Not Recommended for New Design - Use PI3HDX612

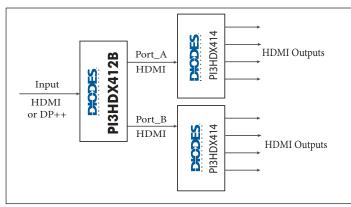
PI3HDX412BD

DMI 1.4b 1:2 Splitter/Demux for 3.4Gbps Data Rate with Equalization & Pre-emphasis

Description

The DIODES PI3HDX412BD active-drive switch solution is targeted for high-resolution video networks that are based on HD-MITM/DVI standards and TMDS signal processing.

The PI3HDX412BD is an active single TMDS channel to two TMDS channel Splitter and DeMux with Hi-Z outputs. The device drives differential signals to multiple video display units.


Depending on the mode select pin, the PI3HDX412BD provides controllable output swing levels that can be manipulated through pin control or I2C control. This solution also provides a unique and advanced pre-emphasis technique to increase rise and fall times.

The maximum HDMITM/DVI data rate of 3.4Gbps produces a 1920x1080 @60Hz resolution or 4K @30Hz, required for 4K HDTV and PC graphics products. Due to its active uni-directional feature, this switch is designed for usage only for the video driver's side. For PC graphics application, the device sits at the driver's side to switch between multiple display units, such as a PC LCD monitor, projector, TV, etc.

PI3HD X412BD ensures the transmittal of high bandwidth video streams from PC graphics sources to the end-display units. It also provides enhanced and robust ESD/EOS protection, which is required by many consumer video networks today.

Application(s)

- **Display Peripheral Box**
- Digital Signage Display
- Video Processing Device

Application Block Diagram

Notes:

- Features
- Supports up to 3.4Gbps TMDS serial link compliant with HDMI 1.4b requirement
- Date rate per channel support 4096 x 2160 pixel resolution, color 8-bit YCbCr 4:2:0 format
- HDMI 1-to-2 splitter or 1-to-2 DeMux with equalization & pre-emphasis up to 340MHz clock
- AC or DC coupled differential signaling input for TMDS and ٠ DP++
- Configurable TMDS output signal with port selection, pre-٠ emphasis, voltage swing, and slew rate control with I²C control mode x
- Supports TMDS power-down squelch mode with built-in clock ٠ detector
- Control status register controlled by pin strap or I^2C mode programming
- ESD protection on I/O pins to connector: 8KV contact per IEC6100-4-2 and 2KV HBM
- Supply Voltage: 3.3V
- Industrial Temperature Range: -40°C to 85°C ٠
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) •
- Halogen and Antimony Free. "Green" Device (Note 3) •
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

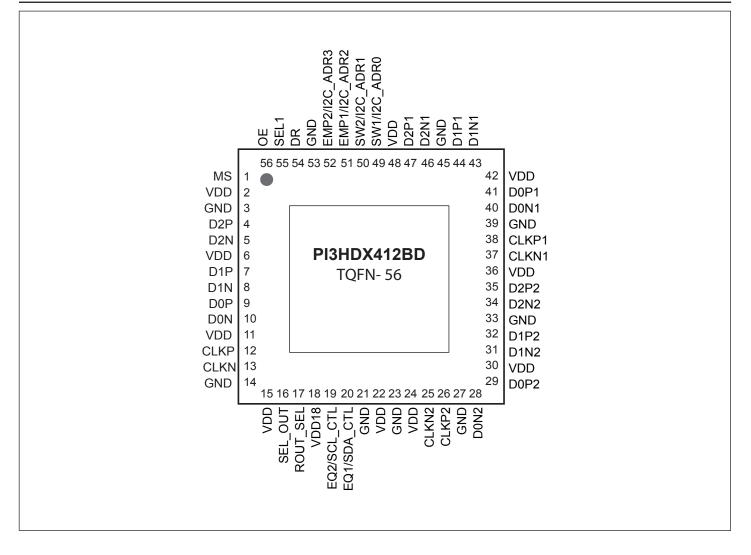
- Packaging (Pb-free & Green):
- 56-contact TQFN (ZB56)

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

1

antimony compounds.

