$V_{DD} = 3.3 \text{ V}, V_{NO} \text{ or } V_{NC} = -1.5 \text{ V to } +3.3 \text{ V}$	-400		400	nA
COM On Leakage Current	I _{COM (ON)}	$V_{DD} = 3.3 \text{V}$, V_{NO} or $V_{NC} = 0.3 \text{V}$, $V_{COM} = 3 \text{V}$, 0.3 V, or floating	-250		250	IIA
Total Harmonic		Load = 8Ω pulled to GND, V_{DD} = 2.7V, freq = 20Hz to 20KHz, Vinput = $2V_{PP}$		0.04		%
Distortion		Load = 16Ω pulled to GND, V_{DD} = 2.7V, freq = 20 Hz to 20 KHz, Vinput = $2V_{PP}$		0.035		70
Digital I/O						
Input Logic High	V _{IH}		1.3			V
Input Logic Low	$V_{\rm IL}$				0.6	
Input Hysteresis	V_{H}	$V_{DD} = 2.7V$		100		mV
IN Input Leakage Current	I_{IN}	$V_{IN} = 0$ or V_{DD}	-0.5		0.5	μА

DC Electrical Characteristics

 $(V_{DD} = 3.3 \text{V to } 4.4 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at 25 °C.)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Analog Switch						
Analog Signal Range	V_{NO} , V_{NC} , V_{COM}		-1.5		V_{DD}	V
NC On-Resistance	R _{ON(NC)}	$V_{DD} = 4.2V$, $I_{COM} = 100$ mA, $V_{NC} = -1.5V$ to V_{DD}		0.6		
NO On-Resistance	R _{ON(NO)}	$V_{DD} = 4.2V, I_{COM} = 100mA,$ $V_{NO} = -1.5V \text{ to } V_{DD}$		0.6		
On-Resistance Match Between Channels	$\Delta R_{ m ON}$	$V_{DD} = 4.2V$, $I_{COM} = 100$ mA, V_{NO} or $VNC = -1.5V$ to V_{DD}		0.1		Ω
NC On-Resistance Flatness	R _{ONF(NC)}	V_{DD} = 4.2V, I_{COM} = 100mA, V_{NC} = -1.5V to V_{DD}		0.2		
NO On-Resistance Flatness	R _{ONF(NO)}	$V_{DD} = 4.2V, I_{COM} = 100mA, V_{NO} = -1.5V to V_{DD}$		0.2		
NO or NC Off Leakage Current	I _{OFF (NO)} or I _{OFF (NC)}	$V_{DD} = 4.2V$, V_{NO} or $V_{NC} = -1.5V$ to $+3.3V$	-700		700	
COM On Leakage Current	I _{COM (ON)}	V_{DD} = 4.2V, V_{NO} or V_{NC} = 0.3V, V_{COM} = 3V, 0.3V, or floating	-550		550	nA
Total Harmonic		Load = 8Ω pulled to GND, V_{DD} = 3.3V, freq = 20 Hz to 20 KHz, Vinput = 2 V _{PP}		0.025		0/
Distortion THD		Load = 16Ω pulled to GND, V_{DD} =3V, freq = 20 Hz to 20 KHz, Vinput = $2V_{PP}$		0.02		%
Digital I/O	•					
Input Logic High	V _{IH}		1.3			V
Input Logic Low	$V_{\rm IL}$				0.6	, v
Input Hysteresis	V_{H}	$V_{DD} = 4.2V$		150		mV
IN Input Leakage Current	I _{IN}	$V_{IN} = 0$ or V_{DD}	-0.5		0.5	μΑ

Switch and AC Characteristics


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Turn-On Time	t _{ON}	V_{DD} = 2.7V, V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, See Test Circuit Figure 1 & 2.			65	
Turn-Off Time	t _{OFF}	$V_{DD} = 2.7V$, V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$, $C_L = 35 \mathrm{pF}$, See Test Circuit Figure 1 & 2.			65	ns
Break-Before-Make Delay	t _{BBM}	$V_{DD} = 2.7V$, V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$, $C_L = 35 \mathrm{pF}$, See Test Circuit Figure 3.			20	
Charge Injection	Q	See Test Circuit Figure 4.		35		рC
Off-Isolation	O _{IRR}	$C_L = 5 pF$, $R_L = 50 \Omega$, $f = 100 kHz$, $V_{COM} = 1 V_{RMS}$, $See Test Circuit Figure 5$.		-80		dB
Crosstalk	X _{TALK}	$C_L = 5 pF$, $R_L = 50 \Omega$, $f = 100 kHz$, $V_{COM} = 1 V_{RMS}$, $See Test Circuit Figure 6$.		-80		uВ
3dB Bandwidth	f _{3dB}	See Test Circuit Figure 9.		130		MHz

Capacitance

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
NC Off Capacitance	C _{NC (OFF)}	f = 1MHz, See Test Circuit Figure 7.		15		
NO Off Capacitance	C _{NO (OFF)}	f = 1MHz, See Test Circuit Figure 7.		15		рF
NC On Capacitance	C _{NC (ON)}	f = 1MHz, See Test Circuit Figure 8.		50		рr
NO On Capacitance	C _{NO (ON)}	f = 1MHz, See Test Circuit Figure 8.		50		

