

PIC24HJ32GP202/204 and PIC24HJ16GP304 Data Sheet

High-Performance, 16-bit Microcontrollers

© 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information cont ained in this p ublication regarding de vice applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application me ets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KI ND W HETHER E XPRESS O R IMPLIED, WRI TTEN O R O RAL, ST ATUTORY O R OTHERWISE, RELA TED T O TH E INF ORMATION, INCLUDING BUT NOT L IMITED T O ITS COND ITION. QUALITY, PERFORMANCE, MER CHANTABILITY OR FITNESS FOR PURP OSE. Microchip disc laims all li ability arising from this information and its use. Use o f M icrochip devices in life supp ort and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all da mages, claims, suits, or e xpenses resulting f rom such use. No lic enses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, fLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC24HJ32GP202/204 AND PIC24HJ16GP304

High-Performance, 16-bit Microcontrollers

Operating Range:

- Up to 40 MIPS operation (@ 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance CPU:

- Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 71 base instructions, mostly 1 word/1 cycle
- Sixteen 16-bit General Purpose Registers
- · Flexible and powerful addressing modes
- · Software stack
- 16 x 16 multiply operations
- 32/16 and 16/16 divide operations
- Up to ±16-bit shifts for up to 40-bit data

Interrupt Controller:

- 5-cycle latency
- 118 interrupt vectors
- Up to 21 available interrupt sources
- · Up to 3 external interrupts
- · Seven programmable priority levels
- Four processor exceptions

On-Chip Flash and SRAM:

- Flash program memory (up to 32 Kbytes)
- Data SRAM (2 Kbytes)
- · Boot and General Security for Program Flash

Digital I/O:

- Peripheral Pin Select Functionality
- Up to 35 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change for up to 21 pins
- · Output pins can drive from 3.0V to 3.6V
- · Up to 5V output with open drain configuration
- · All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- Power-up Timer
- · Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- · On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare:

- Timer/Counters, up to three 16-bit timers:
 - Can pair up to make one 32-bit timer
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to two channels):
 - Single or Dual 16-Bit Compare mode
 - 16-bit Glitchless PWM Mode

Communication Modules:

- 4-wire SPI
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and
- sampling modes
- •l ²C™
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- •U ART
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - -I rDA® encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to 13 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

CMOS Flash Technology:

- Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- · Industrial and extended temperature
- Low-power consumption

Packaging:

- 28-pin SDIP/SOIC/QFN-S
- 44-pin QFN/TQFP

Note: See the device varia nt t ables fo r exact peripheral features per device.

PIC24HJ32GP202/204 and PIC24HJ16GP304 Product Families

The d evice names, p in counts, memory si zes an d peripheral avail ability of each family are listed b elow, followed by their pinout diagrams.

		ory			Re	mappa	ble Pe								
Device	Pins	Program Flash Memo (Kbyte)	RAM	Remappable Pins	16-bit Timer	Input Capture	Output Compare Std. PWM	UART	External Interrupts ⁽²⁾	SPI	10-Bit/12-Bit ADC	I ² C ™	I/O Pins (Max)	Packages	
PIC24HJ32GP202	28	32	2	16	3(1)	42		1	3	1	1 ADC, 10 ch	12	1	SDIP SOIC QFN-S	
PIC24HJ32GP204	44	32	2	26	3 ⁽¹⁾	4	2	1	3	1	1 ADC, 13 ch	13	5	QFN TQFP	
PIC24HJ16GP304	44	16	2	26	3(1)	4	2	1	3	1	1 ADC, 13 ch	13	5	QFN TQFP	

TABLE 1: PIC24HJ32GP202/204 AND PIC24HJ16GP304 CONTROLLER FAMILIES

Note 1: Only two out of three timers are Remappable.

2: Only two out of three interrupts are remappable.

Pin Diagrams

Pin Diagrams (Continued)

© 2008 Microchip Technology Inc.

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	11
2.0	CPU	15
3.0	Memory Organization	21
4.0	Flash Program Memory	43
5.0	Resets	49
6.0	Interrupt Controller	57
7.0	Oscillator Configuration	85
8.0	Power-Saving Features	95
9.0	I/O Ports	99
10.0	Timer1	123
11.0	Timer2/3 Feature	125
12.0	Input Capture	131
13.0	Output Compare	133
14.0	Serial Peripheral Interface (SPI)	137
15.0	Inter-Integrated Circuit (I ² C [™])	143
16.0	Universal Asynchronous Receiver Transmitter (UART)	151
17.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	157
18.0	Special Features	171
19.0	Instruction Set Summary	179
20.0	Development Support	187
21.0	Electrical Characteristics	191
22.0	Packaging Information	225
Appe	ndix A: Revision History	231
Index		. 235
The I	/licrochip Web Site	239
Custo	omer Change Notification Service	239
Custo	mer Support	239
Read	er Response	240
Produ	uct Identification System	241

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this dat a sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 de vices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*.

This document contains device-specific information for the following devices:

- PIC24HJ32GP202
- PIC24HJ32GP204
- PIC24HJ16GP304

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24 HJ32GP202/204 and PIC24HJ1 6GP304 famil y of de vices. T able 1-1 lists the functions of the various pins shown in the pinout diagrams.

PIC24HJ32GP202/204 and PIC24HJ16GP304

TABLE 1-1:	PINOUT I/	O DESCRIP	PTIONS							
Pin Name	Pin Type	Buffer Type	Description							
AN0-AN12	I	Analog	Analog input channels.							
CLKI CLKO	I O	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.							
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS							
OSC2	I/O	—	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.							
SOSCI SOSCO	I O	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.							
CN0-CN30	I	ST	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.							
IC1-IC2 IC7-IC8	I	ST	Capture inputs 1/2. Capture inputs 7/8.							
OCFA OC1-OC2	I O	ST —	Compare Fault A input (for Compare Channels 1 and 2). Compare outputs 1 through 2.							
INT0	l	ST	External interrupt 0.							
INT2		ST	External interrupt 1. External interrupt 2.							
RA0-RA4 RA7-RA10	I/O	ST	PORTA is a bidirectional I/O port.							
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.							
RC0-RC9	I/O	ST	PORTC is a bidirectional I/O port.							
T1CK	I	ST	Timer1 external clock input.							
T2CK		ST	Timer2 external clock input.							
	1	ST ST								
U1RTS	0		UART1 ready to send.							
U1RX	I	ST	UART1 receive.							
U1TX	0	—	UART1 transmit.							
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.							
SD01		51	SPI1 data in. SPI1 data out.							
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.							
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.							
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.							
ASCL1 ASDA1	1/0	SI	Alternate synchronous serial clock input/output for I2C1.							
TMS	1/0	ST	ITAG Test mode select nin							
TCK	l I	ST	JTAG test clock input pin.							
TDI		ST	JTAG test data input pin.							
TDO	0	_	JTAG test data output pin.							
PGD1/EMUD1	1/0	ST	Data I/O pin for programming/debugging communication channel 1.							
		51 ST	Diock input pin for programming/debugging communication channel 1.							
PGC2/EMUC2	"O	ST	Clock input pin for programming/debugging communication channel 2.							
PGD3/EMUD3	I/O	ST	Data I/O pin for programming/debugging communication channel 3.							
PGC3/EMUC3	1	ST	Clock input pin for programming/debugging communication channel 3.							
VDDCORE	Р	_	CPU logic filter capacitor connection.							
Vss	Р	_	Ground reference for logic and I/O pins.							
Legend: CMOS	S = CMOS co	ompatible inp	ut or output Analog = Analog input O = Output							

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

I = Input

Pin Na	ime	Pin Type	Buffer Type	Description
VREF+		I	Analog	Analog voltage reference (high) input.
VREF-		I	Analog	Analog voltage reference (low) input.
Avdd		Р	Р	Positive supply for analog modules. This pin must be connected at all times.
MCLR		I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Avss		Р	Р	Ground reference for analog modules.
Vdd		Р	_	Positive supply for peripheral logic and I/O pins.
Legend:	CMOS ST = S	s = CMOS co Schmitt Trigg	ompatible inp er input with	ut or output Analog = Analog input O = Output CMOS levels I = Input P = Power

2.0 CPU

Note:	This data sheet summarizes the features
	of the PIC24 HJ32GP202/204 an d
	PIC24HJ16GP304 fa mily of devices.
	However, it is n ot i ntended to be a
	comprehensive reference source. T o
	complement the information in this data
	sheet, refer to the PIC24H Fa mily
	Reference Man ual, "Section 2 . CPU"
	(DS70245), which is available from the
	Microchip website (www.microchip.com).

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 CPU modules have a 16-bit (data) modified Harvard architecture w ith an e nhanced i nstruction set an d addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bit s of use r program memo ry sp ace. Th e actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is use d to he lp maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the progra m flow, the do uble word move (MOV.D) instruction and the table instructions. Overhead-free, si ngle-cycle pro gram lo op co nstructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJ32GP202/204 and PIC24HJ16GP304 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC2 4HJ32GP202/204 an d PIC24HJ16GP304 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter i nstructions can b e sup ported, all owing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 2-1, and the progra mmer's model for th e PIC24HJ32GP202/204 and PIC24HJ16GP304 is shown in Figure 2-2.

2.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped intoprogram space at any 16K program word boundary defined bythe 8-bit Program \$ace Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if itwere data space.

The data space also in cludes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but this may be used as general purpose RAM.

2.2 Special MCU Features

The PIC24H J32GP202/204 and PIC 24HJ16GP304 feature a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsi gned and mixed-sign multiplication. Using a 1 7-bit by 1 7-bit multiplier for 16-b it by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24H J32GP202/204 an d PIC 24HJ16GP304 supports 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 inst ruction cycles. The divide operation can be interrupt ed du ring any o f those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

FIGURE 2-1: PIC24HJ32GP202/204 AND PIC24HJ16GP304 CPU CORE BLOCK DIAGRAM

2.3 CPU Control Registers

REGISTER 2-1: SR: CPU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0							
—	—	_	—	—	—	—	DC							
bit 15							bit 8							
R/W-0 ⁽¹) R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0							
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С							
bit 7							bit 0							
.														
Legena:	a mh i hit		. h:t		nonted bit week									
C = Clear d		$R = Readable bit \qquad U = Unimplemented bit, read as U$												
S = Set on		vv = vvritable		-n = value at	PUR									
T = Bit is s	set	$0^{\circ} = Bit is clea$	ared		nown									
hit 15-9	Unimplemen	ted: Read as '	∩ '											
bit 8	DC: MCU AL	DC: MCU ALU Half Carry/Borrow bit												
	1 = A carry-c	1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)												
	of the result occurred													
	 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 													
hit 7 E	data) of the result occurred													
DIL 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽⁻⁾													
	110 = CPU Ir	nterrupt Priority	Level is 6 (14	4)										
	101 = CPU Ir	nterrupt Priority	Level is 5 (13	3)										
	100 = CPU Ir	nterrupt Priority	Level is 4 (12	2)										
	011 = CPU Ir 010 = CPU Ir	nerrupt Priority	Level is 3 (1)))										
	001 = CPU Ir	nterrupt Priority	Level is 1 (9))										
	000 = CPU Ir	nterrupt Priority	Level is 0 (8))										
bit 4	RA: REPEAT	Loop Active bi	t											
	1 = REPEAT	loop in progres	S											
L:1 0		loop not in prog	gress											
DIT 3	N: MCU ALU	Negative bit												
	1 = Result was 0 = Result was 1 = Result was 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	as negative as non-negative	e (zero or pos	itive)										
bit 2	OV: MCU AL	U Overflow bit	V I	,										
	This bit is use	d for signed ari	thmetic (2's c	omplement). It	indicates an ove	erflow of the ma	gnitude which							
	causes the si	gn bit to chang	e state.											
	1 = Overflow	occurred for sig	gned arithmet	tic (in this arithr	netic operation)	1								
hit 1		Zero bit												
	1 = An operation	tion which affect	ts the 7 hit h	as set it at som	e time in the na	st								
	0 = The most	recent operation	on which affe	cts the Z bit has	s cleared it (i.e.,	, a non-zero res	sult)							
bit 0	C: MCU ALU	Carry/Borrow I	oit											
	1 = A carry-o	ut from the Mos	st Significant	bit (MSb) of the	e result occurred	ł								
	0 = No carry-	out from the Mo	ost Significan	t bit of the resu	It occurred									
Nat- 4			4 o d 11 - 14 - 1 1				torrupt Dui-uit							
NOTE 1:	Level. The value	in p arenthese	ated with the l	he IPI if IPI <	3> = 1, User in	nt terrupts are di	sabled when							
	IPL<3> = 1.													

2: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0 U-0		U-0	R/C-0	R/W-0	U-0	U-0				
—	—	—	—	IPL3 ⁽¹⁾ PSV		—	—				
bit 7											
Legend:		C = Clear only bit									
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set					
0' = Bit is clea	ired	ʻx = Bit is unki	nown	U = Unimpler	mented bit, read	as '0'					
bit 15-4	Unimplemen	ted: Read as ') '								
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 ⁽¹⁾							
	1 = CPU inter	rupt priority lev	el is greater t	han 7							
	0 = CPU inter	rupt priority lev	el is 7 or less								

REGISTER 2-2: CORCON: CORE CONTROL REGISTER

bit 2 **PSV:** Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

2.4 Arithmetic Logic Unit (ALU)

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 Arithmetic Log ic Unit (ALU) is 1 6 bit s wid e and is capable of addition, su btraction, b it shi fts a nd logic operations. U nless otherwise men tioned, arithmetic operations are 2's complement in nature. The ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register depending on the operation. The C and DC Status bits operate as Borrow and Digit Borrow bits respectively, for subtraction operations.

The AL U can p erform 8-bit or 1 6-bit operations depending on the mode of the instruction that is used. Data for the AL U ope ration can come from the W register array, o r d ata me mory depending o n the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157) for more information on the SR bits affected by each instruction.

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 CPU inco rporates ha rdware sup port fo r both multiplication and division. This includes a d edicated hardware mul tiplier and a supp ort hardw are for 16-bit-divisor division.

2.4.1 MULTIPLIER

Using the high-speed 17-bit x 1 7-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

2.4.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes.

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remain der in W1. A 16-bit sign ed a nd unsigned DIV instructions can specify any W register for b oth the 16-bit di visor (W n) a nd any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algor ithm t akes one cycle per bit of divisor, so b oth 3 2-bit/16-bit and 16 -bit/16-bit instructions take the same number of cycles to execute.

2.4.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. and a negative value shifts the operand left. A value of '0' does not modify the operand.

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the feature s PIC2 4HJ32GP202/204 of the and PIC24HJ16GP304 family of de vices. However, it is not in tended to be a comprehensive re ference source. T o complement the information in this data sheet, refer to the PIC24H F amily Reference Ma nual, "Section 3. Dat a Memory" (DS70237), which is a vailable from the Microchip website (www.microchip.com).

The PIC24 HJ32GP202/204 a nd PIC24 HJ16GP304 architecture fe atures se parate prog ram and da ta memory sp aces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

3.1 Program Address Space

The program address memory sp ace of the PIC24HJ32GP202/204 and PIC24 HJ16GP304 devices is 4M instructions. The space is add ressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data s pace r emapping a s d escribed i n Section 3.4 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the I ower h alf of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBL PAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the PIC24HJ32GP202/204 and PIC24HJ16GP304 derices are shown in Figure 3-1.

FIGURE 3-1: PROGRAM MEMORY FOR PIC24HJ32GP202/204 AND PIC24HJ16GP304 DEVICES

3.1.1 PROGRAM MEMORY ORGANIZATION

The p rogram memory sp ace i s organized i n word-addressable blocks. Al though it is treated as 24 bits wid e, it is more appro priate to think o f ea ch address of the program memory as a lower and upper word, with th e u pper byte of the u pper word being unimplemented. The lower word always has an even address, w hile the u pper word has an od d ad dress (See Figure 3-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during cod e execution. Th is arrangement provides compatibility with d ata memory space ad dressing and makes dat a in the program memory space accessible.

3.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ3 2GP202/204 and PIC 24HJ16GP304 devices reserve the addresses between 0x00000 and 0x000200 for h ard-coded program execution vectors. A hardware Reset vector is provid ed to redirect code execution from the default value of the PC on de vice Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP202/204 and PIC 24HJ16GP304 devices also have two interrupt vector tables, located from 0x000 004 to 0x000 0FF an d 0x0 00100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be han dled by separate Interrupt Service Rou tines (ISRs). **Section 6.1 "Interrupt V ector Table"** provides a more det ailed discussion of the interrupt vector tables.

FIGURE 3-2: PROGRAM MEMORY ORGANIZATION

3.2 Data Address Space

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 CPU has a sep arate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 3-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to the bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15>=1) is reserved for the Program Space Visibility area (see Section 3.4.3 "Reading Data From Program Memory Using Program Space Visibility").

PIC24HJ32GP202/204 and PIC2 4HJ16GP304 devices implement up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

3.2.1 DATA SPACE WIDTH

The data memory sp ace is organ ized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-b it words, but all dat a space EAs resol ve to bytes. The Le ast Sign ificant Bytes (LSBs) of each word have even addresses, while the Mo st Sign ificant Bytes (MSBs) have od d addresses.

3.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve data space memory usage efficiency, the PIC24HJ32GP202/204 and PIC24HJ16GP304 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally sca led to step throug h word-aligned memory. For ex ample, the core re cognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a valu e of Ws + 1 for byte operations and Ws + 2 for word operations.

Data b yte reads will read the complete word that contains the byte, using the LSB of an y EA to determine which byte to select. The selected byte is placed onto the LSB of the data p ath. That is, data memory and registers are organized as two p arallel byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes on ly write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word d ata fe tches are no t sup ported, so care must be t aken wh en mixing b yte and word operations, or when translating from 8-bit MCU code. If a misa ligned read or write is attempted, an a ddress error trap is generated. If the error occurred on a read, the instruction underway is completed. If the instruction occurred on a write, the instruction is executed but the write does not occur. In ei ther case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provid ed to all ow users to translate 8-bit signed dat a to 16-bit signed values. Alternativel y, for 1 6-bit u nsigned d ata, user applications can clear the MSB of an y W regi ster by executing a zero-extend (ZE) instruction on the appropriate address.

3.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07F F, is primaril y occupied by Special Function Registers (SF Rs). T hese are use d by the PIC24HJ32GP202/204 and PIC2 4HJ16GP304 core and peripheral modules to control the operation of the device.

SFRs a re distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 3-1 through Table 3-22.

Note:	The actual set of peripheral features and interrupts varies by the device. Refer to											
	the corresponding device t ables and											
	pinout d iagrams for devi ce-specifi											
	information.											

3.2.4 NEAR DATA SPACE

The 8 Kb yte area b etween 0x0 000 and 0 x1FFF is referred to as the Near Data Space. Locations in this space are dire ctly ad dressable via 1 3-bit abso lute address fiel d withi n al I memory d irect instruction s. Additionally, the whole data space is addressable using MOV instructions, which supp ort Me mory Direct Addressing mo de with a 16-bit a ddress field, o r by using Indirect Ad dressing mod e using a working register as an address pointer.

FIGURE 3-3: DATA MEMORY MAP FOR PIC24HJ32GP202/204 AND PIC24HJ16GP304 DEVICES WITH 2 KB RAM

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	egister 0								0000
WREG1	0002								Working Re	egister 1								0000
WREG2	0004								Working Re	egister 2								0000
WREG3	0006								Working Re	egister 3								0000
WREG4	0008								Working Re	egister 4								0000
WREG5	000A								Working Re	egister 5								0000
WREG6	000C								Working Re	egister 6								0000
WREG7	000E								Working Re	egister 7								0000
WREG8	0010		Working Register 8														0000	
WREG9	0012		Working Register 9														0000	
WREG10	0014		Working Register 10														0000	
WREG11	0016		Working Register 11													0000		
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer L	mit Registe	r							XXXX
PCL	002E							Progran	n Counter Lo	w Word Re	gister							0000
PCH	0030	_	—	—	—	—	—	—	_			Progra	im Counter	High Byte F	Register			0000
TBLPAG	0032	_	—	—	—	_	—	—	—			Table I	Page Addre	ess Pointer F	Register			0000
PSVPAG	0034	_	—	—	—	_	—	—	—		Progr	am Memor	/ Visibility F	age Addres	s Pointer R	egister		0000
RCOUNT	0036							Repe	eat Loop Cou	unter Regist	er							XXXX
SR	0042	_	—	DC IPL2 IPL1 IPL0 RA N OV Z								С	0000					
CORCON	0044	—	_	_	—	_	_	_	_	_	_	_	_	IPL3	PSV	—		0000
DISICNT	0052	_	_						Disabl	e Interrupts	Counter F	legister						XXXX
Legend: 2	k = unknowr	n value on Re	eset, — = un	implement	ed, read as	'0'. Reset	values are	shown in	hexadecima	ıl.								

Preliminary

© 2008 Microchip Technology Inc.

TABLE SFR Name

TABLE 3-2: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJ32GP202

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE		—	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE	_	_	CN24IE	CN23IE	CN22IE	CN21IE	_	_	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	_	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE		_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-3: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

TABLE 3-4: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0800	NSTDIS	_	—	—	—	—	—	_	—	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI		—		—	—		_	—		—	—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084			AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086			INT2IF	—		_	_		IC8IF	IC7IF		INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS4	008C				—		_	_			—		_	_	—	U1EIF	—	0000
IEC0	0094			AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096			INT2IE	—		_	_		IC8IE	IC7IE		INT1IE	CNIE	—	MI2C1IE	SI2C1IE	0000
IEC4	009C				—		_	_			—		_	_	—	U1EIE	—	0000
IPC0	00A4			T1IP<2:0>	•		(OC1IP<2:0)>			IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6			T2IP<2:0>	•		(OC2IP<2:0)>			IC2IP<2:0>		_	—	—	—	4440
IPC2	00A8		L	J1RXIP<2:0)>		5	SPI1IP<2:0)>			SPI1EIP<2:0)>	_		T3IP<2:0>		4444
IPC3	00AA				—		_	_				AD1IP<2:0	>	_	U	1TXIP<2:0	>	0044
IPC4	00AC			CNIP<2:0>	>		_	_				MI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0>	>	-		IC7IP<2:0	>		—	-	—	—	11	NT1IP<2:0>		4404
IPC7	00B2	—		-	—	-	_	_				INT2IP<2:0	>	—	—	—	—	0040
IPC16	00C4	_	_	_	_	_	_	_	_	_		U1EIP<2:0>	>	_	_	_	_	0040
INTTREG	00E0	_	_	_	_		ILR<	3:0>		_			VE	CNUM<6:0>				0000

IABLE 3	-5:	TIMERI	REGIST		Ρ													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								XXXX
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								XXXX
TMR3HLD	0108		Timer2 Register xx Timer3 Holding Register (for 32-bit timer operations only) xx														XXXX	
TMR3	010A								Timer3	Register								XXXX
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T3CON	0112	TON	—	TSIDL	—	—	—	—	_	_	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000
Lawrende			Decet						the law second at	alian al								

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-6: INPUT CAPTURE REGISTER MAP

-																		
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Cap	otu e Registe	r							XXXX
IC1CON	0142	—		ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Cap	ture Registe	r							XXXX
IC2CON	0146	—		ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Cap	ture Registe	r							XXXX
IC7CON	015A	—		ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8Capt	ture Register	r							XXXX
IC8CON	015E	_	_	ICSIDL	_	—	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-7: OUTPUT COMPARE REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0180							Output	Compare 1	Secondary	Register							XXXX
0182							0	utput Comp	are 1 Regis	ter							XXXX
0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
0186							Output	Compare 2	Secondary	Register							XXXX
0188							0	utput Comp	are 2 Regist	er							XXXX
018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
	SFR 0180 0182 0184 0186 0188 018A	SFR Addr Bit 15 0180	SFR Addr Bit 15 Bit 14 0180	SFR Addr Bit 15 Bit 14 Bit 13 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0180 Output Compare 1 Secondary Register 0180 Output Compare 1 Register 0180 Output Compare 1 Register 0181 OCFLT OCTSEL 0184 OCFLT OCTSEL 0186 OCFLT OCTSEL 0186 OCFLT OCTSEL 0184 OCFLT OCTSEL 0184 OCFLT OCTSEL	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 20180 $$	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0180	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 00180

TABLE 3-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	_	_	_	_	-	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Rat	e Generato	Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_		—	—	—					Address	Register					0000
I2C1MSK	020C	_	_	-	—	_	_					Address Ma	isk Register					0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART	Transmit Re	gister				XXXX
U1RXREG	0226	_	_	_	_	_	_	_				UART	Receive Re	gister				0000
U1BRG	0228							Bau	d Rate Ger	nerator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-10: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	-	_	-	—	-	SPIROV	_	_	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	—	_	_	—	—	_	_	-	—	—	FRMDLY	—	0000
SPI1BUF	0248							SPI1 Trans	mit and Re	ceive Buffer	Register							0000

TABLE 3-11: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9B	it 8B	it 7B	it 6B	it 5B	it 4	Bit 3	Bit 2B	it 1B	it O	All Resets
RPINR0	0680	_	_	_			INT1R<4:0>	>		_				_	_	_		1F00
RPINR1	0682	_	_	_	_	_	_	_	—	—	_				INT2R<4:0>			001F
RPINR3	0686	_	_	_		-	T3CKR<4:0	>		_	_			-	T2CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			—	_				IC1R<4:0>			1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_				IC7R<4:0>			1F1F
RPINR11	0696	_	_	_	_	_	_	—	—	—	_			(DCFAR<4:0	>		001F
RPINR18	06A4	_	_	_		U	1CTSR<4:0)>		_				ι	J1RXR<4:0	>		1F1F
RPINR20	06A8	_	_	_		5	SCK1R<4:0	>		_	_				SDI1R<4:0>	•		1F1F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_				SS1R<4:0>			001F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-12: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR PIC24HJ32GP202

File Name	Addr	Bit 5	1Bit 4	1Bit 13	Bit 2	1Bit 1	1Bit 0	1 Bit	9 it I	38 it	в	7 it E	36 it5 E	Bit	4 it 3	B Bit	2 it E	3 1 it 0 B	All Resets
RPOR0	06C0	_	_	-			RP1R<4:0>	>		_		_	_			RP0R<4:0	>		0000
RPOR1	06C2	—	_	_			RP3R<4:0>	>		_		_	_			RP2R<4:0	>		0000
RPOR2	06C4	_	_	_			RP5R<4:0>	>		_		_	_			RP4R<4:0	>		0000
RPOR3	06C6	_	_	_			RP7R<4:0>	>		_		_	_			RP6R<4:0	>		0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_		_	_			RP8R<4:0	>		0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_		_	_			RP10R<4:0	>		0000
RPOR6	06CC	_	_	_		I	RP13R<4:0	>		_			_			RP12R<4:0	>		0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_		_	_			RP14R<4:0	>		0000