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.


Revision History

Date	Version	Changes
February 2014		Release
December 2016		Add Diodes company logo and Disclaimer
		Update Format
August 2020	1	Updated Function Control Table
		Added Part Marking
April 2024	2	Recommend new part PI3HDX612

Pin Configuration

Pin D	escription							
TMDS	In/Out Pin Descript	ion						
Pin #	Pin Name	Туре	Description					
4	D2P	Ι						
5	D2N	Ι						
7	D1P	Ι						
8	D1N	Ι	Input Port. TMDS Clock and Data Input pins. When Input Termination Resistor (Rt = 500) tied to VDD or GND, Rpd=200 kQ shall be "QEE" state					
9	D0P	Ι	50Ω) tied to VDD or GND, Rpd=200 kΩ shall be "OFF" state. I I2C registers can control Rt and Rpd ON/OFF state.					
10	D0N	Ι						
12	CLKP	Ι						
13	CLKN	Ι						
25	CLKN2	0						
26	CLKP2	0						
28	D0N2	0						
29	D0P2	0	Output Port 1. TMDS Clock and Data Output pins. ROUT_SEL pin enables Output					
31	D1N2	0	Termination Resistor (Rout=50Ω).					
32	D1P2	0						
34	D2N2	0						
35	D2P2	0						
37	CLKN1	0						
38	CLKP1	0						
40	D0N1	0						
41	D0P1	0	Output Port 2. TMDS Clock and Data Output pins. ROUT_SEL pin enables Output					
43	D1N1	0	Termination Resistor (Rout= 50Ω).					
44	D1P1	0						
46	D2N1	0						
47	D2P1	0						

Note: In TMDS Data and Clock Differential Pair, the polarity +/- (or P/N) of each pair can use interchangeably. When input TMDS Input Clock polarity +/- pin swaps, output TMDS Clock of port 1 and port 2 shall swapped accordingly.

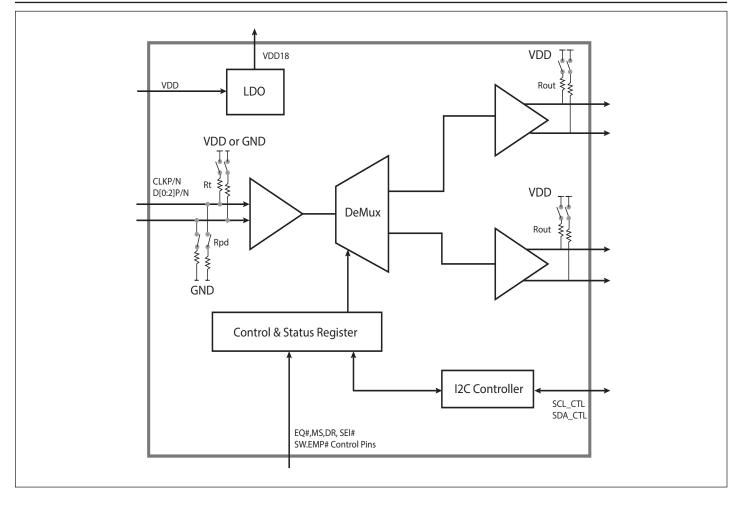
Control Pins

Pin #	Pin Name	Туре	Description				
1	MS	Ι	Mode Selection P "High" : I ² C Cont "Low" : Pin Contr	rol Mode Selection	n		
19	19 EQ2/SCL_CTL 20 EQ1/SDA_CTL		Shared Pin. EQ2 fication, up to 400 Pin#1 MS sets "Hi Pin#1 MS sets "Lo Internally Pull-Up Pin Control EQ se	Gh" : Pin#19 assign w" : Pin#19 assign o at 100 KΩ and Pi	ns to SCL_CTL pi is to EQ2 pin ull-Down at 100 k	ζΩ.	C-Bus speci-
20		ΙΟ	Pin#1 MS = "Low"	0 0 M 0 M 1 1 1 1	M 0 1 M 0 M 1	2.5 5 7.5 10 12.5 15 17.5 20	

