

3.0V, SOTiny $^{\scriptscriptstyle{\text{TM}}}$ 0.4 Ω Single-Supply SPDT Analog Switch

Features

• Low On-Resistance: 0.4Ω (+2.7V Supply)

• R_{ON} Matching: 0.09Ω Max.at 25 °C

• R_{ON} Flatness: 0.1Ω Max. (+3.0V Supply) at 25 °C

• Low 2nA Input Leakage at 25 °C

• +1.5V to +3.6V Single-Supply Operation

· Fast Switching Time: 40ns Max.

· -41dB Off-Isolation at 100KHz

TTL/CMOS Logic Compatible

• Low Power Consumption: 5µW

• Packaging (Pb-free & Green available):

- 6-pin Small Compact SOT-23 (T)

-6-pin No Lead (TDFN) (ZC)

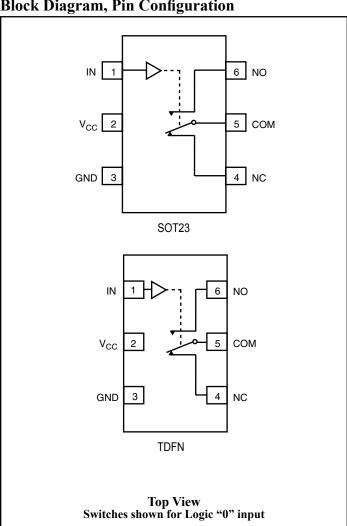
Applications

- Communication Circuits
- · Cellular Phones
- · Audio and Video Signal Routing
- Portable Battery-Operated Equipment
- · Data Acquisition Systems
- Computer Peripherals
- Telecommunications
- Relay Replacement
- · Wireless Terminals and Peripherals
- · Hard Drives
- Modems

Truth Table

Logic	NC	NO
0	ON	OFF
1	OFF	ON

Description


1

The PI3A4624 is a single-pole, double-throw (SPDT) analog switch. Specifications include a low ON-Resistance of 0.4Ω , and fast switching times (40ns Max.) with 3.0V supply operation.

Specifications are given for 1.8V, 2.5V and 3.3V power supply operation. Operating voltage range is +1.5V to +3.6V.

To minimize PC board area use, the device is available in the ultra compact TDFN, and the small compact SOT-23, 6-pin packages. Operating temperature range is -40° C to 85° C.

Block Diagram, Pin Configuration

Absolute Maximum Ratings

Voltages Referenced to GND V _{CC}	-0 5V to +3 6V
V _{IN} , V _{COM} , V _{NC} , V _{NO} ⁽¹⁾ or 30mA, whichever occurs first	
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation
SOT-23, 6-pin (derate 7.1mW/°C above +70°C) 0.5W
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Notes:

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Package	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch								
Analog Signal Range (3)	V _{ANALOG}			Full	0		V_{CC}	V
				25		0.4	0.5	
On-Resistance	R _{ON}	$V_{CC} = 2.7V$	SOT23	E11			0.5	
		$I_{COM} = 100 \text{mA},$	TDFN	Full			0.6	
On-Resistance Match	4.D	V_{NO} or $V_{NC} = +1.5V$		25			0.08	
Between Channels ⁽⁴⁾	ΔR_{ON}			Full			0.09	Ω
		$V_{CC} = 2.7V$,		25			0.1	
On-Resistance Flat- ness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{V},$ 2.0 V		Full			0.1	
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3V$		25	-1		1	
(6)	$\begin{bmatrix} I_{NO(OFF)} & V_{COM} = 0V, \\ V_{NO} & or V_{NC} = +2.0V \end{bmatrix}$		Full	-10		10	1	
COM On Leakage Current ⁽⁶⁾	$I_{COM(ON)}$ $V_{CC} = 3.3V,$ $V_{COM} = +2.0V, V_{NO} \text{ or } V_{NC} = +2.0V$			25	-2		2	nA
		I		Full	-20		20	