IABLE .	3-13:	PERIF	HERAL	- PIN 30		JUIPUI	REGIS		AP FUR	PIC24F	1J32GP	204 AN	D PIC24	HJ16GI	2304			
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	—	—			RP1R<4:0>	•		—	—	—			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0>	•		_	_	_			RP2R<4:0>	•		0000
RPOR2	06C4	_	_	_			RP5R<4:0>			_	_	_			RP4R<4:0>			0000
RPOR3	06C6		_	_			RP7R<4:0>	•			_	_			RP6R<4:0>	•		0000
RPOR4	06C8		_	_			RP9R<4:0>	•			_	_			RP8R<4:0>	•		0000
RPOR5	06CA	_	_	_		I	RP11R<4:0	>			_	_			RP10R<4:0	>		0000
RPOR6	06CC	_	_	_		I	RP13R<4:0	>		_	_	_			RP12R<4:0	>		0000
RPOR7	06CE	_	_	_		I	RP15R<4:0	>		_	_	_			RP14R<4:0	>		0000
RPOR8	06D0	_	_	_		I	RP17R<4:0	>		_	_	_			RP16R<4:0	>		0000
RPOR9	06D2	_	_	_		I	RP19R<4:0	>		_	_	_			RP18R<4:0	>		0000
RPOR10	06D4	_	_	_		I	RP21R<4:0	>		_	_	_			RP20R<4:0	>		0000
RPOR11	06D6	_	_	_		I	RP23R<4:0	>		_	_	_			RP22R<4:0	>		0000
RPOR12	06D8	_	_	_		I	RP25R<4:0	>		_	_	_			RP24R<4:0	>		0000

AFLEAT AUTRUT DEGIGTED MAD FOR DIGGAULIAGODGA AND DIGGAULIAGODGA ^ 40 DEDIDUED

IADLE 3-	14. /	ADCIN	LOIST		FURFIC	JZ4NJJ	207204		-IC24HJ	109530	/4							•
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	Buffer 0								XXXX
ADC1BUF1	0302								ADC Data	Buffer 1								XXXX
ADC1BUF2	0304								ADC Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC Data	Buffer 3								XXXX
ADC1BUF4	0308								ADC Data	Buffer 4								XXXX
ADC1BUF5	030A								ADC Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC Data	Buffer 6								XXXX
ADC1BUF7	030E								ADC Data	Buffer 7								xxxx
ADC1BUF8	0310								ADC Data	Buffer 8								xxxx
ADC1BUF9	0312								ADC Data	Buffer 9								XXXX
ADC1BUFA	0314								ADC Data	Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	Buffer 11								XXXX
ADC1BUFC	0318								ADC Data	Buffer 12								XXXX
ADC1BUFD	031A								ADC Data	Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	Buffer 14								xxxx
ADC1BUFE	031E								ADC Data	Buffer 15								XXXX
AD1CON1	0320	ADON	_	ADSIDL	-	_	AD12B	FOR	M<1:0>	:	SSRC<2:0>	>		SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—		S	SAMC<4:0>	•	1		-	-	ADCS	6<7:0>			I	0000
AD1CHS123	0326	—	—	—	—	—	CH123N	NB<1:0>	CH123SB	—	_	_	—	—	CH123	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—			С	H0SB<4:0>	>		CH0NA	_	-		0	CH0SA<4:0)>	1	0000
AD1PCFGL	032C	—	—	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	—	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000

TABLE 3-14: ADC1 REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304

TABLE 3-15:	ADC1 REGISTER MAP FOR PIC24HJ32GP202
-------------	--------------------------------------

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	a Buffer 0								XXXX
ADC1BUF1	0302								ADC Data	a Buffer 1								XXXX
ADC1BUF2	0304								ADC Data	a Buffer 2								XXXX
ADC1BUF3	0306								ADC Data	a Buffer 3								XXXX
ADC1BUF4	0308								ADC Data	a Buffer 4								XXXX
ADC1BUF5	030A								ADC Data	a Buffer 5								XXXX
ADC1BUF6	030C								ADC Data	a Buffer 6								XXXX
ADC1BUF7	030E								ADC Data	a Buffer 7								XXXX
ADC1BUF8	0310								ADC Data	a Buffer 8								XXXX
ADC1BUF9	0312								ADC Data	a Buffer 9								XXXX
ADC1BUFA	0314								ADC Data	a Buffer 10								XXXX
ADC1BUFB	0316								ADC Data	a Buffer 11								XXXX
ADC1BUFC	0318								ADC Data	a Buffer 12								XXXX
ADC1BUFD	031A								ADC Data	a Buffer 13								XXXX
ADC1BUFE	031C								ADC Data	a Buffer 14								XXXX
ADC1BUFF	031E								ADC Data	a Buffer 15								XXXX
AD1CON1	0320	ADON	—	ADSIDL	—	—	AD12B	FOR	M<1:0>	Ş	SSRC<2:0	>	—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—				SAMC<4:0	>	1				ADC	S<7:0>	1		1	0000
AD1CHS123	0326	—			-	—	CH123N	VB<1:0>	CH123SB	—		—	_	—	CH123	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		(CH0SB<4:0)>		CH0NA	_	—		(CH0SA<4:0)>		0000
AD1PCFGL	032C	—	—	_	PCFG12	PCFG11	PCFG10	PCFG9	—	—	—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330		—		CSS12	CSS11	CSS10	CSS9	_	—	—	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000

TABLE 3-16: PORTA REGISTER MAP FOR PIC24HJ32GP202

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	—	-	-	—			—	—	_	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2		—	-		—			—	—	-	—	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4		—	-		—			—	—	-	—	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	-	—	-	-	—	-		_	—	-	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-17: PORTA REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	—	-	—	—	—	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	_	-	_	_	_	RA10	RA9	RA8	RA7	_	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	-	_	_	_	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	-	_	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-18: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	XXXX

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 3-19: PORTC REGISTER MAP FOR PIC24HJ32GP204 AND PIC24HJ16GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	_	_	_	_		TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	_	_					RC9	RC8	RC7	RC6	RC5	RC4	RC4	RC2	RC1	RC0	XXXX
LATC	02D4	_						LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC4	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	_	_	_	_		ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC4	ODCC2	ODCC1	ODCC0	XXXX

TABLE 3-20: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	-	—	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	_	(COSC<2:0>	>	_	1	NOSC<2:0>	>	CLKLOCK	IOLOCK	LOCK		CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	ĺ	DOZE<2:0>	•	DOZEN	FI	RCDIV<2:0	>	PLLPOS	T<1:0>	—		F	PLLPRE<4:	0>		3040
PLLFBD	0746	_	-	_		_	PLLDIV<8:0>					0030						
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN<5:0>				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 3-21: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 0	1 Bit	9Bit	8 it B	7 it 6 B	Bit 5	Bit	4 it B	3 it B	2 it 1 B	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	—	_	_	—	_	ERASE	_	_		NVMC	P<3:0>		0000 (1)
NVMKEY	0766	—	_	_	-	—		_	—				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 3-22: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—	T3MD	T2MD	T1MD	_	-	—	I2C1MD		U1MD	—	SPI1MD		—	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000

3.2.5 SOFTWARE STACK

In addition to it s use a s a workin g register, the W15 register in the PIC2 4HJ32GP202/204 an d PIC24HJ16GP304 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-d ecrements for r st ack p ops an d post-increments for st ack pushe s, as shown in Figure 3-4. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC pu sh du ring e xception processin g
	concatenates the SRL register to the MSB
	of the PC prior to the push.

The Stack Pointer Limit r egister (SPLIM) associa ted with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. Similarly, the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

When an EA is generated using W15 as a sou rce or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be lesser than 0×0800 . This prevents the st ack from interfering with the S pecial Function Reg ister (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

3.2.6 DATA RAM PROTECTION FEATURE

The PIC24H p roduct fa mily supp orts Da ta RAM protection features that enable segments of RAM to be protected w hen u sed in conjunction with Boot tand Secure Code Segment Security BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when en abled. See Table 3-1 for an overview of the BSRAM and SSRAM SFRs.

3.3 Instruction Addressing Modes

The addressing modes shown in Table 3-23 form the basis of the addressing modes optimized to support the specific features of individual i nstructions. The addressing modes provid ed in the MAC clas s of instructions differ from those in the other i nstruction types.

3.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to di rectly address d ata present in the first 81 92 bytes of dat a memory (Near Da ta Space). Most file register i nstructions employ a workin g register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction al lows ad ditional flexib ility and can access the entire data space.

3.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function > Operand 2

where, Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to a s Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The follo wing addressing mo des are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note:	Not	all	instructions	support	all	the
	addr	essiı	ng modes give	n above. I	ndivi	dual
	instru	uctio	ns can suppo	rt different	t sub	sets
	of the	ese a	addressing mo	odes.		
TABLE 3-23:	FUNDAMENTAL ADDRESSING MODES SUPPORTED					
-------------	--					
-------------	--					

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA.)
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

3.3.3 MOVE (MOV) INSTRUCTION

Move i nstructions p rovide a g reater d egree of addressing fl exibility than the other i nstructions. In addition to the Addressing modes supported by most MCU instructi ons, MOV instructions al so support Register In direct with R egister Of fset Addressin g mode. This is also referred to as Reg ister Indexe d mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ							
	for the source and the destination EA.							
	However, the 4 -bit Wb (Reg ister Of fset)							
	field is shared by bo th source an d							
	destination (but typically only used by							
	one).							

In summary, move instructions support the following addressing modes:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- · Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions suppo	rt all the		
	addressing modes given abo	ove. Individual		
	instructions may support different subsets			
	of these addressing modes.			

3.3.4 OTHER INSTRUCTIONS

Besides the a ddressing mo des ou tlined pr eviously, some instructions use literal constants of various sizes. For e xample, BRA (branch) instructi ons use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

3.4 Interfacing Program and Data Memory Spaces

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 architecture uses a 24 -bit-wide program space and a 16-bit wide da ta space. T he a rchitecture is also a modified Harvard scheme, which means that the data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside fro m normal executio n, th e PIC24HJ32GP202/204 and PIC2 4HJ16GP304 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all byte s of the prog ram word. The rema pping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

3.4.1 ADDRESSING PROGRAM SPACE

Since the a ddress ranges for the data and program spaces are 16 and 24 bit s, respectively, a method is needed to crea te a 23-bit or 24-bit program a ddress from 16-bit data registers. The solution depends on the interface method to be used.

For t able op erations, the 8 -bit T able Pa ge register (TBLPAG) is used to d efine a 3 2K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the co nfiguration memory (TBLPAG<7> = 1).

For re mapping op erations, the 8 -bit Program S pace Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space addre ss. Un like t able ope rations, this li mits remapping operations strictly to the user memory area.

Table 3-24 and Figure 3-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1> (0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBLPAG<7:0> Data EA<15:0>					
		0xxx xxxx xxxx xxxx xxxx					
	Configuration TBL	PAG<7:0> Data EA<15:0> 1xxx xxxx xxxx xxxx xxxx			Data EA<15:0>		
Program Space Visibility	User	0 PSVPAG<7:0> I 0 xxxx xxxx xxx		Data EA<14:	0>(1)		
(Block Remap/Read)				X	XXX XXXX XXXX XXXX		

TABLE 3-24: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

3.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions of fer a direct method to read or write the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only me thods to re ad or write the u pper 8 bits of a program space word as data.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to data sp ace addre sses. Pro gram memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the le ast sign ificant dat a word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

• TBLRDL (Table Read Low): In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

 TBLRDH (Table Read High): In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, this instruction maps the up per or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. Note that the data will alwa ys be '0' when the up per 'Phantom' byte is selected (Byte Select = 1).

In a similar fa shion, two table instructions, TBLWTH and TBLWTL, are use d to write individual bytes or words to a program space add ress. The details of their ope ration are explained in **Section 4.0 "Fl ash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory sp ace of the de vice, inclu ding user a nd configuration spaces. When TBLPAG<7> = 0, the table page is located in the u ser memory sp ace. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 3-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

3.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM & ACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to the stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control regi ster (CORCON <2>). The location of the program memory space to be mapped into the dat a space is d etermined by the Program Space Visibility Pag e re gister (PSVPAG). This 8-bit register de fines an y o ne of 25 6 possib le p ages of 16K words in program s pace. In effect, PSVPAG functions as the upper 8 bits of the pro gram memory address, with the 15 bits of the EA function ing as the lower bits. By in crementing the PC by 2 for r each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area ad d a cycle to the instruction being exe cuted, since two p rogram memory fetch es are required.

Although each dat a space address 8000h and higher maps directly in to a corresponding program memory address (see Figure 3-7), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data sh ould be programmed with '1111 1111 'or '0000 00 00' to force a NOP. This prevents possible issues should the area of cod e ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution ti me. All othe r in structions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to a ccess data to execute in a single cycle.

FIGURE 3-7: PROGRAM SPACE VISIBILITY OPERATION

© 2008 Microchip Technology Inc.

NOTES:

4.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 fa mily of devices. However, it is n ot i ntended to be a comprehensive reference source. T o complement the i nformation i n this data sheet, refer to the PIC24H Fa mily Reference Manual, "Section 4. Program					
	Memory" (DS7 0228), w hich is avai lable					
	from the Microchip website					
	(www.microchip.com).					

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 devices contain internal FI ash program me mory to store and execute app lication code. The memory is readable, writ able and era sable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a PIC24HJ3 2GP202/204 an d PIC24HJ16GP304 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data alternate prog ramming pin pairs: (one of the PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This all ows customers to manufacture boards with unprogrammed devices and then program the microcon troller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is a ccomplished using TBLRD (table read) and TBLWT (table write) instructions. With R TSP, the user application can write p rogram memory dat a either in 'blocks' or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

4.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instruction s. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 4-1.

The TBLRDL and the TBLWTL instructions are used to read or write to the bi ts<15:0> of pro gram memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 4-1: ADDRESSING FOR TABLE REGISTERS

4.2 RTSP Operation

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 Flash program memory array is organized into rows of 64 in structions or 192 bytes. RTSP al lows the user application to erase a page of memory, which consists of eig ht ro ws (512 instructi ons) at a time, an d to program o ne row or on e word a t a time. The 8-row erase pages a nd single ro w write rows a re edge-aligned from the be ginning of program memory, on bo undaries of 15 36 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the a ctual pro gramming o peration, the write data must be loa ded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to lo ad the bu ffers. Prog ramming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All table write operations are single-word writes (tw o instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

4.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in R TSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 21-18, **AC Ch aracteristics: Inter nal RC Accuracy**) and the value of the FRC Oscillator Tuning register (see Register 7-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time p arameters (see T able 21-12, **DC Charateristics: Program Memory**).

EQUATION 4-1: PROGRAMMING TIME

Т
$\overline{7.37 \ MHz \times (FRC \ Accuracy)\% \times (FRC \ Tuning)\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be ± 5 %. If the TUN<5:0> bits (see Register 7-4) are set to `b111111, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (10^{+} .05 \times (1 - 0.00375)^{-} +.435 \text{ ms}}$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 \text{ms}$$

Setting the WR b it (NVMC ON<15>) st arts the operation, and the WR bit is automatically cleared when the operation is finished.

4.4 Control Registers

Two SF Rs a re u sed to read and write the program Flash memory:

NVMCON: Flash Memory Control Register

• NVMKEY: Nonvolatile Memory Key Register

The NVMCON register (R egister 4-1) control s which blocks need to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 4-2) is a write-only register that is used for write protection. To st art a programming or erase sequence, the use r appl ication must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 4.3 "Programming Operations"** for further details.

REGISTER 4-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	ERASE	—	—	NVMOP<3:0> ⁽²⁾			
bit 7							bit 0

Legend:	SO = Settable Only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	WR: Write Control bit
	1 = Initiates a Flash memory program or erase op eration. The operation is self-timed and the bit is
	cleared by hardware once operation is complete
	 Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enable Flash program/erase operations
	0 = Inhibit Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set
	automatically on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command
	0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
bit 5-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾
	<u>If ERASE = 1:</u>
	1111 = Memory bulk erase operation
	1101 = Erase General Segment
	1100 = Erase Secure Segment
	0.011 - NO Operation 0.010 = Memory page erase operation
	0001 = No operation
	0000 = Erase a single Configuration register byte
	IFEDASE - of
	$\frac{1111}{111} = N_0 \text{ operation}$
	1101 = No operation
	1100 = No operation
	0011 = Memory word program operation
	0010 = No operation
	0001 = Memory row program operation
	0000 = Program a single Configuration register byte
Note 1	These hits can only be reset on POR

2: All other combinations of NVMOP<3:0> are unimplemented.

PIC24HJ32GP202/204 and PIC24HJ16GP304

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
			<u> </u>				

REGISTER 4-2:	NVMKEY: NONVOLATILE MEMORY KEY REGISTER
REGISTER 4-2:	NVMKEY: NONVOLATILE MEMORY KEY REGISTE

Legend:	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

4.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to e rase the 8-row erase p age that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program d ata in RAM wi th the desired new data.
- 3. Erase the block (see Example 4-1):
 - a) Set the NVMOP bits (NVMC ON<3:0>) to '0010' to configure for block erase. Set ERASE (NVMCON<6>) and WREN (NVM-CON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 4-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPUstalls for the duration of the write cycle. Wh en the write to Flash memory is done, the WR bit is cleared automatically
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLP AG, until all 512 instructions are written back to Flash memory.

To pro tect aga inst accide ntal ope rations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time u ntil programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 4-3.

EXAMPLE 4-1: ERASING A PROGRAM MEMORY PAGE

; Set	Set up NVMCON for block erase operation				
	MOV	#0x4042, W0	;		
	MOV	W0, NVMCON	;	Initialize NVMCON	
; Init	t pointer	to row to be ERASED			
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;		
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR	
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer	
	TBLWTL	WO, [WO]	;	Set base address of erase block	
	DISI	#5	;	Block all interrupts with priority <7	
			;	for next 5 instructions	
	MOV	#0x55, W0			
	MOV	W0, NVMKEY	;	Write the 55 key	
	MOV	#OxAA, W1	;		
	MOV	W1, NVMKEY	;	Write the AA key	
	BSET	NVMCON, #WR	;	Start the erase sequence	
	NOP		;	Insert two NOPs after the erase	
	NOP		;	command is asserted	

EXAMPLE 4-2: LOADING THE WRITE BUFFERS

;	; Set up NVMCON for row programming operations					
	MOV	#0x4001, W0	;			
	MOV	W0, NVMCON	;	Initialize NVMCON		
;	Set up a poir	nter to the first program m	nem	nory location to be written		
;	; program memory selected, and writes enabled					
	MOV	#0x0000, W0	;			
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR		
	MOV	#0x6000, W0	;	An example program memory address		
;	Perform the	TBLWT instructions to write	e t	the latches		
;	Oth_program_	word				
	MOV	#LOW_WORD_0, W2	;			
	MOV	#HIGH_BYTE_0, W3	;			
	TBLWTL	W2, [W0]	;	Write PM low word into program latch		
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch		
;	lst_program_	word				
	MOV	#LOW_WORD_1, W2	;			
	MOV	#HIGH_BYTE_1, W3	;			
	TBLWTL	W2, [W0]	;	Write PM low word into program latch		
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch		
;	2nd_program	_word				
	MOV	#LOW_WORD_2, W2	;			
	MOV	#HIGH_BYTE_2, W3	;			
	TBLWTL	W2, [W0]	;	Write PM low word into program latch		
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch		
	•					
	•					
	•					
;	63rd_program	_Word				
	MOV	#LOW_WORD_31, W2	;			
	MOV	#UTCU_BILF_ST' MS	;	Maite DM low word into averyon letch		
	TBLWTL		;	Write PM iow word into program laten		
	J.BTM.LH	W3, [WU++]	;	write PM nign byte into program latch		

EXAMPLE 4-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the
NOP		;	erase command is asserted

5.0 RESETS

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 families of devices. It is not i ntended to be a comprehensive reference so urce. T o comple ment th e information in this data sheet, refer to the *PIC24H Family R eference Manu al*, "Section 8. Rese t" (DS70229), which is available from th e Mi crochip we bsite (www.microchip.com).

The Re set module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A si mplified block dia gram of the Re set modu le is shown in Figure 5-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the spe cific peripheral section or Section 2.0 "CPU" of this man ual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 5-1).

A POR cle ars all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The st atus bit s in the RCON register should be cleared after they a re re ad so that the next RCON register value after a device Reset is meaningful.

		11.0	11.0		11.0			
		0-0	0-0	0-0	0-0			
	IOPUWR	—	_	_		CIVI	VREGS	
DIL 15							DIL 8	
P/M/ 0			P/\\/_0		P/M/O	D/\\/_1	D/\\/_1	
	SWD							
bit 7	3001	SWDIEN	WDTO	JELLI	IDEE	BOIX	hit 0	
							bit 0	
l egend:								
R = Readable	hit	W = Writable h	nit	U = Unimpler	mented bit read	las '0'		
-n = Value at F		'1' = Rit is set		$0^{\circ} = \text{Bit is cle}$	ared	x = Bit is unkr	nown	
							lowin	
bit 15	TRAPR. Tran	Reset Flag bit						
Sit TO	1 = A Trap Co	onflict Reset has	soccurred					
	0 = A Trap Co	onflict Reset has	s not occurre	d				
bit 14	IOPUWR: Ille	gal Opcode or I	Jninitialized \	W Access Res	et Flag bit			
	1 = An illega	l o pcode de teo	tion, a n i lleg	gal address mo	ode or uninitial	ized W registe	er used as an	
	Address	Pointer caused	a Reset					
	0 = An illegal	opcode or unir	iitialized W R	leset has not o	ccurred			
bit 13-10	Unimplemen	ted: Read as '0	·					
bit 9	CM: Configura	ation Mismatch	Flag bit	oourrod				
	0 = A configu	ration mismatch	Reset has N	NOT occurred				
bit 8	VREGS: Voltage Regulator Standby During Sleep bit							
	1 = Voltage r	egulator is activ	e during Slee	ep				
	0 = Voltage r	egulator goes ir	nto Standby n	node during SI	еер			
bit 7	EXTR: External Reset (MCLR) Pin bit							
	1 = A Master	Clear (pin) Res	et has occurr	ed				
	0 = A Master	Clear (pin) Res	et has not oc	curred				
bit 6	SWR: Softwa	re Reset (Instru	ction) Flag b	it .				
	$1 = \mathbf{A}$ RESET $0 = \mathbf{\Delta}$ RESET	instruction has	not been exe	ed Incuted				
bit 5	SWDTEN: So	oftware Enable/I	Disable of WI	DT hit ⁽²⁾				
Sit 0	1 = WDT is er	nabled						
	0 = WDT is di	sabled						
bit 4	WDTO: Watcl	hdog Timer Tim	e-out Flag bi	t				
	1 = WDT time	e-out has occurr	ed					
	0 = WDT time	e-out has not oc	curred					
bit 3	SLEEP: Wake	e-up from Sleep	Flag bit					
	1 = Device ha	is been in Sleep	o mode					
	0 = Device ha	is not been in S	leep mode					
bit 2	IDLE: Wake-u	up trom Idle Fla	g bit					
	1 = Device was in Idle mode							
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not								

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset.
2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred
 - 1 = A Brown-out Reset has occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

5.1 System Reset

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Bro wn-out Reset (BOR). On a cold Reset, the FNOSC configuration bit s in the FOSC de vice configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in t he Oscill ator Control (OSCCON<14:12>) register.

The device is kept in a Rese t state until the system power supplies have st abilized at app ropriate le vels and the oscil lator clock is re ady. The sequ ence i n which th is occurs i s detailed b elow and is sho wn i n Figure 5-2.

1. **POR Reset:** A POR circuit hold s the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that kee ps the device in Reset until V DD crosses the V BOR threshold and the delay T BOR has elapsed. T he delay T BOR ensures that the vo Itage re gulator output becomes stable.
- 3. **PWRT T imer:** The progra mmable powe r-up timer continues to hold the processor in Reset for a speci fic period of time (T PWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elap sed, the SYSRST becomes inactive, which i n turn e nables the sel ected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given i n T able 5-1. Refer to Section 7.0 "Oscillator Configuration" for more information.
- 5. When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset add ress, which redi rects p rogram execution to the appropriate start-up routine.
- 6. The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay T FSCM elapsed.

	OILEATOR DELAT			
Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd			Toscd
FRCPLL	Toscd		TLOCK	TOSCD + TLOCK
ХТ	Toscd	Tost	—T	OSCD + TOST
HS	Toscd	Tost	_T	OSCD + TOST
EC				
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL			TLOCK	TLOCK
SOSC	Toscd	Tost	—T	OSCD + TOST
LPRC	Toscd			Toscd

TABLE 5-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

PIC24HJ32GP202/204 AND PIC24HJ16GP304

Symbol	Parameter	Value
Vpor	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
Тғасм	Fail-Safe Clock Monitor Delay	900 μs maximum

TABLE 5-2:OSCILLATOR DELAY

Note: When the device exit s the Reset condition (begins no rmal o peration), the device ope rating p arameters (vo Itage, frequency, te mperature, et c.) mu st be within their o perating ranges, otherwise the d evice may not function co rrectly. The u ser ap plication must ensure that the d elay between the time p ower is first app lied, and the time SYSRST becomes inactive, is long enough to get within all operating parameters specification.

5.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from pow er-on. The POR circuit is active un til VDD crosses the VPOR threshold and the delay TPOR has e lapsed. The d elay TPOR e nsures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the spe cified starting volt age an d rise rate requirements to ge nerate the POR. Refer to **Section 21.0 "Electrical Characteristics"** for details.

The POR st atus (POR) bit in the Re set Co ntrol (RCON<0>) register is set to ind icate the Powe r-on Reset.

5.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the V DD is too I ow (VDD < V BOR) for proper device operation. The BOR circuit keeps the device in Reset until V DD crosses VBOR threshold and the delay TBOR has elapsed. The delay T BOR ensures the vol tage regulator output becomes stable.

The BOR st atus (BOR) bit in the Re set Control (RCON<1>) register is set to in dicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provid es power-up time de lay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Powe r-on Reset T imer V alue Sele ct (FPWRT<2:0>) bi ts in the POR Co nfiguration (FPOR<2:0>) register, which provid es eight setti ngs (from 0 ms to 128 ms). Refer to **Section 18.0 "Special Features"** for further details.