PI3HDX412BD

Pin #	Pin Name	Туре	Description				
			When Pin#1 MS= When Pin#1 MS= These SW2 and S	"Low" : These Sha W1 pins control or	ared Pins assign to I2C_ADR[3:0] red Pins assign to SW1/2 and EMP1/2 utput voltage swing adjustment as following table.		
				we internal Pull-U	* 		
			SW2 (Pin#50)	SW1 (Pin#49)	Output Voltage Swing		
49	SW1/I2C_ADR0		0	0	500 mV		
50	SW2/I2C_ADR1 EMP1/I2C_ADR2	I	0	1	-10 %		
51		1	1	0	+10 %		
52	EMP2/I2C_ADR3		1	1	+20 %		
			EMP2 and EMP1 pins control output voltage pre-emphasis. These pins have internally Pull-Up 100K Ω .				
			EMP2 (Pin#52)	EMP1 (Pin#51)	Pre-emphasis Setting (dB)		
			0	0	0		
			0	1	1.5		
			1	0	2.5		
			1	1	3.5		
56	OE	I	"High" : Output F "Low" : Turn off F	Port Enable Rout and Rt(termin	lly pull-up at 100 KΩ. ation resistor). TMDS Receiver and TMDS Output		
			Drivers are "OFF'				
54	DR	I	Direction Control pin "High" : All ports are Active at same time "Low" : Output Ports are controlled by SEL1 (Pin#55) control				
55	SEL1	Ι	Port 1 or Port 2 Output Enable Selection pin. Internal pull-up at 100 KΩ. "High" : Enable Output Port 2 "Low" : Enable Output Port 1				
16	SEL_OUT	0	SEL_OUT pin. I ² Offset 0x00 Bit[5]	C Register Offset (="1" : Enable Out]	0x00 Bit[5] can control this pin status. put Port 1 Output tput Port 1 Output		

Pin #	Pin Name	Туре	Description
17	ROUT_SEL	Ι	Source termination selection pin. Internal pull-up at 100K Ohm. "High" : Source Termination Output (Rout) Resistor is "ON", connect to VDD in Output Driver "Low" : Source Termination Output (Rout) Resistor is "OFF". Open-Drain Output Driver is open drain


Power/Ground Pins

Pin #	Pin Name	Туре	Description
18	VDD18	Power	LDO Output Pin for internal core supplier. Add external 4.7 uF capacitor to GND
3, 14, 21, 23, 27, 33, 39, 45, 53, ePad	GND	Ground	Ground Pins
2, 6, 11, 15, 24, 30, 36, 42, 48	VDD	Power	3.3V Power Supply

Block Diagram

Functional Description

Squelch Mode:

Output Disable (Squelch) Mode uses TMDS Clock channel signal detection. When low voltage levels on the TMDS input clock signals are detected, Squelch state enables and TMDS output port signals shall disable; when the TMDS clock input signal levels are above a pre-determined threshold voltage, output ports shall return to the normal voltage swing levels.

When enable Squelch mode, input termination resistor will be enabled together. When Squelch is disabled through I2C register programming RX_SET[1]="1" and no TMDS input signal condition, TMDS D[0:2]P/N will be undetermined status. In Squelch state, TMDS output is high impedance state or TMDS output port shall 50 Ohm pull-up at source termination output.

Function Control Table

OE	MS	DR	SEL1	HDMI Output	HPD_SRC Function (with external 1 KΩ Pull-up resistor)	
0	х	х	х	All Port Disable	0	
Pin Contr	rol Mode					
1	0	1	х	All Port Enable	(HPD1+HPD2)	
1	0	0	0	Enable Port 1	HPD1	
1	0	0	1	Enable Port 2	HPD2	
I2C Cont	I2C Control Mode					
1	1	х	х	I2C Programming Mode	(HPD1 * Port1 EN + HPD2 * Port2 EN)	

HPD Control Table

TMDS Selection (Input)	HPDx(Input)	Description	Note
Port[x] Select	1	Port[x] is enabled	
Port[x] Select	0	Port[x] is Disabled	1) x=1, 2. x is consistent for one port.