^{1.} Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions Temp. (°C)		Min ^{·(1)}	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input							_
Input High Voltage	V_{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5	V
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	μA
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5 V$, all others = 1.4V		-1		1	μΑ
Dynamic	_		_				
Turn-On-Time	tox		25			20	
Turn-On-Time	t _{ON}	$V_{CC} = 3.3 \text{V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{V},$	Full			40	ns
Turn-Off-Time	$t_{ m OFF}$	Figure 1	25			10	113
Tuni-On-Time	UFF		Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V}, R_{GEN} = 0 \Omega,$ Figure 2			40		рC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3		-27		αL
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 4	$R_L = 50\Omega$, $f = 100$ KHz, Figure 4		-41		dB
NC or NO Capacitance	C _{NC/NO} (OFF)	C 1MI E 5			75		
COM Off Capacitance	C _{COM(OFF)}	f = 1 MHz, Figure 5	f = 1 MHz, Figure 5		75		pF
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 6			200		
Supply							
Power-Supply Range	V _{CC}			1.5		3.6	V
Positive Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}				100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = -8 \text{mA}, V_{NO}$	25			0.5	
OII-Resistance	KON	or $V_{NC} = 1.8V$	Full			0.6	
On-Resistance Match	$\Delta R_{ m ON}$		25			0.1	Ω
Between Channels ⁽⁴⁾	ΔΚΟΝ	$V_{CC} = 2.5 \text{ V}, I_{COM} = -8 \text{ mA}, V_{NO} \text{ or}$	Full			0.1	32
On-Resistance Flat-	D	$V_{NC} = 0.8V, 1.8V$	25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.1	
Dynamic				-			-
Turn-On-Time	tox	$V_{CC} = 2.5 \text{V}, V_{NO} \text{ or } V_{NC} = 1.8 \text{V},$	25			30	no
Turn-On-Time	t_{ON}		Full			50	
Turn-Off-Time	$t_{ m OFF}$	Figure 1	25			15	ns
Turn-On-Time	UFF		Full			30	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		рC
Logic Input							
Input High Voltage	$V_{ m IH}$	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel	Full			0.5	, v
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	μΑ
Input Low Current	I_{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	-			-	-	-	
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = -4mA,$	25			0.55	
On-Resistance	KON	V_{NO} or $V_{NC} = 1.5V$	Full			0.65	
On-Resistance			25			0.1	
Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 1.8V$, $I_{COM} = -4mA$,	Full			0.2	Ω
On-Resistance	D	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25			0.9	
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			1.3	
Dynamic							
Turn-On-Time	4	t_{ON} 25 $V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$, Full	25			50	
Turn-On-Time	LON				50		
Turn-Off-Time		Figure 1	25			20	ns
Turn-OII-Time	$t_{ m OFF}$		Full			40	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \text{V}, \text{ Figure 2}$	25		36		pC
Logic Input							
Input High Voltage	$V_{ m IH}$	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel	Full			0.5	
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