Figure 5-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

PIC24HJ32GP202/204 AND PIC24HJ16GP304

FIGURE 5-3: **BROWN-OUT SITUATIONS**

5.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse-width will generate a Reset. Refer to Section 21.0 "Ele ctrical Ch aracteristics" for minimum p ulse-width spe cifications. T he External Reset (MCLR) Pin (EXTR) bit in the R eset Control (RCON) register is set to indicate the MCLR Reset.

5.3.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

INTERNAL SUPERVISORY CIRCUIT 5.3.2

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to V DD. In this case, the MCLR pin will not be used to ge nerate a Re set. The external reset pin (MCLR) does not have a n internal pull-up and must not be left unconnected.

5.4 Software RESET Instruction (SWR)

Whenever the RESET instruction i se xecuted, the device will assert SYSRST, placing the device in a special Rese t st ate. This Re set st ate wil I not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

5.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the W atchdog Rese t. Refer to Section 18.4 "Watchdog T imer (W DT)" for more information on Watchdog Reset.

5.6 Trap Conflict Reset

er-priority hard If a low trap occurs whi le a higher-priority trap is bein g processed, a hard trap conflict Reset oc curs. The hard trap s include exceptions of priori ty leve I 13 throu gh le vel 15, inclusive. The ad dress error (le vel 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to Section 6.0 "Interrupt Controller" for more information on trap conflict Resets.

5.7 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in h ardware. If an u nexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mi smatch Flag (CM) bit in the Reset C ontrol (RCON<9>) register is set to indicate the config uration mismatch Re set. Refer to **Section 9.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The con figuration mismatch fea ture an d associated reset flag is not available on all devices.

5.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

TABLE 5-3:

The Illeg al Opco de or Uninitialized W Acce ss Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to in dicate the illegal condition device Reset.

5.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device at tempts to execute a n ill egal opco de value that is fetched from program memory.

The il legal op code R eset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

RESET FLAG BIT OPERATION

each program memory section to store the data values. The upp er 8 bit s should be programmed with 3Fh, which is an illegal opcode value.

5.8.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

5.8.3 SECURITY RESET

If a Program F low Change (PF C) or V ector Fl ow Change (VFC) targets a restricted I ocation in a protected segment (Boot and Secure Seg ment), that operation will cause a security Reset.

The PF C occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, R eturn from Subroutine, or other form of branch instruction.

The VF C occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 18.6 "C ode Pro tection and CodeGuard™ Se curity" for more information on Security Reset.

5.9 Using the RCON Status Bits

The user application can read the R eset Control (RCON) register after any device Reset to de termine the cause of the reset.

Note: The status bit s in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 5-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
CM (RCON<9>)	Configuration Mismatch	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	—

Note: All Reset flag bits can be set or cleared by user software.

6.0 INTERRUPT CONTROLLER

Note:	This data sheet summarizes the features						
	of the PIC24 HJ32GP202/204 an d						
	PIC24HJ16GP304 fa mily of devices.						
	However, it is n ot i ntended to be a						
	comprehensive reference source. T o						
	complement the information in this data						
	sheet, refer to the PIC24H Fa mily						
	Reference Man ual, "Section 6 .						
	Interrupts" (DS70224), which is available						
	from the Microchip website						
	(www.microchip.com).						

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 interrupt controllers reduce the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC 24HJ32GP202/204 and PIC24HJ16GP304 CPU.

It has the following features:

- Up to eight processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

6.1 Interrupt Vector Table

Figure 6-1 shows the Interrupt Vector Table. The IVT resides in pr ogram memory, s tarting at location 000004h. The IVT con tains 126 vectors consisting of eight nonmaskable trap vectors and up to 118 sources of interrupt. In ge neral, each interrupt source has i ts own vector. Each interrupt vector contains a 24-bit wide address. The value prog rammed in to each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this prio rity is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupt s at any other vector address.

PIC24HJ32GP202/204 and PIC24HJ16GP304 devices implement up to 21 uniq ue interrupt s and 4 nonmaskable trap s. Th ese are su mmarized i n Table 6-1 and Table 6-2.

6.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is lo cated after the IVT, as shown in Figure 6-1. Access to the AIVT is p rovided by the AL TIVT con trol bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and excep tion p rocesses use th e a Iternate vectors are instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a su pport environment without requiring the in terrupt vectors to be reprogrammed. This feature also enables switching between applications for eva luation o f different software al gorithms at run time. If the AIVT is not needed, the AIVT should be pro grammed with the same addresses used in the IVT.

6.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24H J32GP202/204 and PIC 24HJ16GP304 device clear its registers in response to a Reset, which forces the PC to zero. The microcontroller then begins the program execution at location 0x000000. The user application can u se a GOTO instruction at the Reset address which red irects prog ram execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT shou ld be programmed with the address of a default interrupt handler routine that con tains a RESET instruction.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 6-1:	PIC24HJ32GP202/204 AN	ID PIC24HJ1	16GP304 INTERRUPT VECTOR TABLE
		_	
	Reset - GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved	-	
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~	-	
		0.000070	
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
~	Interrupt Vector 53	0x00007E	
orit		0x000080	
Pri	~ ~	-	
ler	~	-	
Drd	Interrupt Vector 116	0x0000EC	
<u>a</u>	Interrupt Vector 117	0x0000FE	
tur	Reserved	0x000100	
Na Na	Reserved	0x000102	
ing	Reserved	0,000102	
asi	Oscillator Fail Trap Vector	-	
C.G.	Address Error Trap Vector		
De	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~	-	
	~	-	
	~		
	Interrupt Vector 116		
↓ ↓	Interrupt vector 117	0X0001FE	
'	Start of Code		
Note 1	See Table 6-1 for the list of impl	emented inter	rupt vectors
Note 1.			

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	Reserved
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC1
22	14	0x000030	0x000130	Reserved
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	Reserved
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	Reserved
33	25	0x000046	0x000146	Reserved
34	26	0x000048	0x000148	Reserved
35	27	0x00004A	0x00014A	Reserved
36	28	0x00004C	0x00014C	Reserved
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	Reserved
39	31	0x000052	0x000152	Reserved
40	32	0x000054	0x000154	Reserved
41	33	0x000056	0x000156	Reserved
42	34	0x000058	0x000158	Reserved
43	35	0x00005A	0x00015A	Reserved
44	36	0x00005C	0x00015C	Reserved
45	37	0x00005E	0x00015E	Reserved
46	38	0x000060	0x000160	Reserved
47	39	0x000062	0x000162	Reserved
48	40	0x000064	0x000164	Reserved
49	41	0x000066	0x000166	Reserved
50	42	0x000068	0x000168	Reserved
51	43	0x00006A	0x00016A	Reserved
52	44	0x00006C	0x00016C	Reserved
53	45	0x00006E	0x00016E	Reserved

TABLE 6-1:INTERRUPT VECTORS

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	Reserved
55	47	0x000072	0x000172	Reserved
56	48	0x000074	0x000174	Reserved
57	49	0x000076	0x000176	Reserved
58	50	0x000078	0x000178	Reserved
59	51	0x00007A	0x00017A	Reserved
60	52	0x00007C	0x00017C	Reserved
61	53	0x00007E	0x00017E	Reserved
62	54	0x000080	0x000180	Reserved
63	55	0x000082	0x000182	Reserved
64	56	0x000084	0x000184	Reserved
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	Reserved
68	60	0x00008C	0x00018C	Reserved
69	61	0x00008E	0x00018E	Reserved
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	Reserved
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	Reserved
77	69	0x00009E	0x00019E	Reserved
78	70	0x0000A0	0x0001A0	Reserved
79	71	0x0000A2	0x0001A2	Reserved
80-125	72-117	0x0000A4-0x0000 FE	0x0001A4-0x0001 FE	Reserved

TABLE 6-1: INTERRUPT VECTORS (CONTINUED)

TABLE 6-2: TRAP VECTORS

Vector Number	Vector Number IVT Address		Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x000008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	Reserved
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

6.3 Interrupt Control and Status Registers

PIC24HJ32GP202/204 and PIC2 4HJ16GP304 devices implement a tot al of 1 7 registers for the interrupt controller:

- Interrupt Control Register 1 (INTCON1)
- Interrupt Control Register 2 (INTCON2)
- Interrupt Flag Status Registers (IFSx)
- Interrupt Enable Control Registers (IECx)
- Interrupt Priority Control Registers (IPCx)
- Interrupt Control and Status Register (INTTREG)

6.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INT CON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INT CON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

6.3.2 IFSx

The IF S registers maintain a II the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and this is cleared via software.

6.3.3 IECx

The IEC registers maintain all the interrupt enable bits. These control bit s are used ind ividually to enable interrupts from the peripherals or external signals.

6.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of the eight priority levels.

6.3.5 INTTREG

The INTT REG re gister con tains the associ ated interrupt vector number r and the new CPU interrupt priority level, w hich are I atched i nto vector n umber (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INT TREG reg ister. T he new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assign ed to the IFSx, IECx and IPCx registers in the same sequence that they are listed in T able 6-1. F or exampl e, th e INT0 (Extern al Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

6.3.6 STATUS REGISTERS

Although these are not specifically part of the interrupt control hardware, two of the CPU Co ntrol registers contain bits that control interrupt functionality:

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit, so that trap events cannot be masked by the user software.

All Interrupt registers a re describe d in Re gister 6-1 through Register 6-19 in the following pages.

REGISTER 6-1: SR: CPU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—	—	—	—	—	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:		
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'
S = Set only bit	W = Writable bit	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 2-1: "SR: CPU STATUS Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in p arentheses indicates the IPL if IPL<3> = 1. User in terrupts are di sabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—		—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cleared 'x = Bit is unknown			nown	U = Unimpler	mented bit, read	as '0'	

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 2-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
NSTDIS		—	_	—		—	_				
bit 15							bit 8				
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	NSTDIS: Inte	rrupt Nesting E	Disable bit								
	1 = Interrupt i	nesting is disat nesting is enab	bled								
hit 14-7	Unimplemen	ited: Read as '	0'								
bit 6		DIVOFRR: Arithmetic Error Status bit									
bito	1 = Math erro	or trap was cau	sed by a divide	e by zero							
	0 = Math erro	or trap was not	caused by a d	ivide by zero							
bit 5	Unimplemen	ted: Read as '	0'								
bit 4	MATHERR: A	Arithmetic Erroi	Status bit								
	1 = Math error trap has occurred										
	0 = Math erro	or trap has not o	occurred								
bit 3	ADDRERR: A	ADDRERR: Address Error Trap Status bit									
	1 = Address e 0 = Address e	error trap has c error trap has r	occurred ot occurred								
bit 2	STKERR: Sta	STKERR: Stack Error Trap Status bit									
	1 = Stack erro	or trap has occ	urred occurred								
bit 1		scillator Failure	Tran Status b	it							
~	1 = Oscillator	failure trap ha	s occurred								
	0 = Oscillator	failure trap ha	s not occurred								
bit 0	Unimplemen	ted: Read as '	0'								

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI				<u> </u>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ALTIVT: Enab	ole Alternate Inf	errupt Vector	Table bit			
	1 = Use altern	ate vector tabl	e				
	0 = Use stand	ard (default) ve	ector table				
bit 14	DISI: DISI In	struction Status	s dit				
		ruction is active	; ctive				
bit 13-3		ted: Read as ')'				
bit 2	INT2FP: Exte	rnal Interrunt 2	Edge Detect	Polarity Selec	t bit		
Sit 2	1 = Interrupt c	on negative edd	ie	r olanty celeo			
	0 = Interrupt o	on positive edge	e				
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt c	on negative edg	ge				
	0 = Interrupt c	on positive edge	е				
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt c	on negative edg	ge				
	0 = Interrupt c	on positive edge	e				

REGISTER 6-4: INTCON2: INTERRUPT CONTROL REGISTER 2

					-							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF					
bit 7							bit 0					
Legena:	- h:t	\\/\\/ <u>_</u> itable	L:4		mented bit men	d aa (0'						
R = Readable		vv = vvritable	DIL	0 = 0	mented bit, read	uas u						
-n = value at	PUR	"I" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkn	own					
bit 15 /	Unimplomon	tod: Dood oo '	o '									
bit 13		Leu. Reau as	omnloto Intor	runt Elaa Statu	ic bit							
DIL 15	1 = Interrupt r	request has oc	curred	iupi i lay Sialu								
	0 = Interrupt i	request has no	t occurred									
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	g Status bit								
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt r	request has no	t occurred									
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit								
	1 = Interrupt i	 Interrupt request has occurred Interrupt request has not occurred 										
bit 10	SPI1IE: SPI1	Event Interrun	t Flag Status I	nit								
bit to	1 = Interrupt r	1 = Interrupt request has occurred										
	0 = Interrupt r	request has no	t occurred									
bit 9	SPI1EIF: SPI	1 Fault Interru	ot Flag Status	bit								
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt i	request has no	t occurred									
bit 8	T3IF: Timer3	Interrupt Flag	Status bit									
	\perp = Interrupt r 0 = Interrupt r	request has oc request has no	currea t occurred									
bit 7	T2IF: Timer2	Interrupt Flag	Status bit									
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt i	request has no	t occurred									
bit 6	OC2IF: Outpu	ut Compare Ch	annel 2 Interr	upt Flag Status	s bit							
	1 = Interrupt r	1 = Interrupt request has occurred										
L:4 C		request has no	t occurred	-les Cletus hit								
DILO	1 = Interrupt r	apture Chann	ei z interrupt i curred	-lag Status bit								
	0 = Interrupt i	request has oc	t occurred									
bit 4	Unimplemen	ted: Read as '	0'									
bit 3	T1IF: Timer1	Interrupt Flag	Status bit									
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt i	request has no	t occurred									
bit 2	OC1IF: Outpu	ut Compare Ch	annel 1 Interr	upt Flag Status	s bit							
	1 = Interrupt r	request has oc	curred									
		oquest nas 110	Coourieu									

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	INT2IF	_	_	—	_	_
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	—	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ited: Read as '0)'				
bit 13	INT2IF: Exter	nal Interrupt 2 I	-lag Status bi	t			
	1 = Interrupt i	request has occ	occurred				
hit 12-8	Unimplemen	ited: Read as ')'				
bit 7	IC8IF: Input (Capture Channe	el 8 Interrupt I	-lag Status bit			
bit i	1 = Interrupt r	request has occ	urred	lag olateo oli			
	0 = Interrupt i	request has not	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt I	-lag Status bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt i	request has not	occurred				
DIT 5	Unimplemen	ited: Read as ")' =	1			
DIT 4	INTIF: Exter	rnal Interrupt 1	-lag Status bi	τ			
	0 = Interrupt r	request has occ	occurred				
bit 3	CNIF: Input C	Change Notifica	tion Interrupt	Flag Status bit			
	1 = Interrupt r	request has occ	urred	0			
	0 = Interrupt r	request has not	occurred				
bit 2	Unimplemen	ted: Read as ')'				
bit 1	MI2C1IF: 12C	1 Master Event	s Interrupt Fla	ag Status bit			
	1 = Interrupt r	request has occ	urred				
		request has not	occurred	0			
U JIG	512011F: 120	I Slave Events	Interrupt Flag	j Status dit			
	1 = 1 meruping $0 = 1$	request has not	occurred				
		1					

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 6-7: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	U1EIF	—		
bit 7		•	•				bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15-2	Unimplemen	ted: Read as '	0'						
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit					
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt request has not occurred								

bit 0 Unimplemented: Read as '0'

U-U	0-0						K/W-0			
	_	AD11E	UTIXIE	UIRXIE	SPITE	SPITEIE	I 3IE			
DIT 15							DIT 8			
P/M/_0	P/M/ 0		11_0		P/M/ 0	P/M/-0	P/\\/_0			
bit 7	OOZIE	TOZIE		1.112	OONE	IOTIE	bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplei	mented bit, read	id as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-4	Unimplemented: Read as '0'									
bit 13	13 AD1IE: ADC1 Conversion Complete Interrupt Enable bit									
	1 = Interrupt r	equest enable	d							
hit 10		equest not ena	ibieu Intorrunt Enc	bla bit						
DIL 12		equest enable	nitenupt ⊏na 4							
	0 = Interrupt r	request not ena	abled							
bit 11	U1RXIE: UAF	RT1 Receiver Ir	nterrupt Enabl	e bit						
	1 = Interrupt r	equest enable	d							
	0 = Interrupt r	request not ena	bled							
bit 10	SPI1IE: SPI1	Event Interrup	t Enable bit							
	1 = Interrupt r 0 = Interrupt r	equest enable	abled							
bit 9	SPI1EIE: SPI1 Frror Interrupt Enable bit									
	1 = Interrupt request enabled 0 = Interrupt request not enabled									
bit 8	T3IE: Timer3 Interrupt Enable bit									
	1 = Interrupt r	terrupt request enabled								
bit 7	T2IE : Timer2 Interrupt Enable bit									
2	1 = Interrupt request enabled									
	0 = Interrupt r	equest not ena	abled							
bit 6	bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit									
	1 = Interrupt r	equest enable	d							
hit 5	v = memupi request not enabled									
bit 5	1 = Interrupt request enabled									
	0 = Interrupt r	request not ena	abled							
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	T1IE: Timer1	Interrupt Enab	le bit							
	1 = Interrupt r	equest enable	d							
h # 0	0 = Interrupt r	request not ena	ibled	und English 199						
dit 2	1 = Interrupt r	ut Compare Ch	upt Enable bit							
	0 = Interrupt r	request not enable	abled							

REGISTER 6-8: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 6-8: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
	_	INT2IE	_	_		_						
bit 15						•	bit 8					
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0					
IC8IE	IC7IE		INT1IE	CNIE	_	MI2C1IE	SI2C1IE					
bit 7							bit 0					
[
Legend:												
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		d as '0'						
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared				x = Bit is unkr	IOWN					
bit 15_1/	Unimplomon	tod: Read as '	٦ '									
bit 13		rnal Interrunt 2	_ Enable bit									
bit 15	1 = Interrupt r	request enabled										
	0 = Interrupt request not enabled											
bit 12-8	Unimplemented: Read as '0'											
bit 7	IC8IE: Input Capture Channel 8 Interrupt Enable bit											
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 											
bit 6	IC7IE: Input Capture Channel 7 Interrupt Enable bit											
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 											
bit 5	Unimplemented: Read as '0'											
bit 4	INT1IE: External Interrupt 1 Enable bit											
	1 = Interrupt r 0 = Interrupt r	request enableo request not ena	d Ibled									
bit 3	CNIE: Input Change Notification Interrupt Enable bit											
	1 = Interrupt request enabled											
h# 0	0 = Interrupt request not enabled											
DIL Z	Unimplemented: Read as '0'											
DILI												
	0 = Interrupt request not enabled											
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit											
	1 = Interrupt request enabled											
	0 = Interrupt r	request not ena	bled									

REGISTER 6-9: IEC1: INTERRUPT ENABLE CONTROL REGISTER 0
REGISTER 6-10: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	—	—	U1EIE	—
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-2	Unimplement	ted: Read as '	0'				
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit				
	1 = Interrupt request enabled						
	0 = Interrupt r	equest not ena	abled				

bit 0 Unimplemented: Read as '0'

© 2008 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T1IP<2:0>		_		OC1IP<2:0>				
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		IC1IP<2:0>		_		INT0IP<2:0>				
bit 7							bit 0			
· · ·										
Legend:	L.14		- :4							
R = Readable bit		vv = vvritable i	DIC	U = Unimplei	mented bit, rea	ad as 'U				
-n = value at i	JOR	"I" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkno	own			
bit 15	Unimpleme	nted: Read as '0)'							
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is priority 1									
	000 = Interrupt source is disabled									
bit 11	Unimplemented: Read as '0'									
bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1	Interrupt Prior	ity bits					
	111 = Interr	upt is priority 7 (r	highest priorit	y interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1 upt source is disa	abled							
bit 7	Unimpleme	nted: Read as '0)'							
bit 6-4	IC1IP<2:0>:	Input Capture C	hannel 1 Inte	errupt Priority b	its					
	111 = Interr	upt is priority 7 (ł	nighest priorit	y interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
	000 = Interr	upt source is disa	abled							
bit 3	Unimpleme	nted: Read as '0)'							
bit 2-0	INT0IP<2:0>	External Interr	upt 0 Priority	bits						
	111 = Interr	upt is priority 7 (ł	nighest priorit	y interrupt)						
	•									
	•									
	001 = Intern	upt is priority 1	ablad							
	uuu – mem									

REGISTER 6-11: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

REGISTER 6-12: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
		T2IP<2:0>				OC2IP<2:0>			
bit 15	·			·			bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_		IC2IP<2:0>		—	—	—	—		
bit 7							bit 0		
Legend:						1			
R = Readable	bit	W = Writable t	Dit		mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		0^{\prime} = Bit is cle	ared	x = Bit is unkno	own		
bit 15	Unimpleme	nted: Read as 'n	,						
bit 14-12		Timer2 Interrunt	Priority hits						
511 14-12	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•								
	• 001 = Interri	int is priority 1							
	000 = Interru	upt source is disa	abled						
bit 11	Unimpleme	nted: Read as '0	,						
bit 10-8	OC2IP<2:0>	·: Output Compa	re Channel 2	Interrupt Prior	ity bits				
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1							
	000 = Interr	upt source is disa	abled						
bit 7	Unimpleme	nted: Read as '0	,						
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	errupt Priority b	its				
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1							
1 11 0 0	000 = Interru	upt source is disa	abled						
bit 3-0	Unimpleme	nted: Read as '0	ŕ						

© 2008 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		U1RXIP<2.0>	10000		10.00	SPI1IP<2:0>	1010 0			
bit 15		011011 12.0				011111 2.0	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		SPI1EIP<2:0>		_		T3IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15	Unimpleme	ented: Read as '0)'							
bit 14-12	U1RXIP<2:	0>: UARI1 Rece	iver Interrupt	t Priority bits						
	•	rupt is priority 7 (r	lignest priori	ly menupl)						
	•									
	•									
	001 = Inter	rupt is priority 1 rupt source is disa	abled							
bit 11	Unimpleme	ented: Read as '0)'							
bit 10-8	SPI1IP<2:0	>: SPI1 Event Int	errupt Priorit	y bits						
	111 = Interi	rupt is priority 7 (ł	nighest priorit	ty interrupt)						
	•									
	•									
	001 = Inter	rupt is priority 1								
	000 = Inter	rupt source is disa	abled							
bit 7	Unimpleme	ented: Read as '0)'							
bit 6-4	SPI1EIP<2:	:0>: SPI1 Error In	terrupt Priori	ity bits						
	111 = Interi	rupt is priority 7 (r	highest priorit	ty interrupt)						
	•									
	•									
	001 = Interi	rupt is priority 1	ahlad							
bit 3		ented: Read as '()'							
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits							
2.1 0	111 = Interi	rupt is priority 7 (h	highest priorit	ty interrupt)						
	•		•							
	•									
	001 = Inter i	rupt is priority 1								
	000 = Interi	rupt source is disa	abled							

REGISTER 6-13: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

REGISTER 6-14: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

11-0	11-0	11-0	11-0	11-0	11-0	11-0	11-0			
			_	_	_					
bit 15							bit 8			
Sit 10							bit o			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		AD1IP<2:0>				U1TXIP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	oit	U = Unimpler	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	nown					
bit 15-7	Unimpleme	Unimplemented: Read as '0'								
bit 6-4	AD1IP<2:0>	: ADC1 Convers	sion Complete	e Interrupt Prio	rity bits					
	111 = Interru	upt is priority 7 (I	nighest priorit	ty interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	pt source is dis	abled							
bit 3	Unimpleme	nted: Read as ')'							
bit 2-0	U1TXIP<2:0	>: UART1 Trans	mitter Interru	pt Priority bits						
	111 = Interru	upt is priority 7 (I	nighest priorit	ty interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	pt source is dis	abled							

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
		CNIP<2:0>		—	_	_	_		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
		MI2C1IP<2:0>		—		SI2C1IP<2:0>			
bit 7							bit 0		
r									
Legend:									
R = Readable	bit	W = Writable	oit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
			. 1						
bit 15	Unimplemented: Read as '0'								
bit 14-12	CNIP<2:0>: Change Notification Interrupt Priority bits								
	•								
	•								
	•								
	001 = Interru 000 = Interru	upt is priority 1 upt source is dis	abled						
bit 11-7	Unimpleme	nted: Read as ')'						
bit 6-4	MI2C1IP<2:0	0>: I2C1 Master	Events Inter	rupt Priority bits	S				
	111 = Interru	upt is priority 7 (I	nighest priori	ty interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1							
	000 = Interru	upt source is dis	abled						
bit 3	Unimpleme	nted: Read as ')'						
bit 2-0	SI2C1IP<2:0	>: I2C1 Slave E	vents Interru	pt Priority bits					
	111 = Interru	upt is priority 7 (I	nighest priori	ty interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1							
	000 = Interru	upt source is dis	abled						

REGISTER 6-15: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER 6-16: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		IC8IP<2:0>		—		IC7IP<2:0>			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_	—	—	_			INT1IP<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	Unimplemented: Read as '0'								
bit 14-12	IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits								
	111 = Interru	ıpt is priority 7 (ł	nighest priorit	y interrupt)					
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 11	Unimplemer	nted: Read as ')'						
bit 10-8	IC7IP<2:0>:	Input Capture C	Channel 7 Inte	rrupt Priority b	its				
	111 = Interru	ipt is priority 7 (I	nighest priorit	y interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 7-3	Unimplemer	nted: Read as ')'						
bit 2-0	INT1IP<2:0>	: External Interr	upt 1 Priority	bits					
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						

© 2008 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_	_	_	_	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
<u> </u>		INT2IP<2:0>				<u> </u>	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6-4	INT2IP<2:0>:	External Interre	upt 2 Priority	bits			
	111 = Interrup	ot is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
		t io priority 1					
	000 = Interrup	ot source is disa	abled				
bit 3-0	Unimplemen	ted: Read as '0)'				

REGISTER 6-17: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 6-18: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0>		—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemer	nted: Read as '	כי				
bit 6-4	U1EIP<2:0>:	UART1 Error I	nterrupt Priori	ty bits			
	111 = Interru	pt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemer	nted: Read as '	o'				

© 2008 Microchip Technology Inc.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
	<u> </u>				ILR	<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				VECNUM<6:0)>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-12	Unimplemen	ted: Read as 'o)'				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits			
	1111 = CPU	Interrupt Priority	y Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priority	y Level is 1				
	0000 = CPU	Interrupt Priority	y Level is 0				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bits	6		
	0111111 = In	terrupt Vector p	pending is nu	mber 135			
	•						
	•						
	0000001 = In	terrupt Vector p	pending is nu	mber 9			
	0000000 = In	terrupt Vector p	pending is nu	mber 8			

REGISTER 6-19: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

6.4 Interrupt Setup Procedures

6.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if n ested interrupts are not desired.
- Select the u ser-assigned p riority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register con trol bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Set the interrupt enable control bit associated with the source in the appropriate IECx register to enable the interrupt source.