I²C Register Control Programming

I²C Register Control

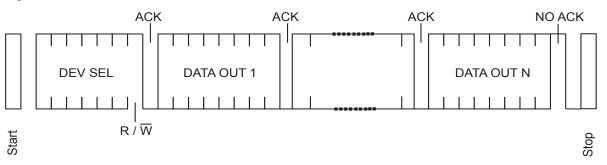
Pin Name	I/O	Description
SCL_CTL	Ι	I2C Clock, compatible with I2C-bus specification, up to 400 kb/s
SDA_CTL	IO	I2C Data, compatible with I2C-bus specification, up to 400 kb/s
I2C_ADR[3:0]	Ι	I2C Control Address Setting
Byte output : 0x00 - 0x07	0	I2C Control registers output

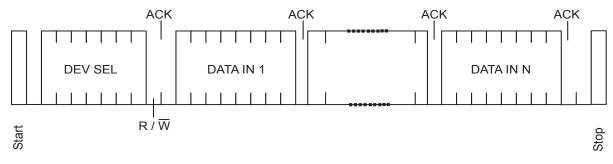
I2C Address Byte

	b[7] MSB	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (R/W)
Address Byte	1	0	1	A3	A2	A1	A0	1/0*

Note: Read "1", Write "0"

Offset	Name	Description	Power Up Condition	Туре
0x00	CONFIG[7:0]	 [7] Enable TMDS Standby mode. In standby mode, TMDS equalizer and output driver shall power down. "0": Standby mode "1": Normal mode [6] Reserved [5] Output TMDS Port 1 Select "0": Disable "1": Enable [4] Output TMDS Port 2 Selected "0": Disable "1": Enable [3] Reserved [2:0] Reserved 	0xFF	R/W
0x01	RX_SET[7:0]	TMDS Receiver Equalization Setting Registers[7] Disable Input Port input termination resistors"0": Enable Rpd connection"1": Disable Rpd connection[6] TMDS Input termination V-bias selection"0": Connect to GND"1": Connect to VDD[5] V-bias register selection enable"0": bit[6] control disable"1": bit[6] control enable[4:2] EQ programmable setting $b[4:2]$ $b[4:2]$ $condot$	0x00	R/W
0x02	Reserved	[7:0] Reserved	0x00	R/W


Offset	Name	Description	Power Up Condition	Туре
		TMDS Port 1 Output setting [7] TMDS output control "0": Open drain "1": Double termination		
0x03	TX_SET[7:0] for port1	 [6:4] TMDS output Pre-emphasis control "000": 0 dB "001": 1.5 dB "010": 2.5 dB "011": 3.5 dB "1xx": 6 dB (750 mVpp swing) 	0x00	R/W
	porti	 [3:2] TMDS output swing setting "00": 500 mV as default "01": -10% "10": +10% "11": +20% 		
		[1:0] TMDS output slew rate setting "00": as default "01" / "10": + 5% "11": +10%		
		TMDS Port 2 Output setting[7] TMDS output control"0": Open drain"1": Double termination		
		 [6:4] TMDS output Pre-emphasis control "000": 0 dB "001": 1.5 dB "010": 2.5 dB "011": 3.5 dB "11xx": 6 dB (750 mVpp swing) 		
0x04	TX_SET[7:0] for port2	[3:2] TMDS output swing setting "00": 500 mV as default setting "01": -10% "10": +10% "11": +20%	0x00	R/W
		 [1:0] TMDS output slew rate setting "00": Default setting "01" / "10": + 5% "11": +10% 		
0x05	Reserved	[7:0] Reserved	0x00	R/W
0x06	Reserved	[7:0] Reserved	0x0F	R/W
0x07	Reserved	[7:0] Reserved	0x00	R/W