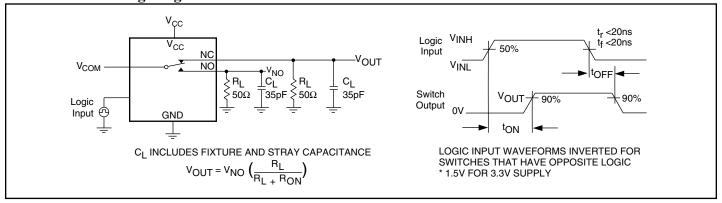


Figure 1. Switching Time

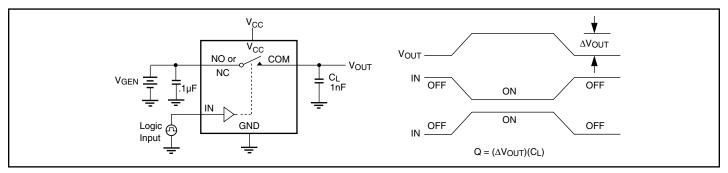


Figure 2. Charge Injection

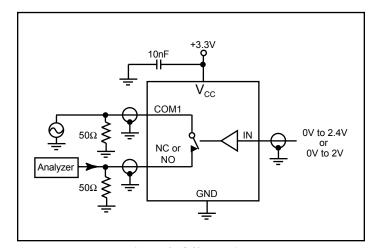


Figure 3. Off Isolation

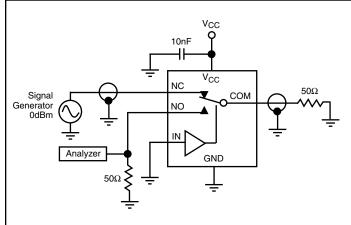


Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

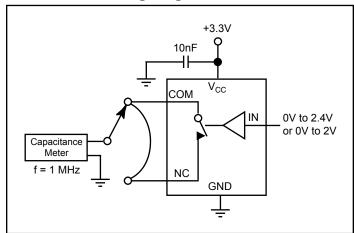
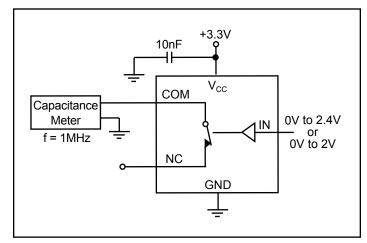
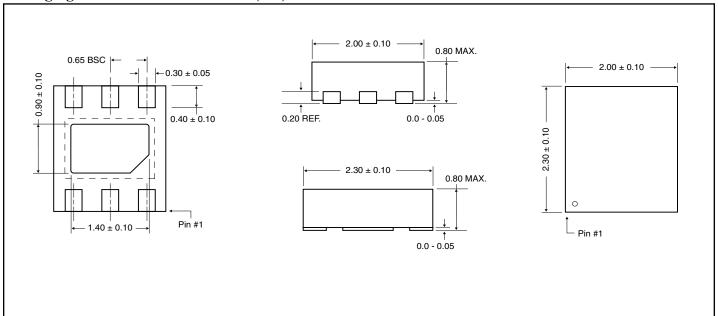
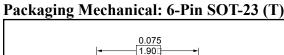
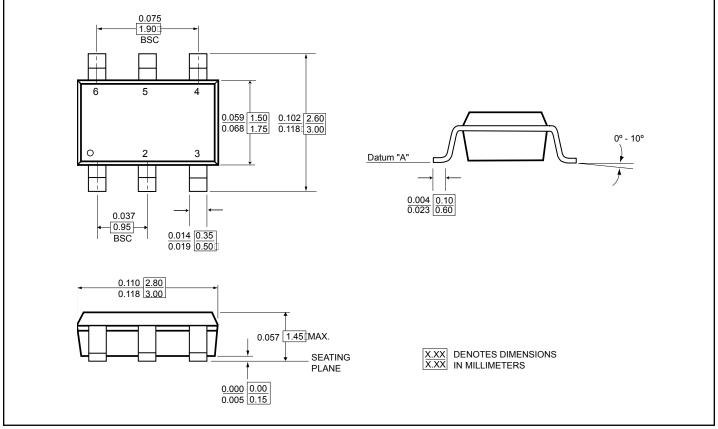


Figure 5. Channel-Off Capacitance


Figure 6. Channel-On Capacitance

Packaging Mechanical: 6-Pin TDFN (ZC)

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A4624TX	T	6-pin, Small Compact SOT-23	ZF
PI3A4624TEX	T	Pb-free & Green, 6-pin, Small Compact SOT-23	ZF
PI3A4624ZCEX	ZC	Pb-free & Green, 6-pin, Ultra Compact TDFN	ZF

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape/Reel
- Number of transistors = TBD

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

8

PS8712A 07/07/04