6.4.2 INTERRUPT SERVICE ROUTINE

The method u sed to de clare an ISR and initialize the IVT with the correct vector address depends on the programming I anguage (C or Assembler) and the language development too lsuite u sed to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program will re-enter the ISR immed iately after exiting the routine. If the ISR is coded in assembly language, it must be termina ted u sing a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

6.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is code d like a n ISR, except th at the a ppropriate trap st atus flag i n th e INTCON1 register must b e clea red to avo id re-en try into the TSR.

6.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR val ue onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority le vel 7 by inclusive ORing the value OEh with SRL.

To enable user interrup ts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction p rovides a convenient w ay to disable interrupts of priority levels 1-6 for a fixed period of time. L evel 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

7.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features HJ32GP202/204 an of the PIC24 d PIC24HJ16GP304 fa mily of devices. However, it is n ot i ntended to be a comprehensive reference source. T o complement the information in this data sheet, refer to the PIC24H Fa mily Reference Man ual, "Section 7 Oscillator" (DS70227), which is available from the Microchip website (www.microchip.com).

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 oscillator system provides:

• External and internal oscillator options as clock sources.

- An on-chip PLL to scale the internal operating frequency to the required system clock frequency.
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full speed operation without any external clock generation hardware.
- · Clock switching between various clock sources.
- Programmable clock postscaler for system power savings.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures.
- A Clock Control register (OSCCON).
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 7-1.

FIGURE 7-1: PIC24HJ32GP202/204 AND PIC24HJ16GP304 OSCILLATOR SYSTEM DIAGRAM

7.1 CPU Clocking System

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 devices provide the following sev en system clock options.

- · Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

7.1.1 SYSTEM CLOCK SOURCES

7.1.1.1 Fast RC

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7 .37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

7.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

7.1.1.3 Secondary

The secondary (LP) oscillator is designed for low power and uses a 3 2.768 kHz crystal or ceramic resonator. The LP oscillator uses SOSCI and SOSCO pins.

7.1.1.4 Low-Power RC

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the W atchdog T imer (W DT) and Fail-Safe Clock Monitor (FSCM).

7.1.1.5 FRC

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in Section 7.1.3 "PL L Configuration".

The F RC frequency d epends on the F RC accuracy (see Table 21-18) and the value of the FRC Oscillator Tuning register (see Register 7-4).

7.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Conf iguration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory(Refer to **Section 18.1 "Configuration Bits**" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bit s, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 7-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY). F CY defines the operating speed of the device, and speeds up to 4 0 MHz are supported b y the PIC24HJ32GP202/204 and PIC 24HJ16GP304 architecture.

Instruction execu tion spee d or devi ce opera ting frequency, FCY, is given by:

EQUATION 7-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

7.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 7-2.

The output of the primary oscillator or FRC, denoted as 'FIN' is divided down by a prescale factor (N1) of 2, 3, ... or 33 before it is being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCOmust be selected in the range of 0.8 MHz to 8 MHz. T he prescale facto r 'N1' i s sel ected usin g the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feed back Divisor , selected using the PLLDIV<8:0>bits (PLLFBD<8:0>),provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected su ch that the resulting VCO output frequency is in the range of 100MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 7-2: Fosc CALCULATION

 $FOSC = FIN* \left(\frac{M}{N1*N2}\right)$

For example, when a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode.

• If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.

- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100 MHz to 200 MHz range, which is needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 7-3: XT WITH PLL MODE EXAMPLE

FCY = $\frac{\text{Fosc}}{2} = \frac{1}{2} \left(\frac{1000000*32}{2*2} \right) = 40 \text{ MIPS}$

FIGURE 7-2: PIC24HJ32GP202/204 AND PIC24HJ16GP304 PLL BLOCK DIAGRAM

TABLE 7-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
		COSC<2:0>		—		NOSC<2:0>	
bit 15							bit 8
DAM 0		D 0	11.0	D/C 0	11.0	D/M/ 0	
		R-U	0-0		0-0		
bit 7	IULUUK	LUCK		UF UF	_	LPOSCEN	DSWEN bit 0
Dit 7							Dit U
Legend: y = Value set from Configuration bits on POR							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15 Unimplemented: Read as '0'							
bit 14-12	 4-12 COSC<2:0>: Current Oscillator Selection bits (read-only) 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 						
bit 11	Unimplemen	ted: Read as '(C-Dy-11			
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	6			
	bit 10-8 NOSC(2:0): New Oscillator Selection bits 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n						
bit 7	CLKLOCK: C	Clock Lock Enab	ole bit				
	If clock switch 1 = Clock sw 0 = Clock sw	iing is enabled a itching is disabl itching is enable	and FSCM is ed, system cl ed, system cl	disabled (FOS lock source is lock source car	SC <fcksm> = locked n be modified I</fcksm>	<u>: 0b01)</u> by clock switching	3
bit 6	 IOLOCK: Peripheral Pin Select Lock bit Peripherial Pin Select is locked, write to peripheral pin select register is not allowed Peripherial Pin Select is unlocked, write to peripheral pin select register is allowed 						I
bit 5	LOCK: PLL L	ock Status bit (read-only)				
	1 = Indicates 0 = Indicates	that PLL is in lo that PLL is out	ock, or PLL st of lock, start-	tart-up timer is up timer is in p	satisfied progress or PL	L is disabled	
bit 4	Unimplemen	ted: Read as '0)'				
bit 3	CF: Clock Fai	il Detect bit (rea	d/clear by ap	plication)			
	1 = FSCM ha 0 = FSCM ha	as detected cloc as not detected	k failure clock failure				
bit 2	Unimplemen	ted: Read as '0)'				

REGISTER 7-1: OSCCON: OSCILLATOR CONTROL REGISTER

REGISTER 7-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾	1011 0	FRCDIV<2:0>	
bit 15							bit 8
L							
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPO	ST<1:0>				PLLPRE<4:0>	>	
bit 7							bit 0
Legend:		y = Value set f	from Configu	ration bits on PC	R		
R = Readable	bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1 0 = Interrupts have no effect on the DOZEN bit						set to 1:1	
bit 14-12	DOZE<2:0>: 000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 (100 = FCY/16 101 = FCY/32 110 = FCY/64	Processor Cloc (default)	k Reduction	Select bits			
hit 11		ð 75 Mada Enabl	- hi+(1)				
	1 = DOZE<2 0 = Processo	:0> field specifi or clock/periphe	es the ratio b ral clock ratio	etween the perip o forced to 1:1	oheral clocks a	and the process	or clocks
bit 10-8	FRCDIV<2:0>	Internal Fast	RC Oscillato	or Postscaler bits			
000 = FRC divide by 1 (default) 001 = FRC divide by 2 010 = FRC divide by 4 011 = FRC divide by 8 100 = FRC divide by 16 101 = FRC divide by 32 110 = FRC divide by 64 111 = FRC divide by 256							
bit 7-6	PLLPOST<1:	0>: PLL VCO (Dutput Divide	er Select bits (als	o denoted as	'N2', PLL posts	caler)
	00 = Output/2 01 = Output/4 (default) 10 = Reserved 11 = Output/8						
bit 5	Unimplemen	ted: Read as ')'				
bit 4-0	PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as 'N1', PLL prescaler)						aler)
	00000 = Inpu 00001 = Inpu	t/2 (default) t/3					
	•						
	•						
	• 11111 = Inpu	t/33					

REGISTER 7-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 7-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	_	_	_	_	PLLDIV<8>
·	-					bit 8
R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
		PLLD	IV<7:0>			
						bit 0
bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
Unimplemer	nted: Read as ')'				
PLLDIV<8:0	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
000000000	= 2					
00000001	= 3					
000000010	= 4					
•						
•						
•	- 50 (dofault)					
000110000	- 50 (delault)					
•						
•						
111111111	- 513					
	U-0 	U-0 U-0 — — R/W-0 R/W-1 bit W = Writable I POR '1' = Bit is set Unimplemented: Read as '0 PLLDIV<8:0>: PLL Feedbac 00000000 = 2 000000001 = 3 00000001 = 4 .	U-0 U-0 U-0 — — — R/W-0 R/W-1 R/W-1 PLLD PLLD bit W = Writable bit 2OR '1' = Bit is set Unimplemented: Read as '0' PLLDIV<8:0>: PLL Feedback Divisor bits 000000000 = 2 0000000001 = 3 000000001 = 3 000010000 = 50 (default) . .	U-0 U-0 U-0 U-0 - - - - R/W-0 R/W-1 R/W-1 R/W-0 PLLDIV<7:0> PLLDIV<7:0> bit W = Writable bit U = Unimplemented: POR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted 000000000 = 2 000000001 = 3 000110000 = 50 (default) 	U-0 U-0 U-0 U-0 U-0 - - - - - R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 PLLDIV<7:0> PLLDIV<7:0> bit W = Writable bit U = Unimplemented bit, read 'OR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL mu 000000000 = 2 000000001 = 3 00000001 = 4 . . .	U-0 U-0 U-0 U-0 U-0 - - - - - R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 PLLDIV<7:0> - - - bit W = Writable bit U = Unimplemented bit, read as '0' 2OR '1' = Bit is set '0' = Bit is cleared x = Bit is unk Unimplemented: Read as '0' PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier) 000000000 = 2 000000010 = 4 -

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		_	_	_	—
bit 15		·		•	•		bit 8
L							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN<5:0>					
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				nown
bit 15-6	Unimplemen	ted: Read as ')'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits				
	011111 = Ce	enter frequency	+ 11.625% (8	3.23 MHz)			
	011110 = Ce	enter frequency	+ 11.25% (8.2	20 MHz)			
	•						
	•						
	•	ntor fraguanay	L 0 2750/ (7				
	000001 = Ce	inter frequency	+ 0.375% (7.7)	40 M⊓∠) minal)			
111111 = Center frequency - 0.375% (7.345 MHz)							
	•	inter nequency	0.07070 (7.0	, io iii i2)			
	•						
	•						
	100001 = Ce	enter frequency	- 11.625% (6	.52 MHz)			
	100000 = Center frequency - 12% (6.49 MHz)						

REGISTER 7-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

7.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, L P, F RC and LPRC) under software control at any time. To limit the possible side effects of this fl exibility, PIC24 HJ32GP202/204 and PIC24HJ16GP304 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

7.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 18.1 "Con figuration Bit s"** for further det ails.) If the FC KSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control b its (OSCCON<10:8>) do not control the clock selecti on wh en clock switchin g is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock so urce sel ected b y the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) h as no effect when clock switching is disabled. It is he ld at '0' at all times.

7.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires the following basic sequence:

- Read the COSC bits (OSCCON<14 :12>) to determine the curren t oscillator so urce, if desired.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSC CON<10:8>) for the new oscil lator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to in itiate the oscil lator switch.

Once the ba sic sequ ence is completed, the system clock hardware responds automatically as follows:

1. The clo ck switchin g ha rdware comp ares the COSC st atus b its with the new value of the NOSC control bits. If both of them are the same, the clock switch is a redundant operation. In this

case, the OS WEN bit is cleared aut omatically and the clock switch is aborted.

- 2. If a valid clock switch has been initiated, the LOCK (OSC CON<5>) and the C F (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator has to be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardwareclears the OSWENbit to indicate a successful clocktransition. In addition, the NOSC bit values are transferred the COSC status bits.
- 6. The old clock sou rce is turned off at this time, with the exce ption of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive cod e sh ould not be executed during this time.

2: Direct clock switches between any primary oscillator mode with PLL a nd FR CPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a tran sition clock sou rce between the two PLL modes.

7.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the F SCM function is ena bled, the LPR C intern al oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of a n oscil lator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can e ither attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is us ed to scale the system clock, the internal FRC is a lso multiplied by the same factor on clock failure. Es sentially, the device switches to FRC with PLL on a clock failure. NOTES:

8.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 fa mily of devices. However, it is n ot i ntended to be a comprehensive reference source. T o complement the information in this data sheet, refer to the PIC24H Fa mily "Section 9 Reference Man ual, Watchdog T imer and Po wer Sav ings Modes" (DS7 0236), w hich i s avai lable from the Microchip website (www.microchip.com).

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 devices provid e th e ab ility to manag e po wer consumption by selectively managing clocking to the CPU and the peripherals. In g eneral, a lower clock frequency and a reduction in the number of circuits being clo cked constitutes low er consumed power. PIC24HJ32GP202/204 and PIC2 4HJ16GP304 devices can mana ge p ower con sumption i n fo ur different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of the a bove methods can be used to selectively cu stomize a n application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

8.1 Clock Frequency and Clock Switching

PIC24HJ32GP202/204 and PIC24HJ16GP304 devices allow a wide range of clock frequencies to be selected under applicati on control. If the system clock configuration is not lo cked, u sers can choo se low-power or hig h-precision oscil lators by si mply changing the NOSC bit s (OSCCON<10:8>). Th e process of changing a system clock during operation, as well as limit ations to the process, are discussed in more detail in **Section 7.0** "Oscillator **Configuration**".

8.2 Instruction-Based Power-Saving Modes

PIC24HJ32GP202/204 and PIC24HJ16GP304 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Id le mode halts the CPU and code execution, but allows peripheral modules to continue operation. Example 8-1 shows the Assembler syntax of the PWRSAV instruction.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a deice Reset. When the device exits these modes, it is said to wake-up.

8.2.1 SLEEP MODE

In the Sleep mode,

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sle ep mode on any of these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 8-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

8.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 8.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of the se events:

- Any interrupt that is individually enabled.
- · Any device Reset
- A WDT time-out

On wake-up from Id le mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the i nstruction fo llowing the PWRSAV instruction, or the first instruction in the ISR.

8.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any in terrupt that coi ncides with the execution of a PWRSAV instruction is held off until entry into Slee p or Idle mode is completed. The device then wakes u p from Sleep or Idle mode.

8.3 Doze Mode

The preferred strateg ies for r redu cing po wer consumption are changing clock speed and i nvoking one of the pow er-saving modes. In some circumstances, however, these are not practical. For example, it may be n ecessary for an application to maintain un interrupted syn chronous communication, even while it is doi ng nothing else. Red ucing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing co de. In this mod e, the system clock continues to operate from the same source and at the same spee d. Periph eral mod ules con tinue to b e clocked at the same speed, while the CPU clock speed is re duced. Synchronization between the two clock domains is ma intained, allo wing the peripherals to access the SFR s while the CPU executes co de at a slower rate. Doze mo de i s enab led by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> b its (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mod e to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idl es, wa iting for so mething to invo ke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be en abled by setting the ROI bit (CLKDIV< 15>). By default, interrupt even ts have no effect on Doze mode operation.

For exa mple, sup pose the d evice is o perating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

8.4 Peripheral Module Disable

The Pe ripheral Mo dule Disa ble (PMD) registers provide a metho d to disa ble a peripheral modul e by stopping al I clock sou rces supplied to tha t mod ule. When a peripheral is di sabled using the a ppropriate PMD control bit, the peripheral is in a minimum power consumption st ate. Th e con trol and st atus registers associated with the peripheral are a lso d isabled. So writes to those re gisters will have n o effect and re ad values will be invalid.

A periphe ral module is enab led o nly if both the associated bit in the PMD register are cleared and the peripheral is supported by the specific PIC24H variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of on e instruction cycle (assuming the module control registers are already configured to enable module operation).

PIC24HJ32GP202/204 and PIC24HJ16GP304

REGISTER 8	ISTER 8-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1						
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
—	—	T3MD	T2MD	T1MD		—	—
bit 15	it 15 bit 8						
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	—	U1MD	—	SPI1MD		—	AD1MD
bit 7							bit 0
1							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
			. 1				
DIT 15-14) la hit				
DIT 13	1 - Timor? m	3 MOQUIE DISAD					
	0 = Timer3 m	odule is disable	d				
bit 12	T2MD: Timer2	2 Module Disab	le bit				
	1 = Timer2 m	odule is disable	d				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = Timer1 m	odule is disable	d				
h# 40.0	0 = Timer1 m	odule is enable	a ,,				
DIT 10-8		ted: Read as ()				
DIT /	$12C1MD: 1^{-}C1$	I Module Disab	Ie dit				
	$0 = I^2 C1 \mod 1$	ule is enabled					
bit 6	Unimplemen	ted: Read as '0)'				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UART1 m	odule is disable	ed				
	0 = UART1 m	odule is enable	d				
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3	SPI1MD: SPI	1 Module Disab	ole bit				
	1 = SPI1 mod	ule is disabled					
hit 0 1			,,				
) 				
	0 = ADC1 mo	dule is enabled	4				

PIC24HJ32GP202/204 and PIC24HJ16GP304

REGISTER	8-2: PMD2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	EGISTER 2		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
IC8MD	IC7MD	_	—		_	IC2MD	IC1MD	
bit 15	·		•			·	bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—	—		_	OC2MD	OC1MD	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown	
bit 15	IC8MD: Input	Capture 8 Mod	dule Disable bit					
	1 = Input Cap	ture 8 module i	is disabled					
	0 = Input Cap	oture 8 module	is enabled					
bit 14	IC7MD: Input	Capture 2 Mod	dule Disable bit					
	1 = Input Cap	oture 7 module i	is disabled					
bit 13_10		tod: Read as '						
bit 0		Conturo 2 Mod	, Jula Disable bit					
DIL 9								
	0 = Input Cap	oture 2 module i	is enabled					
bit 8	IC1MD: Input	Capture 1 Mod	dule Disable bit					
	1 = Input Capture 1 module is disabled							
	0 = Input Cap	oture 1 module i	is enabled					
bit 7-2	Unimplemen	ted: Read as ')'					
bit 1	OC2MD: Out	put Compare 2	Module Disabl	e bit				
	1 = Output Co	ompare 2 modu	lle is disabled					
	0 = Output Co	ompare 2 modu	ile is enabled					
bit 0	OC1MD: Out	put Compare 1	Module Disabl	e bit				
	1 = Output Co 0 = Output Co	ompare 1 modu ompare 1 modu	lle is disabled lle is enabled					

AIATE

9.0 I/O PORTS

Note:	This data sheet summarizes the features
	01 the FIG24 TIJJ20F202/204 all u
	PIC24HJ16GP304 fa mily of devices.
	However, it is n ot i ntended to be a
	comprehensive reference source. T o
	complement the information in this data
	sheet, refer to the PIC24H Fa mily
	Reference Man ual, "Section 10. I/ O
	Ports" (DS70230), which is available from
	the Microchip website
	(www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O port s. All I/ O input ports fe ature S chmitt Trigger inputs for improved noise immunity.

9.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is generally subservient to the perip heral. The e peripheral's output buffer data and control sign als are provided to a p air of multipl exers. The multipl exers select whether the peripheral or the a ssociated port has ownership of the output data and control signals of the I/O p in. The logic also prevents "loop through", in which a port's digital output can dri ve the input of a peripheral that shares the same pin. Figure 9-1 shows how ports are shared with o ther peripherals and the associated I/O pin to which they are connected.

When a peripheral is ena bled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O p in can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All p ort pins are d efined as inputs after a Reset. Read s from the latch (LA Tx) read the la tch. Writes to the latch, write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not val id for a p articular de vice w ill be disabled. This means that the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pi n is shared wit h a nother peripheral or function that i s d efined as an in put onl y, it is nevertheless regarded as a ded icated port because there is no other competing source of outputs.

9.1.1 OPEN-DRAIN CONFIGURATION

In addition to the POR T, LAT and TRIS regi sters for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The op en-drain feature allows the generation of outputs higher than V DD (e.g., 5 V) on a ny desired digital-only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Some I/O pins may have internal analog functionality that will not be shown on the de vice pin diagram. These pins must be treated as analog pins. Table 9-1 lists all available pins and their functionality.

TABLE 9-1:AVAILABLE I/O PINS AND
THEIR FUNCTIONALITY

I/O Pin	Digital-Only/5V Tolerant
RA0	No
RA1	No
RA2	No
RA3	No
RA4	No
RA7	Yes
RA8	Yes
RA9	Yes
RA10	Yes
RB0	No
RB1	No
RB2	No
RB3	No
RB4	Yes
RB5	Yes
RB6	Yes
RB7	Yes
RB8	Yes
RB9	Yes
RB10	Yes
RB11	Yes
RB12	No
RB13	No
RB14	No
RB15	No
RC0	No
RC1	No
RC2	No
RC3	Yes
RC4	Yes
RC5	Yes
RC6	Yes
RC7	Yes
RC8	Yes
RC9	Yes

9.2 Configuring Analog Port Pins

The AD1PC FG and TR IS re gisters control the operation of the analog-to-digital (A/D) port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins config ured as di gital in puts will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx p ins) can cause the input buffer to co nsume curre nt that exceed s th e device specifications.

9.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is requ ired b etween a port direction change or port write operation and a read operation of the same port. T ypically this instruction would be a NOP. An example is shown in Example 9-1.

9.3 Input Change Notification

The input change notification function of the I/O ports allows th e PIC 24HJ32GP202/204 and PIC24HJ16GP304 devi ces to gen erate interrupt requests to the p rocessor i n response to a change-of-state on sel ected i nput pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 31 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four con trol registers a re associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of the se bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which cont ain the control bit s for each of the CN pins. Setting any of the control bit s enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on chan ge notification pins should al ways be disa bled when the port pin is configured as a digital output.

EXAMPLE 9-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0
MOV	WO, TRISBB
NOP	
btss	PORTB, #13

; and PORTB<7:0> as outputs

; Configure PORTB<15:8> as inputs

; Delay 1 cycle

; Next Instruction

9.4 Peripheral Pin Select

A maj or ch allenge in g eneral purpose d evices is providing the largest possible set of peripheral features while minimizing the conflict of fe atures on I/O pins. The cha llenge is eve n gre ater on low -pin count devices. In a n a pplication where more than on e peripheral must be assigned to a single pin, inconvenient workaro unds in application code or a complete redesign may be the only option.

Peripheral pin select configuration enables peripheral set selection and placement on a wi de range of I/O pins. By increasing the pin out options available on a particular device, programmers can better t ailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral p in select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally do es not require the device to be reprogrammed. Hardware safeguards are included that prevent accide ntal or spurio us changes to the peripheral mapping, once it has been established.

9.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular de vice and i ts pin count. Pins that support the peripheral pin select feature inclu de the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

9.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two set s of spe cial function registers to map peripherals and to map outputs.

Since they are separately controlle d, a p articular peripheral's input and output (if the peripheral has both) can be placed on any sele ctable function pin without constraint.

The associatio n of a pe ripheral to a pe ripheral selectable pin is handled i n two di fferent wa ys, depending on whether an input or output is bei ng mapped.

9.4.2.1 Input Mapping

The inp uts of the pe ripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 9-1 through Register 9-9). Each register contains sets of 5-bit fields, with each set a ssociated with one of the remappable pe ripherals. Programming a gi ven peripheral's bit field with a n a ppropriate 5 -bit val ue maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 9-2 Illustrates re mappable pin selection for U1RX input.

FIGURE 9-2: REMAPPABLE MUX INPUT FOR U1RX

TABLE 9-2:	REMAPPABLE PERIPHERAL INPUTS ⁽¹⁾

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer 2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer 3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART 1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART 1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI 1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI 1 Clock Input	SCK1IN	RPINR20	SCK1R<4:0>
SPI 1 Slave Select Input	SS1IN	RPINR21	SS1R<4:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

9.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapp ed. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 9-10 throug h Regi ster 9-22). Th e value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 9-3 and Figure 9-3).

The list of peripherals for output mapping also includes a null value of 00000 because of the mapping technique. T his permit s any given pintorema in unconnected from the output of any of the pin selectable peripherals.

TABLE 9-3: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
U1TX	00011	RPn tied to UART 1 Transmit
U1RTS	00100	RPn tied to UART 1 Ready To Send
SDO1	00111	RPn tied to SPI 1 Data Output
SCK10UT	01000	RPn tied to SPI 1 Clock Output
SS10UT	01001	RPn tied to SPI 1 Slave Select Output
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2

9.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peri pheral remapping are ne eded to preven t accid ental co nfiguration changes. PIC24H devices incl ude three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

9.4.3.1 Control Register Lock

Under normal opera tion, writ es to the RPINRx an d RPORx registers are not allowed. Attempted writes appear to execute no rmally, but the con tents of th e registers remain uncha nged. T o ch ange the se registers, they must be unlocked in hardware. The register lo ck i s co ntrolled by th e IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:					
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value) See MPLAB Help for more information.					

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in on e state until changed. This allows all the p eripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a se cond lock sequence.

9.4.3.2 Continuous State Monitoring

In add ition to b eing protect ed from dire ct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such a s cell disturbances caused by ESD or other external events), a configuration mismatch Reset will be triggered.

9.4.3.3 Configuration Bit Pin Select Lock

As an ad ditional level of safety , the d evice can be configured to prevent more than one write session to the RPINRx an d RPORx r egisters. The IOL1 WAY (FOSC<IOL1WAY>) config uration bit blocks the IOLOCK bit from b eing cle ared after it has been set once.

In the default (unprogrammed) state, IOL 1WAY is set restricting the users to one write session. Programming IOL 1WAY allows u ser ap plications u nlimited access (with the p roper u se of the unlock sequence) to the peripheral pin select registers.