I²C Data Transfer

2. Write Sequence

Absolute Maximum Ratings

Supply Voltage to Ground Potential. 4.5V DC SIG Voltage. -0.5V to V _{DD} +0.5V Storage Temperature. -65°C to +150°C Operating Temperature . -40 to +85°C	Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
---	--

Thermal Characteristics

Symbol	Parameter	Ratings	Units
T _{Jmax}	Junction Temperature	125	°C
R _{θJC}	Thermal Resistance, Junction to Case	5	90 / 144
R _{0JA}	Thermal Resistance, Junction to Ambient	24	°C/W

Electrical Characteristics - DC Specifications

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{DD}	Operation Voltage		3.0	3.3	3.6	V
I _{DD}	VDD Supply Current			250	290	mA
I _{DDQ}	VDD Quiescent Current	OE = 1, No input signal		50	80	mA
I _{STB}	Standby mode	OE = 0		1	5	mA
TMDS Diffe	erential Pins		· · ·			
V _{OH}	Single-ended high level output voltage	VDD = 3.3 V, Rout = 50Ω	VDD-10		VDD+10	mV
VOL	Single-ended low level output voltage		VDD-600		VDD-400	mV
Vswing	Single-ended output swing voltage		400		600	mV
VOD(O)	Overshoot of output differential voltage				180	mV
VOD(U)	Undershoot of output differential voltage				200	mV
VOC(SS)	Change in steady-state common- mode output voltage between logic states				5	mV
IOS	Short Circuit output current		-12		12	mA
IOS	Short Circuit output current at double termination mode		-24		24	mA
VI(open)	Single-ended input voltage under high impedance input or open input	IL = 10uA	VDD-10		VDD+10	mV
RT	Input termination resistance	VIN = 2.9V	45	50	55	Ohm
IOZ	Leakage current with Hi-Z I/O	VDD = 3.6V, OE = 0		30	100	μΑ
Control pins	s (OE, SEL1, EMP2, EMP1, SW2, SW1, MS)		l			
I _{IH}	High level digital input current	$V_{IH} = V_{DD}$	-10		10	μA

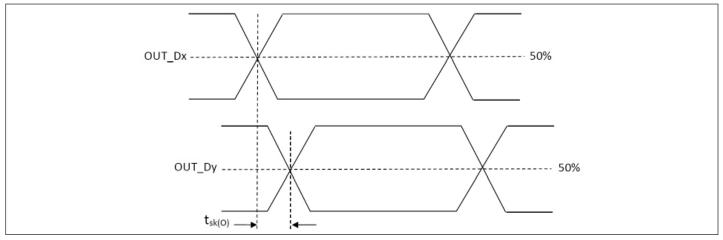
-25 °C unless otherwise noted VDD-3 3V +/- 10% т.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _{IL}	Low level digital input current	$V_{IL} = GND$	-50		10	μΑ
V _{IH}	High level digital input voltage		2.4			V
V _{IL}	Low level digital input voltage		0		0.8	V

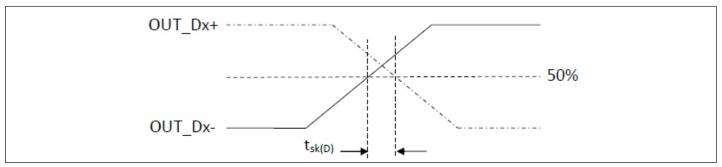
Electrical Characteristics - AC Specifications