Test Circuits and Timing Diagrams

Notes: Figure 1. AC Test Circuit

1. Unused input (NC or NO) must be grounded.

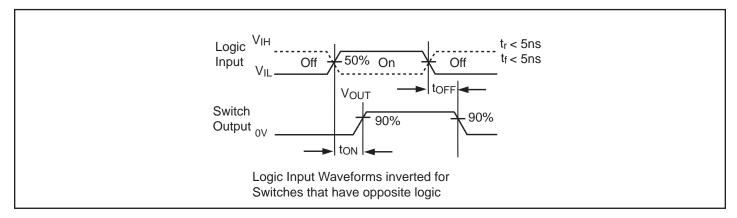


Figure 2. AC Waveforms

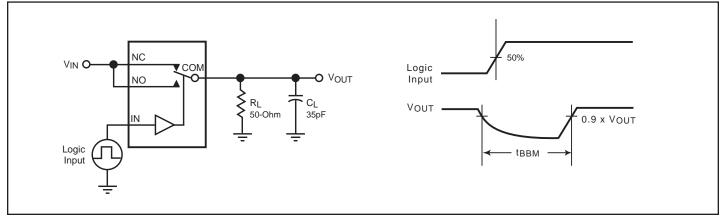


Figure 3. Break Before Make Interval Timing

09-0056 PS8935B 03/26/09

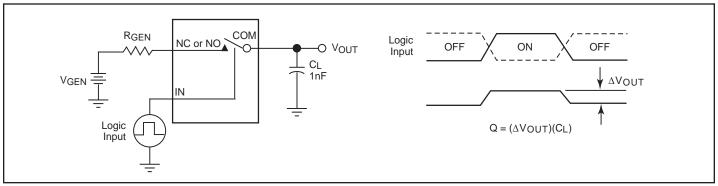


Figure 4. Charge Injection Test

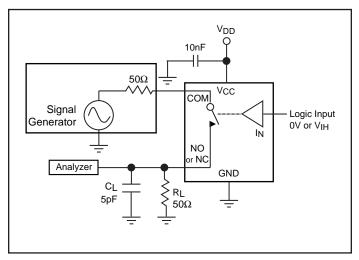


Figure 5. Off Isolation

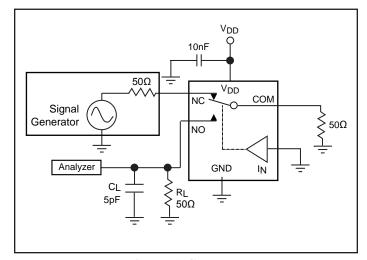


Figure 6. Crosstalk

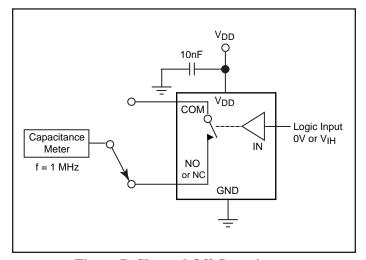


Figure 7. Channel Off Capacitance

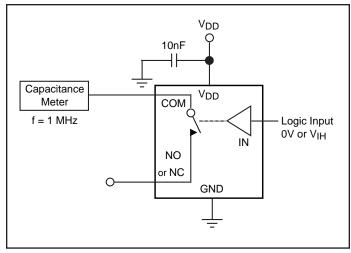


Figure 8. Channel On Capacitance

7 PS8935B 03/26/09 09-0056

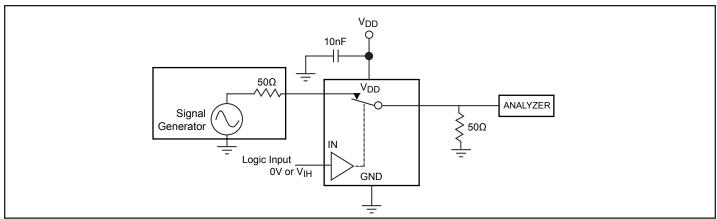
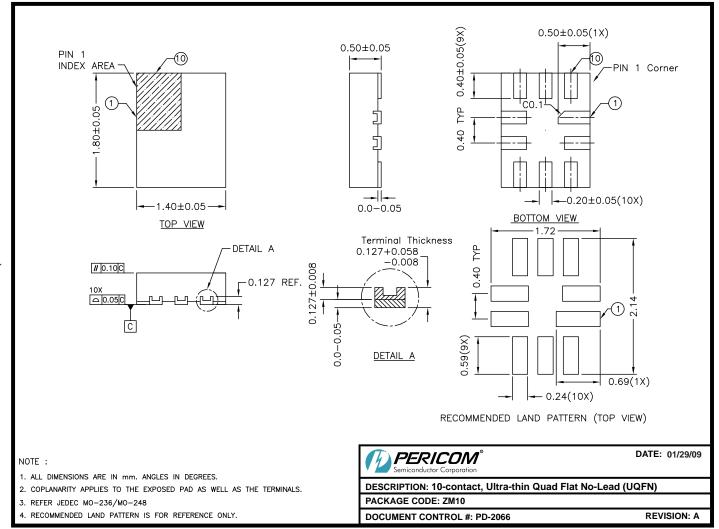



Figure 9. Bandwidth

Packaging Mechanical: 10-pin TQFN (ZM10)

09-0072

Ordering Information

Ordering Code	Packaging Code	Package Type	Top Mark
PI3A268CZME	ZM	1.4 X 1.8, Pb-Free & Green, 10-contact TQFN	FP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com