9.5 Peripheral Pin Select Registers

The PIC24H J32GP202/204 and PIC 24HJ16GP304 devices implement 1 7 registers for remapable peripheral configuration:

- Input Remappable Peripheral Registers (9)
- Output Remappable Peripheral Registers (8)

Note: Input and Output Register values can only be cha nged i f OSCCON[IOLOCK] = 0. See Section 9.4.3.1 "Control Register Lock" for a specific command sequence.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	_	INT1R<4:0>					
bit 15	·						bit 8	
0-0	0-0	0-0	U-0	0-0	0-0	0-0	U-0	
			—					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b			ut U = Unimplemented bit, read as '0'					
-n = Value at F	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknowr			nown	
bit 15-13	Unimplemen	ted: Read as 'd)'					
bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin							
	11111 = Input tied to Vss							
	11001 = Input tied to RP25							
	•							
	•							
	•							
	00001 = lnpu 00000 = lnpu	it tied to RP1 It tied to RP0						
bit 7-0	Unimplemen	ted: Read as ')'					

REGISTER 9-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

REGISTER 9-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—		INT2R<4:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-5	Unimplemented: Read as '0'							
bit 4-0	INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin							
	11111 = Input tied to Vss							
	11001 = Input tied to RP25							
	•							
	•							
	•							
	00001 = Input tied to RP1							
00000 = Input tied to RP0								

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	—		T3CKR<4:0>						
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	—		T2CKR<4:0>						
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as	'0'							
bit 12-8	T3CKR<4:0>	T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn pin								
	11111 = Input tied to Vss									
	11001 = Inpu	11001 = Input tied to RP25								
	•									
	•									
	- 00001 = Input tied to RP1									
	00000 = Input tied to RP0									
bit 7-5	Unimplemen	ted: Read as	ʻ0'							
bit 4-0	T2CKR<4:0>	T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin								
	11111 = Input tied to Vss									
	11001 = Inpu	ut tied to RP25								
	•									
	•									
	•									
	00001 = Inpu	It tied to RP1								
	00000 = Inpu	IL LIEU LO RPU								

REGISTER 9-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	—				IC2R<4:0>						
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	_	—			IC1R<4:0>						
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'					
-n = Value at POR '1' = Bit is			t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as	ʻ0'								
bit 12-8	IC2R<4:0>: A	Assign Input Ca	apture 2 (IC2)	to the correspo	onding RPn pir	ı					
	11111 = Inpu	11111 = Input tied to Vss									
	11001 = Inpu	it tied to RP25									
	•										
	•										
	•										
	00001 = Inpu	It fied to RP1									
bit 7-5	Unimplemen	ted: Read as	ʻ0'								
bit 4-0	IC1R<4:0>: A	Assian Input Ca	apture 1 (IC1)	to the correspo	ondina RPn pir	ı					
	11111 = Inpu	It tied to Vss	- I		5 1						
	11001 = Inpu	it tied to RP25									
	•										
	•										
	•										
	00001 = Inpu	It tied to RP1									
	00000 – Inpu										

REGISTER 9-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

			D 444 4			D 11/ 1						
U-0	<u> </u>	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
	—	—			IC8R<4:0>							
bit 15							bit 8					
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
					IC7R<4:0>							
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value at POR (1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkr	nown					
			-				-					
bit 15-13	Unimplemen	ted: Read as	ʻ0'									
bit 12-8	IC8R<4:0>: A	IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding pin RPn pin										
	111111 = Inpu	11111 = Input tied to Vss										
	11001 = Inpu	It tied to RP25										
	•											
	•											
	•											
	00001 = Inpu	It tied to RP1										
	00000 = Inpu	It tied to RP0										
bit 7-5	Unimplemen	ted: Read as	'0'									
bit 4-0	IC7R<4:0>: A	Assign Input Ca	apture 7 (IC7)	to the correspo	onding pin RPi	n pin						
	11111 = Inpu	it tied to Vss										
	11001 = Inpu	it tied to RP25										
	•											
	•											
	•											
	00001 = Inpu	It tied to RP1										
	00000 = Inpu	it fied to RP0										

REGISTER 9-5: RPIR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

REGISTER 9-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	_		
bit 15	-					-	bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		—		OCFAR<4:0>					
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown						

bit 15-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 •

> 00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	—	_			U1CTSR<4:()>					
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	_				U1RXR<4:0	>					
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit,						id as '0'					
-n = Value a	t POR	'1' = Bit is set	1	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12-8	U1CTSR<4:0	U1CTSR<4:0>: Assign UART 1 Clear to Send (U1CTS) to the corresponding RPn pin									
	11111 = Inpu	It tied to Vss									
	11001 = Inpu	IL LIED TO RP25									
	•										
	•										
	00001 = Inpu	It tied to RP1									
	00000 = Inpu	it tied to RP0									
bit 7-5	Unimplemen	ted: Read as '	0'								
bit 4-0	U1RXR<4:0>	: Assign UAR	Г 1 Receive (L	J1RX) to the co	rresponding R	Pn pin					
	11111 = Inpu	It tied to Vss									
	11001 = Inpu	it fied to RP25									
	•										
	•										
	00001 = Inn	it tied to RP1									
	00000 = Inpu	it tied to RP0									
	•										

REGISTER 9-7: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_	—	—			SCK1R<4:0	>						
bit 15							bit 8					
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_	_	_			SDI1R<4:0	>						
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown					
bit 15-13	Unimplemen	ted: Read as '	0'									
bit 12-8	SCK1R<4:0>: Assign SPI 1 Clock Input (SCK1IN) to the corresponding RPn pin											
	11111 = Inpu	11111 = Input tied to Vss										
	11001 = Inp u	it fied to RP25										
	•											
	•											
	00001 = Inn	•										
	00000 = Inpu	00000 = Input tied to RP0										
bit 7-5	Unimplemen	ted: Read as '	0'									
bit 4-0	SDI1R<4:0>:	Assign SPI 1 I	Data Input (SI	DI1) to the corre	esponding RP	n pin						
	11111 = Inp u	ut tied to Vss										
	11001 = Inpu	ut tied to RP25										
	•											
	•											
	•	it find to DD1										
	00001 = Inpl00000 = Inpl	it fied to RP1										
	00000 mpc											

REGISTER 9-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—	_	_	—	—	—	
bit 15					•		bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—			SS1R<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as ')'					
bit 4-0	SS1R<4:0>: /	Assign SPI1 Sla	ave Select Inp	out (SS1IN) to	the Correspond	ing RPn pin		
	11111 = Inpu	t tied to Vss						
	11001 = Inpu	t tied to RP25						
	•							
	•							
	•							

REGISTER 9-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 9-10: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

- bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin (see Table 9-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-11: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-12: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
					RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at F	POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin (see Table 9-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-13: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-14: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP8R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-15: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-16:	RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6
----------------	--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_				RP13R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_				RP12R<4:0>		
bit 7	·						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 10.0	DD42D-4.05	Derinheral Ou	tout Function	a ia Apaignad ta		Din (and Table (2 for

bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin (see Table 9-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin (see Table 9-3 for

peripheral function numbers)

REGISTER 9-17: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-18: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP17R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP16R<4:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin (see Table 9-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-19: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP19R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP18R<4:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP19R<4:0>:** Peripheral Output Function is Assigned to RP19 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin (see Table 9-3 for peripheral function numbers)

PIC24HJ32GP202/204 and PIC24HJ16GP304

REGISTER 9-20: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTERS 10

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	RP21R<4:0>				
bit 15			bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP20R<4:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP21R<4:0>:** Peripheral Output Function is Assigned to RP21 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP20R<4:0>:** Peripheral Output Function is Assigned to RP20 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-21: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP23R<4:0>		
bit 15			bit				bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP22R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin (see Table 9-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin (see Table 9-3 for peripheral function numbers)

REGISTER 9-22: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTERS 12

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP25R<4:0>	•	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP24R<4:0>	•	
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as ')'				
bit 12-8	RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin (see Table 9-3 for peripheral function numbers)						
bit 7-5	Unimplemented: Read as '0'						
bit 4-0	RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin (see Table 9-3 for						

peripheral function numbers)

NOTES:

10.0 TIMER1

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 family of devices. It is not i ntended to be a comp rehensive reference so urce. T o comple ment th e information in this data sheet, refer to the *PIC24H Family Reference Manual*, "Section 11. Timers" (DS70244), which is available from the Microchip website (www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-run ning i nterval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Timer1 also supports these features:

· Timer gate operation

- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 10-1 shows a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescal er ratio usin g the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load th e ti mer period val ue into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 10-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U_0	R/W-0	U_0	U_0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS	S<1:0>	_	TSYNC	TCS	_
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
L:1 4 5							
DIT 15	1 - Starte 16	UN DIT					
	0 = Stops 16-l	bit Timer1					
bit 14	Unimplement	ted: Read as ')'				
bit 13	TSIDL: Stop in	n Idle Mode bit					
	1 = Discontinu	ue module ope	ration when d	evice enters Id	lle mode		
bit 10 7		module operati	on in laie mo	ae			
DIL 12-7		r1 Cotod Timo	Accumulation	Enabla bit			
DILO	When T1CS =		Accumulation	I ENADIE DIL			
	This bit is igno	<u>red</u> .					
	When T1CS =	<u> 0:</u>					
	1 = Gated tim	e accumulation	n enabled				
bit 5-4			l uisableu lock Prescale	Select hits			
511 5-4	11 = 1:256						
	10 = 1:64						
	01 = 1:8						
hit 3	00 = 1.1	tod: Dood on '	۰ ،				
bit 2		r1 External Clo) ock Input Svn	chronization Se	plact hit		
	Notice the second select bit when TCS = 1°						
	1 = Synchronize external clock input						
	0 = Do not sy	nchronize exte	rnal clock inpu	ut			
	<u>When TCS =</u> This bit is igno	<u>0:</u> pred					
bit 1	TCS: Timer1 (Clock Source S	Select bit				
	1 = External c	lock from pin T	1CK (on the	rising edae)			
	0 = Internal cl	ock (FCY)		0 0-7			
bit 0	Unimplement	ted: Read as ')'				

REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER

11.0 TIMER2/3 FEATURE

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 family of devices. It is not i ntended to be a comp rehensive reference so urce. T o comple ment th e information in this data sheet, refer to the *PIC24H Family Reference Manual*, "Section 11. Timers" (DS70244), which is available from the Microchip website (www.microchip.com).

The Timer2/3 feature has 32-bit timers that can also be configured a s two inde pendent 16 -bit ti mers with selectable operating modes.

As a 32-bit ti mer, th e T imer2/3 feature pe rmits operation in three modes:

- Two Independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3)
- Single 32-bit synchronous counter (Timer2/3)

The Timer2/3 feature also supports:

- Timer gate operation
- Selectable Prescaler Settings
- Timer operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also of fer the features that are listed above, except for the event trigger. The operating modes and enabled features are determined by settin g the appropriate bit(s) in the T2CON and T3CON registers. T2CON registers are shown in gene ric form in Reg ister 11-1. T3CON registers are shown in Register 11-2.

For 32-bit timer/counter operation, Timer2 is the least significant word (Isw), and T imer3 is the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bit is used for setup and control. Timer2 clock and gate i nputs are u sed for the 3 2-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags.

11.1 32-bit Operation

To configure the Timer2/3 feature for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock an d Gatin g modes usi ng the corresponding TCS and TGATE bits.
- 4. Load the timer perio d value. PR3 contains the most significant word o f the value, w hile PR2 contains the least significant word.
- 5. Set the interrupt enable bit T3IE, if interrupts are required. Use the priority bits T3IP<2:0> to set the interrupt priority. While Timer2 controls the timer, the i nterrupt a ppears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair TMR3:TMR2. TMR3 always cont ains the most significant word of the count, while TMR2 contains the least significant word.

To config ure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescal er ratio usin g the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer perio d valu e into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 11-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

PIC24HJ32GP202/204 and PIC24HJ16GP304

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15	b						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS	6<1:0>	T32 ⁽¹⁾		TCS	_
bit 7							bit 0
Legend:			••			(2)	
R = Readable	bit	W = Writable I	oit		mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15	bit 15 TON: Timer2 On bit <u>When T32 = 1:</u> 1 = Starts 32-bit Timer2/3 0 = Stops 32-bit Timer2/3 <u>When T32 = 0:</u> 1 = Starts 16-bit Timer2						
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	TSIDL: Stop i	n Idle Mode bit					
	1 = Discontinu 0 = Continue	ue module oper module operati	ration when d on in Idle mo	evice enters lo de	lle mode		
bit 12-7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	er2 Gated Time	Accumulatior	n Enable bit			
	When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled						
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-bit Timer Mode Select bit ⁽¹⁾						
	 1 = Timer2 and Timer3 form a single 32-bit timer 0 = Timer2 and Timer3 act as two 16-bit timers 						
bit 2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timer2	Clock Source S	Select bit				
	1 = External c 0 = Internal cl	clock from pin T lock (FCY)	2CK (on the	rising edge)			
bit 0	Unimplemen	ted: Read as ')'				

REGISTER 11-1: T2CON CONTROL REGISTER

Note 1: In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.

T3CON CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾		—	—	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽¹⁾	TCKPS<	<1:0> ⁽¹⁾	—	_	TCS ⁽¹⁾	—
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
1.11.4 F		o					
DIT 15	1 - Storte 16	On bit					
	0 = Stops 16-I	bit Timer3					
bit 14	Unimplement	ted: Read as 'o)'				
bit 13	TSIDL: Stop in	n Idle Mode bit	(1)				
	1 = Discontinu	ue module oper	ation when c	levice enters lo	lle mode		
	0 = Continue	module operati	on in Idle mo	de			
bit 12-7	Unimplement	ted: Read as '0)'				
bit 6	TGATE: Time	r3 Gated Time	Accumulatio	n Enable bit ⁽¹⁾			
	<u>When TCS =</u>	<u>1:</u>					
	When TCS =	o.					
	1 = Gated tim	<u>.</u> e accumulation	enabled				
	0 = Gated tim	e accumulation	disabled				
bit 5-4	TCKPS<1:0>	: Timer3 Input (Clock Presca	le Select bits ⁽¹⁾)		
	11 = 1:256						
	10 = 1.64 01 = 1.8						
	00 = 1:1						
bit 3-2	Unimplement	ted: Read as 'o)'				
bit 1	TCS: Timer3	Clock Source S	elect bit ⁽¹⁾				
	1 = External c	lock from pin T	3CK (on the	rising edge)			
1.11 Q	0 = Internal cl	OCK (FCY)	. 1				
DIT U	Unimplement	ted: Read as '()*				

Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timer3 operation; all timer functions are set through T2CON.

REGISTER 11-2:

NOTES:

12.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 family of devices. It is not i ntended to be a comp rehensive reference so urce. T o comple ment th e information in this data sheet, refer to the *PIC24H Family Reference Manual*, "Section 12. Input Capture" (DS70248), which is available from the Microchip website (www.microchip.com).

The in put cap ture mod ule is use ful in ap plications requiring frequency (period) and pulse measurement. The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin

- Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling).
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - -Capture timer value on every 16th rising edge of input at ICx pin

Each in put capture chan nel can se lect one of the two 16-bit timers (Timer2 or T imer3) for the time base. The sele cted timer can use e ither an intern al or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- Four-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

PIC24HJ32GP202/204 and PIC24HJ16GP304

12.1 Input Capture Registers

REGISTER 12-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	ICSIDL		—		_	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	DIt		nented bit, read		
-n = value at P	OR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	own
bit 15-14	Unimplement	tod: Read as '	٦,				
bit 13		Canture Modu	, Ile Ston in Idle	Control hit			
Sit 10	1 = Input capt	ure module wil	I halt in CPU	Idle mode			
	0 = Input capt	ure module wil	I continue to c	operate in CPL	J Idle mode		
bit 12-8	Unimplement	ted: Read as ')'				
bit 7	ICTMR: Input	Capture Timer	Select bits				
	1 = TMR2 cor	ntents are capt	ured on captu	re event			
h# C F	0 = 1 MR3 cor	itents are caption	ured on captu	re event			
DIL 0-5			captures per	nterrupt bits			
	10 = Interrupt	on every third	capture even	t			
	01 = Interrupt	on every seco	nd capture ev	rent			
	00 = Interrupt	on every capt	ure event				
bit 4	ICOV: Input C	apture Overflo	w Status Flag	bit (read-only))		
	1 = Input capt 0 = No input c	apture overflow of	v occurred				
bit 3	ICBNE: Input	Capture Buffer	Empty Status	s bit (read-only	<i>(</i>)		
	1 = Input capt	ure buffer is no	ot empty, at lea	ast one more o	, apture value ca	n be read	
	0 = Input capt	ure buffer is er	npty				
bit 2-0	ICM<2:0>: Inp	out Capture Mo	ode Select bits	6			
	111 = Input ca	apture function	s as interrupt	pin only when	device is in Sle	ep or Idle mode	9
	(Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled)						
	101 = Capture mode, every 16th rising edge						
	100 = Capture mode, every 4th rising edge						
	011 = Capture	e mode, every	falling edge				
	001 = Capture	e mode, every	edge (rising a	nd falling)			
	(ICI<1:	0> bits do not	control interru	pt generation f	for this mode.)		
	000 = Input capture module turned off						

13.0 OUTPUT COMPARE

Note:	This data sheet summarizes the features					
	of the PIC24 HJ32GP202/204 an d					
	PIC24HJ16GP304 fa mily of devices.					
	However, it is n ot i ntended to be a					
	comprehensive reference source. T o					
	complement the information in this data					
	sheet, refer to the PIC24H Fa mily					
	Reference Manual, "Section 13. Output					
	Compare" (DS70247), which is available					
	from the Microchip website					
	(www.microchip.com).					

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the o utput pin changes when the timer value matches the compare register value. The Output Compare modul e gen erates eithe r a si ngle output pulse or a sequence of output pulses, by changing the state of the output pin on the comp are match events. The Output C ompare module can also gen erate interrupts on compare match events.

The Output Comp are module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- PWM mode with fault protection

FIGURE 13-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

13.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 13-1 lists the different bit settings for the Output

Compare mod es. Figure 13-2 il lustrates the output compare ope ration for vari ous mod es. The user application must d isable the associated timer wh en writing to the output compare control registers to avoid malfunctions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx Rising edge
010	Active-High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

TABLE 13-1: OUTPUT COMPARE MODES

13.2 Output Compare Register

REGISTER 13-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	—	—	—
bit 15						·	bit 8
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT OC	TSE L		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)0 = No PWM Fault condition has occurred
	(This bit is only used when OCM<2:0> = 111.)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCX pin low, generate continuous output pulses on OCX pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

© 2008 Microchip Technology Inc.

NOTES:

14.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note:	This data sheet summarizes the features
	of the PIC24 HJ32GP202/204 an d
	PIC24HJ16GP304 fa mily of devices.
	However, it is n ot i ntended to be a
	comprehensive reference source. T o
	complement the information in this data
	sheet, refer to the PIC24H Fa mily
	Reference Man ual, "Section 18 . Serial
	Peripheral Inter face (SPI™)"
	(DS70243), which is available from the
	Microchip website (www.microchip.com).

The Serial Peri pheral Interface (SPI) modu le is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters (ADC) and so on. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register , SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buf fer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of these four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 14-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
SPIEN		SPISIDL				_	_	
bit 15							bit 8	
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0	
	SPIROV					SPITBF	SPIRBF	
bit 7							bit 0	
r								
Legend:		C = Clearable	bit					
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	SPIEN: SPIX	Enable bit						
	1 = Enables r	module and cor	ifigures SCKx	, SDOx, SDIx	and SSx as ser	ial port pins		
hit 14								
bit 13	SDISIDI - Stan in Idla Mada hit							
DIL 13	1 = Discontin	ue module oper	ration when d	evice enters lo	lle mode			
	0 = Continue	module operati	on in Idle mod	de				
bit 12-7	Unimplemen	Unimplemented: Read as '0'						
bit 6	SPIROV: Red	ceive Overflow	Flag bit					
	1 = A new by	/te/word is com	pletely receive	ed and discard	led. The user so	oftware has not	read the	
	o = No overf	data in the SPI	xBUF register	-				
bit 5-2	Unimplemen	ited: Read as '	יש. ז'					
bit 1	SPITBE: SPI	x Transmit Buffe	er Full Status	bit				
	1 = Transmit	not vet started.	SPIxTXB is fu					
	0 = Transmit	started, SPIxTX	(B is empty					
	Automatically	set in hardwar	e when CPU	writes SPIxBU	F location, load	ing SPIxTXB.		
h # 0		cleared in hard	ware when S	PIX module tra	ansters data from	n SPIX I XB to S	SPIXSR.	
DITU			er ⊢ull Status I	JIC				
	 1 = Receive (0 = Receive i 	s not complete	SPIxRXB is 6	emptv				
	Automatically	set in hardwar	e when SPIx f	transfers data	from SPIxSR to	SPIxRXB.		
	Automatically	cleared in hard	ware when c	ore reads SPI	BUF location, r	eading SPIxRX	(В.	

REGISTER 14-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN	СКР	CKP MSTEN SPRE<2:0> PPRE<1:0>			<1:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	ble bit U = Unimplemented bit, read			as '0'			
-n = Value at P	POR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown			
bit 15-13	Unimplement	ted: Read as ')'						
bit 12	DISSCK: Disa	able SCKx pin	bit (SPI Maste	r modes only)					
	1 = Internal SPI clock is disabled, pin functions as I/O 0 = Internal SPI clock is enabled								
bit 11	DISSDO: Disa	able SDOx pin	bit						
	1 = SDOx pin is not used by module; pin functions as I/O								
	0 = SDOx pin	is controlled by	y the module						
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit					
	0 = Communie	cation is byte-v	vide (8 bits)						
bit 9	SMP: SPIx Da	ata Input Samp	le Phase bit						
	Master mode:	aster mode:							
	1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time								
	<u>Slave mode:</u>	lave mode:							
	SMP must be	cleared when	SPIx is used i	n Slave mode.					
bit 8	CKE: SPIx Cl	ock Edge Sele	ct bit ⁽¹⁾	.					
	1 = Serial output data changes on transition from active clock state to active clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)								
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de)					
	1 = SSx pin used for Slave mode								
	0 = SSx pin ne	ot used by mod	dule. Pin contr	olled by port fu	unction				
bit 6	CKP: Clock Polarity Select bit								
	1 = Idle state	for clock is a hi for clock is a lo	igh level; active	e state is a lov	v level h level				
bit 5	MSTEN: Mast	ter Mode Enab	le bit	s state is a rilyi					
2.1.0	1 = Master mode								
	0 = Slave mod	de							

REGISTER 14-2: SPIXCON1: SPIX CONTROL REGISTER 1

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 14-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
 - **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		—		—	_
bit 15		·				· · · · · ·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—		_	—		—	FRMDLY	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'		l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit				
	1 = Framed S	Plx support en	abled (SSx pi	n used as fram	ne sync pulse in	put/output)	
				1			
DIT 14	SPIFSD: Fran	ne Sync Pulse	Direction Cor	itrol dit			
	1 = Frame syl	nc puise input (nc puise output	(slave) t (master)				
bit 13	FRMPOL : Frame Sync Pulse Polarity bit						
2.1.10	1 = Frame sv	nc pulse is acti	ve-hiah				
	0 = Frame sy	nc pulse is acti	ve-low				
bit 12-2	Unimplemented: Read as '0'						
bit 1	FRMDLY: Fra	me Sync Pulse	e Edge Select	bit			
	1 = Frame sy	nc pulse coinci	des with first I	bit clock			
	0 = Frame sy	nc pulse prece	des first bit clo	ock			
bit 0	Unimplemented: This bit must not be set to '1' by the user application						

REGISTER 14-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

15.0 INTER-INTEGRATED CIRCUIT (I²C™)

Note:	This data sheet summarizes the features
	of the PIC24 HJ32GP202/204 an d
	PIC24HJ16GP304 fa mily of devices.
	However, it is n ot i ntended to be a
	comprehensive reference source. T o
	complement the information in this data
	sheet, refer to the PIC24H Fa mily
	Reference Ma nual, "Section 19.
	Inter-Integrated Circuit (I ² C™)"
	(DS70235), which is available from the
	Microchip website (www.microchip.com).

The Inte r-Integrated Ci rcuit (I 2 C) mo dule provid es complete hardware sup port for both Slave an d Multi-Master modes of the I 2 C seria I commu nication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data.

The I²C module offers the following key features:

- •I ²C interface supporting both Master and Slave modes of operation.
- •I ²C Slave mode supports 7-bit and 10-bit address
- •I ²C Master mode supports 7-bit and 10-bit address
- •I ²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- •I ²C supports multi-master operation, detects bus collision and arbitrates accordingly.

15.1 Operating Modes

The hardware fully implements all the master and slave functions of the I 2 C S tandard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I 2 C modu le can o perate either a s a sl ave o r a master on an I 2 C bus.

The following types of I^2C operation are supported:

- •I ²C slave operation with 7-bit address
- •I ²C slave operation with 10-bit address
- •I ²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the *PIC24H Family Reference Manual*".