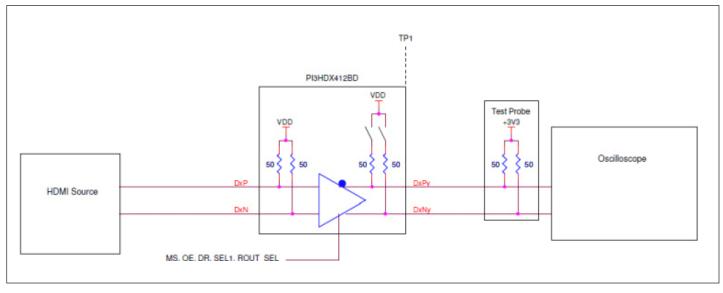
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
tpd	Propagation delay				2000	ps
t _r	Differential output signal rise time (20% - 80%), 0 dB / Open drain	VDD = 3.3V, ROUT = 50Ω		117		ps
t _f	Differential output signal fall time (20% - 80%), 0 dB / Open drain			117		ps
t _{sk(p)}	Pulse skew			15	50	ps
t _{sk(D)}	Intra-pair differential skew			25	50	ps
t _{sk(O)}	Inter-pair differential skew				100	ps
t _{sx}	Select to switch output				550	ns
t _{en}	Enable time			1	10	us
t _{dis}	Disable time				50	ns
tjit_clk(pp)	Peak-to-peak output jitter CLK residual jitter	Data: 3.4 Gbps data pattern		10		ps
tjit_data(pp)	Peak-to-peak output jitter Date residual jitter	Clock: 340 MHz		28		ps

Note:

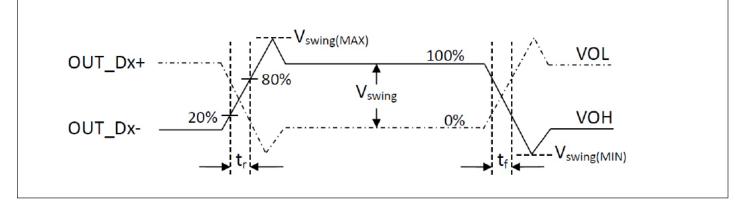

1. Overshoot of output differential voltage $V_{OD(O)} = (V_{SWING(MAX)} * 2) * 15\%$

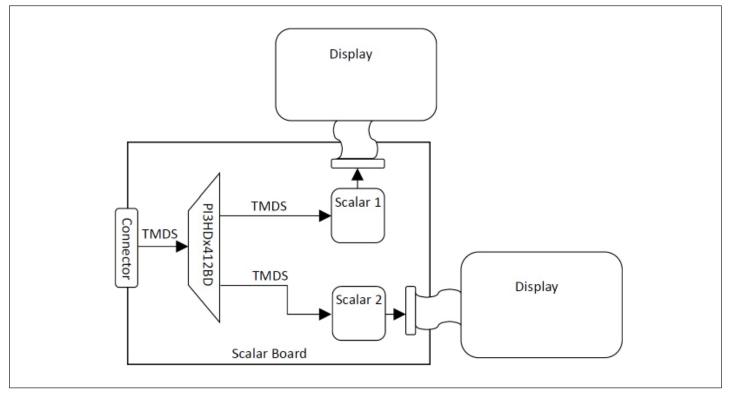
2. Undershoot of output differential voltage V_{OD(O)} = (V_{SWING(MIN)} *2) * 25%




Inter-pair Skew Definition

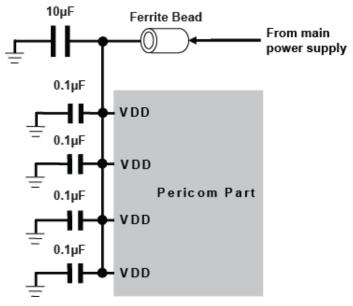
Intra-pair Skew Definition


Test Setup of DC-coupled TMDS Input Measurement



Rise/Fall Time and Single-ended Swing Voltage

Typical Splitter Application

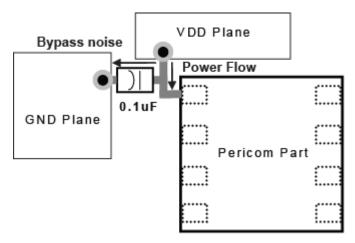


Power Supply Decoupling Circuit

It is recommended to put 0.1 µF decoupling capacitors on each of the VDD pins on Diodes' parts. There are four 0.1 µF decoupling capacitors placed in Figure 1, with an assumption of only four VDD pins on Diodes' parts. If there are more or less VDD pins on our parts, the number of 0.1 µF decoupling capacitors should be adjusted according to the actual number of VDD pins. Alongside having 0.1 μ F decoupling capacitors on each of the VDD pins, it is recommended to put a 10 μ F decoupling capacitor near our part's VDD to stabilize the our part's power supply. Ferrite beads are recommended for isolating the power supply for our part and other power supplies in other parts of the circuit. This is optional and depends on the power supply conditions of other circuits.