15.2 I²C Registers

I2CxCON an d I2CxST AT are control a nd status registers, respectively . The I2CxCON reg ister is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

- I2CxRSR is the shift register used for shifting data.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a doub le-buffered receive r. Whe n I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

PIC24HJ32GP202/204 and PIC24HJ16GP304

Internal Data Bus I2CxRCV Read SCLx Shift Clock I2CxRSR LSb \boxtimes SDAx Address Match Write Match Detect I2CxMSK Read Write I2CxADD Read Start and Stop Bit Detect Write Start and Stop I2CxSTAT Bit Generation Control Logic Read Collision Write Detect I2CxCON Acknowledge Read Generation Clock Stretching Write I2CxTRN LSb Read Shift Clock Reload Control Write BRG Down Counter I2CxBRG Read TCY/2

FIGURE 15-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1)
REGISTER 15-1: I2CxC	CON: I2Cx	CONTROL	REGISTER
----------------------	-----------	---------	----------

bit 7

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HS = Set in hardware HC = Cleared in hardware -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I²C pins are controlled by port functions bit 14 Unimplemented: Read as '0' bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I²C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds GCEN: General Call Enable bit (when operating as I²C slave) bit 7 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) bit 6 Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching

0 = Disable software or receive clock stretching

bit 0

REGISTER 15-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC	
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	
		D 0 1100			D 0 1100		D 0 1100	
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC	
IVVCOL	12000	D_A	P	5	R_W	RBF	I BF	
Dit 7							Dit U	
Legend:		U = Unimpler	nented bit, rea	ad as '0'				
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/cleared	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15	ACKSTAT: Ac (when operati 1 = NACK receiption	cknowledge Stand rng as I ² C mas ceived from slav	atus bit ter, applicable ve	e to master tra	nsmit operation)		
	Hardware set	or clear at end	f of slave Ack	nowledge.				
bit 14	TRSTAT: Tran	nsmit Status bi	t (when opera	ting as I ² C ma	ster, applicable	to master trans	mit operation)	
	1 = Master tra	ansmit is in pro	gress (8 bits -	+ ACK)				
	0 = Master tra	ansmit is not in	progress f master trans	mission Hard	lwara cloar at o	nd of slavo Ack	nowlodgo	
hit 13_11		tod: Read as '				IU UI SIAVE ACKI	iowieuge.	
bit 10	BCI · Master	Rus Collision [∪ Detect hit					
bit to	1 = A bus coll	ision has been	detected dur	ing a master o	peration			
	0 = No collisio Hardware set	on at detection of	bus collision		P 0 0 0 0 0 0			
bit 9	GCSTAT: Ger	neral Call Statu	is bit					
	1 = General c 0 = General c Hardware set	all address wa all address wa when address	s received s not received matches gen	d eral call addre	ess. Hardware c	lear at Stop det	ection.	
bit 8	ADD10: 10-bi	it Address Stat	us bit					
	1 = 10-bit add 0 = 10-bit add Hardware set	lress was mato lress was not r at match of 2r	ched natched id byte of mat	ched 10-bit ad	dress. Hardwar	e clear at Stop	detection.	
bit 7	IWCOL: Write	e Collision Dete	ect bit					
	1 = An attemp 0 = No collisio	ot to write the li	2CxTRN regis	ster failed beca	ause the I ² C mo	dule is busy		
hit C	Hardware set	at occurrence	of write to I20		usy (cleared by	soπware).		
DILO	1 = A byte wa	ive Overnow Fi is received whi	le the I2CxR(V register is s	till holding the r	orevious byte		
	0 = No overflo Hardware set	at attempt to t	ransfer I2CxR	SR to I2CxRC	CV (cleared by s	oftware).		
bit 5	D_A: Data/Ad	ldress bit (whe	n operating a	s l ² C slave)				
	1 = Indicates 1 0 = Indicates 1 Hardware clea	that the last by that the last by ar at device ad	te received w te received w dress match.	as data as device add Hardware set	ress by reception of	slave byte.		
bit 4	P: Stop bit							
	1 = Indicates 0 = Stop bit w Hardware set	that a Stop bit as not detecte or clear when	has been det d last Start, Repeat	ected last ed Start or Sto	p detected.			

REGISTER 15-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 15-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7					·	•	bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

PIC24HJ32GP202/204 and PIC24HJ16GP304

NOTES:

16.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 fa mily of devices. However, it is n ot intended to be a comprehensive reference source. T o complement the i nformation in this data sheet, refer to the *PIC24H Fa mily Reference Manual,* "Section 17. UART" (DS70232), which is available from the Microchip website (www.microchip.com).

The Universal Asynchronous Recei ver Transmitter (UART) module is one of the serial I/O modu les available in th e PIC2 4HJ32GP202/204 an d PIC24HJ16GP304 devi ce famil y. T he UAR T is a full-duplex a synchronous system th at can communicate wi th pe ripheral device s, such as personal computers, LIN, RS-232 a nd RS-48 5 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, odd or no parity options (for 8-bit data)
- · One or two stop bits

- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 1 Mbps to 15 bps at 16x mode at 40 MIPS
- Baud rates ranging from 4 Mbps to 61 bps at 4x mode at 40 MIPS
- 4-deep first-in-first-out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for Sync and Break characters
- Support for automatic baud rate detection
- · IrDA encoder and decoder logic
- · 16x baud clock output for IrDA support

A simpli fied bl ock diag ram of the UAR T modul e is shown in Fi gure 16-1. The UART module consists of the following key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

© 2008 Microchip Technology Inc.

	11.0	D/\/\ 0			11.0	D/\// 0	
	0-0		R/VV-U		0-0		R/W-U
UARIEN		USIDL	IREN ⁽¹⁾	RISMD		UEN<	<1:U>
DIL 15							DILO
PAN-0 HC	P/M/0		P///_0				P/M_0
				BRCH		<1:0>	
bit 7	LI DACK	ABAOD	UIVAIIN	ыкоп	T DOLL	\$1.02	bit 0
bit 7							DILO
Legend:		HC = Hardwa	re cleared				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
							-
bit 15	UARTEN: UA	RTx Enable bi	t				
	1 = UARTx is	enabled; all U	ARTx pins ar	e controlled by	UARTx as defir	ned by UEN<1:	0>
	0 = UARTx is	disabled; all L	IARTx pins ar	e controlled by	y port latches; U	ARTx power co	onsumption
	minimal						
bit 14	Unimplement	ted: Read as ')'				
bit 13	USIDL: Stop i	n Idle Mode bi					
	1 = Discontin0 = Continue	module operat	ion in Idle mo	device enters i ode	ale mode		
bit 12	IREN: IrDA FI	ncoder and De	coder Enable	bit ⁽¹⁾			
2	1 = IrDA enco	oder and deco	der enabled				
	0 = IrDA enco	oder and deco	ler disabled				
bit 11	RTSMD: Mod	e Selection for	UxRTS Pin b	bit			
	$1 = \underline{V}RTS p$	in in Simplex m	node				
hit 10		In In Flow Cont	rol mode				
		ADTy Enchlor) vita				
DIL 9-8	U = N < 1:0 >: 0.		nins are ens	bled and used		ntrolled by port	latches
	10 = UxTX, U	xRX, UxCTS a	nd UxRTS pi	ns are enabled	and used	ntrolled by port	latenes
	01 = UxTX, U	xRX and UxRT	S pins are er	nabled and use	ed; UxCTS pin c	ontrolled by por	t latches
	00 = UxTX an	id UxRX pins a	re enabled ar	nd used; UxCT	S and UxRTS/B	CLK pins contr	olled by
hit 7		ies	Dotoot Durin	a Sloop Mode	Enable bit		
		ill continue to	ample the L	RX nin: interri	int generated or	n falling edge: h	it cleared
	in hardwa	are on following	rising edge		apt generated of	r laining eage, e	
	0 = No wake-	up enabled					
bit 6	LPBACK: UA	RTx Loopback	Mode Select	bit			
	1 = Enable Lo	oopback mode	la d				
h# 7		c mode is disat					
DIL D	1 = Enable b	-Baud Enable	urement on th	ne nevt charac	ter – requires re	cention of a Sv	inc field (55h)
	before otl	her data: cleare	ed in hardwar	e upon comple	tion	ception of a Sy	
	0 = Baud rate	e measurement	disabled or o	completed			
bit 4	URXINV: Rec	eive Polarity In	version bit				
	1 = UxRX Idle	e state is '0'					
	0 = UxRX Idle	e state is '1'					

REGISTER 16-1: UXMODE: UARTX MODE REGISTER

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 16-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEI 1			_	UTXBRK	UTXFN	UTXBF	TRMT
bit 15	017411	OTAIOLLU		OTABLE	OTALI	0 IXBI	hit 8
Sit TO							bit o
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7		1					bit 0
Legend:		HC = Hardwar	e cleared				
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15,13	UTXISEL<1:0)>: Transmissio	n Interrupt M	ode Selection I	bits		
, -	11 = Reserve	d: do not use					
	10 = Interrupt	when a charac	ter is transfe	rred to the Trar	nsmit Shift Regi	ister, and as a r	esult, the
	transmit	buffer becomes	s empty				
	01 = Interrupt	when the last o	haracter is s	hifted out of the	e Transmit Shif	t Register; all tra	ansmit
		when a charac	ter is transfe	rred to the Trar	nsmit Shift Regi	ister (this implie	s there is
	at least o	one character of	pen in the tra	insmit buffer)	ionni onni rogi		
bit 14	UTXINV: Tran	nsmit Polarity In	version bit				
	1 = UxTX Idle	e state is '1'					
	0 = UxTX Idle	e state is '0'					
bit 12	Unimplemen	ted: Read as '0	,				
bit 11	UTXBRK: Tra	ansmit Break bit					
	1 = Send Syr	nc Break on nex	t transmissio	n – Start bit, fo	llowed by twelv	e '0' bits, follow	ed by Stop bit;
	cleared b	y hardware upo	n completion) completed			
bit 10		smit Enable bit		completed			
bit TO	1 = Transmit	enabled UxTX	nin controlle	d by UARTx			
	0 = Transmit	disabled, any p	ending trans	mission is abo	rted and buffer	is reset. UxTX	pin controlled
	by port		0				
bit 9	UTXBF: Trans	smit Buffer Full	Status bit (re	ad-only)			
	1 = Transmit	buffer is full					
	0 = Transmit	buffer is not full	, at least one	e more characte	er can be writte	n	
bit 8	TRMT: Transr	nit Shift Registe	er Empty bit (read-only)			
	1 = Iransmit	Shift Register is	empty and tr	ansmit butter is	s empty (thelas	t transmission h	as completed)
bit 7-6			arrunt Mode	Selection bits	is in progress c	n queueu	
bit 7-0		is set on LIVRS	R transfer m	aking the recei	ive buffer full (i	o has 4 data c	haracters)
	10 = Interrupt	is set on UxRS	R transfer m	aking the recei	ve buffer 3/4 fu	ll (i.e., has 3 da	ta characters)
	0x = Interrupt	is set when an	y character i	s received and	d transferred fro	om the UxRSR t	to the receive
	buffer. R	eceive buffer ha	as one or mo	re characters			
bit 5	ADDEN: Add	ress Character	Detect bit (bi	t 8 of received	data = 1)		
	1 = Address	Detect mode er	abled. If 9-bi	t mode is not s	elected, this do	es not take effe	ect
			Sauleu				

REGISTER 16-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Value of bit onl y a ffects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

REGISTER 16-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only) Framing error has been detected for the current character (character at the top of the receive FIFO) Framing error has not been detected
bit 1	 OERR: Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed 0 = Receive buffer has notoverflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Value of bit onl y a ffects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

NOTES:

17.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

This data sheet summarizes the features Note: of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 fa mily of devices. However, it is n ot i ntended to be а comprehensive reference source. T o complement the information in this data sheet, refer to the PIC24H Fa mily Reference Ma nual, "Section 16. Analog-to-Digital Converter (ADC) with DMA" (DS70225), which is available from the Microchip website (www.microchip.com).

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 devices ha ve u p to 13 Analog-to-Digital C onversion (ADC) module input channels.

The AD1 2B b it (AD1C ON1<10>) a llows each of the ADC modul es to be config ured as ei ther a 10-bit, 4-sample-and-hold AD C (def ault configuration), or a 12-bit, 1-sample-and-hold ADC.

Note: The ADC module must be disabled before the AD12B bit can be modified.

17.1 Key Features

The 1 0-bit AD C con figuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- · Selectable Buffer Fill modes
- Operation during CPU Sleep and Idle modes
- · 16-word conversion result buffer

The 12-bit ADC configu ration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported.
- There is only 1 sample-and-hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pin out, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In a ddition, there are two analog input pins for external voltage reference connections. These voltage reference i nputs can be shared with other analog input pins.

The actual number of analog input pins and external voltage reference input configuration will depend on the specific d evice. Refer to the device dat a sheet for further details.

A block diag ram of ADC for PIC24HJ1 6GP304 and PIC24HJ32GP204 devices is shown in Figure 17-1. A block diagram of the ADC for the PIC24HJ32GP202 device is shown in Figure 17-2.

17.2 ADC Initialization

To configure the ADC module:

- 1. Select p ort pins a s ana log inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>).
- Select volt age reference so urce to match expected range on anal og inpu ts (AD1CON2<15:13>).
- Select the ana log conversion clock to match desired d ata rate w ith proce ssor clock (AD1CON3<7:0>).
- 4. Determine ho w many sample-and-hold channels will be used (AD1 CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>).
- 5. Select the app ropriate sa mple/conversion sequence (AD 1CON1<7:5> a nd AD1CON3<12:8>).
- 6. Select the way conversion results are presented in the buffer (AD1CON1<9:8>).
- 7. Turn on the ADC module (AD1CON1<15>).
- 8. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select ADC interrupt priority.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 17-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	_	_	AD12B	FORM	<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7					I		bit 0
Legend: HC = Cleared by hardware HS = Set by hardware							
R = Readable	bit	W = Writable b	pit	U = Unimplei	mented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: ADC 1 = ADC mod 0 = ADC is or	Operating Mode dule is operating	e bit 9				
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	ADSIDL: Stop	o in Idle Mode b	pit				
	1 = Discontir 0 = Continue	nue module ope module operat	ion in Idle mod	evice enters lo de	lle mode		
bit 12-11	Unimplemen	ted: Read as '0)'				
bit 10	AD12B: 10-bi	it or 12-bit Oper	ation Mode bi	t			
	1 = 12-bit, 1- 0 = 10-bit, 4-	channel ADC o channel ADC o	peration peration				
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits				
	For 10-bit operation: 11 = Reserved 10 = Reserved 01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd) For 12-bit operation: 11 = Reserved 10 = Reserved						
	01 = Signed I	nteger (Dout =	ssss sddd	dddd dddd, V	where $s = .NOT$.d<11>)	
bit 7-5		Sample Clock S	Source Select	hits			
JIL 7-0	SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved 011 = Reserved 010 = GP timer 3 compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion						
bit 4	Unimplemen	ted: Read as '0	,'		0.001		
bit 3	SIMSAM: Sin	nultaneous Sam	ple Select bit	(applicable on	ly when CHPS<	<1:0> = 01 or 1	x)
	When AD12E 1 = Samples Samples	B = 1, SIMSAM CH0, CH1, CH CH0 and CH1	is: U-0, Unim 2, CH3 simulta simultaneousl	plemented, R aneously (whe y (when CHPS	ead as '0' n CHPS<1:0> = S<1:0> = 01)	= 1x); or	,

REGISTER 17-1: AD1CON1: ADC1 CONTROL REGISTER 1

REGISTER 17-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample-and-hold amplifiers are sampling 0 = ADC sample-and-hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by bardwa re when ADC conversion is complete. Software can write ' 0' to cle

Automatically set by hardwa re when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 17-2: AD1CON2: ADC1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>		—	—	CSCNA	CHPS	6<1:0>
bit 15						I	bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—		SMPI	<3:0>		BUFM	ALTS
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unki	nown
bit 15-13	VCFG<2:0>:	Converter Vol	tage Reference	Configuratior	n bits		
	A	DREF+	ADREF-	7			
	000	Avdd	Avss	=			
	001 Exter	rnal VREF+	Avss				
	010	Avdd	External VREF-				
	011 Exter	rnal VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimplemen	ted: Read as	ʻ0 '				
bit 10	CSCNA: Scar	n Input Select	ions for CH0+ du	uring Sample	A bit		
	1 = Scan inpu	uts					
	0 = Do not so	an inputs					
bit 9-8	CHPS<1:0>:	Select Chann	els Utilized bits				
	When AD12E $1_{\rm Y} = Converts$	3 = 1, CHPS< CH0_CH1_C	1:0> is: U-0, Un `H2 and CH3	Implemente	d, Read as '0'		
	01 = Converts	s CH0, CH1, C	11 and 0115				
	00 = Converts	s CH0					
bit 7	BUFS: Buffer	Fill Status bit	(valid only wher	1 BUFM = 1)			
	1 = ADC is contained as $1 = ADC$ is contained as $1 = ADC$ is a set of the set of th	urrently filling	second half of b	uffer, user ap	plication should	access data in	the first half
hit G				r, user applic			e second hall
bit 5_2		ample/Conve	∪ vrt Sequences P	ar Interrunt S	election hits		
Dit 3-2	1111 = Interr	unts at the cor	mpletion of conv	ersion for eac	ch 16th sample/	convert sequer	ice
	1110 = Interru	upts at the cor	npletion of conv	ersion for eac	ch 15th sample/	convert sequer	nce
	•						
	•						
	0001 = Interru 0000 = Interru	upts at the cor	npletion of conv	ersion for ead	ch 2nd sample/c ch sample/conve	onvert sequen ert sequence	се
bit 1	BUFM: Buffer	Fill Mode Sel	lect bit				
	1 = Starts filli 0 = Always st	ng first half of tarts filling buf	buffer on first in fer from the beg	terrupt and th	ne second half o	f buffer on nex	t interrupt
bit 0	ALTS: Alterna	ate Input Sam	ple Mode Select	bit			
	1 = Uses cha	innel input sel	ects for Sample	A on first sar	nple and Sample	e B on next sa	mple
	0 = Always uses channel input selects for Sample A						

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		—			SAMC<4:0>	•	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	S<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-13 bit 12-8 bit 7-0	ADRC: ADC Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock Unimplemented: Read as '0' SAMC<4:0>: Auto Sample Time bits 11111 = 31 TAD \cdot \cdot \cdot 00001 = 1 TAD 00000 = 0 TAD ADCS<7:0>: ADC Conversion Clock Select bits 11111111 = Tcy \cdot (ADCS<7:0> + 1) = 256 \cdot Tcy = TAD \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot						

REGISTER 17-3: AD1CON3: ADC1 CONTROL REGISTER 3

REGISTER 17-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	CH1231	NB<1:0> CH12	3SB	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	_	CH1231	NA<1:0> CH12	3SA	
bit 7	·	•	•			·	bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkno	x = Bit is unknown	
bit 15-11	Unimplemen	ted: Read as '0)'					
bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits								
PIC24HJ32GP202 devices only:								
<u>If AD12B = 1:</u>								
	11 = Reserved							

- 10 = Reserved
- 01 = Reserved 00 = Reserved
- If AD12B = 0:
- 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11
- 10 = Reserved
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

PIC24HJ32GP204 and PIC24HJ16GP304 devices only:

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit

If AD12B = 1:

- 11 = Reserved
- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

<u>If AD12B = 0:</u>

- 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11
- 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

bit 8

- <u>If AD12B = 1:</u>
- 1 = Reserved
- 0 = Reserved

<u>If AD12B = 0:</u>

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 7-3 Unimplemented: Read as '0'

PIC24HJ32GP202/204 and PIC24HJ16GP304

REGISTER 17-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 2-1

CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits PIC24HJ32GP202 devices only:

If AD12B = 1:

- 11 = Reserved
- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

If AD12B = 0:

- 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11
- 10 = Reserved
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

PIC24HJ32GP204 and PIC24HJ16GP304 devices only:

If AD12B = 1:

- 11 = Reserved
- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

<u>If AD12B = 0:</u>

- 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit

- If AD12B = 1:
- 1 = Reserved
- 0 = Reserved

If AD12B = 0:

- 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
- 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

REGISTER 17-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—			CH0SB<4:0>		
bit 15		L					bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	—			CH0SA<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	CHONB: Char	nnel 0 Negative	e Input Select	for Sample B b	bit		
	1 = Channel () negative input	t is AN1				
bit 14-13		tod: Pead as '					
bit 12-8	CH0SB<4.0>	· Channel 0 Po	, sitiva Innut S	elect for Sampl	e B hite		
DIL 12-0	PIC24H 132G	P204 and PIC2		4 devices only			
	01100 = Cha	nnel 0 positive	input is AN12		•		
	•	·					
	•						
	• $$	nnal O naaitiwa	input in AN2				
	00010 = Cha	nnel 0 positive	input is AN2				
	00000 = Cha	nnel 0 positive	input is AN0				
		D202 daviasa	only				
	01100 = Cha	nnel 0 positive	input is AN12				
	•						
	•						
	•						
	01000 = Res	erved					
	00111 = Res	erved					
	•						
	•						
	•						
	00010 = Char	nnel 0 positive	input is AN2				
	00000 = Cha	nnel 0 positive	input is AN0				
hit 7		nel O Nogative	Innut Solaat	for Sample A k	t		
	1 = Channel () negative input	Finput Select Fie ΔNI1	ior Sample A L	Л		
	0 = Channel () negative input	t is VREF-				
bit 6-5	Unimplemen	ted: Read as ')'				

© 2008 Microchip Technology Inc.

REGISTER 17-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

REGISTER 17-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSS7 | CSS6 | CSS5 | CSS4 | CSS3 | CSS2 | CSS1 | CSS0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12-0 CSS<12:0>: ADC Input Scan Selection bits
 - 1 = Select ANx for input scan
 - 0 = Skip ANx for input scan
 - **Note 1:** On PIC24HJ32GP202 devices, all AD1CSSL bits can be selected. However, inputs selected for scan without a corresponding input on device will convert ADREF.

REGISTER 17-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-0

PCFG<12:0>: ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On PIC24HJ32GP202 devices, all PCFG bits are R/W. However, PCFG bits are ignored on ports without a corresponding input on device.

NOTES:

18.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC24 HJ32GP202/204 an d PIC24HJ16GP304 de vices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*.

PIC24HJ32GP202/204 and PIC2 4HJ16GP304 devices include several features that are intended to maximize application fle xibility and re liability, and minimize cost thro ugh el imination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

18.1 Configuration Bits

The Configuration bits can be pro grammed (read as '0'), or lef t un programmed (read as '1'), to sele ct various device configurations. These bits are mapped starting at program memory location 0xF80000.

The Devi ce Configu ration register map is shown in Table 18-1.

The in dividual Configu ration bit descrip tions for the FBS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 18-2.

Note that a ddress 0 xF80000 is be yond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The up per byte of all d evice Configuration registers should al ways be '1111 1 111.' T his makes them appear to be NOP instructions in the remote event that their locations are ever r executed by accid ent. Since Configuration bi ts a re no t i mplemented in the corresponding locations, writing '1' to these locations has no effect on device operation.

To preve nt the inad vertent configuration chan ges during code execution, all programmable Configuration bits are write-once. After a bit is i nitially programmed during a power cycle, it cannot be writte n to again. Changing a device configuration requires that power to the device be cycled.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 BSS<2:0> **BWRP** 0xF80000 FBS Reserved⁽¹⁾ 0xF80002 Reserved 0xF80004 FGS GSS<1:0> GWRP 0xF80006 FOSCSEL **IESO** FNOSC<2:0> 0xF80008 OSCIOFNC POSCMD<1:0> FOSC FCKSM<1:0> IOL1WAY 0xF8000A FWDT FWDTEN WINDIS WDTPRE WDTPOST<3:0> 0xF8000C FPOR ALTI2C FPWRT<2:0> 0xF8000E BKBUG FICD COE **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 18-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: These reserved bits read as '1' and must be programmed as '1'.

TABLE 18-2: PIC24HJ32GP202/204 AND PIC24HJ16GP304 CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection
		0 = Boot segment is write-protected
BSS<2:0>	FBS	PIC24HJ32GP202 and PIC24HJ32GP204 Devices Only Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 768 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 3840 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
		Boot space is 7936 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
BSS<2:0>	FBS	PIC24HJ16GP304 Devices Only Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 768 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 3840 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
		 001 = High security; boot program Flash segment ends at 0x001FFE Boot space is 5376 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x002BFE 000 = High security; boot program Flash segment ends at 0x002BFE
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator

(CONTINUED)		
Bit Field	Register	Description
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral Pin Select Configuration 1 = Allow only one re-configuration 0 = Allow multiple re-configurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by u ser software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1
ALTI2C	FPOR	Alternate I^2C pins 1 = I^2C mapped to SDA1/SCL1 pins 0 = I^2C mapped to ASDA1/ASCL1 pins
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
BKBUG	FICD	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
COE	FICD	Debugger/Emulator Enable bit 1 = Device will reset in Operational mode 0 = Device will reset in Clip-On Emulation mode

TABLE 18-2:PIC24HJ32GP202/204 AND PIC24HJ16GP304 CONFIGURATION BITS DESCRIPTION
(CONTINUED)

© 2008 Microchip Technology Inc.

TABLE 18-2:	PIC24HJ32GP202/204 AND PIC24HJ16GP304 CONFIGURATION BITS DESCRIPTION
	(CONTINUED)

Bit Field	Register	Description
JTAGEN	FICD	JTAG Enable bit
		1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits
		11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1
		10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2
		01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3
		00 = Reserved, do not use

18.2 On-Chip Voltage Regulator

All of th e PIC2 4HJ32GP202/204 an d PIC24HJ16GP304 de vices po wer their core dig ital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJ32GP202/204 an d PIC24HJ16GP304 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the re gulator is enabled, a I ow-ESR (less than 5 oh ms) capacitor (such a st antalum or ceramic) must be connected to the VDDCORE/VCAP pin (Figure 18-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 21-13 located in **Section 21.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to		
	be pl aced as close	as po ssible to th	e
	VDDCORE pin.		

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 18-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

18.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) modu le is ba sed on an internal vo Itage reference circuit that mon itors the regulated voltage VDDCORE. The main purpose of the BOR module is to gene rate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing p ortions of the AC cycle waveform due to bad power transmission lines, or volt age sags due to excessive current draw when a large inductive load is turned on).

A BOR ge nerates a Re set pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWR T time-out (TPWR T) will be applied before the internal Reset is released. If TPWRT = 0 and a cryst al oscill ator is being used, a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR h as o ccurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device in case VDD falls below the BOR threshold voltage.

18.4 Watchdog Timer (WDT)

For PIC2 4HJ32GP202/204 and PIC24HJ16GP304 devices, the WDT is driven by the LPRC oscilla tor. When the W DT is en abled, the clock sou rce is al so enabled.

18.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divid e-by-32) or 7-b it (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yiel ds a n ominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (F WDT<3:0>), wh ich all ows th e selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation

•B y a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

18.4.2 SLEEP AND IDLE MODES

If the WD T is en abled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from whe re th e PWRSAV in struction was executed. T he corresponding SL EEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.

18.4.3 ENABLING WDT

The WDT is enabled or di sabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT flagbit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flagmust be cleared in software.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWD TEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during n on-critical segment s for maximum po wer savings.

Note: If the WINDIS bit (FWDT-6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 18-2: WDT BLOCK DIAGRAM

18.5 JTAG Interface

PIC24HJ32GP202/204 and PIC2 4HJ16GP304 devices implement a JTAG interface, which supports boundary sca n device te sting, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

18.6 Code Protection and CodeGuard™ Security

The PIC24HJ3 2GP202/204 and PIC2 4HJ16GP304 product families offer the intermediate implementation of Co deGuard Secu rity. Co deGuard Secu rity allows multiple parties to securely share resources (memory,

TABLE 18-3:CODE FLASH SECURITYSEGMENT SIZES FOR32 KBYTE DEVICES

CONFIG BITS		
BSS<2:0>=x11 0K	VS = 256 IW GS = 11008 IW	000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 0057FEh
BSS<2:0>=x10 256	VS = 256 IW BS = 768 IW GS = 10240 IW	000000h 0001FEh 000200h 0007FEh 000800h 001FEh 002000h 003FFEh 004000h 0057FEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0>=x01	BS = 3840 IW	000200h 0007FEh 000800h 001FFEh
768	GS = 7168 IW	002000h 003FFEh 004000h 0057FEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0>=x00 1792	BS = 7936 IW	000200h 0007FEh 000800h 001FFEh 002000h 003FFEh
	GS = 3072 IW	004000h 0057FEh

interrupts and pe ripherals) on a single chip. This feature helps to protect individual Intellectual Property in collaborative system designs.

When coupl ed with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip.

The code protection fe atures are controll ed by the Configuration reg isters: F BS and F GS. T he Secure segment and RAM is not implemented.

Note: Refer to "CodeGuard Security Reference Manual" (DS70180) for further information on usage, con figuration and o peration of CodeGuard Security.

TABLE 18-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16 KBYTE DEVICES

CONFIG BITS		
BSS<2:0>=x11	VS = 256 IW	000000h 0001FEh 000200h 0007FEh
0К	GS = 5376 IW	000800n 001FFEh 002000h
		002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0>=x10	BS = 768 IW	000200h 0007FEh
256		001FFEh 002000h
	GS = 4608 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0>=x01	BS = 3840 IW	000200h 0007FEh 000800h 001FFEh
768		002000h
	GS = 1536 IW	002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0>=x00	BS = 5376 IW	000200h 0007FEh 000800h 001FFEh
1792		002000h
		002BFEh

18.7 In-Circuit Serial Programming

PIC24HJ32GP202/204 and PIC 24HJ16GP304 fa mily microcontrollers can be serially programmed while in the end application circuit. This is done with two lines for clock and da ta, and th ree other li nes for powe r, ground and the programming sequence. Serial programming al lows customers to manu facture bo ards with un programmed devices and th en pro gram th e microcontroller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to b e p rogrammed. Refer to the "*dsPIC30F/33F Flash Programming Speci fication*" (DS70152) document for details about In-Circuit Serial Programming (ICSP).

Any of the following three pairs of progra mming clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

18.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit deb ugging functionality is e nabled. T his function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the Emula tion/Debug Clo ck (EMUCx) a nd Emulation/Debug Data (EMUDx) pin functions.

Any of the following three pairs of debugging clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

To make use of the in-circuit debugger function of the device, the design must implement ICSP connections to M \overline{CLR} , V $_{DD}$, V $_{SS}$, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

19.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of th is group of PIC24HJ32GP202/204 and PIC24HJ16GP304 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual".

The PIC24H instruction set is i dentical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a sin gle program memory word (24 bits). Only three in structions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into a n 8-bit o pcode, w hich spe cifies the i nstruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- Control operations

Table 19-1 shows the general symbols usedindescribing the instructions.

The PIC24H instruction set summary in Table 19-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriente d W register instructions (including barrel shif t i nstructions) have thre e operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are single word. Certain do uble-word instructions are designed to provide all of the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a singl e instruction cycle, unless a conditional test is true, or the program counter is chang ed as a result o f the instruction. In these ca ses, the execution t akes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all t able read s and writes a nd RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is p erformed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The d ouble w ord i nstructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

TABLE 19-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description		# of Cycles	Status Flags Affected
1A	DD	ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C,DC,N,OV,Z
3A	ND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5B	CLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6B	RA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9B	TG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None

TABLE 19-2: INSTRUCTION SET OVERVIEW

PIC24HJ32GP202/204 and PIC24HJ16GP304

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	f=f	1	1	N.Z
		COM	f.WREG	WREG = \overline{f}	1	1	N.Z
		COM	We Wd	$W/d = \overline{Ws}$	1	1	N 7
18	CP	CP	f	Compare f with WREG	1	1	
10	01	CP	⊥ Wb #1;+5	Compare Wh with lit5	1	1	
		CP	Wb Ws	Compare Wb with Ws (Wb – Ws)	1	1	
19	CP0	CPO	f	Compare f with 0x0000	1	1	
10	0.0	CPO	Ws	Compare Ws with 0x0000	1	1	
20	CPB	CPB	f	Compare f with WREG with Borrow	1	1	
20		CPB	⊥ Wb #li+5	Compare Wh with lit5 with Borrow	1	1	
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb - Ws - C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if 1/4	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S W	m,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
34	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None

TABLE 19-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) *unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP	,	No Operation	1	1	None
-		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	-	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
L						1	

TABLE 19-2: INSTRUCTION SET OVERVIEW (CONTINUED)

IABL	E 19-2:	INSIR	JUTION SET OVER				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
48	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
49	RESET	RESET		Software device Reset	1	1	None
50	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
51	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
52	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
53	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
54	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
55	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
56	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
57	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
58	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
59	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
60	SUB	SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f - WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
61	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f - WREG - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C.DC.N.OV.Z
62	SUBR	SUBR	f	f = WREG - f	1	1	C.DC.N.OV.Z
-		SUBR	f,WREG	WREG = WREG - f	1	1	C.DC.N.OV.Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C.DC.N.OV.Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 - Wb	1	1	C.DC.N.OV.Z
63	SUBBR	SUBBR	f	$f = WREG - f - (\overline{G})$	1	1	
		GIIDDD	- f WDFC		4	1	
		SUDBK	L, WREG			4	
		SUBBR	ww,ws,wa				
	014/45	SUBBR	Wb,#lit5,Wd	VVd = lit5 - Wb - (C)		1	C,DC,N,OV,Z
64	SWAP	SWAP.b	Wn	vvn = nibble swap VVn			None
05		SWAP	Wn	Wn = byte swap Wn	1		None
65	IBLKDH	TBLRDH	ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	inone

....

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
68	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 19-2: INSTRUCTION SET OVERVIEW (CONTINUED)

NOTES:

20.0 DEVELOPMENT SUPPORT

The PI C^{\otimes} mi crocontrollers are sup ported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

20.1 MPLAB Integrated Development Environment Software

The MPLAB IDE sof tware brings an ease of sof tware development previously unse en in th e 8/1 6-bit microcontroller market. The MPLAB IDE isa Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB ID E su pports mu ltiple debu gging tool s i n a single development paradigm, from the co st-effective simulators, thro ugh low-cost i n-circuit d ebuggers, to full-featured e mulators. This el iminates the I earning curve when upgrading to tools with increased flexibility and power.

20.2 MPASM Assembler

The MPASM Asse mbler is a full -featured, unive rsal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP file s to d etail memory usage and symbol reference, absolute LST files that contain source lines and gen erated machi ne co de an d COFF fi les for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

20.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C c ompilers for Microchip's PIC 18 and PIC2 4 fa milies of microcontrollers and the dsPIC30 and dsPIC33 family of dig ital sign al con trollers. The se compil ers provid e powerful in tegration ca pabilities, supe rior cod e optimization and ea se of use not foun d with oth er compilers.

For easy source leveldebugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

20.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Obje ct Linker combines relocatable objects created by the MP ASM Assemble r and the MPLAB C18 C Compiler. It can link relocatable objects from p recompiled lib raries, usin g directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that rou tine will be linked in with the a pplication. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

20.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB A SM30 Assembler produces r elocatable machine cod e from symbol ic assembl y lan guage for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce it s o bject file. The a ssembler generates rel ocatable obj ect file s th at can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

20.6 MPLAB SIM Software Simulator

The MPLAB SIM Sof tware Simulator a llows co de development in a PC-hosted en vironment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On a ny given in struction, the dat a areas can be examined or modified and stimuli can be applied fro m a compreh ensive stimul us controll er. Registers can b e logged to file s for further run-time analysis. The trace bu ffer and logic ana lyzer display extend the power of the simulator to record and track program execution, acti ons on I/O, most peripherals and internal registers.

The MPL AB SIM Sof tware Simulator fully supports symbolic debugging using the MPLAB C18 a nd MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The sof tware simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

20.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroll er de sign tool set for PIC microcontrollers. So ftware control of the MPLAB ICE 2000 In-Circuit Emulator is ad vanced by the MPLAB Integrated Devel opment En vironment, which all ows editing, building, d ownloading and source debugging from a single environment.

The MPLAB IC E 2000 is a full -featured e mulator system with e nhanced trace, trigger and dat a monitoring fea tures. Interchangeable p rocessor modules allow the system to be easily reconfigured for emulation of di fferent processors. The architecture of the MPLAB ICE 2000 In-Ci rcuit Emula tor allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a re al-time emulation system with advanced fe atures that ar e typically found on mo re expensive de velopment tools. The PC p latform an d Microsoft[®] W indows[®] 32-bit ope rating system were chosen to best make these features available in a simple, unified application.

20.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB RE AL IC E In- Circuit E mulator Sy stem is Microchip's next gene ration hi gh-speed emula tor for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe isconnected to the design engineer's PC using a high-speed USB 2.0 interface and is conne cted to the t arget with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noi se tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcomin g releases of MPLAB IDE, new d evices will b e supported, and n ew features will be added, such as software bre akpoints and assemb ly cod e trace. MPLAB REAL ICE o ffers significant advantages over competitive emula tors including lo w-cost, full-speed emulation, real-time variable watches, trace a nalysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

20.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit De bugger, MPLAB ICD 2, is a powerful, lo w-cost, run- time de velopment to ol, connecting to the host PC via an RS-232 or high-speed USB in terface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programmi ng[™] (I CSP[™]) p rotocol, offers cost-effective, in-ci rcuit Flash deb ugging from the graphical user interface of the MPLAB In tegrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepp ing and watching variab les, an d CPU status and peripheral registers. Running at full speed enables testing hardwa re and appli cations in rea I time. MPLAB ICD 2 also serves as a devel opment programmer for selected PIC devices.

20.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a un iversal, CE compliant device programmer with programmable voltage verification at V DDMIN and VDDMAX for maximum reliability. It feat ures a I arge LCD d isplay (128 x 64) for menus and error message s and a modular, d etachable socket assembl y to su pport various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized a lgorithms for q uick p rogramming of la rge memory devices and incorporates an SD/MMC card for file storage and secure data applications.

20.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, lo w-cost, prototype programmer . It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple an d e fficient. The PICSTART PI us D evelopment Programmer supports most PIC de vices in DIP p ackages u p to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

20.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an e asy-to-use in terface for p rogramming ma ny of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a p rototyping d evelopment boa rd, twel ve sequential lessons, so ftware and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] micro controllers. The kit provides everything needed to program, evaluate and develop applications using Microch ip's p owerful, mi d-range Flash memory family of microcontrollers.

20.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include pro totyping areas for adding custom circuitry and provide application firmware and source co de for examination and modification.

The boards support a variety of features, including LEDs, temperature sen sors, sw itches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In a ddition to t he PIC DEM[™] and dsPICDEM[™] demonstration/development b oard series of circuits, Microchip ha s a l ine of evaluation kit s and demonstration so ftware for a nalog fi Iter de sign, KEELOQ[®] security ICs, CA N, IrDA[®], PowerS mart battery man agement, SEEV AL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

21.0 ELECTRICAL CHARACTERISTICS

This secti on provides an overview of PIC24HJ3 2GP202/204 and PIC24 HJ16GP304 e lectrical cha racteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJ32GP202/204 and PIC24HJ16GP304 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed un der "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 21-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins, which are able to sink/source 12 mA.

21.1 DC Characteristics

	Voo Bango	Tomp Bango	Max MIPS
Characteristic	(in Volts)	(in °C)	PIC24HJ32GP202/204 and PIC24HJ16GP304
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 21-1: OPERATING MIPS VS. VOLTAGE

TABLE 21-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Ромах (Тј - Та)/θја				W

TABLE 21-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	32	_	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θja	50	—	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θja	35	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC СН4	ARACTER	ISTICS	Standard (unless o Operating	Operating therwise temperat	g Condi stated) ure -4(-4(tions: 3.0)°C ≤ Ta)°C ≤ Ta	0V to 3.6V .≤ +85°C for Industrial ≤ +125°C for Extended			
Param No.	Min Typ ⁽¹⁾ Max Units Condition									
Operati	ng Voltag	6								
DC10	Supply V	/oltage								
	Vdd	_	3.0		3.6	V	Industrial and Extended			
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.1	_	1.8	V	—			
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal			Vss	V—				
DC17	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	—	—	V/ms	0-3.0V in 0.1s			
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	_	2.75	V	Voltage is dependent on load, temperature and VDD			

TABLE 21-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25° C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

TABLE 21-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard O (unless othe Operating te	perating Conditions erwise stated) emperature -40°C ≤ -40°C ≤	5: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for Ext	dustrial xtended			
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Operating Cur	rent (IDD) ⁽²⁾								
DC20d	24	30	mA	-40°C					
DC20a	27	30	mA	+25°C	3 31/				
DC20b	27	30	mA	+85°C	5.50	TO MIES			
DC20c	27	35	mA	+125°C					
DC21d	30	40	mA	-40°C					
DC21a	37	40	mA	+25°C	3.3V	16 MIDS			
DC21b	32	45	mA	+85°C					
DC21c	33	45	mA	+125°C					
DC22d	35	50	mA	-40°C					
DC22a	38	50	mA	+25°C	2 2\/				
DC22b	38	55	mA	+85°C	5.50	20 MIF 3			
DC22c	39	55	mA	+125°C					
DC23d	47	70	mA	-40°C					
DC23a	48	70	mA	+25°C	3 3\/	30 MIPS			
DC23b	48	70	mA	+85°C	5.57	50 Mil 5			
DC23c	48	70	mA	+125°C					
DC24d	56	90	mA	-40°C					
DC24a	56	90	mA	+25°C	3 3//				
DC24b	54	90	mA	+85°C	5.5 V	40 MIF 3			
DC24c	54	90	mA	+125°C					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

DC CHARACTERISTICS			Standard Op (unless other Operating te	perating Condition erwise stated) mperature -40°C -40°C	ns: 3.0V to 3.6V ≤ TA ≤ +85°C for Inc ≤ TA ≤ +125°C for Ex	3.6V 35°C for Industrial 25°C for Extended			
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾									
DC40d	3	25	mA	-40°C					
DC40a	3	25	mA	+25°C					
DC40b	3	25	mA	+85°C	3.3V	10 101195			
DC40c	3	25	mA	+125°C					
DC41d	4	25	mA	-40°C		16 MIPS			
DC41a	4	25	mA	+25°C	- 3.3V				
DC41b	5	25	mA	+85°C					
DC41c	5	25	mA	+125°C					
DC42d	6	25	mA	-40°C					
DC42a	6	25	mA	+25°C	2.21/				
DC42b	7	25	mA	+85°C	3.3V	20 101195			
DC42c	7	25	mA	+125°C					
DC43d	9	25	mA	-40°C					
DC43a	9	25	mA	+25°C	2.21/				
DC43b	9	25	mA	+85°C	3.3V	30 MIPS			
DC43c	9	25	mA	+125°C					
DC44d	10	25	mA	-40°C					
DC44a	10	25	mA	+25°C	2.21/				
DC44b	16	25	mA	+85°C	3.3V	40 101175			
DC44c	10	25	mA	+125°C					

TABLE 21-6: DC CHARACTERISTICS: IDLE CURRENT (lidLe)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 21-7:	DC CHARACTERISTICS: POWER-DOWN CURRENT ((IPD)
-------------	--	-------

DC CHARACTERISTICSStandard Operating Conditions: 3 (unless otherwise stated) Operating temperature $-40^{\circ}C \le T$ $-40^{\circ}C \le T$					nditions: 3.0\ d) -40°C ≤ TA ≤ -40°C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended			
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Power-Down	Current (IPD) ⁽	(2)							
DC60d	55	500	μA	-40°C					
DC60a	63	500	μA	+25°C	2 21/	Rana Rower Down Current(3,4)			
DC60b	85	500	μA	+85°C	3.3V	Base Fower-Down Current			
DC60c	146	1	mA	+125°C					
DC61d	8	12	μA	-40°C					
DC61a	10	15	μA	+25°C	2 21/	Matchdog Timor Current: Alapt(3)			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>)=1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 21-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Parameter No.	Doze Ratio	Units		Conditions			
DC73a	25	32	1:2	mA			
DC73f	23	27	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	23	26	1:128	mA			
DC70a	42	47	1:2	mA			
DC70f	26	27	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	25	27	1:128	mA			
DC71a	41	48	1:2	mA			
DC71f	25	28	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	24	28	1:128	mA			
DC72a	42	49	1:2	mA			
DC72f	26	29	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	25	28	1:128	mA			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

		Standard Operating Conditions: 3.0V to 3.6V								
DC CHA	RACTER	ISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
			oporaun	giompe	-	40°C ≤	TA \leq +125°C for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O pins	Vss	—0	.2 Vdd	V				
DI15		MCLR	Vss	—	0.2 VDD	V				
DI16		OSC1 (XT mode)	Vss	_	0.2 Vdd	V				
DI17		OSC1 (HS mode)	Vss	—	0.2 VDD	V				
DI18		SDAx, SCLx	Vss		0.3 VDD	V	SMBus disabled			
DI19		SDAx, SCLx	Vss	—	0.2 VDD	V	SMBus enabled			
	Vih	Input High Voltage								
DI20		I/O pins: with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.8 Vdd 0.8 Vdd		Vdd 5.5	V V				
DI25		MCLR	0.8 Vdd		Vdd	V				
DI26		OSC1 (XT mode)	0.7 Vdd	—	Vdd	V				
DI27		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V				
DI28		SDAx, SCLx	0.7 Vdd	—	Vdd	V	SMBus disabled			
DI29		SDAx, SCLx	0.8 Vdd	—	Vdd	V	SMBus enabled			
	ICNPU	CNx Pull-up Current								
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS			
	lı∟	Input Leakage Current ⁽²⁾⁽³⁾								
DI50		I/O ports	—	_	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance			
DI51		Analog Input Pins	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance, 40°C ≤ TA ≤ +85°C			
DI51a		Analog Input Pins	_	_	±2	μA	Analog pins shared with external reference pins, $40^{\circ}C \le TA \le +85^{\circ}C$			
DI51b		Analog Input Pins	_	—	±3.5	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance, -40°C \le TA \le +125°C			
DI51c		Analog Input Pins	_	_	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$			
DI55		MCLR	_	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
DI56		OSC1	—		±2	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$			

TABLE 21-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See Table 9-1 for a list of digital-only and analog pins.

TABLE 21-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard ((unless ot Operating	Operatii herwise tempera	ng Con stated ature -	ditions:) 40°C ≤ 40°C ≤ ⊺	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended			
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions							
	Vol	Output Low Voltage								
DO10		I/O ports	—	—	0.4	V	Iol = 2mA, VDD = 3.3V			
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 2mA, VDD = 3.3V			
	Vон	Output High Voltage								
DO20		I/O ports	2.40	-	—	V	Іон = -2.3 mA, Vdd = 3.3V			
DO26		OSC2/CLKO	2.41	—		V	Іон = -1.3 mA, Vdd = 3.3V			

TABLE 21-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS Standa Operat		Standard Opera (unless otherw Operating temp	ating Co ise state erature	nditions ed) -40°C ± -40°C ±	s: 3.0V to ≤ Ta ≤ + ≤ Ta ≤ +1	5 3.6V 85°C for I 25°C for I	Industrial Extended	
Param No.	Symbol	Character	Min ⁽¹⁾	Тур	Max	Units	Conditions	
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40		2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
	RACIER	191109	$\begin{array}{llllllllllllllllllllllllllllllllllll$				\leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max U		Units	Conditions			
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000		—	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	VMIN	—3	.6	V	Vмın = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Write	VMIN	—3	.6	V	Vмın = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C		
D135	IDDP	Supply Current during Programming	—1	0	—	mA			
D136a	Trw	Row Write Time	1.32	_	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2		
D136b	Trw	Row Write Time	1.28	_	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2		
D137a	TPE	Page Erase Time	20.1	_	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2		
D137b	TPE	Page Erase Time	19.5	_	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2		
D138a	Tww	Word Write Cycle Time	42.3	_	55.9	μsΤ	ww = 355 FRC cycles, TA = +85°C, See Note 2		
D138b	Tww	Word Write Cycle Time	41.1		57.6	μsΤ	ww = 355 FRC cycles, Ta = +125°C, See Note 2		

TABLE 21-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 21-18) and the value of the FRC Oscillator Tuning register (see Register 7-4). For complete details on calculating the Minimum and Maximum time see Section 4.3 "Programming Operations".

TABLE 21-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard (unless o Operating	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Param No. Symbol Characteristics Min Typ Ma x Units Comments									
	Cefc	External Filter Capacitor Value	11	0	_	μF	Capacitor must be low series resistance (< 5 ohms)			

© 2008 Microchip Technology Inc.

21.2 AC Characteristics and Timing Parameters

The information contained in th is secti on de fines PIC24HJ32GP202/204 and PIC 24HJ16GP304 AC characteristics and timing parameters.

TABLE 21-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$

FIGURE 21-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 21-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In l ² C™ mode

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	onditions: 3.0V ed) -40°C ≤ TA ≤ -40°C ≤ TA ≤ ·	⁺ to 3.6V +85°C fo +125°C f	or Industrial or Extended		
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾ Max Units Condit						
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	—		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	—		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time			20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	—5	.2	—	ns	—		
OS41	TckF	CLKO Fall Time ⁽³⁾	—5	.2	_	ns	_		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits can result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteris	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	—	
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	ms	—	
OS53 DCLK CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period			

TABLE 21-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 21-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

АС СНА	RACTERISTICS	Standa Operatin	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Мах	Units	Units Conditions				
	Internal FRC Accuracy @) FRC Fr	equency	= 7.37 N	IHz ^(1,2)					
F20	FRC	-2	_	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad \text{VDD} = 3.0\text{-}3.6$				
	FRC		—	+5	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 21-19: INTERNAL RC ACCURACY

АС СН/	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
	LPRC @ 32.768 kHz ^(1,2)									
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad \text{VDD} = 3.0\text{-}3.6V$				
	LPRC	-70		+70	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V			

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT1). See Section 18.4 "Watchdog Timer (WDT)" for more information.

AC CHAR	ACTERISTI	CS	Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤ -40°C ≤	3.0V to TA ≤ +8 TA ≤ +12	3.6V 5°C for li 5°C for E	ndustrial Extended
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TioR	Port Output Rise Tim	e		10	25	ns	_
DO32	TIOF	Port Output Fall Time	9	—	10	25	ns	—
DI35	TINP INTx Pin High or Low Time (outpu			20	_		ns	_
DI40	TRBP CNx High or Low Time (input)			2	_	_	Тсү	_

TABLE 21-20:	I/O TIMING	REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 21-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			Stand (unles Opera	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indu $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SY10	ТмсLМ	CLR Pulse-Width (low)	2	—	_	μS	-40°C to +85°C		
SY11	TPWRT	Power-up Timer Period		2 4 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μ S —			
SY20	Twdt1	Watchdog Timer Time-out Period (No Prescaler)				ms	See Section 18.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 21-19).		
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc			Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 21-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СНА	RACTERIST	Standa (unless Operati	ating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic			Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchror no presca	nous, aler	0.5 TCY + 20	_	_	ns	Must also meet parameter TA15
			Synchror with pres	nous, caler	10	—		ns	
			Asynchro	onous	10	—	—	ns	
TA11	ΤτxL	TxCK Low Time	Synchror no presca	nous, aler	0.5 TCY + 20	_	_	ns	Must also meet parameter TA15
			Synchronous, with prescaler		10	_	_	ns	
			Asynchro	onous	10	—	—	ns	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presca	nous, aler	Тсү + 40	—	_	ns	—
			Synchronous with prescale		Greater of: 20 ns or (Tcy + 40)/N	—	_	_	N = prescale value (1, 8, 64, 256)
			Asynchro	onous	20	—	—	ns	—
OS60	Ft1	SOSC1/T1CK Osci frequency Range (c by setting bit TCS (cillator Input oscillator enabled (T1CON<1>))		DC	—	50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	II TxCK Cle ement	ock	0.5 TCY		1.5 TCY		

TABLE 21-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

TABLE 21-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

				Standa (unles Opera	ard Operating s otherwise st ting temperatu	Condition tated) re -40° -40°	ons: 3.0V °C ≤ Ta ≤ °C ≤ Ta ≤ ·	′ to 3.6V +85°C f +125°C f	or Industrial or Extended
Param No.	Symbol	ol Characteristic			Min	Тур	Мах	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro no prese	onous, caler	0.5 TCY + 20		_	ns	Must also meet parameter TB15
			Synchro with pre	onous, scaler	10 —		—	ns	
TB11	TtxL	TxCK Low Time	Synchro no prese	onous, caler	0.5 Tcy + 20	-	—	ns	Must also meet parameter TB15
			Synchro with pre	onous, scaler	10	_	—	ns	
TB15	TtxP	TxCK Input Period	Synchro no prese	onous, caler	Tcy + 40	-	—	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr	al TxCK (ement	Clock	0.5 TCY	_	1.5 TCY		

TABLE 21-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

				Standa (unless Operat	ard Operating (s otherwise sta ing temperature	Conditio ated) e -40°(-40°(o ns: 3.0∨ C ≤ Ta ≤ C ≤ Ta ≤	′ to 3.6V +85°C +125°C	for Industrial for Extended
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20	_		ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20		_	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchro no preso	nous, caler	Tcy + 40		_	ns	N = prescale value
			Synchro with pres	nous, scaler	Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	I TxCK C ement	lock	0.5 TCY	—1	.5 Tcy		

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 21-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 21-25: INPUT CAPTURE TIMING REQUIREMENTS

			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Character	ristic ⁽¹⁾	Min	Мах	Units	Conditions		
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	—		
			With Prescaler	10	_	ns			
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns	—		
			With Prescaler	10	—	ns			
IC15	IC15 TccP ICx Input Period			(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 21-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 21-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC10	TccF	OCx Output Fall Time	_	_		ns	See parameter D032	
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See parameter D031	

Note 1: These parameters are characterized but not tested in manufacturing.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 21-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 21-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	—	_	50	ns	_	
OC20	TFLT	Fault Input Pulse-Width	50	_	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

FIGURE 21-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 21-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	_	—	ns	See Note 3	
SP11	TscH	SCKx Output High Time	TCY/2	_	_	ns	See Note 3	
SP20	TscF	SCKx Output Fall Time		—	_	ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time		—	_	ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 21-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 21-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	—	_	ns	See Note 3	
SP11	TscH	SCKx Output High Time	Tcy/2	—		ns	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	-	—	ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	_		ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 21-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 21-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30			ns	—
SP71	TscH	SCKx Input High Time	30			ns	—
SP72	TscF	SCKx Input Fall Time		10	25	ns	See Note 3
SP73	TscR	SCKx Input Rise Time		10	25	ns	See Note 3
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter D032 and Note 3
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter D031 and Note 3
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 3
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40	—	_	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