Recommended Power Supply Decoupling Capacitor Diagram

Requirements on the De-coupling Capacitors

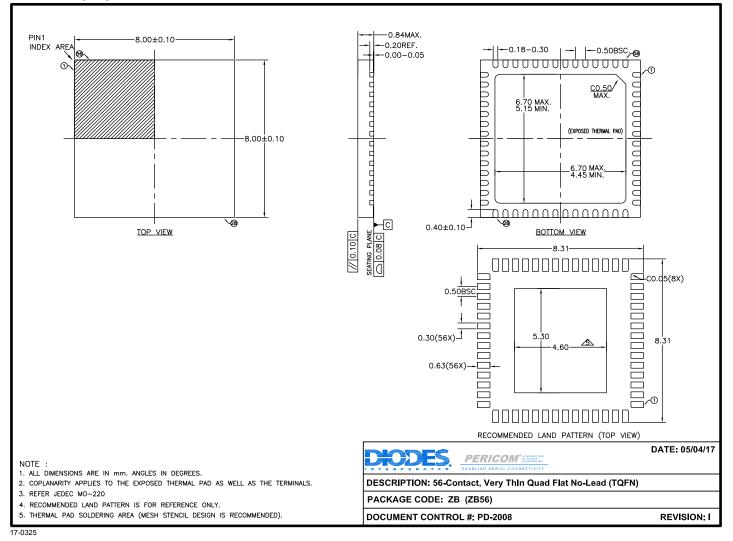

There is no special requirement on the material of the capacitors. Ceramic capacitors are generally being used with typical materials of X5R or X7R.

Layout and Decoupling Capacitor Placement Consideration

- Each 0.1 µF decoupling capacitor should be placed as close as possible to each VDD pin.
- VDD and GND planes should be used to provide a low impedance path for power and ground.
- Via holes should be placed to connect to VDD and GND planes directly.
- Trace should be as wide as possible
- Trace should be as short as possible.
- The placement of decoupling capacitor and the way of routing trace should consider the power flowing criteria.
- 10 µF Capacitor should also be placed closed to our part and should be placed in the middle location of 0.1 µF capacitors.
- Avoid the large current circuit placed close to our part; especially when it is shared the same VDD and GND planes. Since large current flowing on our VDD or GND planes will generate a potential variation on the VDD or GND of our part.

Decoupling Capacitor Placement Diagram

Part Marking


YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical

56-TQFN (ZB)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI3HDX412BDZBEX	ZB	56-Contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

Related Products Information				
Part Number	Product Description			
PI3HDX414	HDMI 1.4b 3.4Gbps Splitter 1:4 with Signal Conditioning			
PI3HDX1204	HDMI 2.0 Redriver for 6Gbps Application			
PI3HDS20412	Wide Voltage Range DisplayPort & HDMI 2.0 Video Switch			
PI3HDX511A	HDMI 1.4b 3.4Gbps Redriver and DP++ Level Shifter			
PI3EQXDP1201	DisplayPort 1.2 Re-driver with Built-in AUX Listener			
PI3VDP1430	Dual Mode DisplayPort to HDMI Level Shifter and Re-driver			
PI3VDP3212	2-Lane DisplayPort1.2 Compliant Passive Switch			
PI3VDP12412	4-Lane DisplayPort1.2 Compliant Passive Switch			
PI3HDMI521	HDMI 1.4b 3.4Gbps 2:1 Switch/Re-driver with built-in ARC and Fast Switching support			
PI3HDMI336	Active HDMI 3:1 Switch/Re-driver with I ² C control and ARC Transmitter			

IMPORTANT NOTICE

DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RE-1. GARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-ABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-andconditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7 While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. 8. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/importantnotice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com