FIGURE 21-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30		_	ns	—
SP71	TscH	SCKx Input High Time	30	_	_	ns	—
SP72	TscF	SCKx Input Fall Time	—	10	25	ns	See Note 3
SP73	TscR	SCKx Input Rise Time	—	10	25	ns	See Note 3
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter D032 and Note 3
SP31	TdoR	SDOx Data Output Rise Time	—	_	-	ns	See parameter D031 and Note 3
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120		-	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10		50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—

TABLE 21-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

PIC24HJ32GP202/204 and PIC24HJ16GP304

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Param Min⁽¹⁾ Symbol Characteristic Units Conditions Max No. IM10 TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) μs-400 kHz mode TCY/2 (BRG + 1) μs-1 MHz mode⁽²⁾ TCY/2 (BRG + 1) μS-IM11 THI:SCL Clock High Time 100 kHz mode Tcy/2 (BRG + 1) μS-400 kHz mode TCY/2 (BRG + 1) μS-1 MHz mode⁽²⁾ Tcy/2 (BRG + 1) _ μs– 100 kHz mode IM20 TF:SCL SDAx and SCLx 300 CB is specified to be ns Fall Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽²⁾ 100 ns IM21 TR:SCL SDAx and SCLx 100 kHz mode 1000 ns CB is specified to be Rise Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽²⁾ 300 ____ ns IM25 100 kHz mode 250 TSU:DAT Data Input ns Setup Time 400 kHz mode 100 ns 1 MHz mode⁽²⁾ 40 ns IM26 100 kHz mode 0 THD:DAT Data Input μS-Hold Time 400 kHz mode 0 0.9 μS 1 MHz mode⁽²⁾ 0.2 μS IM30 100 kHz mode TSU:STA Start Condition TCY/2 (BRG + 1) Only relevant for μS Repeated Start Setup Time 400 kHz mode TCY/2 (BRG + 1) μS condition 1 MHz mode⁽²⁾ TCY/2 (BRG + 1) μS IM31 THD:STA 100 kHz mode Start Condition TCY/2 (BRG + 1) After this period the μS Hold Time first clock pulse is 400 kHz mode TCY/2 (BRG + 1) μS generated 1 MHz mode⁽²⁾ TCY/2 (BRG + 1) μS IM33 100 kHz mode TCY/2 (BRG + 1) Tsu:sto Stop Condition μS-Setup Time TCY/2 (BRG + 1) 400 kHz mode ____ μS 1 MHz mode⁽²⁾ TCY/2 (BRG + 1) μS ____ IM34 THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) ns 400 kHz mode Hold Time TCY/2 (BRG + 1) ns 1 MHz mode⁽²⁾ TCY/2 (BRG + 1) _ ns 100 kHz mode IM40 TAA:SCL **Output Valid** 3500 ns From Clock 400 kHz mode 1000 ns 1 MHz mode⁽²⁾ ___ 400 ns IM45 TBF:SDA **Bus Free Time** 100 kHz mode 4.7 Time the bus must be μS free before a new 400 kHz mode 1.3 μS transmission can start 1 MHz mode⁽²⁾ 0.5 μS IM50 Св **Bus Capacitive Loading** 400 _ рF

TABLE 21-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I2C™)" in the "PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
PIC24HJ32GP202/204 and PIC24HJ16GP304

TABLE 21-33:	I2Cx BUS DATA TIMING REQUIREMENTS	(SLAVE MODE)	1
	ECK DOO DATA THINK O REQUIRENTO		1

				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHA	RACTERI	STICS		Operating tem	perature	-40°C -40°C	\leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended	
Param	Symbol	Charac	teristic	Min	Мах	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μ S —		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μ S —		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100	_	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	0	μ S —		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	00	.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μ S —		
		Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	—	μS		
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns	_	
	0	Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μS	Can Start	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS			Standard C (unless oth Operating te)peratir nerwise mperat	ng Condition stated) ure -40°C ≤	s: 3.0V ≦ Ta ≤ +	to 3.6V ⊦85°C for Industrial				
$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended											
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
	Device Supply										
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	_				
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	_				
		·	Reference	Inputs		•					
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVDD	V	See Note 1				
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0				
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD – 2.7	V	See Note 1				
AD06a			0	—	0	V	Vrefh = AVdd Vrefl = AVss = 0				
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH - VREFL				
AD08	IREF	Current Drain	—	400	550 10	μΑ μΑ	ADC operating ADC off				
		·	Analog I	nput		•					
AD12	Vinh	Input Voltage Range VINH	Vinl	_	VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input				
AD13	VINL	Input Voltage Range VINL	VREFL	—	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input				
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC				

TABLE 21-34: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

АС СНА	RACTERIS	Standar (unless Operating	d Opera otherwis g temper	ting Cor se stated ature -	nditions: d) 40°C ≤ 40°C ≤ 1	: 3.0V to 3.6V TA ≤ +85°C for Industrial TA ≤ +125°C for Extended	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (12-bit Mode) – Meas	urement	s with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	12	2 data bit	s	bits	—
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	Vinl = AVss = Vrefl = 0V, AVDD = Vrefh = 3.6V
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	Vinl = AVss = Vrefl = 0V, AVDD = Vrefh = 3.6V
AD25a	—	Monotonicity	—				Guaranteed ⁽¹⁾
		ADC Accuracy (12-bit Mode	e) – Meas	urement	ts with i	nternal V	VREF+/VREF-
AD20a	Nr	Resolution	12	2 data bit	s	bits	_
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	_	—			Guaranteed ⁽¹⁾
	-	Dynamic I	Performa	nce (12-	bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	—
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	—
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	
AD34a	ENOB	Effective Number of Bits	10.95	11.1		bits	—

TABLE 21-35: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

				d Opera otherwi g temper	ting Cor se stated ature -	ditions: 1) 40°C ≤ 40°C ≤ 1	: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution	1(0 data bi	ts	bits	_
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25b	—	Monotonicity	_		_		Guaranteed ⁽¹⁾
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-
AD20b	Nr	Resolution	1(0 data bi	ts	bits	
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	—	Monotonicity	—		_	—	Guaranteed ⁽¹⁾
		Dynamic	Performa	nce (10	bit Mod	e)	
AD30b	THD	Total Harmonic Distortion		-64	-67	dB	_
AD31b	SINAD	Signal to Noise and Distortion	_	57	58	dB	—
AD32b	SFDR	Spurious Free Dynamic Range	—6	0	62	dB	_
AD33b	FNYQ	Input Signal Bandwidth	_	—	550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits	_

TABLE 21-36: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

PIC24HJ32GP202/204 and PIC24HJ16GP304

FIGURE 21-17: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

TABLE 21-37: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

АС СНА	ARACTERI	Standard (unless of Operatin	d Operati otherwise g tempera	ng Cond e stated) ature -4 -4	itions: 3.0 0°C ≤ Ta 0°C ≤ Ta :	W to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended		
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
		Cloc	k Parame	ters				
AD50	Tad	ADC Clock Period	117.6		—	ns	—	
AD51	tRC	ADC Internal RC Oscillator Period	-	250		ns	_	
		Con	version R	ate				
AD55	tCONV	Conversion Time	_	14 Tad	—n	S	—	
AD56	FCNV	Throughput Rate	_		500	Ksps	—	
AD57	TSAMP	Sample Time	3.0 Tad			—	—	
		Timin	ng Parame	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	_	Auto Convert Trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad			—	
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾			20	μ S —		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

These parameters are characterized but not tested in manufacturing. 2:

FIGURE 21-18: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS < 1:0) = 0.1 SIMSAM = 0 ASAM = 0 SSRC < 2:0 > = 0.00)

FIGURE 21-19: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHARACTERISTICS				d Operat otherwis ng temper	ing Condi e stated) ature -4 -4	itions: 3.0 0°C ≤ TA 0°C ≤ TA	2V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions				
	Clock Parameters										
AD50	TAD	ADC Clock Period	76		_	ns	—				
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—				
		Con	version F	Rate							
AD55	tCONV	Conversion Time	—	12 TAD			—				
AD56	FCNV	Throughput Rate	_		1.1	Msps	—				
AD57	TSAMP	Sample Time	2.0 Tad			—	—				
		Timin	g Paramo	eters							
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	—	3.0 Tad	_	Auto-Convert Trigger not selected				
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad						
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad			—				
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾			20	μ S —					

TABLE 21-38: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

22.0 PACKAGING INFORMATION

22.1 Package Marking Information

28-Lead SPDIP

Example

Example

28-Lead SOIC (.300")

28-Lead QFN-S

Example

Legend	: XXX Y	Customer-specific information Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	VVVV	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	This package is Db free. The Db free IEDEC designator (a)
		This package is PD-life. The PD-life JEDEC designation ((e3))
		can be found on the outer packaging for this package.
Note:	If the full N line, thus I	<i>I</i> icrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.

22.1 Package Marking Information (Continued)

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	If the full N line, thus	licrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Molded Fackage Thickness	/ \2	2.00				
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1		7.50 BSC			
Overall Length	D		17.90 BSC			
Chamfer (optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Foot Angle Top	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff A	1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70		
Contact Width	b	0.23	0.38	0.43		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	_	_		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

-0-0-0-0-0-0-0-0

	Units	MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff A	1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20	_	_	

Α

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dime	nsion Limits	MIN	NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	_	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

APPENDIX A: REVISION HISTORY

Revision A (July 2007)

Initial release of this document.

Revision B (June 2008)

This revisi on i ncludes mino r typ ographical an d formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added Extended Interrupts column to Remappable Peripherals in the Controller Families table and Note 2 (see Table 1).
	Added Note 1 to all pin diagrams, which references RPn pin usage by remappable peripherals (see " Pin Diagrams ").
Section 1.0 "Device Overview"	Changed PORTA pin name from RA15 to RA10 (see Table 1-1).
Section 3.0 "Memory Organization"	Updated Reset values for the following SFRs: IPC1, IPC3-IPC5, IPC7, IPC16, and INTTREG (see Table 3-4).
	Added the System Control Register Map (see Table 3-20).
Section 5.0 "Resets"	Entire section was replaced to maintain consistency with other PIC24H data sheets.
Section 7.0 "Oscillator Configuration"	Removed the first sentence of the third clock source item (External Clock) in Section 7.1.1.2 "Primary" .
	Updated the default bit values for DOZE and FRCDIV in the Clock Divisor Register (see Register 7-2).
	Added the center frequency in the OSCTUN register for the FRC Tuning bits (TUN<5:0>) value 011111 and updated the center frequency for bits value 011110 (see Register 7-4).
Section 8.0 "Power-Saving	Added the following two registers:
Features"	PMD1: Peripheral Module Disable Control Register 1
	PMD2: Peripheral Module Disable Control Register 2
Section 9.0 "I/O Ports"	Added paragraph and Table 9-1 to Section 9.1.1 "Open-Drain Configuration ", which provides details on I/O pins and their functionality.
	Removed the following sections, which are now available in the related section of the PIC24H Family Reference Manual:
	9.4.2 "Available Peripherals"
	• 9.4.3.3 "Mapping"
	9.4.5 "Considerations for Peripheral Pin Selection"
Section 13.0 "Output Compare"	Replaced sections 13.1, 13.2 and 13.3 and related figures and tables with entirely new content.
Section 14.0 "Serial Peripheral Interface (SPI)"	Removed the following sections, which are now available in the related section of the PIC24H Family Reference Manual:
	14.1 "Interrupts"
	14.2 "Receive Operations"
	14.3 "Transmit Operations"
	14.4 "SPI Setup" (retained Figure 14-1: SPI Module Block Diagram)

TABLE 22-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section Name Section 15.0 "Inter-Integrated Circuit (I2C™)"	Update Description Removed the following sections, which are now available in the related section of the PIC24H Family Reference Manual: 15.3 "I ² C Interrupts" 15.4 "Baud Rate Generator" (retained Figure 15-1: I ² C Block Diagram) 15.5 "I ² C Module Addresses" 15.6 "Slave Address Masking" 15.7 "IPMI Support" 15.8 "General Call Address Support" 15.9 "Automatic Clock Stretch" 15.10 "Software Controlled Clock Stretching (STREN = 1)" 15.11 "Slope Control" 15.12 "Clock Arbitration" 15.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration"
Continue 40.0 (Universal	15.14 "Peripheral Pin Select Limitations"
Asynchronous Receiver Transmitter (UART)"	 Removed the following sections, which are now available in the related section of the PIC24H Family Reference Manual: 16.1 "UART Baud Rate Generator" 16.2 "Transmitting in 8-bit Data Mode" 16.3 "Transmitting in 9-bit Data Mode" 16.4 "Break and Sync Transmit Sequence" 16.5 "Receiving in 8-bit or 9-bit Data Mode" 16.6 "Flow Control Using UxCTS and UxRTS Pins" 16.7 "Infrared Support" Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 16-2).
Section 17.0 "10-bit/12-bit Analog- to-Digital Converter (ADC)"	Removed Equation 17-1: ADC Conversion Clock Period and Figure 17-2: ADC Transfer Function (10-Bit Example). Added ADC1 Module Block Diagram for PIC24HFJ16GP304 and PIC24HJ32GP204 Devices (Figure 17-1) and ADC1 Module Block Diagram FOR PIC24HJ32GP202 Devices (Figure 17-2).
	 Added Note 2 to Figure 17-3: ADC Conversion Clock Period Block Diagram. Added device-specific information to Note 1 in the ADC1 Input Scan Select Register Low (see Register 17-6), and updated the default bit value for bits 12-10 (CSS12-CSS10) from U-0 to R/W-0. Added device-specific information to Note 1 in the ADC1 Port Configuration Register Low (see Register 17-7), and updated the default bit value for bits 12-10 (PCFG12-PCFG10) from U-0 to R/W-0.

TABLE 22-1: MAJOR SECTION UPDATES (CONTINUED)

PIC24HJ32GP202/204 and PIC24HJ16GP304

Section Name	Update Description
Section 18.0 "Special Features"	Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 18-1).
	Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the PIC24HJ32GP202/204 and PIC24HJ16GP304 Configuration Bits Description (see Table 18-2).
	Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 18.2 "On-Chip Voltage Regulator" and to Figure 18-1.
	Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 18.3 "BOR: Brown-Out Reset" .
Section 21.0 "Electrical	Removed Typ value for parameter DC12 (see Table 21-4).
Characteristics"	Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f and DC72g (see Table 21-5, Table 21-6 and Table 21-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information to I/O Pin Input Specifications (see Table 21-9).
	Updated Min, Typ, and Max values and updated Min values for Program Memory parameters D136, D137 and D138 (see Table 21-12).
	Updated Max value for Internal RC Accuracy parameter F21 for $-40^{\circ}C \le TA \le +125^{\circ}C$ condition and added Note 2 (see Table 21-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer parameter SY20 and updated conditions, which now refers to Section 18.4 "Watchdog Timer (WDT) " and LPRC parameter F21 (see Table 21-21).
	Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63 and removed Note 3 (see Table 21-37).
	Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63 and removed Note 3 (see Table 21-38).

TABLE 22-1: MAJOR SECTION UPDATES (CONTINUED)

NOTES:

INDEX

1	۱.
^	•

A/D Converter	157
Initialization	157
Key Features	157
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	30, 32, 33
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	188

В

Block Diagrams	
16-bit Timer1 Module	123
A/D Module	. 158, 159
Connections for On-Chip Voltage Regulator	175
Device Clock	85, 87
Input Capture	131
Output Compare	133
PIC24H	12
PIC24H CPU Core	16
PLL	
Reset System	
Shared Port Structure	
SPI	137
Timer2 (16-bit)	127
Timer2/3 (32-bit)	126
UART	151
Watchdog Timer (WDT)	176

С

C Compilers	
MPLAB C18	188
MPLAB C30	188
Clock Switching	
Enabling	
Sequence	
Code Examples	
Erasing a Program Memory Page	
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	101
PWRSAV Instruction Syntax	
Code Protection	171, 177
Configuration Bits	171
Description (Table)	172
Configuration Register Map	171
Configuring Analog Port Pins	101
CPU	
Control Register	
CPU Clocking System	
Options	
Selection	
Customer Change Notification Service	238
Customer Notification Service	238
Customer Support	238
D	
Data Addross Space	23
Alignment	

Maman Man fan DIC2411 Daviese with 8 KPa DAN	
Memory Map for PIC24H Devices with 8 KBS RAW	1 24
Near Data Space	23
Software Stack	36
Width	23
DC Characteristics	192
I/O Pin Input Specifications	197
I/O Pin Output Specifications	198
Idle Current (IDOZE)	196
Idle Current (IIDLE)	195
Operating Current (IDD)	194
Power-Down Current (IPD)	196
Program Memory	199
Temperature and Voltage Specifications	193
Development Support	187
E	
Electrical Characteristics	191
AC.	. 200
Equations	
Device Operating Frequency	86
Frrata	00
F	
Flash Program Memory	43
Control Registers	44
Operations	44
Programming Algorithm	47
RTSP Operation	44
Table Instructions	43
	40

Flexible Configuration	171
I	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
l ² C	
Addresses	144
Operating Modes	143
Registers	143
I ² C Module	
I2C1 Register Map	29
In-Circuit Debugger	178
In-Circuit Emulation	171
In-Circuit Serial Programming (ICSP)	171, 178
Input Capture	
Registers	132
Input Change Notification	101
Instruction Addressing Modes	36
File Register Instructions	36
Fundamental Modes Supported	37
MCU Instructions	36
Move and Accumulator Instructions	37
Other Instructions	37
Instruction Set	
Overview	181
Summary	179
Instruction-Based Power-Saving Modes	95
Idle	
Sleep	95
Internal RC Oscillator	
Use with WDT	176
Internet Address	238
Interrupt Control and Status Registers	61

PIC24HJ32GP202/204 and PIC24HJ16GP304

IFSx	61
INTCON1	61
INTCON2	61
IPCx	61
Interrupt Setup Procedures	83
Initialization	83
Interrupt Disable	83
Interrupt Service Routine	83
Trap Service Routine	83
Interrupt Vector Table (IVT)	57
Interrupts Coincident with Power Save Instructions	96

J

JTAG	Boundary	Scan	Interface		 171
JIAG	Boundary	Scan	intenace	••••••	 1/1

Μ

Memory Organization	21
Microchip Internet Web Site	238
MPLAB ASM30 Assembler, Linker, Librarian	188
MPLAB ICD 2 In-Circuit Debugger	189
MPLAB ICE 2000 High-Performance Universal In-Circu	it Em-
ulator	189
MPLAB Integrated Development Environment Software	187
MPLAB PM3 Device Programmer	189
MPLAB REAL ICE In-Circuit Emulator System	189
MPLINK Object Linker/MPLIB Object Librarian	188
Multi-Bit Data Shifter	20

Ν

NVM Module	
Register Map	

0

Open-Drain Configuration	
Output Compare	
Registers	

Ρ

Packaging	225
Details	227
Marking	, 226
Peripheral Module Disable (PMD)	96
PICSTART Plus Development Programmer	190
Pinout I/O Descriptions (table)	13
PMD Module	
Register Map	35
PORTA	
Register Map	34
PORTB	
Register Map	34
Power-on Reset (POR)	54
Power-Saving Features	95
Clock Frequency and Switching	95
Program Address Space	21
Construction	38
Data Access from Progr am Memory Using Progr	am
Space Visibility	41
Data Access from Program Memory Using Table Ins	struc-
tions	40
Data Access from, Address Generation	39
Memory Map	21
Table Read Instructions	
TBLRDH	40
TBLRDL	40
Visibility Operation	41
Program Memory	
r regram memory	

Interrupt Vector	22
Organization	. 22
Reset Vector	22

R

Reader Response
AD1CHS0 (ADC1 Input Channel 0 Select 167
AD1CHS122 (ADC1 Input Channel 1, 2, 2 Select) 165
AD1CH3123 (ADC1 input Charmer 1, 2, 3 Select) 103
AD1CON1 (ADC1 Control 2)
AD1CON2 (ADC1 Control 2)
AD1CON3 (ADC1 Control 3)
AD1CSSL (ADC1 Input Scan Select Low) 169
AD1PCFGL (ADC1 Port Configuration Low) 169
CLKDIV (Clock Divisor) 90
CORCON (Core Control) 19, 63
I2CxCON (I2Cx Control)145
I2CxMSK (I2Cx Slave Mode Address Mask) 149
I2CxSTAT (I2Cx Status) 147
ICxCON (Input Capture x Control)
IEC0 (Interrupt Enable Control 0) 70, 72, 73
IFS0 (Interrupt Flag Status 0)
IFS1 (Interrupt Flag Status 1)
IFS4 (Interrupt Flag Status 4)
INTCON1 (Interrupt Control 1) 64
INTCON2 (Interrupt Control 2) 65
INTEREG Interrupt Control and Status Register 82
IPC0 (Interrupt Priority Control 0) 74
IPC1 (Interrupt Priority Control 1) 75
IDC16 (Interrupt Priority Control 16)
IPC 10 (Interrupt Priority Control 2)
IPC2 (Interrupt Priority Control 2)
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)
IPC5 (Interrupt Priority Control 5)
IPC7 (Interrupt Priority Control 7) 80
NVMCOM (Flash Memory Control) 45, 46
OCxCON (Output Compare x Control) 135
OSCCON (Oscillator Control) 88
OSCTUN (FRC Oscillator Tuning)
PLLFBD (PLL Feedback Divisor)
PMD1 (Peripheral Module Disable Control Register 1) 97
PMD2 (Peripheral Module Disable Control Register 2) 98
RCON (Reset Control) 50
SPIxCON1 (SPIx Control 1) 139
SPIxCON2 (SPIx Control 2) 141
SPIxSTAT (SPIx Status and Control)
SR (CPU Status)
T1CON (Timer1 Control) 124
TxCON (T2CON, T4CON, T6CON or T8CON Control)
TyCON (T3CON, T5CON, T7CON or T9CON Control)
UNIVIOUE (UARTIX IVIOUE)
Dasta (UARTA Status and Control)
Trans Openfiltat
1 rap Conflict
Uninitialized VV Register
Keset Sequence
Resets
S

Serial Peripheral Interface (SPI)	137
Software Reset Instruction (SWR)	55

Software Simulator (MPLAB SIM)	188
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	. 36
Special Features of the CPU	171
SPI Module	
SPI1 Register Map	. 29
Symbols Used in Opcode Descriptions	180
System Control	
Register Map	. 35

Т

Temperature and Voltage Specifications

AC
Timer1
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 125
Timing Characteristics
ČLKO and I/O
Timing Diagrams
10-bit A/D Conversion
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM
= 0. SSRC = 000)
12-bit A/D Conversion (ASAM = 0 SSRC = 000) 222
Brown-out Situations 55
External Clock 201
I2Cx Bus Data (Master Mode) 215
I2Cx Bus Data (Master Mode) 217
I2Cx Bus Start/Stop Bits (Master Mode) 215
I2Cx Bus Start/Stop Bits (Master Mode) 217
Input Capture (CAPy) 208
OU/FWM
Depart Watehder Timer, Opeillater Start up Timer and
Reset, watchdog Timer, Oscillator Start-up Timer and
Power-up Timer
SPIX Master Mode (CKE = 0)210
SPIx Master Mode (CKE = 1)
SPIx Slave Mode (CKE = 0)212
SPIx Slave Mode (CKE = 1)213
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock
Timing Requirements
CLKO and I/O203
External Clock201
Input Capture208
Timing Specifications
10-bit A/D Conversion Requirements 224
12-bit A/D Conversion Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)218
Output Compare Requirements
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up Timer, Pow-
er-up Timer and Brown-out Reset Requirements
205
Simple OC/PWM Mode Requirements 209
SPIx Master Mode (CKF = 0) Requirements 210
SPlx Master Mode (CKE = 1) Requirements 211
SPly Slave Mode (CKE = 0) Requirements 212
SPIN Slave Mode (CKE = 0) Requirements 212
Timor1 External Clock Poquirements
Timor 2 Timor 4 Timor 2 and Timor 2 External Clock Do
nineiz, Timera, Timero dilu Timero External Clock Re-
quirements
Timers, Timers, Timer/ and Timery External Clock Re-
quirements
U

UART1 Register Map......29

Using the RCON Status Bits	56
V	
Voltage Regulator (On-Chip)	175
W	
Watchdog Time-out Reset (WDTR)	55
Watchdog Timer (WDT)	171, 176
Programming Considerations	176
WWW Address	238
WWW, On-Line Support	9

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make file s and i nformation easily a vailable to customers. Accessible by using your favorite Internet browser, the web si te contains the foll owing information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's cu stomer notification service helps keep customers current on Microchip products. Subscribers will recei ve e -mail n otification whe never there a re changes, upd ates, revisions or errat a re lated to a specified product family or development tool of interest.

To register , access the Microc hip web site at www.microchip.com, click on Cu stomer C hange Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchi p p roducts can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers shou Id con tact their di stributor, representative or fi eld a pplication en gineer (FAE) for support. Local sales offices are also a vailable to he lp customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fron	n: Name		
	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	lication (optional):		
Wou	Ild you like a reply? <u>Y</u> N		
Devi	ice: LPIC24HJ32GP202/204 and	Number: DS70289B	
Que	stions:		
1.	What are the best features of this doc	ument?	
2.	How does this document meet your ha	ardware and software development needs?	
•			
•			
3.	3. Do you find the organization of this document easy to follow? If not, why?		
•			
1	What additions to the document do vo	w think would enhance the structure and subject?	
ч.			
5.	What deletions from the document co	uld be made without affecting the overall usefulness?	
		,	
6.	Is there any incorrect or misleading in	formation (what and where)?	
-			
7.	How would you improve this documer	nt?	
-			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trade Architecture — Flash Memory F Program Memor Product Group Pin Count — Tape and Reel F Temperature Ra Package — Pattern —	amark a Family ry Size Flag (if	app	PIC 24 HJ 32 GP2 02 T E / SP - XXX	Examples: a) PIC24HJ32GP202-E/SP: General-purpose PIC24H, 32 KB program memory, 28-pin, Extended temp., SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3	=	General purpose family General purpose family	
Pin Count:	02 03	= =	28-pin 44-pin	
Temperature Range:	l E=	=	-40°C to +85°C (Industrial) -40°C to +125°C (Extended)	
Package:	SP SO MM PT ML	= = = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 7.5 mm body (SOIC) Plastic Quad, No Lead Package - 6x6 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP Plastic Quad, No Lead Package - 8x8 mm body (QFN)	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08